
Mitigating Lost-in-Retrieval Problems in Retrieval Augmented
Multi-Hop Question Answering

Anonymous ACL submission

Abstract

In this paper, we identify a critical problem,001
“lost-in-retrieval”, in retrieval-augmented multi-002
hop question answering (QA): the key entities003
are missed in LLMs’ sub-question decomposi-004
tion. “Lost-in-retrieval” significantly degrades005
the retrieval performance, which disrupts the006
reasoning chain and leads to the incorrect an-007
swers. To resolve this problem, we propose008
a progressive retrieval and rewriting method,009
namely ChainRAG, which sequentially han-010
dles each sub-question by completing missing011
key entities and retrieving relevant sentences012
from a sentence graph for answer generation.013
Each step in our retrieval and rewriting pro-014
cess builds upon the previous one, creating a015
seamless chain that leads to accurate retrieval016
and answers. Finally, all retrieved sentences017
and sub-question answers are integrated to gen-018
erate a comprehensive answer to the original019
question. We evaluate ChainRAG on three020
multi-hop QA datasets—MuSiQue, 2Wiki, and021
HotpotQA—using three large language models:022
GPT4o-mini, Qwen2.5-72B, and GLM-4-Plus.023
Empirical results demonstrate that ChainRAG024
consistently outperforms baselines in both ef-025
fectiveness and efficiency.026

1 Introduction027

Large language models (LLMs) (OpenAI, 2023;028

Zeng et al., 2024; Yang et al., 2024; Li et al., 2024a)029

have exhibited promising performance on a wide030

range of natural language processing tasks, such031

as machine translation (Zhu et al., 2023), text sum-032

marization (Wu et al., 2021), question answering033

(QA) (Daull et al., 2023). While LLMs possess034

strong reasoning abilities, they still face challenges035

such as outdated knowledge and lack of domain-036

specific expertise (Mousavi et al., 2024), which037

lead to incorrect outputs (Xu et al., 2024b).038

To fill the gap between LLMs’ memory and real-039

world knowledge, retrieval-augmented generation040

(RAG) (Lewis et al., 2020; Gao et al., 2023) is041

What was the hometown of the novel's author about a male roe deer's life?

Input question

Felix SaltenWho wrote the novel about a male roe deer's life?

Sub-question 1

Retrieved text
…is a 1923 Austrian coming-of-age 
novel written by Felix Salten…

YateWhat was the home city of this author?

Sub-question 2

Retrieved text
… J.K. Rowling, born in Yate, 
England, is a famous author …

LLM

LLM

Figure 1: Example of the “lost in retrieval” issue where
the second sub-question retrieves irrelevant text due to
the unclear key entity, leading to an incorrect answer.

widely used to retrieve the knowledge that is rele- 042

vant to the user’s question to improve the LLMs’ 043

QA performance. When answering multi-hop ques- 044

tions, LLMs generally utilize a question decom- 045

position strategy in the chain-of-thought outputs, 046

which decomposes the input question into multiple 047

simpler sub-questions. However, in this decompo- 048

sition process, we find that when a sub-question 049

lacks a clear entity and instead uses demonstrative 050

pronouns, the retrieval performance drops sharply. 051

We refer to this phenomenon as “lost-in-retrieval”. 052

Figure 1 presents a real-world example in solv- 053

ing a multi-hop question using RAG combined with 054

question decomposition. In this example, the sec- 055

ond sub-question, “What was the home city of this 056

author?”, lacks a clear entity of the author. As a 057

result, it leads to retrieval errors, which ultimately 058

cause the final answer to be incorrect. The right an- 059

swer is Vienna. To give the correct answer, we 060

need to identify the specific key entities in the 061

sub-questions so as to improve the retrieval per- 062

formance. 063

To analyze the retrieval performance of differ- 064

ent sub-questions, we have conducted an empirical 065

study with 300 randomly sampled QA examples 066

from each of the three datasets: MuSiQue (Trivedi 067
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Figure 2: Analysis of “lost in retrieval”. We evaluate
the Recall@2 (%) of different sub-questions.

et al., 2022), 2WikiMultiHopQA (2Wiki) (Ho et al.,068

2020), and HotpotQA (Yang et al., 2018). Since069

most questions are two-hop reasoning problems,070

we calculate the Recall@2 scores for the first two071

sub-questions. As shown in Figure 2, under dif-072

ferent chunk size settings, the Recall@2 of the073

second sub-question is noticeably lower than that074

of the first sub-question, with an average decrease075

of 18.29% across the three datasets. We analyze076

the results and find that the first sub-question typ-077

ically contains a specific key entity, whereas the078

second sub-question often lacks one. The ambi-079

guity of key entities in sub-questions causes the080

“lost-in-retrieval” problems, which further disrupts081

the chain of reasoning for multi-hop QA.082

To mitigate the “lost-in-retrieval” problems and083

improve multi-hop QA, we propose a progressive084

retrieval framework called ChainRAG. It involves085

an iterative process of sentence retrieval, sub-086

question answering and subsequent sub-question087

rewriting. We first construct a sentence graph with088

named entity indexing from texts, which is used to089

facilitate entity completion in sub-question rewrit-090

ing and to structure the knowledge scattered across091

different texts. Next, given an input question, we092

employ the LLM to decompose it into several sub-093

questions and retrieve relevant sentences for the094

first sub-question. Then, our iterative process op-095

erates as follows until all sub-questions are ad-096

dressed. We prompt an LLM to answer the current097

sub-question. The answer is then used to rewrite098

the next sub-question by completing any missing099

key entities, if possible. The updated sub-question100

is subsequently used for retrieval. Finally, all re-101

trieved sentences and sub-question answers are in-102

tegrated to answer the original question.103

We conduct a series of experiments using three104

LLMs on three multi-hop QA datasets from Long-105

Bench (Bai et al., 2024), evaluating the perfor-106

mance and efficiency of our method. The results107

suggest that our method consistently outperforms108

the baselines across the three datasets. It also109

demonstrates stable performance across different110

LLMs, reflecting a certain degree of robustness. In 111

summary, our contributions are outlined as follows: 112

• We investigate the “lost-in-retrieval” problems 113

of RAG for multi-hop QA. We identify that 114

the reason is the absence of key entities in 115

sub-questions by empirical studies. 116

• To resolve this issue, we propose ChainRAG, 117

a progressive retrieval and sub-question rewrit- 118

ing framework. We construct a sentence graph 119

based on the similarities and entities within 120

the texts to support our retrieval and the com- 121

pletion of missing entities in sub-questions. 122

• We evaluate our ChainRAG on three multi- 123

hop QA datasets. Our experimental results 124

and analysis show that it outperforms the base- 125

lines in both effectiveness and efficiency. 126

2 Related Work 127

In this section, we review related work and discuss 128

how our method differs from them. 129

2.1 Retrieval-Augmented Generation 130

RAG (Lewis et al., 2020) is a widely-used tech- 131

nique for addressing knowledge-intensive tasks. 132

It enables LLMs to fetch relevant information 133

from external knowledge bases, enhancing their 134

effectiveness for complex QA, such as multi-hop 135

KBQA. The biggest challenge of RAG lies in how 136

to retrieve relevant and comprehensive informa- 137

tion. One solution is to perform multiple rounds 138

of retrieval to gather relevant passages (Trivedi 139

et al., 2023; Shao et al., 2023). The other solu- 140

tion seeks to remove irrelevant information from 141

retrieved texts (Jiang et al., 2024). Besides, recent 142

work pays more attention to the effective utilization 143

of retrieved texts using techniques like gist mem- 144

ory (Mu et al., 2023), text summarization (Xu et al., 145

2024a), reranking (Glass et al., 2022; Wang et al., 146

2024), context compression (Liu et al., 2024). 147

Despite the aforementioned methods, RAG still 148

encounters challenges when handling long texts 149

or complex questions, since relevant information 150

is usually scattered across different parts of the 151

text. To address this issue, many studies in- 152

corporate graph structures to organize the text. 153

RAPTOR (Sarthi et al., 2024) structures the text 154

into a tree structure. GraphRAG (Edge et al., 155

2024), GraphReader (Li et al., 2024b), and Hip- 156

poRAG (Gutiérrez et al., 2024) use LLMs to extract 157

entities and relations from the text, constructing 158
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knowledge graphs (KGs). While effective, these159

methods rely on LLMs for entities and facts extrac-160

tion, which increases costs.161

Our work investigates a subtle problem in RAG162

for multi-hop QA, i.e., “lost in retrieval”, caused163

by the missing topic entities in sub-questions. Our164

method resolves the problem by iteratively com-165

pleting the missing entities and retrieving relevant166

sentences containing these entities. It eliminates167

the need for a complex reasoning process or an168

expensive KG construction pipeline.169

2.2 Multi-hop QA170

Multi-hop QA is an ideal scenario for evaluating171

RAG systems, since it requires strong capabili-172

ties from both the knowledge retriever and the an-173

swer generator. RoG (Luo et al., 2024) adopts a174

planning-retrieval-reasoning paradigm, using rela-175

tion paths in KGs to guide the retrieval of effec-176

tive reasoning paths. EfficientRAG (Zhuang et al.,177

2024) fine-tunes the DeBERTa-v3-large model (He178

et al., 2021) to construct a labeler and a filter for179

handling multi-round queries, reducing the fre-180

quency of LLM calls. OneGen (Zhang et al., 2024)181

unifies generation and retrieval by fine-tuning the182

model to perform both tasks simultaneously in a183

single-step inference. Many existing multi-hop QA184

methods use LLMs for query decomposition (Gao185

et al., 2023). However, as demonstrated in the186

empirical study in Section 1, this strategy suffers187

from “lost-in-retrieval”. Our work resolves this188

issue without fine-tuning and frequent API calls.189

3 Methodology190

Figure 3 provides an overview of ChainRAG. We191

first construct a sentence graph from texts. Given192

a question, we use an LLM to decompose it into193

several sub-questions. Then, we design an iterative194

process includes sentence retrieval, sub-question195

answering, and subsequent sub-question rewriting.196

This process continues until all sub-questions are197

addressed. Finally, we integrates all retrieved sen-198

tences and sub-question answers to produce a com-199

prehensive answer to the original question.200

3.1 Sentence Graph with Entity Indexing201

In our method, the completion of missing key en-202

tities in sub-questions is a crucial step. To facil-203

itate entity completion, it is essential to identify204

all named entities retrievable from the given texts.205

Therefore, for efficiency consideration, we first206

extract named entities from texts si using spaCy, 207

resulting in an entity set Ei. In this process, we 208

also store the mappings between each entity and all 209

its sentences. Then, to conveniently obtain all the 210

information of an entity from scattered texts for the 211

following knowledge retrieval, we propose to con- 212

struct a sentence graph with named entities as edge 213

labels, where each node represents a sentence and 214

the edge between nodes indicates that the two sen- 215

tences describe the same entity. We denote the node 216

(i.e., sentence) set as C = {s1, s2, . . . , sn}, which 217

has already been obtained in the previous entity ex- 218

tract process. As for the edge, the entity-sentence 219

mappings can be used to mine edges. However, re- 220

lying solely on entity co-occurrence edges is insuf- 221

ficient for effective knowledge retrieval. Besides, 222

the sentence-level retrieval is too fine-grained. We 223

should enhance the associations between sentences 224

for border and comprehensive retrieval. Finally, we 225

consider the following three types of edges in our 226

sentence graph: 227

• Entity co-occurrence (EC). If two sentences 228

describe the same key entity, they will be 229

linked. A sentence may contain multiple enti- 230

ties, but not all of them are the key entities. We 231

calculate the importance score, i.e., BM25, for 232

each entity e ∈ Ei, and retain only the top-α% 233

entities as key entities, denoted by Ki ⊆ Ei. 234

This process reduces redundancy of the fol- 235

lowing construction steps. Two sentences si 236

and sj would be linked with an edge labeled 237

“EC” if Ki ∩ Kj ̸= ∅ holds. 238

• Semantic similarity (SS). If two sentences 239

have a high embedding similarity, they will 240

be linked. We encode each sentence si 241

into a dense vector vi using OpenAI text- 242

embedding-3-small embeddings for comput- 243

ing pairwise similarities of sentences. For 244

sentence si, we maintain a set Ri containing 245

its top-m most similar sentences. Two sen- 246

tences si and sj would be linked with an edge 247

labeled “SS” if sj ∈ Ri ∨ si ∈ Rj holds. 248

• Structural adjacency (SA). If two sentences 249

are adjacent in texts, they will be linked. In 250

this work, we consider a span of three sen- 251

tences. If two sentences si and sj are within 252

three sentences of each other, i.e., |i− j| ≤ 3, 253

we add an edge labeled “SA” between them. 254

This type of edges can helps us reconstruct the 255

overall structure of text for a wider retrieval. 256
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Figure 3: Framework overview of ChainRAG. It first constructs a sentence graph, where the edges between sentence
nodes are labeled by their common named entities. Given a question, it is decomposed into sub-questions. Then, our
iterative process involves retrieval, answering, and rewriting the unclear sub-question by filling in missing entities.
Finally, it integrates all retrieved sentences and answers to produce a comprehensive answer.

The sentence graph plays a crucial role in miti-257

gating the “lost-in-retrieval” problems. It connects258

sentences through shared entities and semantic as-259

sociations, organizing the knowledge to ensure that260

even when a sub-question lacks clear entities, the261

necessary context can still be retrieved.262

3.2 Sentence and Entity Retrieval263

Before the retrieval process begins, we first uti-264

lize LLM to decompose multi-hop questions into265

sub-questions. The detailed prompt used for de-266

composing multi-hop questions can be found in267

Appendix D. Our retrieval method deals with the268

sub-questions in turn, which is a progressive re-269

trieval process and constructs a complete inference270

chain through entity expansion. It involves the fol-271

lowing two retrieval steps for each sub-question.272

Seed sentence retrieval. Given a sub-question,273

we first calculate its embedding similarity (e.g.,274

inner product) with all sentences in the sentence275

graph. This can be done quickly by matrix mul-276

tiplication. We then filter our the sentences with277

low similarity to narrow down the retrieval candi-278

dates. Next, we use a cross-encoder to assess the279

relevance of each candidate sentence within the280

context of the sub-question, and finally, we select281

the top-k sentences as seed sentences.282

Retrieval expansion on sentence graph. Start-283

ing from seed sentences, we iteratively explore284

their neighbors in the sentence graph. After each285

expansion, we use a LLM to assess whether the286

gathered sentences contain sufficient information287

to answer the question. If validated, the expansion288

is terminated. Otherwise, we continue to explore289

higher-order neighbors. To ensure both efficiency 290

and quality of the retrieval, we implement multiple 291

optimization mechanisms. To reduce the number of 292

LLM calls, the initial neighbor exploration fetches 293

all 1-hop neighbors of the seed sentences. Addi- 294

tionally, to prevent the context from becoming too 295

lengthy, we introduce a length limit. Once the total 296

length of the retrieved sentences reaches this limit, 297

the retrieval process is stopped. The LLM is finally 298

promoted to answer the sub-question based on the 299

retrieved sentences. 300

3.3 Sub-question Rewriting 301

As we have mentioned and validated in Sect. 1 that 302

the retrieval performance degrades if sub-questions 303

lack necessary named entities. To resolve this prob- 304

lem, we propose to rewrite sub-questions. First, 305

we determine if a sub-question needs rewriting by 306

checking for the presence of pronouns (such as 307

“this”, “it”, “they”, etc.). If these pronouns exist, 308

we feed both the current sub-question and the pre- 309

vious sub-questions along with their answers into 310

an LLM to rewrite the current sub-question. When 311

the previous sub-questions were not adequately 312

answered, we cannot rewrite the sub-questions. 313

In this case, we summarize their corresponding 314

context and incorporate the summary into the con- 315

text of the current sub-question. Our sub-question 316

rewriting method serves two purposes. First, it 317

mitigates the degradation in retrieval performance 318

caused by missing entities. Second, since the pre- 319

vious sub-question is closely related to the current 320

one, preserving its key information supports the 321

reasoning process of the current sub-question. 322
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3.4 Answer and Context Integration323

After obtaining the answers to all sub-questions, we324

have two different integration methods to generate325

a comprehensive answer to the original question:326

sub-answer integration and sub-context integration.327

Sub-answer integration. This method generates328

the answer to the original question by utilizing each329

sub-question and its answer. It relies solely on the330

information from the sub-questions’ answers, with-331

out external interference. Since the decomposition332

of sub-questions can be regarded as a reasoning333

process, this method enables the LLM to infer the334

original question’s answer. Moreover, this method335

ensures that the LLM processes the relevant text336

of only one sub-question at a time, avoiding per-337

formance degradation caused by the LLM’s weak338

long-context processing capabilities when process-339

ing multiple sub-questions simultaneously. How-340

ever, if a sub-question is answered incorrectly or341

left unanswered, it can significantly impact the fi-342

nal result. To reduce such impact, we consider343

the following method that integrates all retrieved344

sentences to enrich the context.345

Sub-context integration. We remove duplicate346

contexts from all retrieved sentences (without using347

sub-questions) and use a cross-encoder to rerank348

the sentences for generating the final answer. This349

method is similar to traditional RAG, which uses350

only relevant text to generate the answer. It helps351

mitigate the impact of errors in sub-question de-352

composition or answers by focusing on the re-353

trieved sentences, rather than relying solely on the354

sub-question answers. However, this method re-355

quires the LLM to have strong long-context pro-356

cessing capabilities. Compared to answering each357

sub-question individually, the merged context may358

contain more noisy information, which can nega-359

tively impact the final answer.360

4 Experiments361

In this section, we report the experimental results362

and analysis to evaluate the effectiveness and effi-363

ciency of our method for multi-hop QA. Our source364

code is in the attachments.365

4.1 Setup366

Dataset and metrics. We use the following three367

challenging multi-hop QA datasets in our experi-368

ments: MuSiQue (Trivedi et al., 2022), 2Wiki (Ho369

et al., 2020), and HotpotQA (Yang et al., 2018).370

Instead of using raw data, we follow the same data 371

setting as in LongBench (Bai et al., 2024). Detailed 372

statistics of the used datasets are provided in the 373

Appendix A. Following convention, we assess the 374

multi-hop QA performance using the F1-score and 375

exact match (EM) score. 376

Baselines. To ensure the fairness of our evalu- 377

ation, we standardize the embedding model, i.e., 378

OpenAI’s text-embedding-small-v3,1 and the cross- 379

encoder reranker, i.e., BGE-Reranker (Chen et al., 380

2024), across both our method and the baselines. 381

We conduct experiments with three popular LLMs 382

as the answer generator: GPT4o-mini,2 Qwen2.5- 383

72B (Yang et al., 2024) and GLM-4-Plus (Zeng 384

et al., 2024). For comparison, we select NaiveRAG 385

and three advanced train-free RAG methods as 386

baselines: Iter-RetGen (Shao et al., 2023), Lon- 387

gRAG (Jiang et al., 2024), and a combination 388

of HippoRAG (Gutiérrez et al., 2024) with IR- 389

CoT (Trivedi et al., 2023). Except for the main 390

experiments and the efficiency analysis, all subse- 391

quent experiments are conducted exclusively on 392

GPT4o-mini, as similar results have been observed 393

with other LLMs. Our method has two variants, 394

namely ChainRAG (AnsInt) and ChainRAG (Cx- 395

tInt), which use the sub-answer integration and 396

sub-context integration strategies, respectively. 397

Implementation details. In all experiments, we 398

set the word limit to 3000. For sentence graph 399

construction, α is set to 60 for the entity filter and 400

m is set to 10 for selecting the most similar sen- 401

tences. During the seed sentence retrieval phase, 402

the number of candidate sentences selected in the 403

first round is 100, with the top-k sentences chosen 404

as seed sentences, where k = 3 in the main experi- 405

ment. Further implementation details are provided 406

in Appendix B. 407

4.2 Main Results 408

We hereby provide a detailed comparison and anal- 409

ysis of the overall results shown in Table 1. In 410

general, our method has performed better com- 411

pared to baselines. Compared to NaiveRAG, Chain- 412

RAG achieves significant improvements across all 413

datasets, especially on MuSiQue, where the aver- 414

age F1 score has improved by approximately 60%. 415

When compared to three advanced RAG methods, 416

1https://platform.openai.com/docs/guides/
embeddings

2https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/
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LLMs Methods MuSiQue 2Wiki HotpotQA

F1 EM F1 EM F1 EM

GPT4o-mini

NaiveRAG 29.82 19.00 50.61 42.50 56.92 42.00
NaiveRAG w/ QD 37.49 26.00 56.88 38.50 60.00 43.50

ITER-RETGEN Iter3 (Shao et al., 2023) 38.41 33.00 58.43 50.50 57.77 42.00
LongRAG (Jiang et al., 2024) 44.88 32.00 62.39 49.00 64.74 51.00
HippoRAG w/ IRCoT (Gutiérrez et al., 2024) 46.50 28.50 62.38 48.00 56.12 40.00

Ours (AnsInt) 50.54 37.00 62.55 52.00 60.73 46.00
Ours (CxtInt) 47.87 38.50 56.54 50.50 64.59 50.00

Qwen2.5-72B

NaiveRAG 27.08 16.50 39.82 28.50 50.25 34.50
NaiveRAG w/ QD 33.91 20.50 53.84 37.00 52.14 34.50

ITER-RETGEN Iter3 (Shao et al., 2023) 40.15 31.50 53.59 41.50 58.41 45.00
LongRAG (Jiang et al., 2024) 40.89 29.50 62.00 51.50 60.29 46.50
HippoRAG w/ IRCoT (Gutiérrez et al., 2024) 44.64 31.50 64.19 52.00 55.21 41.00

Ours (AnsInt) 47.75 37.00 64.23 54.00 60.55 46.00
Ours (CxtInt) 49.37 39.00 65.85 55.50 64.54 52.00

GLM-4-Plus

NaiveRAG 37.86 28.00 57.78 45.50 58.42 44.00
NaiveRAG w/ QD 30.33 22.50 60.93 48.00 59.05 44.00

ITER-RETGEN Iter3 (Shao et al., 2023) 52.57 44.50 66.56 56.50 61.03 48.50
LongRAG (Jiang et al., 2024) 40.44 29.00 62.27 54.50 61.60 48.50
HippoRAG w/ IRCoT (Gutiérrez et al., 2024) 44.70 29.50 67.55 55.50 63.91 48.00

Ours (AnsInt) 51.66 40.00 67.35 58.00 55.40 42.00
Ours (CxtInt) 49.40 38.00 70.58 61.50 64.22 50.00

Table 1: Performance (%) on MuSiQue, 2Wiki, and HotpotQA. QD refers to question decomposition. AnsInt refers
to generating answers using only sub-questions and their corresponding answers, while CxtInt refers to generating
answers using only the contexts retrieved by sub-questions.

ChainRAG consistently outperforms them, achiev-417

ing the highest average performance across all three418

datasets. This is most pronounced when using419

Qwen2.5-72B as the LLM, where the average F1420

score of CxtInt is 59.92. This surpasses the second-421

best method, HippoRAG w/ IRCoT, which has an422

average F1 score of 54.68, representing a 9.6%423

improvement. This advantage demonstrates the ef-424

fectiveness of our proposed progressive retrieval425

and query entity completion strategy.426

ChainRAG has also demonstrated stable perfor-427

mance across all three LLMs, reflecting its robust-428

ness. We further observe some differences in the429

results of each LLM. For example, when using430

GPT4o-mini, our AnsInt variant outperformed Cx-431

tInt, while the opposite is true for Qwen2.5-72B432

and GLM-4-Plus. This difference may primarily433

stem from the varying capabilities of these LLMs.434

GPT4o-mini exhibits strong reasoning abilities,435

while the other two LLMs are better at process-436

ing long-context. Our two answering strategies can437

each leverage these two advantages separately.438

We also find that adding question decomposi-439

tion to NaiveRAG sometimes brings only limited440

improvements. For example, on the HotpotQA441

dataset, the average F1 score increases by just 1.87, 442

while the average EM score improves by only 0.5. 443

In addition, when using GLM-4-Plus as the LLM, 444

the performance of NaiveRAG on the MuSiQue 445

dataset decreases after incorporating question de- 446

composition. These cases also suggest the pres- 447

ence of the “lost-in-retrieval” problems. In con- 448

trast, ChainRAG consistently benefits from ques- 449

tion decomposition with sub-question rewriting, 450

showing its robustness in resolving the “lost-in- 451

retrieval” problems. 452

4.3 Ablation Study 453

To validate the effectiveness of each technical 454

module in our method, we carry out an ablation 455

study. We explore the effects of removing the sub- 456

question rewriting method, ablating edges in the 457

sentence graph by type, and completely removing 458

the graph (i.e., segmenting texts into chunks like 459

NaiveRAG). Figures 4 and 5 show the F1 and EM 460

scores using the AnsInt strategy, respectively. The 461

complete results can be found in Appendix C. We 462

observe similar results when using CxtInt. 463

Sub-question rewriting is one of the core compo- 464

nents of our method. As shown in the experimental 465
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results, removing this component leads to a signifi-466

cant decline in QA performance. On the MuSiQue467

dataset, both F1 and EM scores drop by approx-468

imately 30%. These results further confirm the469

existence of the “lost-in-retrieval” problems.470

Ablating different edge types in our sentence471

graph leads to performance declines, demonstrat-472

ing the rationality of our edge design for graph473

construction. Moreover, the impact of ablating spe-474

cific edge types varies across datasets. For example,475

removing SA edges has the greatest impact on the476

HotpotQA dataset, while the situation is reversed477

on the MuSiQue dataset. This indicates that dif-478

ferent datasets have distinct dependencies on edge479

types. Future work can dynamically adjust edge480

construction strategies for each dataset to further481

improve performance.482

To evaluate the effectiveness of our sentence483

graph, we remove the entire graph and adopt a484

method similar to NaiveRAG, where we index the485

texts in chunks. The results show a decline in both486

F1 and EM scores, with the decrease in EM being487

notably more pronounced. We speculate that this is488

because finer-grained textual information can bet-489

ter guide LLM to generate more accurate answers.490

This outcome further confirms the rationality and491

effectiveness of our sentence graph.492

4.4 Retrieval Performance Analysis493

To validate whether our method effectively ad-494

dresses the “lost-in-retrieval” problems, we con-495

duct additional retrieval experiments. Since our496

MuSiQue 2Wiki HotpotQA

Sub-question 1 55.52 57.50 54.67
Sub-question 2 40.91 49.87 49.17
Modified sub-question 2 58.81 54.32 61.83

Table 2: Recall@2 (%) results of text retrieval for sub-
questions. The modified sub-question 2 is rewritten by
our entity completion method.
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Figure 6: Comparison of GPT4o-mini call times.

method divides the context into sentences, which 497

differs rom NaiveRAG in granularity, we stan- 498

dardize the chunk size in ChainRAG to match 499

NaiveRAG for fair comparison. From Table 2, 500

we observe that after rewriting, the Recall@2 of 501

sub-question 2 shows a marked improvement. No- 502

tably, on the MuSiQue and HotpotQA datasets, 503

the Recall@2 of the rewritten sub-question 2 even 504

exceeds that of sub-question 1, as the rewriting 505

process uses information from sub-question 1 to 506

retrieve more relevant content. 507

4.5 Efficiency Comparison 508

We measure the efficiency of each method by count- 509

ing the number of LLM calls. Figure 6 compares 510

the average number of calls of different methods 511

across three datasets. HippoRAG, which constructs 512

knowledge graphs based on LLM, requires several 513

times more calls than other methods and is signifi- 514

cantly influenced by the dataset. This is especially 515

true for datasets with longer context lengths, where 516

the number of calls increases further. Compared to 517
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Figure 7: F1 (%) results w.r.t. different k values.
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Question Gold facts Sub-question 1 Sub-question 2 Final answer
N

ai
ve

R
A

G
w

/Q
D

In what region
of the country
of S-Fone is
The place of
birth of John
Phan located?

⇒ John Phan born
October 10, 1974, in
Da Nang, Vietnam.
⇒ South Central
Coast (sometimes
called South Central
Region) consists
of the independent
municipality of Da
Nang.

Question: What is
the place of birth of
John Phan?
Context: John Phan
born October 10,
1974, in Da Nang,
Vietnam.
Answer: Da Nang,
Vietnam.

Question: In which region of
S-Fone is this place located?
context: S-Fone was a mobile
communication operator in
Vietnam that used the CDMA
technology. Founded on 1
July 2003 in Ho Chi Minh
City, Vietnam.
Answer: Ho Chi Minh City,
Vietnam

Ho Chi Minh
City, Vietnam.

C
ha

in
R

A
G

In what region
of the country
of S-Fone is
The place of
birth of John
Phan located?

⇒ John Phan born
October 10, 1974, in
Da Nang, Vietnam.
⇒ South Central
Coast (sometimes
called South Central
Region) consists
of the independent
municipality of Da
Nang.

Question: What is
the place of birth of
John Phan?
Context: John Phan
born October 10,
1974, in Da Nang,
Vietnam.
Answer: Da Nang,
Vietnam.

Question: In which region of
S-Fone is Da Nang, Vietnam
located?
Context: South Central Coast
(sometimes called South Cen-
tral Region) consists of the
independent municipality of
Da Nang and seven other
provinces.
Answer: South Central Coast

South Central
Coast.

Table 3: Examples of the RAG process of NaiveRAG w/ QD and our ChainRAG from the MuSiQue dataset. Blue
text represents correct and relevant information or answers, while red text indicates incorrect information.

LongRAG, ChainRAG shows a notable improve-518

ment in efficiency across all datasets, with an av-519

erage reduction of about 17.3% in the number of520

calls. Although ITER-RETGEN is the most efficient521

method (second only to NaiveRAG), considering522

the overall performance of the three models across523

the three datasets, ChainRAG achieves a better bal-524

ance between efficiency and performance.525

4.6 Top-k Study526

The selection of k sentences as seed sentences in527

the retrieval step is crucial, as it significantly influ-528

ences the subsequent retrieval process. Given the529

fixed word limit, a smaller k value tends to retrieve530

more sentences from higher-order neighbors of the531

seed sentences, while a larger k value retrieves532

more sentences from lower-order neighbors. To533

determine the optimal value of k, we conduct com-534

parative experiments. As shown in Figure 7, except535

for CxtInt’s performance on the 2Wiki dataset, all536

other cases achieve the best results when k = 3.537

Considering the overall performance, we choose538

k = 3 as the default value.539

4.7 Case Study540

We present an example question from MuSiQue541

and compare the RAG process of NaiveRAG w/542

QD and ChainRAG in Table 3. As NaiveRAG543

w/ QD does not rewrite the sub-question, its sec-544

ond sub-question lacks a clear entity, leading to545

retrieval errors and causing the "lost-in-retrieval"546

problems. This ultimately results in an incorrect 547

answer. In the example, the context comes from the 548

first chunk retrieved, which is also the source of the 549

final answer. For ChainRAG, by using the answer 550

from the first sub-question to complete the entity in 551

the second sub-question, the retrieved information 552

becomes more accurate, on which the LLM then 553

provides the correct answer. 554

5 Conclusion and Future Work 555

In this paper, we investigate the “lost-in-retrieval” 556

problems of RAG that occurs during multi-hop 557

QA. We propose a progressive retrieval frame- 558

work involving sentence graph construction, ques- 559

tion decomposition, retrieval, and sub-question 560

rewriting, which effectively enhances the retrieval 561

performance, especially for sub-questions lack- 562

ing clear entities. Our experiments and analysis 563

on three challenging datasets—MuSiQue, 2Wiki, 564

and HotpotQA—demonstrate that our method con- 565

sistently outperforms baselines. Additionally, it 566

demonstrates robustness and efficiency across dif- 567

ferent LLMs, showcasing its adaptability and po- 568

tential for broader applications. 569

For future work,we plan to optimize efficiency 570

by exploring lightweight graph traversal and adap- 571

tive termination strategies, reducing LLM calls and 572

resource consumption. We also plan to enhance dy- 573

namic adaptability by developing dataset-specific 574

edge construction policies to better align with di- 575

verse text structures. 576
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Limitations577

While our proposed ChainRAG framework has578

demonstrated significant improvements in resolv-579

ing the “lost-in-retrieval” problems, several limi-580

tations should be acknowledged. First, although581

ChainRAG outperforms LongRAG and HippoRAG582

in efficiency, our iterative process of retrieval, sub-583

question rewriting increases the computational re-584

sources and time required compared to NaiveRAG.585

This may pose challenges for deployment in586

resource-constrained environments. Second, al-587

though robust across existing datasets, adapting588

ChainRAG to highly specialized domains requires589

further validation and potential adjustments to in-590

dexing strategies. Third, the accuracy of entity591

recognition and completion is critical for the suc-592

cess of ChainRAG. Errors in entity recognition can593

propagate through the retrieval and reasoning pro-594

cess, affecting the overall performance.595
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multiple integrated paragraphs, the original seg-794

mentation structure of the data can be accurately795

restored by regular expression matching.796

Datasets MuSiQue 2Wiki HotpotQA

No. of Samples 200 200 200
No. of p 2,212 1,986 1,722
Avg. Length 11,214 4,887 9,151

Table 4: Statistics of the datasets used in our work. “Avg.
Length” denotes the average word count.

B Implementation Details797

We strictly follow the process outlined in the Iter-798

RetGen (Shao et al., 2023) paper and the prompts799

provided in its appendix for our reproduction. Ad-800

ditionally, we refer to the results in the paper and801

the EfficientRAG (Zhuang et al., 2024), selecting802

the third iteration results as the baseline, as the803

third iteration often produces results close to the804

optimal and exhibits a clear edge effect. For Lon-805

gRAG and HippoRAG, we use their open-source806

code, follow the default settings, and conduct test-807

ing after switching to the unified model. Regarding808

the chunking process, LongRAG follows the de-809

fault settings and segments based on word count,810

with a chunk size of 200. HippoRAG, on the other811

hand, does not apply any chunking.812

We utilize the “en_core_web_sm” model from813

the spaCy library for entity extraction. This model814

is a small-scale model with approximately millions815

of parameters, designed for lightweight and effi-816

cient natural language processing tasks.817

C Detailed Results of Ablation Study818

Tables 5 and 6 present the complete results of our819

ablation study. After removing certain processes820

from ChainRAG, we observe varying degrees of821

performance degradation in QA tasks. When the822

rewriting phase is removed, the performance on823

MuSiQue and HotpotQA drops significantly, while824

the performance on 2Wiki dataset sees a minor825

decrease. This is mainly because many of the ques-826

tions in the 2Wiki dataset, after being decomposed,827

result in two parallel sub-questions with no depen-828

dency, which avoids the “lost-in-retrieval” prob-829

lems. For MuSiQue, removing the SS edges has the830

greatest impact on performance, while for 2Wiki,831

it is the removal of the EC edges that has the most832

significant effect. In HotpotQA, the SA edges have833

the largest impact when removed. When we re-834

Methods MuSiQue 2Wiki HotpotQA

ChainRAG (AnsInt) 50.54 62.55 60.73
w/o Rewriting 38.18 59.69 55.19
w/o EC edge 47.52 58.28 57.99
w/o SS edge 47.40 59.78 58.40
w/o SA edge 48.83 59.87 56.64
w/o Graph 47.97 60.96 58.05

ChainRAG (CxtInt) 47.87 56.54 64.59
w/o Rewriting 36.60 56.36 61.57
w/o EC edge 45.34 55.12 61.73
w/o SS edge 43.39 55.68 60.85
w/o SA edge 47.36 55.08 61.32
w/o Graph 40.18 54.76 60.19

Table 5: F1 results of ablation study.

Methods MuSiQue 2Wiki HotpotQA

ChainRAG (AnsInt) 37.00 52.00 46.00
w/o Rewriting 26.50 51.50 42.00
w/o EC edge 36.00 48.50 45.00
w/o SS edge 35.50 49.50 45.50
w/o SA edge 37.00 50.50 44.00
w/o Graph 35.00 45.00 42.00

ChainRAG (CxtInt) 38.50 50.50 50.00
w/o Rewriting 25.00 47.00 47.00
w/o EC edge 33.00 47.00 47.00
w/o SS edge 34.00 46.00 48.00
w/o SA edge 36.50 46.50 47.00
w/o Graph 27.00 39.50 44.00

Table 6: EM results of ablation study.

move the entire graph and implement the indexing 835

process according to NaiveRAG, we observe a no- 836

ticeable decline in performance, with the CxtInt 837

method being more significantly affected. This 838

indicates the effectiveness of our method, which 839

involves building an index using sentences and enti- 840

ties and performing retrieval on the sentence graph. 841

D Prompt Example 842

Figure 8 shows our prompt to guide LLMs in de- 843

composing complex multi-hop questions into a se- 844

ries of minimal and necessary sub-questions. The 845

goal of this decomposition is to ensure that each 846

sub-question targets a specific and essential piece 847

of information, thereby facilitating more accurate 848

and efficient retrieval and reasoning processes. The 849

ex. here refers to an example of a question decom- 850

position that follows this logical progression. 851
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You are a helpful AI assistant that helps break down questions into minimal necessary sub-questions.

Guidelines:
1. Only break down the question if it requires finding and connecting multiple distinct pieces of information.
2. Each sub-question should target a specific, essential piece of information.
3. Avoid generating redundant or overlapping sub-questions.
4. For questions about impact/significance, focus on:

- What was the thing/event.
- What was its impact/significance.

5. For comparison questions between two items (A vs B):
- First identify the specific attribute being compared for each item.
- Then ask about that attribute for each item separately.
- For complex comparisons, add a final question to compare the findings.

6. Please consider the following logical progression:
- Parallel: Independent sub-questions that contribute to answering the original question. Example: {ex.}.
- Sequential: Sub-questions that build upon each other step-by-step. Example: {ex.}.
- Comparative: Questions that compare attributes between items. Example: {ex.}.

7. Keep the total number of sub-questions minimal (usually 2 at most). Output format should be a JSON
array of sub-questions. For example: {examples of sub-questions}.

Remember:
Each sub-question must be necessary and distinct. Do not create redundant questions. For comparison
questions, focus on gathering the specific information needed for the comparison in the most efficient way.

Figure 8: Prompt for instructing LLMs to decompose the input question into several sub-questions.
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