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Abstract

Recent advancements in large language mod-001
els (LLMs) have achieved promising perfor-002
mances across various applications. Nonethe-003
less, the ongoing challenge of integrating004
long-tail knowledge continues to impede the005
seamless adoption of LLMs in specialized do-006
mains. In this work, we introduce DALK, a.k.a.007
Dynamic Co-Augmentation of LLMs and KG,008
to address this limitation and demonstrate its009
ability on studying Alzheimer’s Disease (AD),010
a specialized sub-field in biomedicine and a011
global health priority. With a synergized frame-012
work of LLM and KG mutually enhancing each013
other, we first leverage LLM to construct an014
evolving AD-specific knowledge graph (KG)015
sourced from AD-related scientific literature,016
and then we utilize a coarse-to-fine sampling017
method with a novel self-aware knowledge re-018
trieval approach to select appropriate knowl-019
edge from the KG to augment LLM inference020
capabilities. The experimental results, con-021
ducted on our constructed AD question answer-022
ing (ADQA) benchmark, underscore the effi-023
cacy of DALK. Additionally, we perform a se-024
ries of detailed analyses that can offer valuable025
insights and guidelines for the emerging topic026
of mutually enhancing KG and LLM.027

1 Introduction028

Alzheimer’s Disease (AD) is a neurodegenerative029

disorder characterized by progressive declines in030

cognitive and functional status over a span of031

decades (Report, 2023). However, current AD ther-032

apy developments are facing critical challenges033

due to the lack of knowledge and understanding of034

the underlying etiological mechanisms of the dis-035

ease. Although scientific literature and dedicated036

biomedical databases could supply rich sources of037

AD knowledge, manual review of relevant informa-038

tion is impossible due to the large volume.039

As large language models (LLMs) (Brown et al.,040

2020; Zhang et al., 2022; Anil et al., 2023; Tou-041

vron et al., 2023) demonstrate strong language ca- 042

pabilities across various tasks, there have been at- 043

tempts to leverage LLMs-based systems in gen- 044

eral biomedical and AD-related applications (Mao 045

et al., 2023; Li et al., 2023b; Yan et al., 2024; Feng 046

et al., 2023). However, while the LLMs have shown 047

promising performances in many general tasks, re- 048

cent studies revealed LLMs’ limitations in long- 049

tail (Kandpal et al., 2023) and domain-specific (Li 050

et al., 2023a, 2024) knowledge, thereby signifi- 051

cantly impeding their adaptations in vertical fields 052

such as AD. To deal with this issue, the most com- 053

mon strategies are retrieval augmented generation 054

(RAG) and domain-specific LLMs training. 055

Nevertheless, directly applying these strategies 056

in the context like AD would still suffer from sev- 057

eral issues. First, Data Quality: As in many 058

biomedical fields, scientific literature composes 059

the largest publicly available corpus source in AD. 060

Yet, the dense and information-overloaded nature 061

of scientific literature, when combined with auto- 062

matic retrieval methods, can lead to the retrieval of 063

irrelevant and noisy information. Previous research 064

has shown that noisy and irrelevant corpora can sig- 065

nificantly undermine the performance of LLMs (Yu 066

et al., 2023; Chen et al., 2024; Wu et al., 2024). Sec- 067

ond, Efficiency & Scale Issues: Being an critical 068

field of research, the knowledge of AD is rapidly 069

evolving with scientific advancements at a remark- 070

able pace and scale. However, retraining a domain- 071

specific LLM or updating certain knowledge in it 072

demands substantial computational resources (Hu 073

et al., 2021; Ovadia et al., 2023). This efficiency 074

issue would also limit the sizes of domain-specific 075

LLMs, consequently affecting their performances. 076

To tackle these limitations, here we propose 077

a Dynamic Co-Augmentation of LLMs and KG 078

(DALK) framework that facilitates mutual benefits 079

between LLMs and knowledge graphs (KG) for 080

the AD domain. Initially, our framework addresses 081

the data quality challenge by extracting more struc- 082
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tural and accurate knowledge from unstructured083

and dense scientific literature and constructing a084

domain-specific knowledge graph tailored to AD.085

We employ two widely utilized knowledge graph086

construction methods, namely pair-wise construc-087

tion (Carta et al., 2023; Wadhwa et al., 2023) and088

generative construction (Han et al., 2023; Bi et al.,089

2024), to comprehensively assess their impact on090

knowledge graph quality. Then, we adopt a coarse-091

to-fine sampling method with a novel self-aware092

knowledge retrieval approach to select appropri-093

ate knowledge from the knowledge graph and thus094

further address the data quality problem. Notably,095

the tuning-free nature of our framework signifi-096

cantly enhances efficiency and facilitates its ap-097

plication in large-scale and API-based language098

models (OpenAI, 2022). In the evaluation sec-099

tion, we derive an Alzheimer’s Disease question100

answering (ADQA) benchmark from existing gen-101

eral medical QA datasets with millions of sam-102

ples filtered by a curated keyword list and self-103

sampling of LLMs. Our extensive experiment on104

ADQA demonstrates the effectiveness of our frame-105

work in domain-specific applications compared106

with general biomedical LLMs and retrieval aug-107

mented models. Further evaluation and analysis108

provide valuable insights into constructing high-109

quality knowledge graphs and sampling accurate110

knowledge from them.111

In summary, our contribution in this work can112

be summarized as follows:113

• We identify the constraints of the current methods114

for LLMs in domain-specific areas like AD and115

introduce DALK, a co-augmentation framework116

of the LLM and KG to address these issues.117

• We build AD-specific KG and QA benchmark.118

Through extensive comparisons with other meth-119

ods, we showcase the effectiveness of DALK.120

• We delve into a comprehensive analysis of our121

proposed method and provide valuable insights122

and guidance on how to construct a high-quality123

KG and sample accurate knowledge from it.124

2 Related Work125

The interplay between LLMs and KGs126

KGs (Miller, 1995; Speer et al., 2017; Vrandečić127

and Krötzsch, 2014) serve as structured represen-128

tations of factual knowledge, typically expressed129

as (head, relation, tail) triples. Their structured,130

factual, and interpretable nature renders them ex-131

cellent complements to parametric language mod-132

els (Pan et al., 2024). Recently, with the rise of 133

large language models (LLMs), numerous studies 134

have delved into exploring the synergy between 135

LLMs and KGs for various purposes. There are a 136

lot of efforts in conducting knowledge graph con- 137

struction (Carta et al., 2023; Wadhwa et al., 2023; 138

Han et al., 2023; Bi et al., 2024; Datta et al., 2024), 139

completion (Wei et al., 2023; Zhang et al., 2023b; 140

Li et al., 2024) with the aid of LLMs. Conversely, 141

other works aim to enhance LLMs by integrating 142

knowledge sampled from KGs during both train- 143

ing (Tang et al., 2023; Luo et al., 2024; Dernbach 144

et al., 2024; Rangel et al., 2024) and inference (Kim 145

et al., 2023; Wen et al., 2023; Jiang et al., 2023; 146

Sun et al., 2023a) times. Our work distinguishes 147

itself by proposing a co-augmentation framework 148

for LLMs and KGs, facilitating their mutual en- 149

hancement, and applying it to the domain of AD. 150

LLMs and KGs for AD research LLMs and 151

KGs have both been applied to Alzheimer’s Dis- 152

ease research in previous studies. Pre-trained lan- 153

guage models are utilized to work on AD de- 154

tection and many other related tasks based on 155

speech recordings and transcripts (Balagopalan 156

et al., 2020; Agbavor and Liang, 2022), electronic 157

health records (EHRs) (Mao et al., 2023; Li et al., 158

2023b; Yan et al., 2024), and tabular data (Feng 159

et al., 2023). KGs have been widely used in 160

biomedical research, yet only a few are specifically 161

for AD research (Romano et al., 2023; Pu et al., 162

2023; Hsieh et al., 2023; Nian et al., 2022; Daluwa- 163

tumulle et al., 2023). These KGs were generally 164

constructed from a variety of information derived 165

from heterogeneous biomedical databases (e.g. for 166

genes, drugs, pathways, etc.) or scientific literature 167

related to AD. Despite the aforementioned efforts 168

for LLMs and KGs in AD research, no prior study 169

has explored using LLM to augment AD-KG, or 170

vice versa, let alone the potential for mutual en- 171

hancement between the two as we propose here. 172

3 Our Methodology 173

This section elaborates on our dynamic co- 174

augmentation framework of LLMs and KG. Sec- 175

tion 3.1 presents the details of augmenting an AD- 176

specific evolving KG with LLMs and literature 177

corpus in a time-slicing fashion (i.e. year by year). 178

Following it, Section 3.2 describes the process of 179

sampling appropriate knowledge from the evolving 180

KG to enhance LLMs’ reasoning. Figure 1 illus- 181

trates an overall pipeline of our method DALK. 182
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Figure 1: The overview pipeline of DALK. We first extract structural knowledge from unstructured corpora and
construct a domain-specific knowledge graph tailored to AD (Section 3.1). Then, we utilize a coarse-to-fine sampling
method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the knowledge
graph (Section 3.2).

KGpair KGgen

#Corpus 9,764 9,764
#Nodes 13,509 20,545
#Relations 3,952 3,651
#Triples 171,431 53,585

Table 1: Detailed statistics about our augmented knowl-
edge graph.

3.1 LLMs for KG183

Corpus Collection To create an AD-specific184

knowledge graph, we follow (Pu et al., 2023) and185

use the AD corpus collected by a domain expert186

Professor Colin Masters at the University of Mel-187

bourne who discovered amyloid proteins being the188

potential cause of AD (Masters et al., 1985). The189

corpus is based on his extensive bibliography of190

representative AD-related papers and consists of191

more than 16K PMID (PubMed ID)-indexed arti-192

cles from 1977 to 2021. For our study, we focus on193

the papers since 2011 which reflect the most recent194

knowledge in the field and get 9,764 articles.195

Entity Recognition In order to identify knowl-196

edge at the proper granularity level for AD, we197

extract relevant entities from the corpus by utiliz-198

ing the PubTator Central (PTC) (Wei et al., 2013)199

developed and continuously maintained by NCBI.200

PTC is a widely-used tool to provide state-of-the-201

art annotations of biomedical concepts for PubMed202

abstracts and full-text articles, and it supports six 203

bioconcept types including genes, diseases, chem- 204

icals, mutations, species and cell lines. We apply 205

PTC to the abstracts of all our AD papers and ob- 206

tain the relevant named entities which will serve as 207

nodes in the knowledge graph. 208

Relation Extraction To build an accurate and 209

high-quality knowledge graph on AD, we aim to as- 210

sign a specific relation type between the two related 211

entities. Through a comprehensive survey of rela- 212

tion extraction methods for knowledge graph con- 213

struction, we categorize current approaches with 214

LLMs into two main groups: (a). Pair-wised Rela- 215

tion Extraction (Carta et al., 2023; Wadhwa et al., 216

2023) aims to prompt the LLMs to describe the 217

relationship between any two entities in a segment 218

of text. (b). Generative Relation Extraction (Han 219

et al., 2023; Bi et al., 2024; Datta et al., 2024), 220

where LLMs directly output all related entity pairs 221

and their corresponding relationships. As shown 222

in Figure 2, we incorporate both of these rela- 223

tion extraction methods into our knowledge graph 224

augmentation process to provide a comprehensive 225

comparison between them. We denote the result- 226

ing knowledge graphs from these approaches as 227

KGpair and KGgen respectively. 228

Table 1 presents the detailed statistics about our 229

augmented knowledge graph, including the num- 230

ber of corpora we used, and the number of nodes, 231

3



… Successful application of AD preventative approaches… , 

including cardiovascular disease, diabetes, and head trauma.

… Successful application of AD preventative approaches… , 

including cardiovascular disease, diabetes, and head trauma.

Step1: Entity Recongnition

Step2: Relation Extraction

Pair-wised Relation Extraction

Generative Relation Extraction
…

Reading the following abstract: [Abstract]

Question: 

What is the relationship between AD 

and cardiovascular disease?

Question: 

What is the relationship between AD 

and diabetes?

Reading the following abstract: [Abstract]

Here are all the biomedicine-related 

entities: [Entities]

Question: 

Please extract all the valid relationship 

between the provided entities.

Figure 2: The detailed process of AD-specific KG con-
struction.

relations and triples in KGpair and KGgen.232

3.2 KG for LLMs233

In this section, we begin by outlining our process234

for sampling coarse-grained augmented knowledge235

from our evolving knowledge graph (Section 3.2.1).236

Subsequently, we delve into detail regarding our237

self-aware knowledge retrieval method, which aims238

to filter out noise and retrieve the most pertinent239

knowledge to provide to the LLM (Section 3.2.2).240

3.2.1 Coarse-grained Knowledge Sample241

Given a question query Q, we first construct a242

prompt and ask LLMs to extract all the domain-243

specific entities E = {e1, e2, ...} from it. Af-244

terward, we adhere to the methodology proposed245

by Wen et al. (2023) and execute a similarity-based246

entity linking process to connect all entities within247

E to the entity structure in our knowledge graph248

G. Specifically, we employ a semantic similarity249

model (Reimers and Gurevych, 2019) to encode all250

entities in G and E into dense embeddings, denoted251

as HG and HE , respectively. Subsequently, utiliz-252

ing cosine similarity, we establish links between253

each entity in E and its nearest neighbor entity in254

G. This procedure yields an initial entity set EG255

for the subsequent knowledge sampling step.256

To build an evidence sub-graph to boost257

LLMs’ reasoning process, we follow the previous258

study (Wen et al., 2023) and consider the following259

two kinds of explorations in our AD-KG:260

Path-based Exploration entails the extraction of261

a sub-graph from G to encompass all entities within262

EG. The process unfolds as follows: (a) Begin263

by selecting one node from e0Q as the initial node,264

denoted as e1, and place the remaining nodes into a265

candidate node set, Ecand. Explore at most k hops 266

from e1 to identify the subsequent node, e2, where 267

e1 ∈ Ecand. If e2 is successfully reached within 268

k hops, update the start node to e2 and remove e2 269

from Ecand. In the event e2 cannot be found within 270

k hops, concatenate the segment paths acquired 271

thus far and store them in Gpath
Q . Subsequently, 272

choose another node e′1 from Vcand as the new start 273

node, and eliminate both the original start node e1 274

and the current node e2 from Ecand. (b) Verify if 275

Ecand is empty. If not, repeat step (a) to identify 276

the next segment of the path. If Ecand is empty, 277

combine all segments to construct a set of sub- 278

graphs and place them into Gpath
Q . 279

Neighbor-based Exploration endeavors to aug- 280

ment the evidence relevant to the query within GQ. 281

This process consists of two steps: (a) Initially, 282

expand each node e within EG by 1-hop to incor- 283

porate their neighbors e′, thus appending triples 284

(e, r, e′) to Gnei
Q . (b) Then assess whether each e′ 285

exhibits semantic relevance to the query. If affir- 286

mative, further expand the 1-hop neighbors of e′, 287

consequently adding triples (enei, r′, e′) to Gnei
Q . 288

After obtaining the two sub-graphs Gpath
Q and 289

Gnei
Q , we perform post-processing to further prune 290

redundant information in sub-graphs and prompt 291

LLMs to describe the structure of each sub-graph. 292

3.2.2 Self-aware Knowledge Retrieval 293

In our initial experiment, we noticed the coarse- 294

grained knowledge sampled with the above- 295

mentioned approaches still contained redundant 296

and irrelevant information. This issue of noise is a 297

common challenge encountered in automatically- 298

constructed knowledge graphs (Fang et al., 2021; 299

Zhang et al., 2020; Li et al., 2022; Bi et al., 2024). 300

Moreover, many recent works (Yu et al., 2023; Li 301

et al., 2023c; Chen et al., 2024; Wu et al., 2024) 302

have demonstrated LLMs can indeed be influenced 303

by such noisy information. To address this chal- 304

lenge, we borrow insights from the recent self- 305

powered LLMs (Wang et al., 2022; Pan et al., 2023; 306

Yuan et al., 2024; Tong et al., 2024) and propose a 307

self-aware knowledge retrieval method to leverage 308

LLMs’ ranking capability (Sun et al., 2023b; Ma 309

et al., 2023) to filter out noisy information. 310

In particular, we directly prompt the LLM to 311

rerank the sampled knowledge and only retrieve 312

top k triples to provide for itself in the final-round 313

inference. Given the question Q and either the path- 314

based or neighbor-based sub-graph GQ, we create 315
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prompt pself by filling the pre-defined template:316

pself = Templateself(Q,GQ, k). (1)317

Then, we use pself as the input to prompt the LLM318

to obtain the self-retrieved knowledge:319

Gself
Q = LLM(pself ), (2)320

Finally, we provide the question Q and fine-grained321

knowledge Gself
Q to the LLM for reasoning and get322

the predicted answer a in two steps:323

pinference = Templateinference(Q,Gself
Q ), (3)324

325
a = LLM(pinference). (4)326

We provide detailed examples in Appendix A and B327

to demonstrate the input and output in our DALK.328

4 Main Experiment329

4.1 ADQA Benchmark330

For performance evaluation, we consider four331

widely-used medical QA datasets spanning diverse332

biomedical topics (Jin et al., 2021; Pal et al., 2022;333

Hendrycks et al., 2021; Peñas et al., 2013) and de-334

rive an AD-specific QA dataset from them. The335

four medical QA datasets are all multiple-choice336

based and include: 1) MedQA (Jin et al., 2021)337

consisting of US Medical Licensing Examina-338

tion (USMLE)-style questions, 2) MedMCQA (Pal339

et al., 2022) containing medical school entrance340

exam questions from India, 3) MMLU (Hendrycks341

et al., 2021) consisting of diverse biomedical342

and clinical questions from various sources, 4)343

QA4MRE (Peñas et al., 2013) containing a sub-344

set of questions for AD derived from PubMed345

and Medline. In order to extract from the med-346

ical QA datasets a subset of samples related to347

AD for our evaluation, we referred to NIH’s Com-348

mon Alzheimer’s and Related Dementias Research349

Ontology (CADRO) 1. Jointly developed by the350

National Institute on Aging and the Alzheimer’s351

Association, CADRO is a three-tiered classifica-352

tion system with eight main categories and a dozen353

sub-categories for AD and related dementia, and it354

contains common terminologies or keywords used355

in the field. We derived from the CADRO a list of356

AD-related keywords most relevant to the medical357

QA datasets: <Aging, Alzheimer, Amyloid beta,358

APOE, Dementia, Lipoprotein, Microglia>. Then,359

we searched against each medical QA dataset for360

1https://iadrp.nia.nih.gov/about/cadro

matches with these keywords to find putative QA 361

samples, then further asked GPT-3.5-turbo to judge 362

for each putative sample whether the question is 363

indeed related to AD or not. Finally, we filtered 364

out a subset of such samples that are considered 365

highly relevant to AD to conduct our evaluation 366

(number of samples in each dataset is shown in 367

Table 2). More details about ADQA can be found 368

in Appendix C. 369

4.2 Experiment Settings 370

We apply our framework with OpenAI GPT-3.5- 371

turbo models (OpenAI, 2022). We also include the 372

following baseline methods for comparison: 373

Biomedical LLMs Both ChatDoctor (Yunxiang 374

et al., 2023) and Med-Alpaca (Shu et al., 2023) 375

are fine-tuned versions of LLaMA (Touvron et al.) 376

on biomedical corpora. Compared with them, 377

Meditron (Chen et al., 2023) is built on LLaMA- 378

2 (Touvron et al., 2023) and extends its pretrain- 379

ing on a comprehensively curated medical cor- 380

pus. BiomedGPT (Zhang et al., 2023a) is also 381

based on LLaMA-2 and pioneer as the first open- 382

source and generalist visual language AI for di- 383

verse biomedical tasks. Biomistral (Labrak et al., 384

2024) is an open-source LLM crafted specifically 385

for the biomedical domain, optimized for effi- 386

ciency through quantization and model merging 387

techniques. 388

Retrieval-Augmented LLMs Furthermore, we 389

also compare our method with several represen- 390

tative retrieval-augmented LLMs in the biomed- 391

ical domain. Almanac (Zakka et al., 2024) is a 392

novel approach utilizing OpenAI’s GPT model in- 393

tegrated with a Qdrant vector database to hold ex- 394

ternal sources of knowledge retrieved from local 395

corpus, web search, and calculators, designed to 396

answer open-domain clinical questions. Like Al- 397

manac, Lozano et al. (2023) introduced Clinfo.ai, 398

which is an open-source, end-to-end retrieval- 399

augmented LLM (GPT) to answer medical queries 400

using scientific literature summarizations derived 401

from PubMed search engine. We adopt both Al- 402

manac and Clinfo.ai with the same prompt as ours 403

to answer multiple-choice questions to suit the 404

ADQA benchmark. Lastly, we implement a sim- 405

ple retrieval-augmented GPT baseline with CoT 406

prompting similar to our proposed DALK. All the 407

GPT models used are set to GPT-3.5-turbo as de- 408

tailed in the next paragraph, to be consistent. 409
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MedQA MedMCQA MMLU QA4MRE AVG
Biomedical LLMs
ChatDoctor (Yunxiang et al., 2023) 25.7 36.4 46.9 51.4 40.1
Med-Alpaca (Shu et al., 2023) 41.4 42.8 44.9 57.1 46.5
BiomedGPT (Zhang et al., 2023a) 38.8 41.9 48.9 42.6 43.1
Meditron (Chen et al., 2023) 27.6 31.4 36.7 25.7 30.4
Biomistral (Labrak et al., 2024) 44.7 49.5 53.1 68.6 54.0
Retrieval-augmented LLMs
GPT-3.5-turbo w/ Ada (OpenAI, 2024) 57.2 65.7 83.7 62.9 67.4
Almanac (Zakka et al., 2024) 48.0 69.5 71.4 60.0 62.2
Clinfo.ai (Lozano et al., 2023) 54.3 77.0 81.3 67.7 70.1
Clinfo.ai w/o PubMed API 49.3 68.6 79.6 74.3 67.9
GPT-3.5-turbo 50.0 71.9 83.6 62.9 67.1
DALK 57.9 75.2 85.4 71.4 72.6

Table 2: Experiment results on our constructed ADQA benchmark. The sample size is indicated after each dataset
name. The best results of each metric are in bold and the second-best results are underlined. The “AVG” column
represents the average accuracy score on the four sub-dataset.

Implementation Details We use the knowledge410

graph constructed with the generative approach411

(KGgen) in our main experiment and conduct an412

ablation study on the knowledge graph with RE413

method (KGpair) in Section 4.5. We use GPT-3.5-414

turbo with the version “gpt-3.5-turbo-0301” and415

set the sampling temperature to 0.7. We utilize 7B416

versions of all the biomedical LLMs baselines. For417

RAG methods, we split each document with a max418

length of 128 and retrieve the top 3 most relevant419

documents as the support evidence for LLMs to420

do inference. We set the parameter k in our self-421

aware knowledge retrieval to 5 and conduct further422

analysis on it in Section 5.2.423

4.3 Main Result424

Table 2 shows the experimental results on our425

ADQA benchmark. We note that upon applying our426

dynamic co-augmentation framework, DALK’s per-427

formance surpasses that of other biomedical LLMs428

and RAG methods overall. It consistently achieves429

either the best or the second-best accuracy score430

across all sub-datasets and attains the highest AVG431

score. Furthermore, the substantial improvement432

over vanilla GPT-3.5-turbo underscores the efficacy433

of our approach in domain-specific ADQA.434

Furthermore, we observe that the performance435

of biomedical-specific LLMs generally lags be-436

hind that of GPT-3.5-turbo. We attribute this dis-437

crepancy to the smaller size of these biomedical438

LLMs. While they may perform adequately in gen-439

eral medical contexts, they fall short in the AD440

scenario, which demands more domain-specific441

knowledge. In the case of GPT-3.5-turbo combined442

with various RAG methods, it is evident that most443

RAG methods enhance the models’ performance.444

Among them, GPT-3.5-turbo with Clinfo.ai yields 445

the most significant improvement, boosting the ac- 446

curacy score from 67.1 to 70.1 compared to vanilla 447

GPT-3.5-turbo. However, it is important to note 448

that the original Clinfo.ai necessitates access to 449

the PubMed API, constituting an external resource. 450

When we disable this access and solely utilize the 451

same corpora as in DALK within the Clinfo.ai re- 452

trieval system, the improvement it brings becomes 453

marginal and incomparable to our method. Due to 454

the space limitation, we put more RAG results with 455

different hyper-parameters in Appendix D. 456

4.4 Ablation Study on Self-aware Knowledge 457

Retrieval 458

MedQA MedMCQA MMLU QA4MRE AVG
AVG Length 107.4 23.8 342.9 17.6 122.9
GPT-3.5-turbo 50.0 71.9 83.6 62.9 67.1
DALK 57.9 75.2 85.4 71.4 72.6
DALK
w/o self-aware
knowledge retrieval

56.5 71.0 77.6 77.1 70.6

Table 3: Ablation study results with and without our
proposed self-aware knowledge retrieval.

In this section, we evaluate the efficacy of our 459

proposed self-aware knowledge retrieval method 460

through an ablation study. As depicted in Ta- 461

ble 3, we observe that while the dynamic co- 462

augmentation framework without the self-aware 463

knowledge retrieval module still enhances the 464

model’s performance, the overall improvement is 465

less pronounced. Furthermore, we observe that the 466

efficacy of self-aware knowledge retrieval corre- 467

lates with the length of queries within a given con- 468

text. For instance, a notable enhancement in per- 469

formance is evident within the MMLU sub-dataset 470

upon the implementation of self-aware knowledge 471

retrieval. We attribute this to the fact that questions 472

6



in the MMLU dataset typically contain longer con-473

texts compared to other medical QA datasets inte-474

grated into ADQA. Consequently, irrelevant knowl-475

edge sourced from the context may exacerbate the476

issue of information noise thus underscoring the ne-477

cessity for self-aware retrieval. Conversely, within478

QA4MRE, characterized by shorter query lengths,479

the application of self-aware knowledge retrieval480

can even lead to a decline in performance.481

4.5 Ablation Study on KG Construction482

AVG #Triples
GPT-3.5-turbo 67.1 -
DALK
w/ Generative KG 72.6 53,585

DALK
w/ RE KG 66.3 171,431

Table 4: Ablation study results with generative construc-
tion and RE construction.

Table 4 illustrates the results of the ablation study483

conducted using generatively constructed KG and484

RE-constructed KG. Surprisingly, despite the RE485

method yielding a KG with a larger scale and more486

triples, knowledge sampled from it has unexpect-487

edly resulted in a non-trivial drop in performance488

within ADQA. After a manual examination of the489

two constructed knowledge graphs, we find LLMs490

with the RE construction method have a strong in-491

clination to wrongly assign a relationship to two492

unrelated entities, which has been exposed by the493

previous studies (Wan et al., 2023). In contrast, the494

generative construction approach exclusively out-495

puts triples that LLMs confidently endorse, yield-496

ing a smaller yet more precise knowledge graph.497

This trade-off between coverage and accuracy un-498

derscores the critical importance of denoising in499

the construction of KGs by LLMs.500

5 Further Analysis501

5.1 Co-augmentation Analysis502

To comprehensively understand how the perfor-503

mance of LLMs evolves in response to increasing504

KG sizes, we undertake a detailed co-augmentation505

analysis. Illustrated in Figure 3, our experiments506

aim to discern the changing performance trends of507

LLMs as the knowledge triples accumulate annu-508

ally. Our findings reveal that our framework effec-509

tively fosters the co-evolution of LLMs and KG,510

with the performance of KG-augmented LLMs ex-511

hibiting a generally upward trajectory as the KG512

Figure 3: The size of the knowledge graph (triplet num-
ber) and the KG-augmented GPT-3.5-turbo’s perfor-
mance (accuracy) over time.

expands. Notably, when we remove the self-aware 513

knowledge retrieval module, this upward trend be- 514

comes less significant. This further implies the 515

importance of sampling and selecting appropriate 516

knowledge for LLMs when the KG’s size increases. 517

5.2 Hyper-parameter Analysis 518

Figure 4: Different self-aware knowledge retrieval set-
tings in MedQA, MedMCQA, QA4MRE and the aver-
age score (AVG).

In this section, we do a hyper-parameter anal- 519

ysis on the retrieval number k of our self-aware 520

retrieval module. We select a group of value for 521

k ([1,3,5,10,20,30]) and present the experiment re- 522

sults in Figure 4. We show the accuracy score on 523

MedQA, MedMCQA, QA4MRE and AVG with 524

different k. We find when k is small, an incre- 525

ment to it can lead to a performance enhancement. 526

After the best performance shows up, continually 527

increasing the value of k will cause a smooth de- 528

crease in the model accuracy score. This result 529
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Path-based Sub-graph Answer
Baseline - C%

DALK
-w/o self-aware
knowledge retrieval

neurofibrillary tangles->FORM BY->microtubule-associated protein tau...
...
entorhinal cortex->is a part of->brain->ASSOCIATES->mouse with
Alzheimer’s disease->brain region->temporal lobe

C%

DALK
Reranked Triples1: entorhinal cortex ->is a part of ->brain
Reranked Triples2: entorhinal cortex ->associates ->mouse with Alzheimer’s disease
Reranked Triples3: temporal lobe ->affected by ->Alzheimer’s disease

D!

Table 5: A case to show the effectiveness of DALK. The question is: “The area of the brain resistant to Neurofibrillary
tangles of Alzheimer’s disease is: A. Visual association areas B. Entorhinal coex C. Temporal lobe D.Lateral
geniculate body”

indicates the knowledge ranked in the top positions530

is more helpful while the knowledge ranked behind531

is something not very useful, thus successfully val-532

idating the capability of LLMs to do a fine-grained533

knowledge reranking.534

Moreover, we find the best k value is correlated535

with the length of queries in each single dataset. For536

example, the best performance in MedQA (average537

query length is 107.4) shows up when k = 10 while538

the best performance in MedMCQA and QA4MRE539

shows up when k = 5 and 3 respectively. This is540

consistent with our findings in Section 4.4 that a541

longer query corresponds to a larger and noisier542

sub-knowledge graph.543

5.3 Sensitivity Analysis on ADQA Benchmark544

Benchmark DALK
DALK
w/o self-aware
knowledge retrieval

ADQA 72.6 70.6
w/o “Alzheimer” 72.1 70.4
w/o “Dementia” 72.4 71.3
w/o “APOE” 73.2 71.2
w/o “Amyloid beta” 73.5 70.7
w/o “Aging” 72.9 71.4
w/o “Lipoprotein” 73.1 71.0
w/o “Microglia” 72.8 70.9

Table 6: Sensitivity analysis for ADQA benchmark with
a leave-one-out evaluation on AD-related keywords.

In this section, we conduct a sensitivity analysis545

for our constructed ADQA by conducting a leave-546

one-out evaluation on AD-related keywords. We547

do it by removing the samples with each keyword548

in our keyword list and calculating the AVG score549

of the remaining samples. As the result shown550

in Table 6, we find not all of the keywords are551

incorporated in our ADQA benchmark. Notably,552

the keywords “CSF Biomarkers”, “Neurogenesis”,553

“PET Amyloid”, “PET Tau”, “Tau Phosphorylation”554

lack corresponding samples in ADQA. We believe555

one critical work in the future for benchmarking556

AD-related knowledge is to collect QA samples 557

to cover these missing keywords. Moreover, ana- 558

lyzing the performance variation upon removing 559

samples linked to each keyword offers insight into 560

determining the relevance of the keyword to AD. 561

5.4 Case Study 562

We put an example in Table 5 to showcase the effi- 563

cacy of DALK. We notice while the path-based sub- 564

graph contains the relevant knowledge to exclude 565

option C, it still involves other irrelevant informa- 566

tion and finally fails to prompt the LLMs to pro- 567

duce the correct answer. In contrast, our self-aware 568

knowledge retrieval method successfully chooses 569

the top 3 most relevant triples for the given problem 570

and results in the correct answer D. 571

6 Conclusion 572

In this research, we begin by analyzing the main 573

limitations of adopting the existing LLMs-based 574

methods in AD-specific areas. To address these 575

issues, we propose a novel approach in the merging 576

of large language models and knowledge graphs 577

in the context of Alzheimer’s Disease. Our team 578

provides an innovative dynamic co-augmentation 579

framework for the refinement of large language 580

models and knowledge graphs. Initially, our ap- 581

proach extracts structural insights from the unstruc- 582

tured scientific literature, crafting a specialized 583

knowledge graph for AD. Subsequently, we employ 584

a coarse-to-fine sampling technique coupled with 585

a unique self-aware knowledge retrieval strategy 586

to pinpoint relevant information from the knowl- 587

edge graph. The extensive evaluation conducted 588

in our constructed ADQA benchmark showcases 589

the effectiveness of our method and provides fur- 590

ther hints into the synergy of LLMs and knowledge 591

graph in the context of AD. In the future, we will 592

do more exploration in adopting and benchmarking 593

LLMs in the AD areas. 594
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7 Limitations595

In the development of our AD-KG, our primary596

focus lies in the exploration of two distinct meth-597

ods for extracting relationships between associated598

entities. For entity recognition, we employ a strong599

PubTator annotator directly, without delving into600

the utilization of LLMs in this context. However,601

we have observed that LLMs also exhibit promis-602

ing entity extraction capabilities in Section 3.2.1.603

We defer the refinement of methods for extract-604

ing entities for KG construction with LLMs to fu-605

ture works. Furthermore, a significant contribution606

of our work is the establishment of the ADQA607

benchmark. Nonetheless, the datasets utilized in608

constructing ADQA primarily consist of medical609

school exam questions, potentially exhibiting a do-610

main gap from the scientific literature informing611

AD-KG. One potential remedy is leveraging Pub-612

medQA (Jin et al., 2019); however, it is hindered613

by limited data amount. In the future, we will keep614

gathering AD-related QA samples and expanding615

the size of our ADQA benchmark.616

8 Ethics Statement617

We have familiarized ourselves with and honour618

the ethical code set out in the ACL Code of Ethics2.619

The knowledge graphs constructed in the paper620

are based on published scientific literature from621

PubMed. The ADQA dataset used in the study is622

also derived from publicly available medical QA623

datasets that are properly cited. We strive to ensure624

our study upholds ethical principles and not cause625

any kind of safety or privacy concerns. Although626

not observed in our multiple-choice QA analysis,627

we recognize the possibility of factual errors and628

hallucinations when using pre-trained LLMs for629

medical QA tasks in general, and we do not recom-630

mend these models be applied in a practical setting631

at present.632
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A Details of LLMs for KG 995

Table 7 and 8 present examples of our two KG construction methods respectively. For both methods, we 996

adopt a select-or-generate prompt to instruct the LLM whether to choose a relation from hetionet (Him- 997

melstein et al., 2017), a well-built general medical KG, or generate a new one to describe the relationship 998

between two entities. In the RE construction method, we also conduct a type matching (Table 9) for each 999

entity from type name of PubTator to that of Hetionet and ask the LLM to choose from the relation set 1000

that corresponds to the two entities’ types (Table 10). 1001

Input Read the following abstract, extract the relationships between each entity.You can
choose the relation from: (covaries, interacts, regulates, resembles, downregulates,
upregulates, associates, binds, treats, palliates), or generate a new predicate to
describe the relationship between the two entities. Output all the extract triples in
the format of "head | relation | tail". For example: "Alzheimer’s disease | associates
| memory deficits" Abstract: Thiamine pyrophosphate (TPP) and the activities of
thiamine-dependent enzymes are reduced in Alzheimer’s disease (AD) patients.
In this study, we analyzed the relationship between thiamine deficiency (TD) and
amyloid precursor protein (APP) processing in both cellular and animal models of
TD. In SH-SY5Y neuroblastoma cells overexpressing APP, TD promoted maturation
of beta-site APP cleaving enzyme 1 (BACE1) and increased beta-secretase activity
which resulted in elevated levels of beta-amyloid (Abeta) as well as beta-secretase
cleaved C-terminal fragment (beta-CTF). An inhibitor of beta-secretase efficiently
reduced TD-induced up-regulation of Abeta and beta-CTF. Importantly, thiamine
supplementation reversed the TD-induced alterations. Furthermore, TD treatment
caused a significant accumulation of reactive oxygen species (ROS); antioxidants
suppressed ROS production and maturation of BACE1, as well as TD-induced
Abeta accumulation. On the other hand, exogenous Abeta(1-40) enhanced TD-
induced production of ROS. A study on mice indicated that TD also caused Abeta
accumulation in the brain, which was reversed by thiamine supplementation. Taken
together, our study suggests that TD could enhance Abeta generation by promoting
beta-secretase activity, and the accumulation of Abeta subsequently exacerbated
TD-induced oxidative stress.Entity: Thiamine (thiamine), deficiency increases beta-
secretase, TPP (Thiamine pyrophosphate), Alzheimer’s disease (AD), patients,
amyloid precursor protein (beta-amyloid (Abeta)), neuroblastoma, BACE1 (beta-site
APP cleaving enzyme 1), Abeta, ROS (reactive oxygen species), Abeta accumulation,
mice. Output:

Output Thiamine deficiency | downregulates | TPP, Thiamine deficiency | regulates |
Alzheimer’s disease, Alzheimer’s disease | involves | beta-secretase, Amyloid precur-
sor protein | produces | beta-amyloid, Amyloid precursor protein | in | neuroblastoma,
BACE1 | is | beta-secretase, BACE1 | regulates | beta-amyloid, Abeta | is | beta-
amyloid, Abeta | in | mice, Abeta | causes | reactive oxygen species, Abeta | regulates
| ROS

Table 7: An example to extract knowledge triples using generative construction method.
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Input Read the following abstract, answer the following question. Abstract: Thiamine
pyrophosphate (TPP) and the activities of thiamine-dependent enzymes are reduced
in Alzheimer’s disease (AD) patients. In this study, we analyzed the relationship
between thiamine deficiency (TD) and amyloid precursor protein (APP) process-
ing in both cellular and animal models of TD. In SH-SY5Y neuroblastoma cells
overexpressing APP, TD promoted maturation of beta-site APP cleaving enzyme 1
(BACE1) and increased beta-secretase activity which resulted in elevated levels of
beta-amyloid (Abeta) as well as beta-secretase cleaved C-terminal fragment (beta-
CTF). An inhibitor of beta-secretase efficiently reduced TD-induced up-regulation
of Abeta and beta-CTF. Importantly, thiamine supplementation reversed the TD-
induced alterations. Furthermore, TD treatment caused a significant accumulation
of reactive oxygen species (ROS); antioxidants suppressed ROS production and
maturation of BACE1, as well as TD-induced Abeta accumulation. On the other
hand, exogenous Abeta(1-40) enhanced TD-induced production of ROS. A study
on mice indicated that TD also caused Abeta accumulation in the brain, which
was reversed by thiamine supplementation. Taken together, our study suggests that
TD could enhance Abeta generation by promoting beta-secretase activity, and the
accumulation of Abeta subsequently exacerbated TD-induced oxidative stress.Entity:
Thiamine (thiamine), deficiency increases beta-secretase, TPP (Thiamine pyrophos-
phate), Alzheimer’s disease (AD), patients, amyloid precursor protein (beta-amyloid
(Abeta)), neuroblastoma, BACE1 (beta-site APP cleaving enzyme 1), Abeta, ROS
(reactive oxygen species), Abeta accumulation, mice. Question: predict the relation-
ship between Disease entity "sclerosis" and Disease entity "multiple sclerosis", first
choose from the following options: A. resembles B. no-relation C. others, please
specify by generating a short predicate in 5 words. Answer: Let’s think step by step:

Output 1. Sclerosis is a disease of the central nervous system. 2. Multiple sclerosis is
the most common form of sclerosis. 3. So the relationship between sclerosis and
multiple sclerosis should be "sclerosis is a kind of multiple sclerosis". So the answer
is: A. resembles. So the answer is: A. resembles

Table 8: An example to extract the relationship between “sclerosis” and “multiple sclerosis” using RE construction
method.

PubTator Type Hetionet Type
Gene genes
Chemical compounds
Disease diseases

Table 9: Entity type match from PubTator to Hetionet.

Type-Type Relations
genes-genes ["covaries", "interacts", "regulates"]
disease-disease ["resembles"]
compounds-compounds ["resembles"]
genes-diseases ["downregulates","associates","upregulates"]
genes-compounds ["binds", "upregulates", "downregulates"]
compounds-diseases ["treats", "palliates"]

Table 10: Type-type to relation match in Hetionet.
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B Details of KG for LLMs 1002

In this section, we provide detailed input and output for adopting KG to augment LLMs, including 1003

path-based and neighbor-based sub-graph sampling results (Table 11), self-aware knowledge retrieval 1004

(Table 12), describing sub-graphs with LLMs (Table 13) and inference with sampled knowledge (Table 14). 1005

The question we showcase here is “The area of the brain resistant to Neurofibrillary tangles of Alzheimer’s 1006

disease is: A. Visual association areas B. Entorhinal coex C. Temporal lobe D.Lateral geniculate body”, 1007

which same as the one we use in Section 5.4. 1008

Path-based Sub-graph

neurofibrillary tangles->FORM BY->microtubule-associated protein tau->BINDS->
(18)F-THK-5117->ADMINISTERED TO->rats->has->Alzheimer’s disease ->
Alzheimer’s disease ->affects->human->has->AD->DISEASE OF->Brain
entorhinal cortex->is a part of->brain->ASSOCIATES->
mouse with Alzheimer’s disease->brain region->temporal lobe

Neighbor-based Sub-graph

neurofibrillary tangles->FORM BY->microtubule-associated protein tau
Alzheimer’s disease ->causes->neuronal death
Alzheimer’s disease ->associates->cognitive decline
Alzheimer’s disease ->affects->human
Alzheimer’s disease ->has subtype->neurodegenerative diseases

Table 11: An example of path-based and neighbor-based sub-graph for the question.

Input

There is a question and some knowledge graph. The knowledge graphs follow entity->relationship
->entity list format.
Graph:
neurofibrillary tangles->FORM BY->microtubule-associated protein tau->BINDS->
(18)F-THK-5117->ADMINISTERED TO->rats->has->Alzheimer’s disease ->Alzheimer’s disease ->
affects->human->has->AD->DISEASE OF->Brain
entorhinal cortex->is a part of->brain->ASSOCIATES->
mouse with Alzheimer’s disease->brain region->temporal lobe}

Question:

The area of the brain resistant to Neurofibrillary tangles of Alzheimer’s disease is:
A. Visual association areas
B. Entorhinal coex
C. Temporal lobe
D.Lateral geniculate body

Please rerank the knowledge graph and output at most 5 important and relevant triples for
solving the given question. Output the reranked knowledge in the following format:
Reranked Triple1: xxx ——>xxx
Reranked Triple2: xxx ——>xxx
Reranked Triple3: xxx ——>xxx
Reranked Triple4: xxx ——>xxx
Reranked Triple5: xxx ——>xxx

Answer:

Output
Reranked Triples1: entorhinal cortex ->is a part of ->brain
Reranked Triples2: entorhinal cortex ->associates ->mouse with Alzheimer’s disease
Reranked Triples3: temporal lobe ->affected by ->Alzheimer’s disease

Table 12: An example of our self-aware knowledge retrieval in path-based sub-graph.
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Input

There are some knowledge graph paths. They follow entity->relationship->entity format.

Reranked Triples1: entorhinal cortex ->is a part of ->brain
Reranked Triples2: entorhinal cortex ->associates ->mouse with Alzheimer’s disease
Reranked Triples3: temporal lobe ->affected by ->Alzheimer’s disease

Use the knowledge graph information. Try to convert them to natural language, respectively.
Use single quotation marks for entity name and relation name.
And name them as Path-based Evidence 1, Path-based Evidence 2,...

Output:

Output
Path-based Evidence 1: ’Entorhinal cortex’ is a part of ’brain’.
Path-based Evidence 2: ’Entorhinal cortex’ associates ’mouse’ with ’Alzheimer’s disease’.
Path-based Evidence 3: ’Temporal lobe’ is affected by ’Alzheimer’s disease’.

Table 13: An example to describe the self-retrieved path-based sub-graph with the LLM.

Input

Question: The area of the brain resistant to Neurofibrillary tangles of Alzheimer’s disease is:
A.Visual association areas
B.Entorhinal coex
C.Temporal lobe
D.Lateral geniculate body

You have some medical knowledge information in the following:
###Path-based Evidence 1: ’Entorhinal cortex’ is a part of ’brain’.
Path-based Evidence 2: ’Entorhinal cortex’ associates ’mouse’ with ’Alzheimer’s disease’.
Path-based Evidence 3: ’Temporal lobe’ is affected by ’Alzheimer’s disease’.
###Neighbor-based Evidence 1: ’neurofibrillary tangles’ are ’FORMED BY’ ’
microtubule-associated protein tau’.
Neighbor-based Evidence 2: ’Alzheimer’s disease’ ’CAUSES’ ’neuronal death’.
Neighbor-based Evidence 3: ’Alzheimer’s disease’ ’ASSOCIATES’ with ’cognitive decline’.
Neighbor-based Evidence 4: ’Alzheimer’s disease’ ’AFFECTS’ ’human’.
Neighbor-based Evidence 5: ’Alzheimer’s disease’ ’HAS SUBTYPE’ ’neurodegenerative diseases’."

Answer: Let’s think step by step:

Output

In Alzheimer’s disease, neurofibrillary tangles are composed of
abnormal aggregations of tau protein within neurons, leading to
neuronal dysfunction and eventual cell death. The lateral geniculate
body is a relay center in the thalamus that processes visual
information from the retina to the visual cortex. Since the lateral
geniculate body is not directly involved in memory and cognitive
function, it is less likely to be affected by neurofibrillary tangles in
Alzheimer’s disease compared to other brain regions such as the
entorhinal cortex and temporal lobe which play crucial roles in memory
and cognitive processing. Therefore, the area of the brain resistant to
neurofibrillary tangles of Alzheimer’s disease is the lateral geniculate
body (option D)

Table 14: An example of inference with selected knowledge

C ADQA Benchmark1009

Table 15 shows the detailed prompt of our self-sample method to construct ADQA benchmark. Table 161010

gives the statistics of our ADQA benchmark.1011

Input

Judge whether the question below is related to Alzheimer’s Disease. Please answer yes or no.
Question: Treatable causes of dementia are ___.
a).AD b).Hypothyroidism c).Multi-infarct dementia d).SDH e).Hydrocephalus
Is the question related to Alzheimer’s Disease? Answer:

Output Yes

Table 15: An example from MedMCQA to self-sample AD-related QA sample with LLMs.
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Dataset MedQA MedMCQA MMLU QA4MRE Total
Number 152 210 49 35 446

Table 16: Statistics of our ADQA benchmark.

D Further Experiment for RAG 1012

MedQA MedMCQA NMMLU QA4MRE AVG
Almanac w/ 256 chunk size 50.0 69.0 67.3 62.9 62.3
Almanac w/ top 10 docuemnt 48.7 68.6 65.3 62.9 61.4
Almanac w/ CoT 50.0 65.7 77.6 65.7 64.7
Clinfo.ai w/ 256 chunk size 48.6 66.7 81.6 65.7 65.7
Clinfo.ai w/ top 5 docuemnt 43.4 68.1 77.6 68.6 64.4
Clinfo.ai w/ CoT 48.7 68.6 79.6 68.6 65.0

Table 17: Further experiment in RAG methods with different hyper-parameter settings.

17


	Introduction
	Related Work
	Our Methodology
	LLMs for KG
	KG for LLMs
	Coarse-grained Knowledge Sample
	Self-aware Knowledge Retrieval


	Main Experiment
	ADQA Benchmark
	Experiment Settings
	Main Result
	Ablation Study on Self-aware Knowledge Retrieval
	Ablation Study on KG Construction

	Further Analysis
	Co-augmentation Analysis
	Hyper-parameter Analysis
	Sensitivity Analysis on ADQA Benchmark
	Case Study

	Conclusion
	Limitations
	Ethics Statement
	Details of LLMs for KG
	Details of KG for LLMs
	ADQA Benchmark
	Further Experiment for RAG

