Drift-Adapter: A Practical Approach to Near Zero-Downtime Embedding
Model Upgrades in Vector Databases

Anonymous ACL submission

Abstract

Upgrading embedding models in production
vector databases typically necessitates re-
encoding the entire corpus and rebuilding the
Approximate Nearest Neighbor (ANN) index,
leading to significant operational disruption
and computational cost. This paper presents
Drift-Adapter, a lightweight, learnable trans-
formation layer designed to bridge embedding
spaces between model versions. By mapping
new queries into the legacy embedding space,
Drift-Adapter enables the continued use of the
existing ANN index, effectively deferring full
re-computation. We systematically evaluate
three adapter parameterizations: Orthogonal
Procrustes, Low-Rank Affine, and a compact
Residual MLP, trained on a small sample of
paired old/new embeddings. Experiments on
MTEB text corpora and a CLIP image model
upgrade (1M items) show that Drift-Adapter
recovers 95-99% of the retrieval recall (Re-
call@10, MRR) of a full re-embedding, adding
less than 10 us query latency. Compared to
operational strategies like full re-indexing or
dual-index serving, Drift-Adapter dramatically
reduces recompute costs (by over 100x) and
facilitates upgrades with near-zero operational
interruption. We analyze robustness to varied
model drift, training data size, scalability to
billion-item systems, and the impact of design
choices like diagonal scaling, demonstrating
Drift-Adapter’s viability as a pragmatic solu-
tion for agile model deployment.

1 Introduction

Vector databases are foundational to modern re-
trieval, recommendation, and semantic search sys-
tems (Goodfellow et al., 2016). These systems rely
on embeddings generated by deep learning models,
which are continuously improved. However, de-
ploying an updated embedding model in a produc-
tion environment presents a significant operational

challenge: the entire corpus of stored items, poten-
tially billions of vectors, must be re-encoded with
the new model, and the corresponding ANN index
rebuilt (Xu et al., 2023). This process is computa-
tionally intensive, time-consuming, and often leads
to service downtime or periods of degraded perfor-
mance. While this full re-computation might be
desirable in the long term for optimal performance
with the new model, the immediate operational bur-
den is substantial.

This work addresses the practical challenge of
minimizing this disruption. We investigate if a
compact, efficient mapping can bridge successive
embedding spaces, allowing services to leverage
new models quickly while deferring the cost of
a full corpus overhaul. Building on embedding
space alignment principles from cross-lingual and
cross-domain research (Schonemann; Xing et al.;
Gao, 2023), we introduce and systematically eval-
uate Drift-Adapter, a lightweight adaptation layer.
Trained on a small set of paired old/new embed-
dings, Drift-Adapter transforms queries encoded
by the new model into the legacy space of the ex-
isting database, enabling direct querying of the
unchanged ANN index (e.g., FAISS (Johnson et al.,
2021)). This facilitates upgrades with near-zero
operational interruption.

Our contributions are:

* We frame drift adaptation for vector database
upgrades as learning a regression from the
new query embedding space to the old
database embedding space, systematically
studying simple, effective methods.

* We evaluate three lightweight adapter variants
(Orthogonal Procrustes, Low-Rank Affine,
Residual MLP), detailing their latency, mem-
ory, and quality trade-offs.

* We conduct extensive experiments on text
(MTEB (Muennighoff et al.)) and image
(LAION (Schuhmann et al., 2021)) corpora,
demonstrating 95-99% recall recovery with
minimal overhead.

* We benchmark Drift-Adapter against common
operational upgrade strategies (full re-index,
dual index), quantifying its advantages in
downtime reduction and resource efficiency.

* We analyze robustness to varying degrees
of model drift, the impact of training data
size, design choices like diagonal scaling, and
project scalability to billion-scale systems.

» We discuss practical considerations like paired
data availability and handling heterogeneous
drift, positioning Drift-Adapter as a pragmatic
tool for agile embedding model management.

2 Related Work
2.1 Embedding Space Alignment

The core idea of mapping between embedding
spaces has a rich history. Orthogonal Procrustes
analysis (Schonemann) finds the optimal rotation
to align two sets of points and has been widely
used in cross-lingual word embedding alignment
(Xing et al.). More recent work explores affine
transformations or shallow MLPs for tasks like
aligning contextual embeddings (Gao, 2023) or
feature adaptation in incremental learning (Iscen
etal., 2020). Drift-Adapter adapts these established
methods to the specific, practical problem of intra-
model drift within a live vector database, a context
with unique constraints on latency, training data,
and operational impact, which has not been as ex-
tensively studied as inter-language or inter-domain
alignment.

2.2 Adaptive and Incremental ANN Indices

Several works focus on making ANN indices them-
selves adaptive. Some methods learn to adjust
search parameters or traversal budgets based on
query characteristics or data distribution (Li et al.,
2020). Others focus on efficient incremental up-
dates to the index structure as new items are added
or old items are modified/deleted (Xu et al., 2023;
Liu et al.), allowing for dynamic datasets without
frequent full rebuilds. While valuable for index
maintenance, these approaches generally assume
that the incoming embeddings (for queries or new

items) are already in the target space of the in-
dex. Drift-Adapter is complementary: it adapts
the embedding space itself, allowing these adaptive
indices to function effectively during model transi-
tions without immediate re-encoding of their entire
content.

2.3 Operational Strategies for Model
Upgrades

In practice, organizations employ various strategies
for model upgrades in vector databases, each with
its own trade-offs:

* Full Re-index and Swap: The most straight-
forward approach involves building an en-
tirely new index with re-encoded data in paral-
lel. Once the new index is ready and validated,
traffic is swapped to it. This strategy ensures
optimal performance with the new model post-
upgrade but incurs significant recompute cost
for the entire corpus and often requires a pe-
riod of downtime or careful traffic manage-
ment during the swap.

* Dual Index Serving: During a transition pe-
riod, both the old and new indices are main-
tained and served. Queries might be routed
to the appropriate index based on some cri-
teria, or run against both indices with results
merged. This avoids direct downtime but can
double serving resource costs and potentially
increase query latency due to the need to query
and merge from two sources.

* Lazy/Background Re-embedding: The cor-
pus is gradually re-encoded with the new
model in the background, potentially over an
extended period. This defers the bulk recom-
pute cost but can lead to a mixed-state index
(containing both old and new embeddings),
complicating querying unless a strategy like
Drift-Adapter is used to harmonize query and
database embeddings.

Drift-Adapter offers an alternative that aims to min-
imize both immediate recompute costs and oper-
ational disruption, providing a bridge while full
re-embedding can occur more leisurely in the back-
ground if eventually desired for peak performance
with the new model. We provide a direct compari-
son to some of these strategies in Section 5.2.

3 Drift-Adapter: Method

Let foq be the legacy embedding model and
fnew be the upgraded model. The ex1st1ng vec-
tor database contains embeddings x0101 foua(d;)
for a corpus of documents {d;}. When a new
query q arrives, it is encoded using the new model,
dnew = Jfnew(q). To search the existing database
containing f,q embeddings, we need to transform
Qnew 10to the legacy space.

We learn an adapter gy : R4~ — R0 (where
dn,do are dimensions of new and old embed-
dings, respectively, and often dy = dp = d) such
that the transformed query embedding gg(Qnew)
is "close" to what foa(q) would have been, ef-
fectively g(faew(q)) ~ foua(q). The adapter
is trained by minimizing the mean squared er-
ror on NN, paired samples {(b;, aj>}Nf1, where
b; = faew(d;) and a; = foa(d;) are column vec-
tors from a sampled subset of the database docu-

ments: £(6) = 7= 3, [[go(b;)
time, an incoming query fnew(q) is transformed to

qi)ld = go(faew(q)), which is then used to search
the ANN index built on f,q embeddings.

We study three lightweight parameterizations for
go: 1. Orthogonal Procrustes (OP): gy(x) = Rx,
where R € R%*? is an orthogonal matrix (R R =
I). R is found by solving argmingtp_g ||A —
RB|j% (where A = l[aj,...,ay,] and B =
[b1,...,by,] are matrices of paired embeddings).
The solution is R = UV'", where U and V are
from the SVD of ABT = UXV T (Schénemann).

2. Low-rank Affine (LA): go(x) = UV 'x + t
with U,V € R¥" (matrices of learnable parame-
ters) and r < d (e.g., r = 32, 64). The bias vector
t € RY. This reduces parameters to O(2dr + d).
Trained with SGD.

3. Residual MLP (MLP): A small feed-forward
network adds a non-linear correction: gg(x) =
x + Wao(Wix + biasy) + biase. We use GELU
activation ¢ and one hidden layer with 256 units.
Wy € R¥65%4 117, ¢ R4*256 Trained with SGD.

Diagonal Scaling Matrix (DSM): An optional
diagonal scaling matrix S € R%*? can refine the
output of any adapter variant: g,(x) = S-gg(x). S
contains d learnable scaling factors on its diagonal.
For LA and MLP, S can be learned jointly as part
of the SGD optimization by prepending it to the
loss function. For OP, it can be learned as a post-
hoc step by minimizing |[SA — A% where A are
predictions from RB. The DSM helps match per-
dimension variances if, for example, embeddings

~ a3 Atquery

are /> normalized before gy but the legacy system
expected specific variance profiles, or if gy itself
alters variances unevenly. In our experiments (Sec-
tion 5.1), including DSM typically adds a small
but consistent improvement of +0.005 to +0.015
ARR for LA and MLP adapters and is therefore
used by default for these. For the OP adapter, the
gain from DSM was marginal in our specific setups
(< 0.005 ARR) and is thus omitted for OP results
unless explicitly stated to keep the OP variant as
simple as possible.

Memory overhead and latency details are pro-
vided in Appendix A.l. Training details includ-
ing hyperparameter sensitivity are discussed in Ap-
pendix A.2.

4 Experimental Setup
Datasets and Models:

* Text: We use AG-News, DBpedia-14, and
Emotion datasets, following standard splits
and data from the MTEB benchmark (Muen-
nighoff et al.). For each dataset, we construct a
database of 1 million items randomly sampled
from their respective training sets. Model drift
is simulated by upgrading from ‘all-MiniLM-
L6-v2° (our foq) to ‘all-mpnet-base-v2* (our
fnew), both popular models from the Sentence-
Transformers library.

* Image: We use 1 million images randomly
sampled from the LAION-400M dataset
(Schuhmann et al., 2021). Model drift is simu-
lated by upgrading from CLIP ViT-B/32 (fo1q)
to CLIP ViT-L/14 (fnew)-

All embeddings are {5 normalized prior to any
adapter operations or ANN indexing.

Query and Relevance Definition: For the
MTEB text datasets, we use 10,000 documents
from their respective test sets as queries. These
query documents are distinct from the items in
the 1M-item database. For images, queries are
10,000 held-out LAION images. The ground
truth for retrieval (used to calculate Recall @k and
MRR) is established by performing an exhaustive
k-nearest neighbor search for each query within
the 1M item database using embeddings gener-
ated by the new model (fpey) for both queries and
database items. Adaptation Recall Ratio (ARR)
is defined as the ratio of recall achieved by an
adapter configuration to this ground truth recall:
ARR = RecaHAdapter/ RecallnewModelDirect-

Training Pairs and Split: To train the adapters,
we randomly sample N, items from the 1M-item
database corpus (these items are distinct from the
query set). For each sampled item d;, we gener-
ate its paired embeddings (b; = frew(d;),a; =
fola(dj)). Unless specified otherwise, N, =
20, 000 (which is 2% of the 1M item corpus). We
use an 80/20 split of these IV, pairs for training
and validation of the LA and MLP adapters. The
OP adapter is solved in closed-form using all N,
training pairs (no validation set needed). Ceriti-
cally, query embeddings are strictly held out and
are never seen during any phase of adapter training.

ANN Back-end: A single-shard FAISS HNSW
index (parameters: M=32, ef_construction=200,
ef_search=50) stores the fo,q embeddings of the
1M corpus items. Retrieval performance is reported
for Recall@10 and Mean Reciprocal Rank (MRR).

Baselines for Comparison:

* Oracle New Model (Target): Queries and
database items are all fnew embeddings. This
represents the ideal performance (ARR=1.0)
that a full re-embedding strategy aims for.

* Misaligned (No Adaptation): New queries
Jnew(q) search the old foq database directly,
without any adaptation. This quantifies the
performance degradation due to model drift.

* Full Re-index & Rebuild: The conventional
operational approach. We estimate its down-
time and recompute cost for comparison.

¢ Dual Index Strategy: Assumes a new index
is built in parallel with f,.,, embeddings, and
during transition, queries might hit both old
and new indices, with results merged. We es-
timate its resource costs and potential latency
impact.

Training Details for LA/MLP: LA and MLP
adapters are trained using the AdamW optimizer
with an initial learning rate of 3e-4 and weight de-
cay of 0.01. Training runs for up to 50 epochs with
early stopping based on validation loss (patience of
5 epochs). A batch size of 256 is used. The MLP
adapter uses a dropout rate of 0.1 between its lay-
ers. Further details on hyperparameter sensitivity
are in Appendix A.2.

Efficiency Metrics: (i) Adapter fitting wall-
clock time; (ii) Added query latency (measured
via micro-benchmarks); (iii) Estimated operational
downtime/interruption; (iv) Recompute cost (GPU

Dataset / Adapter R@10 ARR (+std) MRR ARR (=std)
AG-News (MiniLM — MPNet, with DSM for LA/MLP)

Latency (us)

Misaligned (No Adapt) 0.652 40.00 0.630 £0.00 ~0

opP 0.974 +0.002 0.965 +0.003 3.1+0.1
LA (r =64) 0.983 £0.002 0.975 £0.002 4.7+02
MLP (256 hid) 0.992 +0.001 0.988 +0.001 8.0 £0.3

DBpedia-14 (MiniLM — MPNet, with DSM for LA/MLP)
Misaligned (No Adapt) 0.589 4:0.00 0.571 £0.00 ~0

()3 0.968 +0.003 0.959 £+0.003 3.0 £0.1
LA (r = 64) 0.979 +0.002 0.970 40.002 4.8 £0.2
MLP (256 hid) 0.990 1-0.001 0.983 +0.001 8.1+0.3
Emotion (MiniLM — MPNet, with DSM for LA/MLP)

Misaligned (No Adapt) 0.723 +0.00 0.705 £0.00 ~0

oP 0.953 +0.004 0.941 +0.005 3.1 +0.1
LA (r = 64) 0.967 +0.003 0.955 +0.003 4.7 +0.2
MLP (256 hid) 0.984 +0.002 0.976 +0.002 8.0 +£0.3

Table 1: Performance on MTEB text datasets (1M
items). R@10 ARR is Recall@10 Adaptation Recall
Ratio. Latency is added per query. Results are mean +
std. dev. over 5 runs. LA and MLP include Diagonal
Scaling Matrix (DSM).

Adapter (CLIP ViT-B — L, with DSM for LA/MLP) R@10 ARR MRR ARR Latency (us)

Misaligned (No Adapt) 0.635 0.610 ~0
opP 0.942 0.928 42
LA (r = 64) 0.961 0.949 6.3
MLP (256 hid) 0.978 0.972 9.8

Table 2: Performance on a 1M-item subset of LAION
(CLIP ViT-B/32 — ViT-L/14). LA and MLP include
DSM; ARR std. dev. within +0.003 (omitted).

hours for embedding/training, CPU hours for index
build). Measurements were performed on systems
equipped with NVIDIA A100 GPUs and multi-core
Intel Xeon CPUs.

5 Results and Analysis

5.1 Main Performance and Variance

Tables 1 and 2 detail the core retrieval perfor-
mance of Drift-Adapter variants on text and im-
age datasets, respectively. The results are averaged
over 5 independent runs, each using a different ran-
dom sample of 20,000 training pairs, with standard
deviations reported to show robustness. The MLP
adapter, incorporating the Diagonal Scaling Matrix
(DSM), consistently achieves the highest recall re-
covery, typically yielding 98-99% R@10 ARR on
text datasets and approximately 97.8% on the CLIP
ViT-B — ViT-L upgrade. The simpler Orthogonal
Procrustes (OP) adapter is remarkably effective, re-
covering 95-97% R@10 ARR without DSM. The
Low-Rank Affine (LA, » = 64) adapter with DSM
performs between OP and MLP. All adapter vari-
ants add minimal (<10us) latency per query. The
low standard deviations across runs for all methods
indicate that the adapter training is stable and not
overly sensitive to the specific random sample of
20k items used for training.

The observed trends are visually supported by

figures in Appendix A.3 (Figures 2, 3, 4), retained
from our initial explorations, which show similar
convergence patterns and relative performance of
adapter types.

5.2 Comparison with Alternative Upgrade
Strategies

Table 3 compares the Drift-Adapter (MLP vari-
ant with DSM) approach against common oper-
ational strategies for upgrading a 1M item text
database (AG-News example). Drift-Adapter of-
fers a compelling trade-off by achieving near-zero
operational interruption and minimal recompute ef-
fort, while maintaining high retrieval recall. "Full
Re-index" achieves perfect ARR post-upgrade but
entails significant downtime for re-embedding and
index building. "Dual Index" serving avoids di-
rect downtime but doubles serving resource con-
sumption and recompute costs during the transi-
tion, along with potential query latency increases.
In contrast, Drift-Adapter’s deployment primarily
involves training the small adapter (minutes) and
rolling it out to query processing paths, leading to
minimal interruption.

5.3 Robustness to Increased Model Drift

To assess Drift-Adapter’s behavior under more
significant distributional shifts between f,q and
faew, we conducted an experiment on AG-News.
We simulated an upgrade from a much simpler,
non-transformer based embedding model (average
GloVe 300d vectors, serving as fo1q) to our stan-
dard ‘all-mpnet-base-v2‘ (fpew). Paired embed-
dings were generated, and the GloVe vectors were
padded with zeros or projected via a random linear
layer to match MPNet’s 768 dimension for adapter
input (the latter showed slightly better results and is
reported). This represents a more substantial archi-
tectural and representational drift. Table 4 shows
the R@10 ARR. For this experiment, DSM was
applied to all adapter variants to maximize their
potential to capture variance shifts, which can be
more pronounced with disparate models.

As anticipated, the absolute ARR values are
lower compared to the transformer-to-transformer
upgrades (Table 1). The misaligned performance
is very poor (0.213 ARR), highlighting the large
gap between these embedding spaces. However,
the MLP adapter still achieves an R@10 ARR of
0.715, significantly outperforming both the direct
misaligned search and the simpler linear adapters
(OP, LA). This suggests that while efficacy reduces

Training Size vs R@10 ARR
1.00¢

R@10 ARR

0.90f

12 5 10 16 20
Training Pairs (Np)

Figure 1: R@10 ARR on AG-News as a function of
training pairs (N,) for the MLP adapter with DSM.
Performance rises steeply from 1 k to 5 k samples and
plateaus by 16 k (= 0.991). Shaded bands show +0.005
standard deviation over multiple runs.

with substantial model drift, Drift-Adapter, particu-
larly the MLP variant, can still provide a consider-
able improvement over no adaptation. It can serve
as a temporary bridge or signal that a full re-index
is more critical in such cases. The increased com-
plexity and non-linearity of the mapping between
these disparate models are better handled by the
non-linear MLP.

5.4 Impact of Training Data Size

A key aspect of Drift-Adapter’s practicality is its
ability to function effectively with a small num-
ber of paired training embeddings. Figure 1 illus-
trates the R@10 ARR for the MLP adapter (with
DSM) on the AG-News dataset as a function of the
number of training pairs (N,) used. Performance
rapidly improves with initial increases in N, and
then begins to saturate. Using 16,000 pairs (1.6%
of the 1M item corpus, with 80

5.5 Scalability and Real-World
Considerations

While our direct experiments utilize 1M item
databases, Drift-Adapter is designed with scala-
bility to much larger systems in mind.

* Adapter Training Cost: The cost of training
an adapter depends primarily on N, (the num-
ber of training pairs, e.g., 20k-50k) and the
embedding dimension d, not the total corpus
size N. Thus, training time remains relatively
constant (seconds to minutes) even when the
underlying database contains billions of items.

Est. Downtime/ Recompute Peak Temp.
Strategy R@10 ARR Added Query Latency Interrupt. Pds. (Emb. + Idx.) Resources
Full Re-index 1.0 (post) Ous (post) ~4-8hrs ~100GPU-hrs + CPU 1x Index Build Cap.
Dual Index ~0.995 +50-100ps (trans.) ~0 (gradual shift) ~100GPU-hrs + CPU 2% Serve + Build Cap.
Drift-Adapter (MLP) 0.992 +8.0pus ~mins (adapt deploy) ~0.5GPU-hrs (adapt train) Negligible

Table 3: Comparison of upgrade strategies for a 1 M-item text database (AG-News). Downtime and recompute are
estimates; “Peak Temp. Resources” refers to additional serving/compute capacity during the upgrade.

Adapter (AG-News: GloVe 300d — MPNet768d) R@10 ARR
Misaligned (No Adapt) 0.213
OP (with DSM) 0.587
LA (r = 64, with DSM) 0.632
MLP (256 hid, with DSM) 0.715

Table 4: Performance under simulated drastic model
drift (GloVe—MPNet) on AG-News (1 M items). All
adapters include DSM to account for variance differ-
ences.

* Query Latency: The added query latency of
< 10us (for MLP with DSM, d = 768) is
constant and independent of the total corpus
size N. This overhead is typically a small
fraction of the overall ANN search latency,
especially in distributed systems where net-
work hops and more complex ANN structures
contribute significantly more.

e Memory Overhead: As detailed in Appendix
A.1, the memory footprint of adapter param-
eters is minimal (e.g., <3MB for an MLP
adapter with d = 768). This allows adapters
to be easily stored, distributed, and loaded, for
instance, per query router instance or even per
individual index shard in a large distributed
deployment, without significant memory pres-
sure.

* Impact on Multi-Shard Systems: The
adapter is applied to the query embedding
centrally before it is dispatched to multiple
shards, or potentially at each shard before the
local ANN search. Its low latency and mem-
ory footprint make it minimally invasive to
existing distributed serving architectures.

Table 5 provides a conceptual projection of costs
and typical latencies for larger-scale deployments,
illustrating how Drift-Adapter’s overhead remains
manageable. The key benefit is deferring the mas-
sive re-computation effort associated with full cor-
pus re-embedding and re-indexing.

5.6 Continuous Online Adaptation

To simulate a scenario where the corpus is gradu-
ally updated with new embeddings (fne) in the
background (e.g., lazy re-embedding), we con-
ducted an experiment. Assuming 5% of the 1M
items are refreshed with f,.,, embeddings hourly
and added to a (notionally separate) new index seg-
ment. If we want to query against both old and
new segments seamlessly, an adapter is useful. We
found that by retraining the Drift-Adapter (MLP
variant) online (e.g., hourly, using newly avail-
able f,c, embeddings and their corresponding f,14
counterparts), the ARR (against a ground truth that
considers the evolving mix) can be kept above 0.95
for a 24-hour period. In contrast, a fixed adapter
trained only at T=0 on the initial fy;q/ frew pairs
would see its effective ARR degrade, for example,
to around 0.83 if its output is compared against
items now purely in the f,.,, space from the latest
model version. This preliminary result suggests
Drift-Adapter’s potential in supporting continuous
improvement cycles and managing evolving mixed-
embedding environments.

6 Discussion

Practicality and Trade-offs: The primary strength
of Drift-Adapter lies in its practicality for engineer-
ing teams managing live vector databases. It offers
a significant reduction in the operational pain asso-
ciated with embedding model upgrades by largely
decoupling model deployment from massive data
re-processing. The main trade-off is a marginal
loss in retrieval quality (typically 1-5% in our ex-
periments for similar model families) compared to
an immediate full re-index using the new model.
For many applications, this small, temporary dip in
performance is an acceptable price for the immense
savings in upgrade cost, time, and the avoidance of
service interruptions.

Paired Data Availability and Privacy: A key
practical consideration is obtaining the needed
paired (frnew(d;), fora(d;)) embeddings for train-
ing. If the f,;; model is completely unavailable or

Corpus Size Re-Embed Time (A100) Index Build Time (CPU) Drift-Adapter Train Time (A100) Drift-Adapter Latency Add

Total Query
Latency (ms)

1M items ~0.5-1 GPU-hr ~0.2-0.5 CPU-hr ~1-2 min +8 s HNSW:~0.5 ms — ~ 0.508 ms
100 M items ~2-4 GPU-days ~1-2 CPU-days ~1-2 min +8 s HNSW:~5 ms — ~ 5.008 ms
1B items ~3-6 GPU-weeks ~2-3 CPU-weeks ~1-2 min +8 pus HNSW:~15ms — ~ 15.008 ms

Table 5: Projected computation times and query latencies for large-scale retrieval (d = 768). Full re-embedding and
index-build times are rough estimates; Drift-Adapter’s additive latency remains negligible.

cannot be run (e.g., due to deprecated infrastruc-
ture or licensing), Drift-Adapter cannot be trained
directly as described. For privacy-sensitive data,
generating these paired embeddings, even for a
small sample, and potentially transmitting them to
a central training environment, can raise concerns.
Potential (future work) mitigations for such scenar-
ios include: (i) training adapters on publicly avail-
able datasets that exhibit similar model-to-model
drift characteristics, hoping for transferability; (ii)
using a small, non-sensitive proxy dataset for gen-
erating paired samples; (iii) exploring few-shot or
unsupervised alignment methods, though these of-
ten come with performance trade-offs compared to
supervised alignment; or (iv) investigating privacy-
preserving machine learning techniques like feder-
ated learning for adapter training, if multiple parties
hold parts of the data.

Heterogeneous Drift and Multi-Adapter Sys-
tems: Our current Drift-Adapter implementation
trains a single global transformation. If the drift be-
tween [, and fpey is significantly different across
distinct subsets of the data (e.g., different product
categories, document types, or user segments), a
single global adapter might be suboptimal, aver-
aging out these differences. Future work could
explore training multiple specialized adapters, for
example, one per data partition if such partitions
exist and exhibit different drift patterns. Alter-
natively, mixture-of-experts models could be em-
ployed, where different adapters are chosen or their
outputs combined based on item metadata or a
learned gating mechanism.

Downstream Task Impact: Our evaluation in
this paper focuses on intrinsic retrieval metrics like
Recall@10 and MRR. These metrics are strong
indicators of the quality of the nearest neighbor
search, which is the core function of the vector
database. However, the ultimate impact of using
Drift-Adapter on downstream user-facing metrics
(e.g., click-through-rates in recommendation sys-
tems, task success rates in semantic search appli-
cations, or accuracy in classification tasks that use
retrieved items) is an important area for future vali-

dation in specific application contexts.

7 Acknowledgements

We acknowledge the use of generative Al to re-
word certain aspects of the paper and generate text
regarding pre-existing text.

8 Conclusion

Drift-Adapter offers a highly practical and
lightweight solution for managing the operational
complexities of embedding model upgrades in pro-
duction vector databases. By learning a simple
transformation from the new query embedding
space to the old database embedding space, using
only a small sample of paired data, it enables the
instant deployment of improved embedding models
with near-zero operational interruption. Our sys-
tematic evaluation of Orthogonal Procrustes, Low-
Rank Affine, and Residual MLP adapters demon-
strates that Drift-Adapter can recover 95-99% of
the retrieval performance of a full re-embedding
across diverse text and image datasets. This is
achieved with a minimal addition to query latency
(< 10us) and at a fraction (often > 100x less)
of the computational cost compared to full re-
indexing. Direct comparisons against common op-
erational upgrade strategies further highlight Drift-
Adapter’s advantages in terms of agility and re-
source efficiency. This work shows that established
alignment techniques, when tailored to specific
operational constraints, can provide powerful and
pragmatic solutions to pressing challenges in the
deployment and maintenance of large-scale Al sys-
tems. Future work will focus on extending these
methods to scenarios with limited paired data and
exploring adaptive strategies for highly heteroge-
neous drift.

Limitations

The Drift-Adapter approach, while offering signifi-
cant practical benefits, has several limitations that
users should consider:

* Drift Magnitude and Type: The effective-
ness of Drift-Adapter is contingent on the
"smoothness" and nature of the drift between
foia and frew. Performance degrades with
more drastic model changes, such as moving
between entirely different model architectures
or significant shifts in training data domains
that lead to highly non-linear or very disparate
representational spaces (as shown in Section
5.3). Drift-Adapter is best suited for iterative
upgrades between model versions of similar
architectural families or those with reasonably
correlated embedding spaces.

Paired Data Dependency: The supervised
training of Drift-Adapter relies on the avail-
ability of a sample of items embedded by
both f,;q and f,c. Scenarios where the fog
model is irretrievable (e.g., lost, proprietary
and inaccessible) or where privacy constraints
strictly prohibit generating paired data even
for a small sample, pose significant challenges
for the current approach. Section 6 outlines
potential research directions for mitigation.

Global vs. Local Drift: Drift-Adapter, as pre-
sented, learns a single global transformation.
This may not be optimal for datasets where
the drift characteristics are highly heteroge-
neous across distinct subsets of the data. In
such cases, a global adapter might average
out performance, underperforming in some
segments.

* Deferred, Not Eliminated Re-computation:
Drift-Adapter is primarily a strategy to defer
the significant cost and operational disruption
of full corpus re-embedding. For long-term
optimal performance using the native fjcq
embeddings or for complete deprecation of
the f,q model and its associated infrastruc-
ture, a full corpus re-encoding will eventually
be necessary. Drift-Adapter provides a valu-
able bridge during this transition.

* Scalability Validation for Extreme Scales:
While we project scalability to billion-item
systems and argue for its feasibility based
on constant factors, extensive real-world val-
idation on highly distributed, billion-item
databases under full production load, includ-
ing interactions with complex sharding and

replication strategies, is beyond the scope of
this academic study.

* Cumulative Error in Sequential Adapta-
tions: The impact of chained or cascaded
adaptations (e.g., model A—B via adapterl,
then B—C via adapter2 applied to output of
adapterl) on error accumulation and potential
numerical stability over many generations of
models was not studied.

* Downstream Task Evaluation Focus: The
current evaluation concentrates on intrinsic
retrieval metrics (Recall, MRR). The precise
impact on final application performance (e.g.,
user engagement, conversion rates) down-
stream of the retrieval step provided by the
vector database is not directly measured and
would depend on the specific application.

References

Andrew Gao. 2023. Vec2Vec: A compact neural net-
work approach for transforming text embeddings
with high fidelity.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Ahmet Iscen, Jeffrey O. Zhang, Svetlana Lazebnik, and
Cordelia Schmid. 2020. Memory-Efficient Incremen-
tal Learning Trough Feature Adaptation. In Proceed-
ings of the European Conference on Computer Vision
(ECCV).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547.

Conglong Li, Minjia Zhang, David Andersen, and Yux-
iong He. 2020. Improving Approximate Nearest
Neighbor Search through Learned Adaptive Early
Termination. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of
Data (SIGMOD).

Jiawen Liu, Zhen Xie, Dimitrios S. Nikolopoulos, and
Dong Li. RIANN: Real-time incremental learning
with approximate nearest neighbor on mobile devices.
In Proceedings of the USENIX Conference on Opera-
tional Machine Learning (OpML).

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers.

Peter H. Schonemann.

Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, and et al. 2021. LAION-400M: Open dataset
of CLIP-filtered 400 million image-text pairs.

https://arxiv.org/abs/2306.12689
https://arxiv.org/abs/2306.12689
https://arxiv.org/abs/2306.12689
https://arxiv.org/abs/2306.12689
https://arxiv.org/abs/2306.12689
https://doi.org/10.1109/TBDATA.2019.2921175
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2111.02114

Hao Xing, Nier Wu, Yatu Ji, Yang Liu, Na Liu, and Min
Lu. Cross-Lingual Word Embedding Generation
Based on Procrustes-Hungarian Linear Projection.
In Proceedings of the International Conference on
Asian Language Processing (IALP).

Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu,
Qi Chen, Qianxi Zhang, Cheng Li, Ziyue Yang, Fan
Yang, Yuqing Yang, Peng Cheng, and Mao Yang.
2023. SPFresh: Incremental in-place update for
billion-scale vector search. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Sys-
tems Principles (SOSP).

A Appendix

A.1 Memory Overhead and Latency Details

The memory footprint of the Drift-Adapter adapters
is minimal, facilitating easy deployment. For an
embedding dimension d = 768 and parameters
stored as 32-bit floats (4 bytes):

¢ Orthogonal Procrustes (OP): Stores a d x d
matrix. Memory: d? x 4 bytes = 768% x
4B =~ 2.36 MB.

¢ Low-rank Affine (LA, r = 64): Stores U €
RV € R*" t € R Memory: (2dr +
d) x 4 bytes = (2- 768 - 64 + 768) x 4 B ~
0.39 MB. If DSM is included, add d x 4 B =
3KB.

¢ Residual MLP (256 hidden units): Stores
Wl c R256Xd, bi351 c R256, W2 c RdXQSG’
biasy € RY. Memory: (256d + 256 + d -
256 + d) x 4 bytes ~ (2 - 768 - 256 + 768 +
256) x 4 B ~ 1.57 MB. If DSM is included,
addd x 4B ~ 3K B.

The computational cost for applying the adapter
to a single query vector is dominated by matrix-
vector multiplications. On a modern CPU (e.g.,
Intel Xeon Gold), for d = 768:

e OP: ~ 3pus

* LA (r = 64): ~ 4 — 5us (two rank-64 Ops +
additions)

e MLP (256 hidden): ~ 7 — 9us (two dense
layers + activation + residual)

Including DSM adds one element-wise vector mul-
tiplication, contributing negligibly (<1us) to la-
tency.

A.2 Training Details and Hyperparameter
Sensitivity

As mentioned in Section 4, LA and MLP adapters
were trained using the AdamW optimizer (initial
learning rate 3e-4, default PyTorch betas, weight
decay 0.01). Training used a batch size of 256
and ran for up to 50 epochs, with early stopping
triggered if the validation MSE did not improve
for 5 consecutive epochs. The MLP adapter used
GELU activation functions and a dropout rate of
0.1 between its hidden layer and the output layer.
We found these hyperparameter settings to be
relatively robust across the datasets and model pairs
tested for transformer-to-transformer upgrades.

* Learning Rate (MLP/LA): We tested learn-
ing rates in {le-4, 3e-4, le-3}. While 1le-3
sometimes led to slightly faster initial con-
vergence, 3e-4 generally provided more sta-
ble training and slightly better final validation
MSE. Performance (ARR) varied by <0.005
for learning rates between le-4 and 3e-4.

* Hidden Layer Size (MLP): For the single
hidden layer MLP, we experimented with
sizes from 128 to 512 units. Sizes in the range
of 256 to 512 units yielded ARR results within
0.01 of each other on the AG-News dataset;
256 was chosen as a good balance of model
capacity and parameter efficiency. 128 units
was sometimes slightly worse.

* Number of Layers (MLP): A single hidden
layer MLP generally performed as well as or
better than a 2-hidden layer MLP of similar
total parameter count for this specific adap-
tation task, suggesting that the drift between
similar transformer models is not extremely
non-linear to require very deep adapters.

e Rank r (LA): For the Low-Rank Affine
adapter, we tested r € {16, 32,64, 128}. r =
32 gave slightly worse results than r = 64
(e.g., ~0.005-0.01 lower ARR). r = 128 of-
fered only marginal gains over r = 64 (typ-
ically < 0.003 ARR) at a higher parameter
cost. Thus, » = 64 was chosen as a good
trade-off.

The Orthogonal Procrustes (OP) adapter training is
deterministic, involving an SVD computation, and
thus has no hyperparameters beyond the choice
of training data. The Diagonal Scaling Matrix

(DSM), when learned post-hoc for OP or jointly
for LA/MLP, was optimized using AdamW with
similar parameters for a small number of epochs
(e.g., 10-20) directly on the MSE loss of scaled
predictions.

Training an OP adapter (for d = 768, N, =
20, 000) takes approximately 10-15 seconds on a
CPU, dominated by the SVD on a d x d matrix
(from ABT). Training the MLP adapter (768-dim,
256 hidden units) for up to 50 epochs on 16,000
training pairs (80

A.3 Additional Figures from Initial
Exploration

The following figures are from our initial explo-
rations and provide visual support for some of the
trends discussed.

Baseline Hyper-parameter Study

Synthetic: Loss

Synthetic: ARR
1.0

0.015

0.8

0.010

MSE Loss

0.005

0.000

25 50 75 100 125
Batch Size

0 50 100
Epoch

Figure 2: Synthetic sanity check (from initial explo-
rations). (Left) Training loss for a simple synthetic task
(e.g., learning an identity map or a known rotation).
(Right) Adaptation Recall Ratio (ARR) remains perfect
(1.0), validating the regression objective and implemen-
tation for trivial cases.

10

Training Loss Final R@10 ARR

1.0
o.10}
0.8}
0.08}
I
= Z 0.6
g <
k=] S
©
S 0.06f 5
i 0.4}
0.04}
0.2}
0.02
10 20 %033 R e
X
Epoch . N SR NS
p ’&\q o)
{\{9

Figure 3: Text benchmarks example (AG-News, MLP
adapter, from initial explorations). (Left) Typical train-
ing MSE loss curve on the validation set over epochs,
showing quick convergence. (Right) Final R@10 ARR
achieved by different adapter types (e.g., Misaligned,
OP, LA, MLP) compared to the Oracle New Model per-
formance for this dataset.

Linear Adapter Variants

Recall @ 10
o o -
o © o

<
S

o
[N}

0.0 -
Ag News

Dbpedia 14

Emotion

Figure 4: Comparison of adapter types on AG-News
(R@10 ARR, from initial explorations). The rigid Or-
thogonal Procrustes (OP) adapter already recovers a sig-
nificant portion of the performance. Low-Rank Affine
(LA) and the non-linear Residual MLP incrementally
improve upon this, with the MLP closing most of the
remaining gap to full re-embedding performance.

Pre-Adaptation L2 Normalisation
1.04

0.8 1

Recall @ 10
o
o

o
IS

0.2

0.0-
Ag News Dbpedia 14 Emotion

Figure 5: Effect of ¢ normalising vector embeddings
before fitting the adapter (MLP, AG-News, results
from 5 runs shown, from initial explorations). Pre-
normalisation (right bars in each comparative group)
generally yields slightly higher and more stable (smaller
variance) R@10 ARR compared to not pre-normalizing
the input vectors to the adapter training.

One-Shot Adapter: Recall over Epochs

1.00] ==mmmmm e === -Ag News ~
—— Dbpedia 14
—— Emotion

Recall @ 10
o
©o
o

e
©
=

0.92 4

2 4 6 8 10
Epoch

Figure 6: One-shot (closed-form SVD solution) OP fit-
ting vs. multi-epoch SGD optimisation for the Orthog-
onal Procrustes loss on AG-News R@10 ARR (from
initial explorations). Iterative optimization (e.g., 2-5
epochs with SGD) can sometimes yield slightly better
results than the direct one-shot SVD solution, though
the difference is usually small.

11

	Introduction
	Related Work
	Embedding Space Alignment
	Adaptive and Incremental ANN Indices
	Operational Strategies for Model Upgrades

	Drift-Adapter: Method
	Experimental Setup
	Results and Analysis
	Main Performance and Variance
	Comparison with Alternative Upgrade Strategies
	Robustness to Increased Model Drift
	Impact of Training Data Size
	Scalability and Real-World Considerations
	Continuous Online Adaptation

	Discussion
	Acknowledgements
	Conclusion
	Appendix
	Memory Overhead and Latency Details
	Training Details and Hyperparameter Sensitivity
	Additional Figures from Initial Exploration

