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ABSTRACT

Can we train a single transformer model capable of processing multiple modalities
and datasets, whilst sharing the majority of its learnable parameters? We present
PolyViT, a model trained on image, audio and video which answers this question.
By co-training different tasks on a single modality we are able to improve the ac-
curacy of each individual task and achieve state-of-the-art results on 5 standard
video- and audio-classification datasets. Co-training PolyViT on multiple modal-
ities and tasks leads to a model that is even more parameter-efficient, and learns
representations that generalize across multiple domains. Finally, we show that
co-training is simple and practical to implement, as we do not need to tune hy-
perparameters for each combination of datasets, but can simply adapt those from
standard, single-task training.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are a flexible architecture which operate on a sequence of in-
put tokens. While it was originally designed for natural language processing, it has recently been
adapted to a range of perception tasks, such as classification of images (Dosovitskiy et al., 2021),
video (Arnab et al., 2021) and audio (Gong et al., 2021; Nagrani et al., 2021). Despite recent ad-
vances across different domains and tasks, current state-of-the-art methods train a separate model
with different model parameters for each task at hand.

In this work we show how to train a single, unified model (Fig. 1) that achieves competitive, or
state-of-the-art results for image-, video- and audio-classification. We go beyond using a common
architecture for different modalities (Jaegle et al., 2021), as we also share model parameters across
tasks and modalities, thus enabling potential synergies.

Our main technique is co-training: training a single model on multiple classification tasks (across
potentially multiple modalities) simultaneously. We consider various settings, and simultaneously
solve as many as 9 different image-, video- and audio-classification tasks. As shown in Fig. 1,
our model is capable of performing multiple tasks, but performs a single task at a time for a given
input. Although similar techniques have been explored in computer vision (Maninis et al., 2019)
and natural language (Raffel et al., 2019), we are not aware of previous work that have considered
multiple modalities and achieved state-of-the-art results with this approach.

We show that our co-training setup has multiple benefits: In particular, it is parameter-efficient as
we share the transformer parameters for each of the n tasks of interest, approximately reducing the
number of parameters by a factor of n. This has practical advantages when deploying models on
edge devices with limited memory. Furthermore, co-training on tasks of the same modality leads
to accuracy improvements on each individual task whilst also linearly decreasing total parameters.
In particular, we achieve state-of-the-art results on video and audio classification across 5 different
datasets. In addition, when we extend co-training to multiple tasks and modalities, we observe that
our accuracy is still competitive with the state-of-the-art whilst being even more parameter-efficient
– our model trained on 9 datasets uses 8.3 times fewer parameters whilst having at most a 1.2%
accuracy drop compared to state-of-the-art single-task baselines. Finally, linear probing experiments
show that this multi-task, multi-modal model is able to learn representations that generalize across
multiple tasks and domains.
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Figure 1: Overview of PolyViT. Our model is capable of performing multiple tasks spanning dif-
ferent modalities, and processes a single task at a time. The architecture consists of a transformer
encoder shared among all tasks, modality-specific input tokenizers and task-specific output heads.

In addition to all the benefits outlined above, our co-training setup is simple and practical to imple-
ment. It does not require hyperparameter tuning for each combination of datasets, as we can readily
adapt the settings of standard, single-task training. In addition, co-training does not increase the
overall training cost either, as the total number of training steps does not exceed that of the sum of
each single-task baseline. For reproducibility, we will release code and checkpoints.

2 PRELIMINARIES

We define a modality as the type of input processed by the network. In this work, we consider
images, audio, and video (specifically, the sequence of image frames in a video) as three separate
modalities. We perform classification as it is a fundamental problem whose solutions are often
extended to more complex ones (Girshick et al., 2014; He et al., 2017). By task, we refer to a pair of
input modality and a set of classes from which one or multiple classes are to be selected for a given
input. Each task corresponds directly to a dataset, for example, ImageNet-1K (Deng et al., 2009) for
image classification or Kinetics 400 (Kay et al., 2017) for video classification.

2.1 VISION TRANSFORMERS AND EXTENSIONS

The Vision Transformer (ViT, Dosovitskiy et al. 2021) is a transformer-based architecture for image
classification that closely follows Vaswani et al. (2017). In contrast to language which is intuitively
tokenized into words, ViT extracts tokens from the input image, xIMG ∈ RH×W×3, by splitting it
into N = bH/hc × bW/wc non-overlapping patches, x1, . . . ,xN ∈ Rh×w×3. Each patch, xi, is
then projected into a token zi ∈ Rd by a linear operator E, zi = Exi (input embedding operator).
All tokens are then concatenated into a sequence, which is also prepended with a learnable class
token zcls ∈ Rd. Learnable positional embeddings p ∈ RN×(d+1) are also added to this sequence
as the transformer is otherwise permutation invariant. We denote this tokenization process as

z0 = [zcls Ex1 . . . ExN ] + p. (1)

Note that the linear operator E can also be thought as a 2D convolution with kernel of size h × w
and strides (h,w). The sequence of tokens, z, is then processed by a transformer encoder, consisting
of L layers. Each layer, `, is applied sequentially, and performs the transformations,

y` = MSA
(
LN
(
z`−1

))
+ z`−1 (2)

z` = MLP
(
LN
(
y`
))

+ y`, (3)

where MSA is the multi-head self-attention operation (Vaswani et al., 2017), MLP is a neural net-
work with a single hidden layer and a GeLU nonlinearity (Hendrycks & Gimpel, 2016), and LN
denotes layer normalization (Ba et al., 2016).

For a C-class classification problem, the class probability logits produced by the model are obtained
by applying an output linear head on the encoded classification token, zLcls, as

Woutz
L
cls + bout ∈ RC , (4)
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where Wout ∈ RC×d and bout ∈ RC are the linear head’s learnable parameters.

Extensions of ViT to audio and video The Audio Spectrogram Transformer (AST, Gong et al.
2021) follows the same architecture as ViT, with the only difference that its inputs are log-mel
spectrograms. Spectrograms are image-like, time-frequency representations of audio, and can be
tokenized in the same manner as images. Moreover, the best AST model was initialized from ViT
models pretrained on large image datasets.

Video Vision Transformers (ViViT, Arnab et al., 2021) are an extension of ViT to video. The authors
proposed four model variants, and we consider the unfactorized version (Model 1 in Arnab et al.,
2021). This model differs from ViT only in the input tokenization process, which it extends from
2D image patches to 3D spatio-temporal “tubelets”. Namely, a video input xVID ∈ RF×H×W×3

is split into N = bF/fc × bH/hc × bW/wc non-overlapping tubelets x1, . . . ,xN ∈ Rf×h×w×3.
Following ViT, a linear operator EVID, which can be interpreted as a 3D convolution, projects {xi}
into a sequence of tokens {zi = EVIDxi ∈ Rd}, and computations (1-4) are repeated.

Initialization Finally, note that ViT, ViViT and AST all achieve their highest performance when
pretrained on a large-scale dataset such as ImageNet-21K (Deng et al., 2009) or JFT (Sun et al.,
2017). More specifically, ViT was initially pretrained on ImageNet-21K or JFT, and then finetuned
at higher resolution on target datasets such as ImageNet-1K. ViViT and AST also initialize their
models from large-scale, image-pretrained models. In all of these cases, the positional embeddings,
p, which depend on the sequence length N (and thus the input resolution), are interpolated from
the pretrained model to the finetuned model. Furthermore, the 3D embedding projection of ViViT,
EVID, is initialized from the 2D projection of ViT, EIMG (Arnab et al., 2021).

The similarities between ViT, ViViT and AST allow us to construct a multi-modal model with a
shared transformer encoder, and separate input tokenizers as described next in Sec. 3.

3 CO-TRAINING VIT ON IMAGES, AUDIO AND VIDEO

3.1 POLYVIT ARCHITECTURE

PolyViT is a single architecture that is capable of processing inputs from multiple modalities. As
shown in Fig. 1, we share a transformer encoder among different tasks and modalities, enabling up
to a linear reduction in parameters with the number of tasks. Note that PolyViT with L layers acts
like an L-layer ViT when processing images, an L-layer AST when processing audio and an L-layer
unfactorized ViViT when processing video. And whilst it is capable of handling multiple modalities,
it performs one task from one modality in a given forward pass.

As shown in Fig. 1, PolyViT employs modality-specific class tokens, zIMG
cls , z

VID
cls , z

AUD
cls , input em-

bedding operators, EIMG,EVID,EAUD, and positional embeddings pIMG,pVID,pAUD. This allows the
network to encode modality-specific information that can be leveraged by the subsequent, shared
transformer backbone. It also accounts for the fact that the number of tokens per modality may vary.

A separate output linear head (Eq. 4) is then used for each task as shown in Fig. 1. Each head has
learnable weights,

Wout = Wmod,j
out ∈ RCj×d, bout = bmod,j

out ∈ RCj

, (5)

where mod ∈ {IMG, VID, AUD} is a modality, j ∈ {1, . . . , Tmod} is a task index in the set of tasks
for that modality, Tmod is the number of tasks for that modality and Cj is the number of classes for
that task. Note that the output heads are the only task-specific parameters. The input embedding
operators, positional embeddings and class tokens are shared by all tasks within a modality.

To increase model capacity when co-training on a large number of tasks and modalities simultane-
ously, we can optionally include Ladapt ≥ 0 modality-specific transformer layers (which we denote
as modality-adaptor layers). These transformer layers are applied directly after tokenization. In
this case, there are Lshared = L − Ladapt layers which are shared among all modalities and tasks.
We can think of this case as using a more shallow transformer encoder, but a deeper subnetwork to
extract tokens from different modalities.

As almost all computation and parameters within our architecture are within the L layers of the
transformer encoder, if there are n tasks, we reduce the total number of parameters by a factor of
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approximately n when Lshared = L. This is in comparison to standard, single-task training. Note
that the overall inference time does not change, as PolyViT still performs one task per forward pass.

3.2 CO-TRAINING PROCEDURE
Task #1

Task #2

Task #3

5 5 5

5 5 5

3 5
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Figure 2: Task sampling schedules considered in
this paper. Each element within a task corre-
sponds to the number of training steps performed
for that task by the baseline model.

We optimize all PolyViT model parameters, θ,
simultaneously across all the tasks that we are
co-training on with stochastic gradient descent
(SGD). As a result, there are a myriad of design
choices on how to construct training batches,
compute gradients to update model parameters,
and which training hyperparameters to use.

In all cases, we construct our training mini-
batches using examples from a single task. This
design choice allows us to evaluate gradients
and perform a parameter update using the same
training hyperparameters (e.g., learning rate,
batch size, and momentum) as a conventional
single-task baseline. As a result, we can per-
form co-training on multiple tasks without any additional hyperparameter tuning compared to the
single-task baseline (Dosovitskiy et al., 2021; Gong et al., 2021; Arnab et al., 2021), making co-
training simple to perform in practice, and alleviating the need to perform large hyperparameter
sweeps in order to achieve competitive accuracy. Moreover, constructing minibatches from a single
task (where each example has the same number of tokens) has computational advantages on GPU-
or TPU-accelerators too, as tokens do not need to be padded to a maximum sequence length.

During co-training, for each SGD step, we sample a task (dataset), then sample a minibatch from
that task, evaluate a gradient and then perform a parameter update. An important consideration is
the order in which we sample tasks and whether we accumulate gradients over different minibatches
and tasks. We describe several task sampling schedules below and in Fig. 2. We first denote Uj as
the number of SGD steps for the single-task baseline that the original authors reported for their best
model, where j ∈ {1, . . . , T} indexes the task and T = T IMG + T AUD + T VID is the total number of
tasks. Furthermore, we define U as the total number of SGD steps during co-training.

Task-by-task In this deterministic schedule, the first Uj1 SGD steps are performed with task j1, the
next Uj2 steps using task j2 and so on, where [j1, . . . , jT ] is a random task order.

Alternating This deterministic schedule alternates between tasks in a fixed, repeating order. Con-
cretely, we perform a single SGD step for each task in sequence before repeating the same order.
We set U =

∑M
j=1 Uj which implies U/T training steps per task.

Uniform task sampling This is a stochastic version of the schedule above, where the task for each
SGD step is sampled from a uniform distribution, with probability 1/T . We implement it such that
the number of training steps for task j is exactly U/T , by randomly permuting an array with U
elements, where U/T elements correspond to each task.

Weighted task sampling In this schedule, we sample each task with a weight proportional to the
number of training steps in the single-task baseline. Therefore, U =

∑M
j=1 Uj , and the sampling

weight for task j is Uj/U . We implement this schedule, using the same implementation as above,
to ensure that we perform exactly Uj steps for task j.

Accumulating gradients For T tasks, we perform a forward and backward pass on a minibatch
for each task, summing the gradients over each task. We then perform a single parameter update
with the accumulated gradients, thus effectively using a larger batch size encompassing all the tasks
being co-trained. Here, we set U = (

∑T
j=1 Uj)/T .

3.3 INITIALIZATION OF POLYVIT

As described in Sec. 2.1, ViT, ViViT and AST models are initialized from models pretrained on
ImageNet-21K or JFT before being finetuned for the task of interest. In all of our experiments, we
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Table 1: The effect of the task sampling schedule on co-training performance on multiple modalities
and tasks. The highest accuracy is shown in bold, and the second-highest is underlined. Note how
the “Weighted” task sampling method consistently achieves the highest accuracy for 8 out of 9 tasks,
and second-highest on the remainder. Results are on the validation set.

Image Video Audio

Schedule Im1K C100 C10 Pets R45 K400 MiT MiniAS VGG

Task-by-task 0.3 0.8 11.7 1.9 2.0 0.3 0.3 1.6 37.2
Accumulated 88.1 90.0 98.8 94.0 96.1 58.0 22.5 22.9 27.3
Alternating 86.0 89.4 99.2 94.0 95.8 69.7 30.0 31.4 44.6
Uniform 85.8 89.3 98.6 94.6 96.1 68.8 29.3 30.6 44.1
Weighted 86.9 90.4 99.3 96.5 97.0 71.6 32.5 33.5 49.2

also finetune from a ViT model pretrained on ImageNet-21K unless otherwise stated, and follow the
initialization methods for the positional embeddings, p, and input embeddings, E, for each modality
as described in Dosovitskiy et al. (2021) and Arnab et al. (2021).

When we use modality-adaptor layers, that is Ladapt > 0, the first Ladapt layers for each modality
are initialized with the same first Ladapt layers from the pretrained ViT model. These parameters
are however allowed to change from each other during training. Similarly, shared PolyViT layers
are initialized from the last Lshared transformer encoder layers from the pretrained ViT model. Note
that the output linear heads are all initialized randomly.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We train PolyViT simultaneously on 9 diverse classification tasks spanning the image, video and au-
dio modalities. Note that datasets and tasks have a one-to-one correspondence. We chose this setup
of 9 tasks, as the datasets include a large variation in domain and training set sizes. Furthermore, the
single-task baseline training hyperparameters vary substantially between the tasks. Consequently,
we believe this presents a challenging co-training setup.

When co-training for image classification, we use ImageNet-1K, CIFAR-10 and -100, Oxford-IIIT
Pets and RESISC45. For video, we use Kinetics 400 and Moments in Time, and for audio, AudioSet
and VGGSound. Exhaustive details of these datasets are in Appendix A. As in Nagrani et al. (2021),
we evaluate on the whole AudioSet validation set, but use a smaller balanced subset referred to
Mini-AudioSet (MiniAS) for initial experiments. We then use a larger, balanced subset of 500 000
examples (referred to AS-500k) for our state-of-the-art comparisons following Nagrani et al. (2021).
We follow standard evaluation protocols for each task, reporting classification accuracy (%) for all
tasks except AudioSet, where we report mean average precision (mAP) as it is a multilabel problem.

We set the training hyperparameters for these tasks (and those of the single-task baselines) using the
values reported by Dosovitskiy et al. (2021) for image tasks, Arnab et al. (2021) for video tasks and
Nagrani et al. (2021) for audio tasks (detailed in Appendix A). Note that the “audio-only” model
of Nagrani et al. (2021), which we use as our baseline, is identical to AST (Gong et al., 2021), and
we choose it since the authors have evaluated on more datasets.

We perform experiments with two standard transformer encoder configurations: Base (number of
layers, L = 12, hidden dimension d = 768, attention heads h = 12) and Large (L = 24, d = 1024,
h = 16) following (Devlin et al., 2019; Dosovitskiy et al., 2021). As in Dosovitskiy et al. (2021), we
initialize our PolyViT model and baselines with ViT pretrained on ImageNet-21K. We refer to this
initialized model as ViT-Im21K. For reproducibility, we will release code and models, and include
exhaustive experimental details in Appendix A.

4.2 SELECTING THE BEST TASK SAMPLING SCHEDULE FOR CO-TRAINING

We begin by analyzing the effect of the different task sampling schedules listed in Sec. 3.2. We use
the full, aforementioned 9-task set-up with PolyViT-Base and all encoder layers shared (Lshared =
L = 12, Ladapt = 0).
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Table 2: Co-training with PolyViT-Base. As indicated by the “#Models” column, some rows cor-
respond to multiple trained models. In this case, we report the total number of parameters across
all the models. PolyViT co-trained on a single-modality outperforms single-task baselines in most
cases, whereas PolyViT co-trained on multiple modalities achieves competitive performance with a
large reduction in parameters. Results are on the test set. Further dataset details in Appendix A.

Image Video Audio

Model #Models #Params Im1K C100 C10 Pets R45 K400 MiT MiniAS VGG

ViT-Im21K Linear probe 1 93M 80.7 76.2 91.7 91.8 81.7 64.0 25.5 11.3 15.7
Single-task baseline 9 773M 83.1 92.0 99.0 94.5 96.7 78.7 33.8 29.3 51.7
PolyViT, 1 modality 3 263M 84.3 93.3 99.1 95.1 96.4 80.2 36.5 36.7 51.6
PolyViT, Ladapt = 0 1 93M 83.1 91.2 99.0 95.0 96.7 77.5 33.2 32.3 50.6
PolyViT, Ladapt = L/2 1 178M 82.8 91.5 99.0 95.0 96.6 79.4 35.3 33.1 51.5

As shown in Tab. 1, the “Task-by-task” schedule performs poorly, and only achieves decent perfor-
mance on one task, as it suffers from catastrophic forgetting (French, 1999). The “Accumulated”
sampling strategy requires using a single learning rate for all tasks (since the accumulated gradi-
ent over all tasks is used for performing a parameter update). As we used a learning rate of 0.03,
which is the learning rate used by the image tasks, and significantly lower than the learning rates for
the video and audio tasks of the baselines (details in Appendix A), this method only performs well
on the image datasets. The “Alternating”, “Uniform” and ”Weighted” strategies perform the best,
showing that task-specific learning rates, and switching between gradient-updates for different tasks
is crucial for co-training performance.

In particular, the “Weighted” sampling method performs the best, achieving the highest accuracies
on 8 of the 9 tasks (and second-highest on the remainder), motivating us to use it for all subsequent
experiments. Note that the “Weighted” strategy samples tasks with a lower number of training steps
in their baseline training configurations less frequently. In particular, the Pets task is only sampled
for 500 iterations, out of the 417 000 total steps, or just 0.11% of the SGD updates. Nevertheless,
it still achieves the highest accuracy on this task. Another advantage of the “Weighted” strategy is
that it performs the same number of steps per task as a single-task baseline. Therefore, it uses the
same computational resources during training as 9 separate, single-task baselines. Our experiment
also shows that if we do not have training hyperparameters for a new task, we can simply tune them
separately in the single-task setting, and then reuse them for co-training. This approach requires
significantly less computation than tuning training hyperparameters directly in the co-training setup.

4.3 CO-TRAINING WITH POLYVIT

Table 2 presents approaches for training models to solve 9 different tasks across the image, video and
audio modalities. We consider two variants of PolyViT. The first is PolyViT for a single modality,
where we co-train three separate PolyViT models on all the tasks from either the image, video or
audio modalities. The second is the multi-modal PolyViT scenario where we co-train on all nine
tasks across three modalities. Here, we set Ladapt to 0 and L/2 respectively to understand the effect
of the number of modality-adaptor and shared layers.

We compare PolyViT to two baselines, which illustrate two alternatives to co-training. One baseline
is to train 9 separate single-task models for each dataset, either ViT, ViViT or AST depending on
the modality. This results in accuracies comparable to the state-of-the-art on the respective datasets,
but also the largest number of total parameters. The second baseline is to use a ViT model initial-
ized on ImageNet-21K (ViT-Im21K) and to “freeze” the encoder of the network and train only the
linear output heads (Eq. 4,5) for each task. Positional embeddings, p, and input embeddings, E are
initialized following the methods used by ViT, ViViT or AST as described in Sec. 2.1. This baseline
has the same number of parameters as PolyViT with Ladapt = 0.

Table 2 shows that PolyViT trained on a single modality achieves the highest performance on 7
of the 9 datasets. On the remaining two, the accuracy difference is negligible, as it is at most
0.3%. Moreover, the total number of parameters is 3 times less than the single-task baselines.
Single-modality co-training improves accuracy the most on the smaller datasets within the modality
(Kinetics 400 in video, Mini-AudioSet for audio, and CIFAR-100 for images; full dataset details in
Appendix A). This suggests that co-training acts as a regularizer, as noted by Caruana (1997), that
facilitates learning on smaller datasets where high-capacity models would otherwise overfit.
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Table 3: Linear probing of PolyViT and single-task baselines. Similar to the protocol for evaluating
self-supervised representation learning, we train only a linear classifier on top of a “frozen” trans-
former encoder. Note how PolyViT co-trained on all tasks transfers well to all other datasets and
modalities. Models trained on audio do not transfer well to images and video, and vice versa. All
models are pretrained on ImageNet-21K, and then optionally finetuned on downstream datasets.

Image Video Audio

Model Finetuning C
-c

h1
01

SU
N

39
7

D
m

la
b

D
T

D

K
IT

T
I

PC
A

M

E
pi

c
K

.

S-
S

v2

K
60

0

M
iT

-A

K
40

0-
A

ViT-Im21K pretrained – 88.9 75.7 41.0 72.1 46.9 80.2 10.0 17.8 66.6 4.9 10.8

ViT ImageNet-1K 91.0 79.3 45.6 71.9 52.5 80.7 12.2 18.5 67.9 5.3 12.0
PolyViT Image tasks 90.7 80.0 45.2 72.5 53.8 81.2 12.1 17.9 67.9 5.3 11.9

ViViT MiT 85.2 73.8 43.0 69.9 54.9 81.7 14.9 26.3 74.2 5.1 11.9
PolyViT Video tasks 89.2 77.5 45.9 71.1 53.5 83.8 17.2 27.9 79.7 5.3 12.2

AST VGGSound 29.0 7.6 29.8 34.7 45.1 79.5 2.9 4.6 10.6 9.7 21.7
PolyViT Audio tasks 38.8 14.7 31.4 40.1 43.2 78.4 3.0 5.8 14.5 10.3 22.0
PolyViT Ladapt=0 All 91.0 78.2 45.8 71.8 52.3 81.9 16.8 27.9 77.8 9.6 20.6
PolyViT Ladapt=L/2 All 90.7 77.8 45.1 72.1 52.5 82.3 18.0 28.7 79.4 9.9 21.1

Multi-modal PolyViT (final two rows) achieves competitive performance whilst using substantially
fewer parameters. In particular, PolyViT with all transformer encoder layers shared between modali-
ties (Ladapt = 0) is within 1.2% of the single-task baselines across all datasets whilst using 8.3 times
fewer parameters. This model also comprehensively outperforms the ViT-Im21K Linear probe base-
line which has the same number of parameters. Sharing half the transformer layers between modal-
ities (Ladapt = L/2) increases model capacity, and the model improves upon the corresponding
single-task baseline on 4 datasets, whilst being at most 0.5% worse on the others. The total number
of parameters is still reduced by a factor of 4.3 compared to the single-task baselines.

Our results are consistent when using the Large model backbone as shown in Appendix C.

4.4 EVALUATING LEARNED REPRESENTATIONS WITH LINEAR PROBES

We now evaluate the feature representations learned by PolyViT by simply appending and training
only a new linear head (Eq. 4,5) for a new task. This evaluation therefore follows the experimental
setting commonly used in self-supervised learning to evaluate the quality of learned representa-
tions (Chen et al., 2020; Grill et al., 2020). Note that the new task can come from any one of
the three modalities that PolyViT is trained on, since the modality-adaptor layers (if present) are
modality-specific rather than task-specific.

In particular, we evaluate on a number of new image, audio and video datasets as detailed in Ap-
pendix D. For image classification, we include Caltech101, SUN397, DmLab, DTD, Kitti Distance
and PatchCamelyon, which are datasets from the Visual Task Adaptation Benchmark (Zhai et al.,
2019) not in our co-training set. For video classification, we also include Epic Kitchens, Something-
Something v2 and Kinetics 600. Finally, for audio classification, we use the audio versions of the
Moments in Time and Kinetics 400 datasets.

We use PolyViT-Base and take linear probes of all the PolyViT models from Sec. 4.3, i.e. three
single-modality models and two multi-modal models trained on all tasks with Ladapt = 0 and
Ladapt = L/2 respectively. Our baseline models are those not performing co-training. Namely,
we use ViT trained only on ImageNet-21K (ViT-Im21K) as a baseline, followed by ViT, ViViT and
AST initialized from ViT-Im21K and finetuned on ImageNet, Moments in Time and VGGSound
respectively (since these are the largest datasets for each respective modality).

Table 3 shows how PolyViT trained on multiple modalities learns cross-modal feature representa-
tions that perform well on all 11 linear evaluation tasks across three different modalities (last two
rows). This holds even when all the layers of the PolyViT transformer layer are shared, and thus the
total number of parameters is roughly equal to a single-task model. PolyViT where the first half of
the transformer encoder layers are modality-specific (final row), has more parameters and in gen-
eral performs better. Furthermore, for the Epic Kitchens (video), Something-Something v2 (video)
and Caltech 101 (image) datasets, multi-modal PolyViT transfers better than single-modality base-
lines. Table 3 thus demonstrates how co-training on multiple modalities facilitates learning powerful,
transferable feature representations that can be used on multiple downstream tasks.
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Table 4: State-of-the-art comparison for video classification. For ViViT, the current published state-
of-the-art, we compare to numbers reported by Arnab et al. (2021) using standard dataset protocols.

Kinetics 400 Kinetics 600 Moments in Time
Model #Models #Params Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

ViViT 3 913M 80.6 94.7 82.5 95.6 38.0 64.9
PolyViT 1 308M 82.4 95.0 82.9 95.5 38.6 65.5

Table 5: State-of-the-art comparison for audio classification. We compare to MBT, the current state-
of-the-art, using the same protocols as Nagrani et al. (2021). For AudioSet, we train on the balanced
subset, AS-500k, following Nagrani et al. (2021) as described in Sec. 4.1.

AudioSet VGGSound
Model #Models #Params mAP Top 1 Top 5

MBT (audio-only) 2 172M 44.3 52.3 78.1
PolyViT 1 87M 44.5 55.1 80.4

Models trained on only a single modality, as expected, do not in general learn feature representations
that transfer well to other modalities. In particular, models trained on audio tasks do not transfer at
all to images and videos, and vice versa. Models trained on video, however, still perform well on
images, with video-trained models performing the best on the DmLab, PCAM and KITTI-Distance
datasets. We believe this is due to the commonalities between the image and video modalities.
Observe that in the majority of cases, single-modality PolyViT models perform better on linear
probing than the corresponding single-task baselines, especially for video and audio.

4.5 STATE-OF-THE-ART PERFORMANCE WITH SINGLE-MODALITY CO-TRAINING

Motivated by the performance of single-modality co-training in Tab. 2, we perform larger-scale
co-training experiments with this method on video and audio classification.

Tables 4 and 5 show that we achieve state-of-the-art results in both of these domains whilst using also
significantly fewer parameters. For video classification, we co-train PolyViT-Large with a smaller
tubelet size (and hence greater number of tokens) of 2×16×16 on Kinetics-400, -600 and Moments
in Time. We compare to ViViT (Arnab et al., 2021) which is the current published, state-of-the-art,
and uses the same initialization, transformer backbone and number of tokens. As shown in Tab. 4,
we surpass the state-of-the-art on all three datasets, with the largest improvement of 1.8% being on
Kinetics 400, which is also the smallest dataset. This is in line with our findings from Sec. 4.3 and
shows that co-training has a regularizing effect that reduces overfitting and improves performance
the most on smaller datasets. Moreover, by co-training on three datasets, we reduce the total number
of parameters required by almost three times compared to separately trained ViViT models.

On audio classification, we compare to the current state-of-the-art using audio information only,
MBT (Nagrani et al., 2021), using the same Base backbone and other experimental settings as the
authors. As with our video experiments, we improve on both datasets (AudioSet and VGGSound),
whilst using about half the total number of parameters. Once again, we observe larger improvements
(2.8%) on VGGSound, which is the smaller dataset, as co-training has a regularizing effect.

5 RELATED WORK

Our model is related to multi-task learning and transformer models, which we discuss below.

Multi-task learning aims to develop models that can address multiple tasks whilst sharing param-
eters and computation between them (Caruana, 1997). In computer vision, multiple papers have
developed models which predict multiple outputs (for example semantic segmentation and surface
normals), given a single input image (Eigen & Fergus, 2015; Kokkinos, 2017; Zhang et al., 2014).
Numerous works have also observed that although multi-task models are more versatile, their accu-
racies are lower than single-task models, and this accuracy deficit increases with the number of tasks,
or by simultaneously performing unrelated tasks (Kokkinos, 2017; Zamir et al., 2018; McCann et al.,
2018). Moreover, jointly training a network to simultaneously perform multiple tasks has typically
required careful calibration of the individual tasks, to ensure that none of the task-specific losses
dominates another. Methods to mitigate this include gradient-normalization (Chen et al., 2018) and
-surgery (Yu et al., 2020) and adaptive loss weights (Sener & Koltun, 2018; Kendall et al., 2018).
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Our work differs in that although our network is capable of performing multiple tasks, it performs
one task at a time for a given input. Note that this setting is also more suited to the case of handling
multiple input modalities. Such an approach was also performed by Maninis et al. (2019) who named
it “single-tasking of multiple tasks” in the context of computer vision. However, in natural language
processing (NLP), this setting is still referred to as “multi-task learning” (Collobert & Weston, 2008).
Furthermore, our co-training strategy is simple, and alternates between performing SGD for batches
of separate tasks. For high-capacity transformer models, we find that co-training on multiple datasets
simultaneously helps to regularize the model on a dataset that it would otherwise overfit on, thus
achieving accuracy improvements from co-training. Previous works have improved performance
on additional tasks only by introducing extra task-specific parameters (Misra et al., 2016; Houlsby
et al., 2019) which are typically conditioned on the input (Rebuffi et al., 2017; Maninis et al., 2019).

We also note that simlar co-training setups to our work have been explored in NLP. A recent
paradigm in NLP has been to reduce different tasks to a common, unified framework (Raffel et al.,
2019; Brown et al., 2020; McCann et al., 2018). This common interface allows co-training a sin-
gle model to perform multiple tasks, as it effectively involves concatenating multiple datasets to-
gether (Raffel et al., 2019; Khashabi et al., 2020; Tay et al., 2020).

Although the majority of previous multi-task learning works have considered only a single modality,
Kaiser et al. (2017) presented an early effort on multi-modal models. Their heterogeneous model
consisted of convolutional layers to process images, and attention and mixture-of-experts layers to
model text. Their results, however, were not competitive with the state-of-the-art as ours.

Our model, motivated by Dosovitskiy et al. (2021), can readily handle diverse modalities, as trans-
formers operate on any sequence of tokens. Relevant to us, the Perceiver (Jaegle et al., 2021) is a
transformer architecture that can process different modalities. Instead of tokenizing images or audio
spectrograms with non-overlapping patches like Dosovitskiy et al. (2021) and Gong et al. (2021)
respectively, Jaegle et al. (2021) operate directly on the raw input by projecting it into a smaller, la-
tent set of tokens using cross-attention. Although this architecture is capable of processing different
modalities, the authors train separate networks with separate parameters for each task. Therefore,
they do not consider co-training scenarios like our work. MBT (Nagrani et al., 2021), on the other
hand, proposes a transformer model to fuse different modalities (for example audio and rgb frames
of videos) to solve a single task. Once again, separate model parameters are used for each task.

Hu & Singh (2021) co-train a transformer-based model, but specifically for vision-and-language
tasks. The authors use an encoder-decoder architecture (Vaswani et al., 2017), where only the de-
coder is shared among different tasks, and the encoder is specialized for each modality. In particular,
the visual encoder is DeTR (Carion et al., 2020) and the text encoder is BERT (Devlin et al., 2019),
and each component is pretrained separately. In contrast to our work, they do not consider scenarios
where the entire transformer backbone is shared among different tasks, nor do they thoroughly ana-
lyze how to co-train multiple tasks and modalities like our work. Furthermore, their approach does
not outperform single-task baselines as our work does. Other papers concentrating on multi-task
learning of vision-and-language tasks include (Lu et al., 2019; Li et al., 2020; Lu et al., 2020).

Finally, we note that Akbari et al. (2021) have recently processed multiple modalities with a sin-
gle transformer backbone for cross-modal, contrastive self-supervised learning as previously done
by (Alayrac et al., 2020; Miech et al., 2020) with convolutional models. The focus of these works is
pretraining models to learn powerful representations, and is therefore an alternative to the supervised
pretrained on large datasets like ImageNet-21K that we used.

6 CONCLUSION AND FUTURE WORK

By co-training PolyViT on a single modality, we have achieved state-of-the-art results on three
video and two audio datasets while reducing the total number of parameters linearly compared to
single-task models. PolyViT co-trained on multiple modalities is even more parameter-efficient,
still competitive with the state-of-the-art, and learns feature representations that generalize across
multiple modalities enabling us to learn new tasks by simpling learning an additional output head.
Co-training is also practical, as we don’t need to tune hyperparameters from the joint space of
datasets, but can simply re-use training hyperparameters from single-task models. Moreover, we
can achieve accuracy improvements from training for the same number of total steps. Future work
is to co-train on large-scale pretraining datasets, and consider additional modalities, like text.
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ETHICS STATEMENT

Our work presents a method for performing image-, audio- and video-classification with a single
parameter-efficient model. Classification of perceptual data (images, audio and video) is a general
technology with a wide range of potential applications. While we are unaware of all potential appli-
cations, it is important to be aware that each application has its own merits and societal implications
depending on the intentions of the individuals building and using the system. We also note that
training datasets contain biases that may render models trained on them unsuitable for certain appli-
cations. It is possible that people use classification models (intentionally or not) to make decisions
that impact different groups in society differently.

REPRODUCIBILITY STATEMENT

We have included exhaustive descriptions of our datasets, training hyperparameters and experimen-
tal details in the main paper and appendices. Note that we have included appendices to provide
details for each of our main experiments. For example, Appendix B provides more details for the
experiments in Sec. 4.2, Appendix C for experiments in Sec. 4.3 up to Appendix E for experiments in
Sec. 4.5. For additional clarity, the appendices contain 5 tables detailing the configurations for each
of our experiments. We have also used only publicly available datasets in all of our experiments.
Finally, we will release code and models upon acceptance.
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A EXPERIMENTAL SET-UP: ADDITIONAL DETAILS

Task details and input dimensions. See Tables 6 and 7. For each task, the number of linear
warmup steps is set as reported in (Dosovitskiy et al., 2021; Arnab et al., 2021; Nagrani et al.,
2021). When co-training, we simply use the sum of all warmup steps for each co-trained task.
Similarly to (Dosovitskiy et al., 2021), we select the best learning rate on a set {0.03, 0.1, 0.3} using
the validation score. For video and audio datasets, we reuse learning rates reported in (Arnab et al.,
2021) and (Nagrani et al., 2021) respectively. As in (Arnab et al., 2021; Nagrani et al., 2021), we use
zero initialization for output head kernels Wout. For image datasets, on a single-task evaluation,
we find that LeCun normal Wout initializer (Klambauer et al., 2017) works best. For the “ViT-
Im21K linear probe” baseline, we use the same training procedure as for single-task baselines, with
the difference that 1) only the head parameters are updated and 2) on image tasks, we run separate
learning rate grid searches on the set {0.03, 0.1, 0.3}.
Train, validation and test splits. Similarly to (Dosovitskiy et al., 2021), we take 2% of CIFAR
10/100 train sets for validation, 10% of Pets train set for validation and 1% of ImageNet-1k train set
for validation. We use standard test sets for these datasets. For RESISC45, we use 20% of the train
set for validation and 20% for testing. We use standard train, validation and test sets for video and
audio tasks.

Augmentation and regularization. We don’t use augmentation for image tasks. We do video
and audio preprocessing and augmentation as done in (Arnab et al., 2021; Nagrani et al., 2021)
respectively. For audio tasks, as in (Nagrani et al., 2021), we use Mixup (Zhang et al., 2017) with
α = 0.3 and stochastic depth regularization (Huang et al., 2016) with p = 0.3. Stochastic depth is
applied along both audio adaptor and shared layers.

Table 6: Experimental set-up: tasks and their properties. For image tasks, the indicated learning
rates are obtained by a grid search over {0.03, 0.1, 0.3} on single-task baselines using the validation
set accuracy. These values are used for single-task baselines and for PolyViT variants.

Dataset Abbre-
viation

Moda-
lity

Clas-
ses

Train
size

Train
steps

Learning
rate

Warmup
steps

Wout

init

CIFAR 100 C100 Image 100 50.0K 10K 0.03 500 LeCun
normal

CIFAR 10 C10 Image 10 50.0K 10K 0.03 500 LeCun
normal

Oxford-IIIT
Pets Pets Image 37 3.68K 500 0.03 100 LeCun

normal

RESISC45 R45 Image 45 31.5K 2.5K 0.1 200 LeCun
normal

ImageNet-1k Im1K Image 1000 1.28M 20K 0.03 500 LeCun
normal

Kinetics 400 K400 Video 400 215K 100.7K
(30 epochs) 0.1 2.5 epochs Zeros

Moments in
Time MiT Video 339 791K 123.6K

(10 epochs) 0.25 2.5 epochs Zeros

Mini-Audioset MiniAS Audio 527 20.4K 15.9K
(50 epochs) 0.5 2.5 epochs Zeros

VGGSound VGG Audio 309 172K 135K
(50 epochs) 0.5 2.5 epochs Zeros

B SELECTING THE BEST TASK SAMPLING SCHEDULE: ADDITIONAL
EXPERIMENTAL DETAILS

For the accumulating schedule, we set learning rate to the smallest value across tasks (0.03). We
draw a random task order for the Task-by-task schedule, which is as follows: C100→MiT→ K400
→MiniAS→ VGG→ Pets→ C10→ Im1K→ R45.
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Table 7: Input dimensions for different modalities. Sequence length is computed as 1 +
[(T/t)×](H/h) × (W/w) (one class token and patch tokens). Note that for shared transformer
layers, we reuse the same parameters for sequences of different lengths.

Modality Input size,
[T×]H ×W

Patch size,
[t×]h× w

Sequence
length Batch size

Image (pretraining) 224× 224 16× 16 197 4096
Image 384× 384 16× 16 577 512
Video 32× 224× 224 4× 16× 16 1569 64

Audio (spectrogram) 800× 128 16× 16 401 64

C CO-TRAINING WITH POLYVIT: ADDITIONAL EXPERIMENTAL DETAILS
AND RESULTS

Evaluation on video and audio tasks. To get test performance on video and audio tasks, we
perform multiple-crop evaluation as described in (Arnab et al., 2021; Nagrani et al., 2021) for videos
and audio respectively.

Results for the Large configuration. See Table 8. Since (Nagrani et al., 2021) don’t report results
on a Large configuration, for audio tasks we do an additional hyperparameter tuning for single-task
baselines on validation sets. As a result, we use Mixup α = 0.5, 0.7 for MiniAS and VGGSound
respectively. Also, we use 30 epochs for MiniAS instead of 50 for the Base model. In addition,
we run separate learning rate grid searches for all image tasks, separately for single-task baselines
and ViT-Im21K linear probes. We apply all mentioned hyperparameter changes, obtained for the
single-task baselines, to all PolyViT runs. In all other aspects, Large set-up is the same as Base.

Table 8: Co-training with PolyViT, Large model configuration. Test accuracy (%) and mAP (for
MiniAS, %) are reported. As indicated by the “# models” column, some rows correspond to multiple
models, then the total number of parameters is computed across all models.

Image Video Audio

Model #Models #Params C100 C10 Pets R45 Im1K K400 MiT MiniAS VGG

ViT-Im21k Linear probe 1 312M 84.4 95.6 91.8 89.2 82.6 67.7 26.8 12.8 19.1
Single-task baseline 9 3033M 93.3 99.2 94.8 97.3 85.1 79.6 37.1 30.0 51.8
PolyViT, 1 modality 3 917M 93.9 99.4 95.5 96.9 85.1 80.6 38.8 37.9 50.7
PolyViT, Ladapt = 0 1 312M 91.4 99.0 94.7 96.8 82.6 78.9 35.8 33.3 49.9
PolyViT, Ladapt = L/2 1 615M 91.1 99.1 95.0 97.0 82.8 81.0 37.7 34.1 50.4

D LINEAR PROBES: ADDITIONAL EXPERIMENTAL DETAILS

Task details. See Table 9. For linear probes, we use the same input dimensions as reported in
Table 7. For image tasks, we reuse the number of train and warmup steps from the RESISC45 task
(Table 6). For video and audio tasks, we used hyperparameters reported in (Arnab et al., 2021) and
(Nagrani et al., 2021) respectively, with the difference that we only optimize output head parameters
during training. As for the co-training setup, we use multiple-crop evaluation on video and audio
tasks.

Train, validation and test splits. For image tasks, we use 2% of the train set as a validation set
and standard test sets. We use standard train, validation and test sets for video and audio tasks.

Converting patch and positional embeddings for cross-modal probes. In order to take linear
probes of image-only models (ViT and PolyViT trained on images) on audio tasks (and vice versa),
we leave patch embeddings as they are and 2D-interpolate positional embeddings to the correct
resolution. When taking linear probes of video-only models on image or audio tasks, in order to
obtain 16 × 16 patch embeddings, we take a sum along the first (frame) axis of 3D video patch
embeddings of shape 4× 16× 16. In order to adapt positional embeddings, we take a mean value of
positional embeddings for each frame, and then 2D-interpolate the result to the correct resolution.
When taking linear probes of image- or audio-only models on video tasks, we repeat 2D patch
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embeddings along the frame axis in order to obtain 3D patch embeddings. We also 2D-interpolate
positional embeddings to the frame resolution and repeat them for each frame.

Augmentation and regularization. We don’t use augmentation for image tasks. We do video
and audio preprocessing and augmentation as done in (Arnab et al., 2021; Nagrani et al., 2021)
respectively. As in (Arnab et al., 2021), we use Mixup (Zhang et al., 2017) with α = 0.3 for the S-S
v2 task.

Table 9: Tasks used for linear probes. Indicated learning rate grid search is done for all models using
validation set performance.

Dataset
(task)

Abbre-
viation

Moda-
lity

Train
steps

Learning
rate

Warmup
steps

Wout

init

Caltech101 C-ch101 Image 2.5K Grid search,
{0.03, 0.1, 0.3} 200 LeCun

normal

SUN397 SUN397 Image 2.5K Grid search,
{0.03, 0.1, 0.3} 200 LeCun

normal

Dmlab Dmlab Image 2.5K Grid search,
{0.03, 0.1, 0.3} 200 LeCun

normal

DTD DTD Image 2.5K Grid search,
{0.03, 0.1, 0.3} 200 LeCun

normal

KITTI Distance KITTI Image 2.5K Grid search,
{0.03, 0.1, 0.3} 200 LeCun

normal

PatchCamelyon PCAM Image 2.5K Grid search,
{0.03, 0.1, 0.3} 200 LeCun

normal

Epic Kitchens Epic K. Video 30 epochs 0.5 2.5 epochs Zeros
Something-Something v2 S-S v2 Video 35 epochs 0.4 2.5 epochs Zeros

Kinetics 600 K600 Video 30 epochs 0.1 2.5 epochs Zeros

Moments in Time (audio) MiT-A Audio 10 epochs 0.5 2.5 epochs Zeros
Kinetics 400 (audio) K400-A Audio 30 epochs 0.5 2.5 epochs Zeros

E STATE-OF-THE-ART PERFORMANCE ON ONE MODALITY: ADDITIONAL
EXPERIMENTAL DETAILS

For the PolyViT experiment on the video modality, we reuse hyperparameters reported in (Arnab
et al., 2021) for Kinetics 400/600 and Moments in Time. See Table 10 for the dataset details and
exact hyperparameters used during the experiment. These hyperparameters coincide with those
reported in Table 6 for Kinetics 400 and Moments in Time and in Table 9 for Kinetics 600. The only
difference is that we use a more granular 3D patch size (2×16×16) and Large model configuration.

For the audio experiment, similarly, we reuse all hyperparameters reported in (Nagrani et al., 2021)
for AS-500k and VGGSound experiments (audio-only). See Table 11 for the dataset details and
exact hyperparameters used for the experiment. These hyperparameters almost coincide with those
reported in Table 9 with a change MiniAS→ AS-500k. The only exception is that we use 30 epochs
and Mixup α = 0.5 for AS-500k.
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Table 10: Set-up for the co-training on videos. Train steps and warmup steps are summed to get
the number of train and warmup steps during co-training as we use the “Weighted” task sampling
method.

Dataset Moda-
lity

Clas-
ses

Train
size

Train
steps

Batch
size

Learning
rate

Warmup
steps

Wout

init

Kinetics 400 Video 400 215K 101K
(30 epochs) 64 0.1 2.5 epochs Zeros

Kinetics 600 Video 600 363K 170K
(30 epochs) 64 0.1 2.5 epochs Zeros

Moments in
Time Video 339 791K 123.6K

(10 epochs) 64 0.25 2.5 epochs Zeros

Table 11: Set-up for the co-training on audio. Train steps and warmup steps are summed to get
the number of train and warmup steps during co-training as we use the “Weighted” task sampling
method.

Dataset Moda-
lity

Clas-
ses

Train
size

Train
steps Mixup Batch

size
Learning

rate
Warmup

steps
Wout

init

AS-500k Audio 527 509K 239K
(30 epochs) 0.5 64 0.5 2.5 epochs Zeros

VGGSound Audio 309 172K 135K
(50 epochs) 0.3 64 0.5 2.5 epochs Zeros
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