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Abstract001

Upgrading embedding models in production002
vector databases typically necessitates re-003
encoding the entire corpus and rebuilding the004
Approximate Nearest Neighbor (ANN) index,005
leading to significant operational disruption006
and computational cost. This paper presents007
Drift-Adapter, a lightweight, learnable trans-008
formation layer designed to bridge embedding009
spaces between model versions. By mapping010
new queries into the legacy embedding space,011
Drift-Adapter enables the continued use of the012
existing ANN index, effectively deferring full013
re-computation. We systematically evaluate014
three adapter parameterizations: Orthogonal015
Procrustes, Low-Rank Affine, and a compact016
Residual MLP, trained on a small sample of017
paired old/new embeddings. Experiments on018
MTEB text corpora and a CLIP image model019
upgrade (1M items) show that Drift-Adapter020
recovers 95–99% of the retrieval recall (Re-021
call@10, MRR) of a full re-embedding, adding022
less than 10µs query latency. Compared to023
operational strategies like full re-indexing or024
dual-index serving, Drift-Adapter dramatically025
reduces recompute costs (by over 100×) and026
facilitates upgrades with near-zero operational027
interruption. We analyze robustness to varied028
model drift, training data size, scalability to029
billion-item systems, and the impact of design030
choices like diagonal scaling, demonstrating031
Drift-Adapter’s viability as a pragmatic solu-032
tion for agile model deployment.033

1 Introduction034

Vector databases are foundational to modern re-035

trieval, recommendation, and semantic search sys-036

tems (Goodfellow et al., 2016). These systems rely037

on embeddings generated by deep learning models,038

which are continuously improved. However, de-039

ploying an updated embedding model in a produc-040

tion environment presents a significant operational041

challenge: the entire corpus of stored items, poten- 042

tially billions of vectors, must be re-encoded with 043

the new model, and the corresponding ANN index 044

rebuilt (Xu et al., 2023). This process is computa- 045

tionally intensive, time-consuming, and often leads 046

to service downtime or periods of degraded perfor- 047

mance. While this full re-computation might be 048

desirable in the long term for optimal performance 049

with the new model, the immediate operational bur- 050

den is substantial. 051

This work addresses the practical challenge of 052

minimizing this disruption. We investigate if a 053

compact, efficient mapping can bridge successive 054

embedding spaces, allowing services to leverage 055

new models quickly while deferring the cost of 056

a full corpus overhaul. Building on embedding 057

space alignment principles from cross-lingual and 058

cross-domain research (Schönemann; Xing et al.; 059

Gao, 2023), we introduce and systematically eval- 060

uate Drift-Adapter, a lightweight adaptation layer. 061

Trained on a small set of paired old/new embed- 062

dings, Drift-Adapter transforms queries encoded 063

by the new model into the legacy space of the ex- 064

isting database, enabling direct querying of the 065

unchanged ANN index (e.g., FAISS (Johnson et al., 066

2021)). This facilitates upgrades with near-zero 067

operational interruption. 068

Our contributions are: 069

• We frame drift adaptation for vector database 070

upgrades as learning a regression from the 071

new query embedding space to the old 072

database embedding space, systematically 073

studying simple, effective methods. 074

• We evaluate three lightweight adapter variants 075

(Orthogonal Procrustes, Low-Rank Affine, 076

Residual MLP), detailing their latency, mem- 077

ory, and quality trade-offs. 078
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• We conduct extensive experiments on text079

(MTEB (Muennighoff et al.)) and image080

(LAION (Schuhmann et al., 2021)) corpora,081

demonstrating 95-99% recall recovery with082

minimal overhead.083

• We benchmark Drift-Adapter against common084

operational upgrade strategies (full re-index,085

dual index), quantifying its advantages in086

downtime reduction and resource efficiency.087

• We analyze robustness to varying degrees088

of model drift, the impact of training data089

size, design choices like diagonal scaling, and090

project scalability to billion-scale systems.091

• We discuss practical considerations like paired092

data availability and handling heterogeneous093

drift, positioning Drift-Adapter as a pragmatic094

tool for agile embedding model management.095

2 Related Work096

2.1 Embedding Space Alignment097

The core idea of mapping between embedding098

spaces has a rich history. Orthogonal Procrustes099

analysis (Schönemann) finds the optimal rotation100

to align two sets of points and has been widely101

used in cross-lingual word embedding alignment102

(Xing et al.). More recent work explores affine103

transformations or shallow MLPs for tasks like104

aligning contextual embeddings (Gao, 2023) or105

feature adaptation in incremental learning (Iscen106

et al., 2020). Drift-Adapter adapts these established107

methods to the specific, practical problem of intra-108

model drift within a live vector database, a context109

with unique constraints on latency, training data,110

and operational impact, which has not been as ex-111

tensively studied as inter-language or inter-domain112

alignment.113

2.2 Adaptive and Incremental ANN Indices114

Several works focus on making ANN indices them-115

selves adaptive. Some methods learn to adjust116

search parameters or traversal budgets based on117

query characteristics or data distribution (Li et al.,118

2020). Others focus on efficient incremental up-119

dates to the index structure as new items are added120

or old items are modified/deleted (Xu et al., 2023;121

Liu et al.), allowing for dynamic datasets without122

frequent full rebuilds. While valuable for index123

maintenance, these approaches generally assume124

that the incoming embeddings (for queries or new125

items) are already in the target space of the in- 126

dex. Drift-Adapter is complementary: it adapts 127

the embedding space itself, allowing these adaptive 128

indices to function effectively during model transi- 129

tions without immediate re-encoding of their entire 130

content. 131

2.3 Operational Strategies for Model 132

Upgrades 133

In practice, organizations employ various strategies 134

for model upgrades in vector databases, each with 135

its own trade-offs: 136

• Full Re-index and Swap: The most straight- 137

forward approach involves building an en- 138

tirely new index with re-encoded data in paral- 139

lel. Once the new index is ready and validated, 140

traffic is swapped to it. This strategy ensures 141

optimal performance with the new model post- 142

upgrade but incurs significant recompute cost 143

for the entire corpus and often requires a pe- 144

riod of downtime or careful traffic manage- 145

ment during the swap. 146

• Dual Index Serving: During a transition pe- 147

riod, both the old and new indices are main- 148

tained and served. Queries might be routed 149

to the appropriate index based on some cri- 150

teria, or run against both indices with results 151

merged. This avoids direct downtime but can 152

double serving resource costs and potentially 153

increase query latency due to the need to query 154

and merge from two sources. 155

• Lazy/Background Re-embedding: The cor- 156

pus is gradually re-encoded with the new 157

model in the background, potentially over an 158

extended period. This defers the bulk recom- 159

pute cost but can lead to a mixed-state index 160

(containing both old and new embeddings), 161

complicating querying unless a strategy like 162

Drift-Adapter is used to harmonize query and 163

database embeddings. 164

Drift-Adapter offers an alternative that aims to min- 165

imize both immediate recompute costs and oper- 166

ational disruption, providing a bridge while full 167

re-embedding can occur more leisurely in the back- 168

ground if eventually desired for peak performance 169

with the new model. We provide a direct compari- 170

son to some of these strategies in Section 5.2. 171
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3 Drift-Adapter: Method172

Let fold be the legacy embedding model and173

fnew be the upgraded model. The existing vec-174

tor database contains embeddings x(i)
old = fold(di)175

for a corpus of documents {di}. When a new176

query q arrives, it is encoded using the new model,177

qnew = fnew(q). To search the existing database178

containing fold embeddings, we need to transform179

qnew into the legacy space.180

We learn an adapter gθ : RdN → RdO (where181

dN , dO are dimensions of new and old embed-182

dings, respectively, and often dN = dO = d) such183

that the transformed query embedding gθ(qnew)184

is "close" to what fold(q) would have been, ef-185

fectively gθ(fnew(q)) ≈ fold(q). The adapter186

is trained by minimizing the mean squared er-187

ror on Np paired samples {⟨bj ,aj⟩}
Np

j=1, where188

bj = fnew(dj) and aj = fold(dj) are column vec-189

tors from a sampled subset of the database docu-190

ments: L(θ) = 1
Np

∑Np

j=1 ∥gθ(bj)−aj∥22 At query191

time, an incoming query fnew(q) is transformed to192

q′
old = gθ(fnew(q)), which is then used to search193

the ANN index built on fold embeddings.194

We study three lightweight parameterizations for195

gθ: 1. Orthogonal Procrustes (OP): gθ(x) = Rx,196

where R ∈ Rd×d is an orthogonal matrix (R⊤R =197

I). R is found by solving argminR⊤R=I ∥A −198

RB∥2F (where A = [a1, . . . ,aNp ] and B =199

[b1, . . . ,bNp ] are matrices of paired embeddings).200

The solution is R = UV ⊤, where U and V are201

from the SVD of AB⊤ = UΣV ⊤ (Schönemann).202

2. Low-rank Affine (LA): gθ(x) = UV ⊤x+ t203

with U, V ∈Rd×r (matrices of learnable parame-204

ters) and r≪d (e.g., r = 32, 64). The bias vector205

t ∈ Rd. This reduces parameters to O(2dr + d).206

Trained with SGD.207

3. Residual MLP (MLP): A small feed-forward208

network adds a non-linear correction: gθ(x) =209

x + W2σ(W1x + bias1) + bias2. We use GELU210

activation σ and one hidden layer with 256 units.211

W1 ∈ R256×d, W2 ∈ Rd×256. Trained with SGD.212

Diagonal Scaling Matrix (DSM): An optional213

diagonal scaling matrix S ∈ Rd×d can refine the214

output of any adapter variant: g′θ(x) = S ·gθ(x). S215

contains d learnable scaling factors on its diagonal.216

For LA and MLP, S can be learned jointly as part217

of the SGD optimization by prepending it to the218

loss function. For OP, it can be learned as a post-219

hoc step by minimizing ∥SÂ−A∥2F where Â are220

predictions from RB. The DSM helps match per-221

dimension variances if, for example, embeddings222

are ℓ2 normalized before gθ but the legacy system 223

expected specific variance profiles, or if gθ itself 224

alters variances unevenly. In our experiments (Sec- 225

tion 5.1), including DSM typically adds a small 226

but consistent improvement of +0.005 to +0.015 227

ARR for LA and MLP adapters and is therefore 228

used by default for these. For the OP adapter, the 229

gain from DSM was marginal in our specific setups 230

(< 0.005 ARR) and is thus omitted for OP results 231

unless explicitly stated to keep the OP variant as 232

simple as possible. 233

Memory overhead and latency details are pro- 234

vided in Appendix A.1. Training details includ- 235

ing hyperparameter sensitivity are discussed in Ap- 236

pendix A.2. 237

4 Experimental Setup 238

Datasets and Models: 239

• Text: We use AG-News, DBpedia-14, and 240

Emotion datasets, following standard splits 241

and data from the MTEB benchmark (Muen- 242

nighoff et al.). For each dataset, we construct a 243

database of 1 million items randomly sampled 244

from their respective training sets. Model drift 245

is simulated by upgrading from ‘all-MiniLM- 246

L6-v2‘ (our fold) to ‘all-mpnet-base-v2‘ (our 247

fnew), both popular models from the Sentence- 248

Transformers library. 249

• Image: We use 1 million images randomly 250

sampled from the LAION-400M dataset 251

(Schuhmann et al., 2021). Model drift is simu- 252

lated by upgrading from CLIP ViT-B/32 (fold) 253

to CLIP ViT-L/14 (fnew). 254

All embeddings are ℓ2 normalized prior to any 255

adapter operations or ANN indexing. 256

Query and Relevance Definition: For the 257

MTEB text datasets, we use 10,000 documents 258

from their respective test sets as queries. These 259

query documents are distinct from the items in 260

the 1M-item database. For images, queries are 261

10,000 held-out LAION images. The ground 262

truth for retrieval (used to calculate Recall@k and 263

MRR) is established by performing an exhaustive 264

k-nearest neighbor search for each query within 265

the 1M item database using embeddings gener- 266

ated by the new model (fnew) for both queries and 267

database items. Adaptation Recall Ratio (ARR) 268

is defined as the ratio of recall achieved by an 269

adapter configuration to this ground truth recall: 270

ARR = RecallAdapter/RecallNewModelDirect. 271
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Training Pairs and Split: To train the adapters,272

we randomly sample Np items from the 1M-item273

database corpus (these items are distinct from the274

query set). For each sampled item dj , we gener-275

ate its paired embeddings ⟨bj = fnew(dj),aj =276

fold(dj)⟩. Unless specified otherwise, Np =277

20, 000 (which is 2% of the 1M item corpus). We278

use an 80/20 split of these Np pairs for training279

and validation of the LA and MLP adapters. The280

OP adapter is solved in closed-form using all Np281

training pairs (no validation set needed). Criti-282

cally, query embeddings are strictly held out and283

are never seen during any phase of adapter training.284

ANN Back-end: A single-shard FAISS HNSW285

index (parameters: M=32, ef_construction=200,286

ef_search=50) stores the fold embeddings of the287

1M corpus items. Retrieval performance is reported288

for Recall@10 and Mean Reciprocal Rank (MRR).289

Baselines for Comparison:290

• Oracle New Model (Target): Queries and291

database items are all fnew embeddings. This292

represents the ideal performance (ARR=1.0)293

that a full re-embedding strategy aims for.294

• Misaligned (No Adaptation): New queries295

fnew(q) search the old fold database directly,296

without any adaptation. This quantifies the297

performance degradation due to model drift.298

• Full Re-index & Rebuild: The conventional299

operational approach. We estimate its down-300

time and recompute cost for comparison.301

• Dual Index Strategy: Assumes a new index302

is built in parallel with fnew embeddings, and303

during transition, queries might hit both old304

and new indices, with results merged. We es-305

timate its resource costs and potential latency306

impact.307

Training Details for LA/MLP: LA and MLP308

adapters are trained using the AdamW optimizer309

with an initial learning rate of 3e-4 and weight de-310

cay of 0.01. Training runs for up to 50 epochs with311

early stopping based on validation loss (patience of312

5 epochs). A batch size of 256 is used. The MLP313

adapter uses a dropout rate of 0.1 between its lay-314

ers. Further details on hyperparameter sensitivity315

are in Appendix A.2.316

Efficiency Metrics: (i) Adapter fitting wall-317

clock time; (ii) Added query latency (measured318

via micro-benchmarks); (iii) Estimated operational319

downtime/interruption; (iv) Recompute cost (GPU320

Dataset / Adapter R@10 ARR (±std) MRR ARR (±std) Latency (µs)

AG-News (MiniLM → MPNet, with DSM for LA/MLP)
Misaligned (No Adapt) 0.652 ±0.00 0.630 ±0.00 ∼0
OP 0.974 ±0.002 0.965 ±0.003 3.1 ±0.1
LA (r = 64) 0.983 ±0.002 0.975 ±0.002 4.7 ±0.2
MLP (256 hid) 0.992 ±0.001 0.988 ±0.001 8.0 ±0.3

DBpedia-14 (MiniLM → MPNet, with DSM for LA/MLP)
Misaligned (No Adapt) 0.589 ±0.00 0.571 ±0.00 ∼0
OP 0.968 ±0.003 0.959 ±0.003 3.0 ±0.1
LA (r = 64) 0.979 ±0.002 0.970 ±0.002 4.8 ±0.2
MLP (256 hid) 0.990 ±0.001 0.983 ±0.001 8.1 ±0.3

Emotion (MiniLM → MPNet, with DSM for LA/MLP)
Misaligned (No Adapt) 0.723 ±0.00 0.705 ±0.00 ∼0
OP 0.953 ±0.004 0.941 ±0.005 3.1 ±0.1
LA (r = 64) 0.967 ±0.003 0.955 ±0.003 4.7 ±0.2
MLP (256 hid) 0.984 ±0.002 0.976 ±0.002 8.0 ±0.3

Table 1: Performance on MTEB text datasets (1M
items). R@10 ARR is Recall@10 Adaptation Recall
Ratio. Latency is added per query. Results are mean ±
std. dev. over 5 runs. LA and MLP include Diagonal
Scaling Matrix (DSM).

Adapter (CLIP ViT-B → L, with DSM for LA/MLP) R@10 ARR MRR ARR Latency (µs)

Misaligned (No Adapt) 0.635 0.610 ∼0
OP 0.942 0.928 4.2
LA (r = 64) 0.961 0.949 6.3
MLP (256 hid) 0.978 0.972 9.8

Table 2: Performance on a 1M-item subset of LAION
(CLIP ViT-B/32 → ViT-L/14). LA and MLP include
DSM; ARR std. dev. within ±0.003 (omitted).

hours for embedding/training, CPU hours for index 321

build). Measurements were performed on systems 322

equipped with NVIDIA A100 GPUs and multi-core 323

Intel Xeon CPUs. 324

5 Results and Analysis 325

5.1 Main Performance and Variance 326

Tables 1 and 2 detail the core retrieval perfor- 327

mance of Drift-Adapter variants on text and im- 328

age datasets, respectively. The results are averaged 329

over 5 independent runs, each using a different ran- 330

dom sample of 20,000 training pairs, with standard 331

deviations reported to show robustness. The MLP 332

adapter, incorporating the Diagonal Scaling Matrix 333

(DSM), consistently achieves the highest recall re- 334

covery, typically yielding 98-99% R@10 ARR on 335

text datasets and approximately 97.8% on the CLIP 336

ViT-B → ViT-L upgrade. The simpler Orthogonal 337

Procrustes (OP) adapter is remarkably effective, re- 338

covering 95-97% R@10 ARR without DSM. The 339

Low-Rank Affine (LA, r = 64) adapter with DSM 340

performs between OP and MLP. All adapter vari- 341

ants add minimal (<10µs) latency per query. The 342

low standard deviations across runs for all methods 343

indicate that the adapter training is stable and not 344

overly sensitive to the specific random sample of 345

20k items used for training. 346

The observed trends are visually supported by 347
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figures in Appendix A.3 (Figures 2, 3, 4), retained348

from our initial explorations, which show similar349

convergence patterns and relative performance of350

adapter types.351

5.2 Comparison with Alternative Upgrade352

Strategies353

Table 3 compares the Drift-Adapter (MLP vari-354

ant with DSM) approach against common oper-355

ational strategies for upgrading a 1M item text356

database (AG-News example). Drift-Adapter of-357

fers a compelling trade-off by achieving near-zero358

operational interruption and minimal recompute ef-359

fort, while maintaining high retrieval recall. "Full360

Re-index" achieves perfect ARR post-upgrade but361

entails significant downtime for re-embedding and362

index building. "Dual Index" serving avoids di-363

rect downtime but doubles serving resource con-364

sumption and recompute costs during the transi-365

tion, along with potential query latency increases.366

In contrast, Drift-Adapter’s deployment primarily367

involves training the small adapter (minutes) and368

rolling it out to query processing paths, leading to369

minimal interruption.370

5.3 Robustness to Increased Model Drift371

To assess Drift-Adapter’s behavior under more372

significant distributional shifts between fold and373

fnew, we conducted an experiment on AG-News.374

We simulated an upgrade from a much simpler,375

non-transformer based embedding model (average376

GloVe 300d vectors, serving as fold) to our stan-377

dard ‘all-mpnet-base-v2‘ (fnew). Paired embed-378

dings were generated, and the GloVe vectors were379

padded with zeros or projected via a random linear380

layer to match MPNet’s 768 dimension for adapter381

input (the latter showed slightly better results and is382

reported). This represents a more substantial archi-383

tectural and representational drift. Table 4 shows384

the R@10 ARR. For this experiment, DSM was385

applied to all adapter variants to maximize their386

potential to capture variance shifts, which can be387

more pronounced with disparate models.388

As anticipated, the absolute ARR values are389

lower compared to the transformer-to-transformer390

upgrades (Table 1). The misaligned performance391

is very poor (0.213 ARR), highlighting the large392

gap between these embedding spaces. However,393

the MLP adapter still achieves an R@10 ARR of394

0.715, significantly outperforming both the direct395

misaligned search and the simpler linear adapters396

(OP, LA). This suggests that while efficacy reduces397

Figure 1: R@10 ARR on AG-News as a function of
training pairs (Np) for the MLP adapter with DSM.
Performance rises steeply from 1 k to 5 k samples and
plateaus by 16 k (≈ 0.991). Shaded bands show ±0.005
standard deviation over multiple runs.

with substantial model drift, Drift-Adapter, particu- 398

larly the MLP variant, can still provide a consider- 399

able improvement over no adaptation. It can serve 400

as a temporary bridge or signal that a full re-index 401

is more critical in such cases. The increased com- 402

plexity and non-linearity of the mapping between 403

these disparate models are better handled by the 404

non-linear MLP. 405

5.4 Impact of Training Data Size 406

A key aspect of Drift-Adapter’s practicality is its 407

ability to function effectively with a small num- 408

ber of paired training embeddings. Figure 1 illus- 409

trates the R@10 ARR for the MLP adapter (with 410

DSM) on the AG-News dataset as a function of the 411

number of training pairs (Np) used. Performance 412

rapidly improves with initial increases in Np and 413

then begins to saturate. Using 16,000 pairs (1.6% 414

of the 1M item corpus, with 80 415

5.5 Scalability and Real-World 416

Considerations 417

While our direct experiments utilize 1M item 418

databases, Drift-Adapter is designed with scala- 419

bility to much larger systems in mind. 420

• Adapter Training Cost: The cost of training 421

an adapter depends primarily on Np (the num- 422

ber of training pairs, e.g., 20k-50k) and the 423

embedding dimension d, not the total corpus 424

size N . Thus, training time remains relatively 425

constant (seconds to minutes) even when the 426

underlying database contains billions of items. 427
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Strategy R@10 ARR Added Query Latency
Est. Downtime/
Interrupt. Pds.

Recompute
(Emb. + Idx.)

Peak Temp.
Resources

Full Re-index 1.0 (post) 0µs (post) ∼4–8hrs ∼100GPU-hrs + CPU 1× Index Build Cap.
Dual Index ∼0.995 +50–100µs (trans.) ∼0 (gradual shift) ∼100GPU-hrs + CPU 2× Serve + Build Cap.
Drift-Adapter (MLP) 0.992 +8.0µs ∼mins (adapt deploy) ∼0.5GPU-hrs (adapt train) Negligible

Table 3: Comparison of upgrade strategies for a 1 M-item text database (AG-News). Downtime and recompute are
estimates; “Peak Temp. Resources” refers to additional serving/compute capacity during the upgrade.

Adapter (AG-News: GloVe 300d→MPNet 768d) R@10 ARR

Misaligned (No Adapt) 0.213
OP (with DSM) 0.587
LA (r = 64, with DSM) 0.632
MLP (256 hid, with DSM) 0.715

Table 4: Performance under simulated drastic model
drift (GloVe→MPNet) on AG-News (1 M items). All
adapters include DSM to account for variance differ-
ences.

• Query Latency: The added query latency of428

< 10µs (for MLP with DSM, d = 768) is429

constant and independent of the total corpus430

size N . This overhead is typically a small431

fraction of the overall ANN search latency,432

especially in distributed systems where net-433

work hops and more complex ANN structures434

contribute significantly more.435

• Memory Overhead: As detailed in Appendix436

A.1, the memory footprint of adapter param-437

eters is minimal (e.g., <3MB for an MLP438

adapter with d = 768). This allows adapters439

to be easily stored, distributed, and loaded, for440

instance, per query router instance or even per441

individual index shard in a large distributed442

deployment, without significant memory pres-443

sure.444

• Impact on Multi-Shard Systems: The445

adapter is applied to the query embedding446

centrally before it is dispatched to multiple447

shards, or potentially at each shard before the448

local ANN search. Its low latency and mem-449

ory footprint make it minimally invasive to450

existing distributed serving architectures.451

Table 5 provides a conceptual projection of costs452

and typical latencies for larger-scale deployments,453

illustrating how Drift-Adapter’s overhead remains454

manageable. The key benefit is deferring the mas-455

sive re-computation effort associated with full cor-456

pus re-embedding and re-indexing.457

5.6 Continuous Online Adaptation 458

To simulate a scenario where the corpus is gradu- 459

ally updated with new embeddings (fnew) in the 460

background (e.g., lazy re-embedding), we con- 461

ducted an experiment. Assuming 5% of the 1M 462

items are refreshed with fnew embeddings hourly 463

and added to a (notionally separate) new index seg- 464

ment. If we want to query against both old and 465

new segments seamlessly, an adapter is useful. We 466

found that by retraining the Drift-Adapter (MLP 467

variant) online (e.g., hourly, using newly avail- 468

able fnew embeddings and their corresponding fold 469

counterparts), the ARR (against a ground truth that 470

considers the evolving mix) can be kept above 0.95 471

for a 24-hour period. In contrast, a fixed adapter 472

trained only at T=0 on the initial fold/fnew pairs 473

would see its effective ARR degrade, for example, 474

to around 0.83 if its output is compared against 475

items now purely in the fnew space from the latest 476

model version. This preliminary result suggests 477

Drift-Adapter’s potential in supporting continuous 478

improvement cycles and managing evolving mixed- 479

embedding environments. 480

6 Discussion 481

Practicality and Trade-offs: The primary strength 482

of Drift-Adapter lies in its practicality for engineer- 483

ing teams managing live vector databases. It offers 484

a significant reduction in the operational pain asso- 485

ciated with embedding model upgrades by largely 486

decoupling model deployment from massive data 487

re-processing. The main trade-off is a marginal 488

loss in retrieval quality (typically 1-5% in our ex- 489

periments for similar model families) compared to 490

an immediate full re-index using the new model. 491

For many applications, this small, temporary dip in 492

performance is an acceptable price for the immense 493

savings in upgrade cost, time, and the avoidance of 494

service interruptions. 495

Paired Data Availability and Privacy: A key 496

practical consideration is obtaining the needed 497

paired ⟨fnew(dj), fold(dj)⟩ embeddings for train- 498

ing. If the fold model is completely unavailable or 499
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Corpus Size Re-Embed Time (A100) Index Build Time (CPU) Drift-Adapter Train Time (A100) Drift-Adapter Latency Add
Total Query
Latency (ms)

1 M items ∼0.5–1 GPU-hr ∼0.2–0.5 CPU-hr ∼1–2 min +8µs HNSW:∼0.5 ms → ∼ 0.508 ms
100 M items ∼2–4 GPU-days ∼1–2 CPU-days ∼1–2 min +8µs HNSW:∼5 ms → ∼ 5.008 ms
1 B items ∼3–6 GPU-weeks ∼2–3 CPU-weeks ∼1–2 min +8µs HNSW:∼15 ms → ∼ 15.008 ms

Table 5: Projected computation times and query latencies for large-scale retrieval (d = 768). Full re-embedding and
index-build times are rough estimates; Drift-Adapter’s additive latency remains negligible.

cannot be run (e.g., due to deprecated infrastruc-500

ture or licensing), Drift-Adapter cannot be trained501

directly as described. For privacy-sensitive data,502

generating these paired embeddings, even for a503

small sample, and potentially transmitting them to504

a central training environment, can raise concerns.505

Potential (future work) mitigations for such scenar-506

ios include: (i) training adapters on publicly avail-507

able datasets that exhibit similar model-to-model508

drift characteristics, hoping for transferability; (ii)509

using a small, non-sensitive proxy dataset for gen-510

erating paired samples; (iii) exploring few-shot or511

unsupervised alignment methods, though these of-512

ten come with performance trade-offs compared to513

supervised alignment; or (iv) investigating privacy-514

preserving machine learning techniques like feder-515

ated learning for adapter training, if multiple parties516

hold parts of the data.517

Heterogeneous Drift and Multi-Adapter Sys-518

tems: Our current Drift-Adapter implementation519

trains a single global transformation. If the drift be-520

tween fold and fnew is significantly different across521

distinct subsets of the data (e.g., different product522

categories, document types, or user segments), a523

single global adapter might be suboptimal, aver-524

aging out these differences. Future work could525

explore training multiple specialized adapters, for526

example, one per data partition if such partitions527

exist and exhibit different drift patterns. Alter-528

natively, mixture-of-experts models could be em-529

ployed, where different adapters are chosen or their530

outputs combined based on item metadata or a531

learned gating mechanism.532

Downstream Task Impact: Our evaluation in533

this paper focuses on intrinsic retrieval metrics like534

Recall@10 and MRR. These metrics are strong535

indicators of the quality of the nearest neighbor536

search, which is the core function of the vector537

database. However, the ultimate impact of using538

Drift-Adapter on downstream user-facing metrics539

(e.g., click-through-rates in recommendation sys-540

tems, task success rates in semantic search appli-541

cations, or accuracy in classification tasks that use542

retrieved items) is an important area for future vali-543

dation in specific application contexts. 544
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8 Conclusion 549

Drift-Adapter offers a highly practical and 550

lightweight solution for managing the operational 551

complexities of embedding model upgrades in pro- 552

duction vector databases. By learning a simple 553

transformation from the new query embedding 554

space to the old database embedding space, using 555

only a small sample of paired data, it enables the 556

instant deployment of improved embedding models 557

with near-zero operational interruption. Our sys- 558

tematic evaluation of Orthogonal Procrustes, Low- 559

Rank Affine, and Residual MLP adapters demon- 560

strates that Drift-Adapter can recover 95-99% of 561

the retrieval performance of a full re-embedding 562

across diverse text and image datasets. This is 563

achieved with a minimal addition to query latency 564

(< 10µs) and at a fraction (often > 100× less) 565

of the computational cost compared to full re- 566

indexing. Direct comparisons against common op- 567

erational upgrade strategies further highlight Drift- 568

Adapter’s advantages in terms of agility and re- 569

source efficiency. This work shows that established 570

alignment techniques, when tailored to specific 571

operational constraints, can provide powerful and 572

pragmatic solutions to pressing challenges in the 573

deployment and maintenance of large-scale AI sys- 574

tems. Future work will focus on extending these 575

methods to scenarios with limited paired data and 576

exploring adaptive strategies for highly heteroge- 577

neous drift. 578

Limitations 579

The Drift-Adapter approach, while offering signifi- 580

cant practical benefits, has several limitations that 581

users should consider: 582
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• Drift Magnitude and Type: The effective-583

ness of Drift-Adapter is contingent on the584

"smoothness" and nature of the drift between585

fold and fnew. Performance degrades with586

more drastic model changes, such as moving587

between entirely different model architectures588

or significant shifts in training data domains589

that lead to highly non-linear or very disparate590

representational spaces (as shown in Section591

5.3). Drift-Adapter is best suited for iterative592

upgrades between model versions of similar593

architectural families or those with reasonably594

correlated embedding spaces.595

• Paired Data Dependency: The supervised596

training of Drift-Adapter relies on the avail-597

ability of a sample of items embedded by598

both fold and fnew. Scenarios where the fold599

model is irretrievable (e.g., lost, proprietary600

and inaccessible) or where privacy constraints601

strictly prohibit generating paired data even602

for a small sample, pose significant challenges603

for the current approach. Section 6 outlines604

potential research directions for mitigation.605

• Global vs. Local Drift: Drift-Adapter, as pre-606

sented, learns a single global transformation.607

This may not be optimal for datasets where608

the drift characteristics are highly heteroge-609

neous across distinct subsets of the data. In610

such cases, a global adapter might average611

out performance, underperforming in some612

segments.613

• Deferred, Not Eliminated Re-computation:614

Drift-Adapter is primarily a strategy to defer615

the significant cost and operational disruption616

of full corpus re-embedding. For long-term617

optimal performance using the native fnew618

embeddings or for complete deprecation of619

the fold model and its associated infrastruc-620

ture, a full corpus re-encoding will eventually621

be necessary. Drift-Adapter provides a valu-622

able bridge during this transition.623

• Scalability Validation for Extreme Scales:624

While we project scalability to billion-item625

systems and argue for its feasibility based626

on constant factors, extensive real-world val-627

idation on highly distributed, billion-item628

databases under full production load, includ-629

ing interactions with complex sharding and630

replication strategies, is beyond the scope of 631

this academic study. 632

• Cumulative Error in Sequential Adapta- 633

tions: The impact of chained or cascaded 634

adaptations (e.g., model A→B via adapter1, 635

then B→C via adapter2 applied to output of 636

adapter1) on error accumulation and potential 637

numerical stability over many generations of 638

models was not studied. 639

• Downstream Task Evaluation Focus: The 640

current evaluation concentrates on intrinsic 641

retrieval metrics (Recall, MRR). The precise 642

impact on final application performance (e.g., 643

user engagement, conversion rates) down- 644

stream of the retrieval step provided by the 645

vector database is not directly measured and 646

would depend on the specific application. 647
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A Appendix691

A.1 Memory Overhead and Latency Details692

The memory footprint of the Drift-Adapter adapters693

is minimal, facilitating easy deployment. For an694

embedding dimension d = 768 and parameters695

stored as 32-bit floats (4 bytes):696

• Orthogonal Procrustes (OP): Stores a d× d697

matrix. Memory: d2 × 4 bytes = 7682 ×698

4 B ≈ 2.36 MB.699

• Low-rank Affine (LA, r = 64): Stores U ∈700

Rd×r, V ∈ Rd×r, t ∈ Rd. Memory: (2dr +701

d)× 4 bytes = (2 · 768 · 64 + 768)× 4 B ≈702

0.39 MB. If DSM is included, add d× 4 B ≈703

3KB.704

• Residual MLP (256 hidden units): Stores705

W1 ∈ R256×d, bias1 ∈ R256, W2 ∈ Rd×256,706

bias2 ∈ Rd. Memory: (256d + 256 + d ·707

256 + d)× 4 bytes ≈ (2 · 768 · 256 + 768 +708

256)× 4 B ≈ 1.57 MB. If DSM is included,709

add d× 4 B ≈ 3KB.710

The computational cost for applying the adapter711

to a single query vector is dominated by matrix-712

vector multiplications. On a modern CPU (e.g.,713

Intel Xeon Gold), for d = 768:714

• OP: ∼ 3µs715

• LA (r = 64): ∼ 4− 5µs (two rank-64 Ops +716

additions)717

• MLP (256 hidden): ∼ 7 − 9µs (two dense718

layers + activation + residual)719

Including DSM adds one element-wise vector mul-720

tiplication, contributing negligibly (<1µs) to la-721

tency.722

A.2 Training Details and Hyperparameter 723

Sensitivity 724

As mentioned in Section 4, LA and MLP adapters 725

were trained using the AdamW optimizer (initial 726

learning rate 3e-4, default PyTorch betas, weight 727

decay 0.01). Training used a batch size of 256 728

and ran for up to 50 epochs, with early stopping 729

triggered if the validation MSE did not improve 730

for 5 consecutive epochs. The MLP adapter used 731

GELU activation functions and a dropout rate of 732

0.1 between its hidden layer and the output layer. 733

We found these hyperparameter settings to be 734

relatively robust across the datasets and model pairs 735

tested for transformer-to-transformer upgrades. 736

• Learning Rate (MLP/LA): We tested learn- 737

ing rates in {1e-4, 3e-4, 1e-3}. While 1e-3 738

sometimes led to slightly faster initial con- 739

vergence, 3e-4 generally provided more sta- 740

ble training and slightly better final validation 741

MSE. Performance (ARR) varied by <0.005 742

for learning rates between 1e-4 and 3e-4. 743

• Hidden Layer Size (MLP): For the single 744

hidden layer MLP, we experimented with 745

sizes from 128 to 512 units. Sizes in the range 746

of 256 to 512 units yielded ARR results within 747

0.01 of each other on the AG-News dataset; 748

256 was chosen as a good balance of model 749

capacity and parameter efficiency. 128 units 750

was sometimes slightly worse. 751

• Number of Layers (MLP): A single hidden 752

layer MLP generally performed as well as or 753

better than a 2-hidden layer MLP of similar 754

total parameter count for this specific adap- 755

tation task, suggesting that the drift between 756

similar transformer models is not extremely 757

non-linear to require very deep adapters. 758

• Rank r (LA): For the Low-Rank Affine 759

adapter, we tested r ∈ {16, 32, 64, 128}. r = 760

32 gave slightly worse results than r = 64 761

(e.g., ∼0.005-0.01 lower ARR). r = 128 of- 762

fered only marginal gains over r = 64 (typ- 763

ically < 0.003 ARR) at a higher parameter 764

cost. Thus, r = 64 was chosen as a good 765

trade-off. 766

The Orthogonal Procrustes (OP) adapter training is 767

deterministic, involving an SVD computation, and 768

thus has no hyperparameters beyond the choice 769

of training data. The Diagonal Scaling Matrix 770
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(DSM), when learned post-hoc for OP or jointly771

for LA/MLP, was optimized using AdamW with772

similar parameters for a small number of epochs773

(e.g., 10-20) directly on the MSE loss of scaled774

predictions.775

Training an OP adapter (for d = 768, Np =776

20, 000) takes approximately 10-15 seconds on a777

CPU, dominated by the SVD on a d × d matrix778

(from AB⊤). Training the MLP adapter (768-dim,779

256 hidden units) for up to 50 epochs on 16,000780

training pairs (80781

A.3 Additional Figures from Initial782

Exploration783

The following figures are from our initial explo-784

rations and provide visual support for some of the785

trends discussed.786

Figure 2: Synthetic sanity check (from initial explo-
rations). (Left) Training loss for a simple synthetic task
(e.g., learning an identity map or a known rotation).
(Right) Adaptation Recall Ratio (ARR) remains perfect
(1.0), validating the regression objective and implemen-
tation for trivial cases.

Figure 3: Text benchmarks example (AG-News, MLP
adapter, from initial explorations). (Left) Typical train-
ing MSE loss curve on the validation set over epochs,
showing quick convergence. (Right) Final R@10 ARR
achieved by different adapter types (e.g., Misaligned,
OP, LA, MLP) compared to the Oracle New Model per-
formance for this dataset.

Figure 4: Comparison of adapter types on AG-News
(R@10 ARR, from initial explorations). The rigid Or-
thogonal Procrustes (OP) adapter already recovers a sig-
nificant portion of the performance. Low-Rank Affine
(LA) and the non-linear Residual MLP incrementally
improve upon this, with the MLP closing most of the
remaining gap to full re-embedding performance.
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Figure 5: Effect of ℓ2 normalising vector embeddings
*before* fitting the adapter (MLP, AG-News, results
from 5 runs shown, from initial explorations). Pre-
normalisation (right bars in each comparative group)
generally yields slightly higher and more stable (smaller
variance) R@10 ARR compared to not pre-normalizing
the input vectors to the adapter training.

Figure 6: One-shot (closed-form SVD solution) OP fit-
ting vs. multi-epoch SGD optimisation for the Orthog-
onal Procrustes loss on AG-News R@10 ARR (from
initial explorations). Iterative optimization (e.g., 2-5
epochs with SGD) can sometimes yield slightly better
results than the direct one-shot SVD solution, though
the difference is usually small.
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