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Abstract
Trajectory data is crucial for various applications
but often suffers from incompleteness due to de-
vice limitations and diverse collection scenarios.
Existing imputation methods rely on sparse tra-
jectory or travel information, such as velocity, to
infer missing points. However, these approaches
assume that sparse trajectories retain essential
behavioral patterns, which place significant de-
mands on data acquisition and overlook the poten-
tial of large-scale human trajectory embeddings.
To address this, we propose ProDiff, a trajec-
tory imputation framework that uses only two
endpoints as minimal information. It integrates
prototype learning to embed human movement
patterns and a denoising diffusion probabilistic
model for robust spatiotemporal reconstruction.
Joint training with a tailored loss function ensures
effective imputation. ProDiff outperforms state-
of-the-art methods, improving accuracy by 6.28%
on FourSquare and 2.52% on WuXi. Further anal-
ysis shows a 0.927 correlation between generated
and real trajectories, demonstrating the effective-
ness of our approach.

1. Introduction
Mining spatio-temporal patterns from trajectory data has
broad applications, such as infectious diseases control, hu-
man behavioral analysis, and urban planning (Jia et al., 2020;
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Figure 1. Comparison of traditional and proposed trajectory im-
putation. Traditional methods preserve movement patterns but
impose device constraints and rely on predefined graphs. Our ap-
proach directly embeds trajectories into vector space for minimal
information imputation.

Zhang et al., 2023; Zheng et al., 2014; Hettige et al., 2024; Ji
et al., 2022b). Such data primarily originates from Location-
Based Services (LBS) using cell tower signals (Lu et al.,
2012), satellite-based systems such as GPS, GLONASS,
BeiDou, QZSS, and Galileo, as well as IP-based location
methods utilized by online platforms.

Most of the trajectory mining tasks (Bao et al., 2021; Yao
et al., 2017; Wang et al., 2018) and methods(Li et al., 2018;
Huang et al., 2022; Shen et al., 2020) are based on the as-
sumption of complete and accurate trajectory data (Chen
et al., 2024), making them sensitive to the granularity and
accuracy of sampled data. However, contemporary loca-
tion data collection, reliant on mobile networks or satellite
communications, is often hindered by base station cover-
age gaps, signal instability, and environmental interference,
leading to frequent missing data. Traditional methods like
linear interpolation (Blu et al., 2004) and vector autoregres-
sive models (Lütkepohl, 2013) provide efficient solutions
but often fail to capture the full data distribution. Deep
learning-based imputation methods like Wu et al. (2023);
Du et al. (2023); Xia et al. (2021) capture spatial-temporal
dependencies using self-attention mechanisms or convolu-
tional neural network, while some methods based on graph
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neural networks (Chen et al., 2023; Wei et al., 2024) rely
on predefined graph structures to extract spatial-temporal
features. Recently, generative methods such as generative
adversarial networks (GANs) (Jiang et al., 2023b) and varia-
tional autoencoders (VAEs) (Chen et al., 2021) have shown
promise in trajectory synthesis, and the emergence of de-
noising diffusion probabilistic models (DDPMs) (Ho et al.,
2020) has further advanced the field. For instance, DiffTraj
(Zhu et al., 2024a) leverages diffusion model to capture
group-level trajectories, generating synthetic trajectory data
while preserving privacy.

Despite progress, existing trajectory imputation methods
face notable limitations. First, they typically assume that
sampled trajectories, despite large intervals, retain essential
movement patterns, interpolating local points using global
trajectories thereby imposing constraints on devices and op-
erational environments. Second, they fail to fully embed the
vast amount of unlabeled human trajectories, which exhibit
consistent macro-level patterns that enable imputation under
more relaxed conditions, as shown in Fig. 1. Although
recent work (Wei et al., 2024) has leveraged unlabeled tra-
jectories to aid imputation, it required the graph structures
as the foundamental element for prediction.

To address these limitations, we introduce ProDiff, a
framework integrating Prototype learning with a denois-
ing Diffusion probabilistic model. ProDiff operates under
minimal information constraints, modeling a trajectory as
a sequence of points and interpolating missing locations
using only two endpoints within a fixed-length window.
This relaxes the prior assumption that sparse trajectories
must retain essential movement patterns. ProDiff consists of
two key components: (i) Diffusion-based generative model:
The diffusion model reconstructs human movement by it-
eratively denoising from a latent space, offering reliable
spatiotemporal modeling. (ii) Prototype-based condition
extractor: This module learns prototypes that represent in-
dividual movement patterns, embedding diverse trajecto-
ries into a vector space through self-supervised learning.
Given known trajectory information as queries, it extracts a
comprehensive pattern representation to guide the diffusion
model in generating realistic, individualized trajectories.
To effectively couple these two components, we design a
joint training loss function that integrates generative and
prototype learning objectives. This ensures a more com-
pact embedding space while mitigating independent error
accumulation and irreversible information loss typically
introduced by multi-stage training. Experimental results
demonstrate the effectiveness of the proposed ProDiff and
prove that the captured underlying trajectory structures can
signficantly improve the imputation accuracy.

In summary, the contributions of this work are as follows:

• We relax the prior assumption that sparse trajectories in-
herently retain movement patterns and introduce trajec-
tory imputation under minimal information constraints.

• We propose a prototype-based condition extractor that
embeds human trajectories into a vector space, captur-
ing macro-level behavioral patterns for the first time in
trajectory imputation.

• We develop ProDiff, a framework that jointly optimizes
generative modeling and prototype learning, effectively
reconstructing missing trajectory data while reducing
independent errors.

• We conduct extensive experiments on WuXi (Song
et al., 2017) and Foursquare (Yang et al., 2014), demon-
strating superior imputation accuracy across differ-
ent trajectory window sizes. Our code is available at
https://github.com/b010001y/ProDiff.

2. Related Work
Please refer to Appendix A for an extensive discussion of
related work. Here we provide its summary.

Spatial-Temporal Sequence Imputation. Traditional im-
putation methods evolved from simple statistical approaches
like linear interpolation (Blu et al., 2004) to probabilistic
frameworks such as PCA and Bayesian networks (Qu et al.,
2009; Shi et al., 2013), are fast but often too simple to cap-
ture complex distributions. Deep learning revolutionized
the field through two paradigms: non-generative models
like GRU-D (Che et al., 2018) with temporal decay mech-
anisms and SAITS (Du et al., 2023) using masked self-
attention, and generative approaches where diffusion mod-
els like Diffusion-TS (Yuan & Qiao, 2024) now dominate
by disentangling trend-seasonality components.

Trajectory Data Mining. Trajectory analysis spans fore-
casting, estimation, and anomaly detection. CNN/RNN
architectures (Bao et al., 2021; Yang et al., 2017) pioneered
point-wise prediction, while road-aware models like WDR
(Wang et al., 2018) advanced travel time estimation through
road network embeddings. Anomaly detection evolved from
RNN-based classifiers (Song et al., 2018) to latent space
methods like GM-VSAE (Liu et al., 2020). The emerging
mobility generation field bridges forecasting and synthesis,
exemplified by DiffTraj (Zhu et al., 2024a) applying raw
GPS diffusion, yet lacks physics-aware trajectory topology
preservation – a gap our work addresses.

Mobility Data Synthesizing. Early synthesis relied on
statistical approximations (Simini et al., 2021) until VAEs
(Chen et al., 2021) and GANs (Jiang et al., 2023b) intro-
duced deep generative modeling. Graph-based innovations
like RNTrajRec (Chen et al., 2023) captured semantics
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Figure 2. Left illustrates how prototype learning and diffusion models interact. The diffusion process progressively corrupts trajectories
with Gaussian noise, preserving only the endpoints, while prototype learning embeds trajectories and extracts patterns. During denoising,
prototype-based conditions, combined with endpoint features, guide the diffusion model. A joint loss function optimizes both components,
ensuring effective trajectory reconstruction. Right is the architecture of the diffusion base model.

through spatial-temporal transformers, while attention archi-
tectures (Xia et al., 2021) explicitly modeled cross-region
dependencies. Modern diffusion frameworks such as Con-
trolTraj (Zhu et al., 2024b) enable conditional generation
via traffic signal conditioning but remain resolution-rigid.

3. ProDiff Model
3.1. Problem Definition

Definition 3.1. Spatio-Temporal Trajectory. A spatio-
temporal trajectory is a sequence of human activity points,
denoted as xi,j ∈ Rn, where n represents the num-
ber of attributes. Each point consists of time, longitude,
and latitude, i.e., xi,j = {ti,j , loni,j , lati,j}, satisfying
ti,j < ti,j+1. The trajectory of an individual i is defined as
Xi = [xi,1, ...,xi,l], where l is the trajectory length.

Definition 3.2. Trajectory Sequence Window. To process
trajectories, we define a sliding window of size k (k < l)
that partitions a trajectory Xi into overlapping segments.
Each segment is represented as Sp = [sp,1, ..., sp,k], yield-
ing l− k+ 1 segments per trajectory. Given M trajectories,
the total number of segments for a fixed k is

∑M
i (li−k+1),

where trajectories shorter than k are discarded.

Definition 3.3. Minimal-Information Imputation. Given
a trajectory Xi = [xi,1, ...,xi,l], where each point xi,j =
{ti,j , loni,j , lati,j} represents a spatio-temporal coordinate,
we define the minimal-information imputation problem as
reconstructing xi,2, ...,xi,l−1 given only the endpoints xi,1

and xi,l.

3.2. Base Network Components

Diffusion Base Model. To capture spatiotemporal depen-
dencies in trajectory imputation, we employ a 1D-UNet
with residual network (ResNet) blocks. The 1D-UNet con-
sists of down-sampling and up-sampling modules, linked
by a self-attention layer. Each module encodes hidden fea-
tures using group normalization, nonlinear activation, and
1D-CNN layers. The self-attention mechanism refines tra-
jectory representations via:

Self-Attn(Qh,Kh, Vh) = Softmax
(
QhK

T
h√

dh

)
Vh, (1)

where Qh, Kh, and Vh are derived from hidden features h.
The features obtained through self-attention are then passed
through the up-sampling module to output the predicted
noise, as shown in the right of Fig. 2.

Base Condition. Trajectory imputation relies on re-
constructing intermediate points from the trajectory end-
points. Specifically, given a set of trajectory points Si =
[si,1, ..., si,k] ∈ Rk×d, where k denotes the trajectory
length, we generate a mask M = [m1, ...,mk] ∈ Rk which
is corresponding to Si. For any element mj :

mj =

{
1, if j = 0 or j = k,

0, otherwise.
(2)

This mask, when applied to trajectory points, encodes the
locations to acquire the base condition Bc while guiding the
diffusion model in reconstructing the missing points.
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Figure 3. Composition of prototype condition extractor and its
workflow during the training and test (black and blue lines).

3.3. Prototype Condition Extractor

Embedding Trajectory Data. To exploit large-scale un-
labeled data, we introduce a Prototype Condition Extrac-
tor (PCE) that embeds trajectories into vector space and
extracts latent movement patterns. For each trajectory
Si = [si,1, ..., si,k] ∈ Rk×d of window size k, the trajectory
representation Hi is computed as:

Hi =

k∑
j

(Encoder(si,j)) . (3)

Prototypes P ∈ RNp×dp where Np denotes the number of
prototypes and dp represents the embedded dimension are
then generated via a fully connected layer:

P = WpHp + bp, (4)

where Wp and bp are learnable parameters. Since the
hidden feature Hp is considered as trajectory representa-
tion which is summed up from the features of all points
in trajectory S. Moreover, prototypes P are generated by
Hp expressing the generic movement pattern of trajectory
S, which are iteratively refined and serve as conditioning
features for inference.

Conditioning the Diffusion Model. While the base condi-
tion serves as a guide, it often provides implicit information,
making it difficult for the model to derive sufficient insights
directly. To enhance the diffusion model’s guidance, we
encode trajectory data into queries Qb = {Q1, ..., QB} ∈
RB×d of B trajectories and project them into the prototype
space using:

D =
[
Dis(Qb, P1), ...,Dis(Qb, PNp)

]
, (5)

Pc = DTP. (6)

Here, Pc represents the prototype-conditioned feature, align-
ing trajectory embeddings with learned movement patterns.
Dis(Qb, Pi) can be an arbitrary distance function between
query Qb and ith prototype Pi. With encoder optimization,
the prototypes representing movement patterns are refined,
and the PCE can effectively enhance the diffusion model’s
guidance by matching the base condition with the prototype
and generating a comprehensive prototype condition.

To integrate the base condition and prototype condition,
we encode and combine them using a Wide & Deep (WD)
network, which contains two fully connected layers for each
condition. Then the final joint condition J c is formulated
as:

J c = WD(Bc) +WD(Pc). (7)

Fig. 3 details the specific workflow of the prototype network.
On the right and middle sections, complete trajectories are
used to train the prototype network, enhancing the gen-
eration of prototypes that accurately represent movement
patterns. This training is optimized through unsupervised
contrastive loss and the joint loss function. On the left and
middle sections, during testing, trajectories are encoded
and used to query the trained prototypes to generate the
prototype condition.

3.4. Jointly Training Objective

Given i.i.d. samples Z ∼ p, a diffusion probabilistic model
approximates the data distribution by learning pθ(Z). In the
forward process, Gaussian noise diffuses the data via the
stochastic differential equation (SDE):

dZ = f(Z, t)dt+ g(t)dw, (8)

where f(·) is the drift coefficient, g(·) is the diffusion co-
efficient, and w is a standard Wiener process. The reverse
process, conditioned on J c, is given by:

dZ=
[
f(Z, t)−g(t)2∇Z log pt (Z|J c)

]
dt+g(t)dw̄. (9)

where ∇Z log pt(Z|J c) is the conditional score function.
The denoising network ϵθ estimates this score function:

ϵθ(Zt, t,J c) ≃ −g(t)2∇Z log pt(Z|J c), (10)

where the joint condition J c = fγ(Z0). The joint loss
function is:

LJ(θ, γ)=Et∼UEZ0∼p,ϵ∼N
[
∥ϵ−ϵθ(Zt, t, fγ(Z0))∥2

]
. (11)

θ and γ are the optimized parameters of denoising network
and joint condition extraction network.

To enhance prototype learning for unsupervised trajectory
data, we introduce additional loss functions to refine fγ
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and capture semantic movement patterns. The first classifi-
cation consistency loss, LC1, enforces alignment between
K-means clustering and prototype-based learning. Given
trajectory features Hp = {H1,H2, ...} and Nc clusters,
K-means assigns pseudo-labels pkmeans, which guide pro-
totype learning via:

LC1(γ) = −
Nc∑
i=1

pikmeans log(q
i
proto), (12)

where qiproto represents the prototype-assigned label. To
ensure a compact, discriminative feature space, we employ
a contrastive loss that optimizes prototype separation. Given
trajectory features Hp and prototypes P = {P1, ..., PNp

},
let P+ and P− be the closest and farthest prototypes, re-
spectively. The loss is defined as:

LC2(γ)=E
[
max (0, d(Hi,P

+)−d(Hi,P
−)+m)

]
, (13)

where m is a margin ensuring separation, and it d(·, ·) is
a distance metric (e.g., Euclidean). Afterward, the final
objective integrates all loss functions:

L(θ, γ) = λ1LJ(θ, γ) + λ2LC1(γ) + λ3LC2(γ), (14)

where λ1, λ2, λ3 control the weight of each term. The full
training process is outlined in Algorithm 1.

3.5. Inference Processes

In the Inference process, given information about two points
in a trajectory with sequential order, the corresponding base
condition can be generated according to Eq. 2. The base
condition is utilized as a query and projected into the space
of trained robust prototypes to obtain the prototype condi-
tion, and finally the joint condition is obtained through Eq.
7. Then, the inference process conduct the trained denoising
function ϵθ to denoise from a standard Gaussian noise Zt

step by step. A more detailed algorithm can be found in
Algorithm 2.

3.6. On the Prototype Loss for Trajectory Learning

Prototype learning can be seen as the combination of clus-
tering and contrastive learning. Formally, for data points
X = {x1, ..., xn}, the embedding function f : Rd → Rm,
and prototypes {p1, ..., pK} are optimized by,

min
f,{pk}

n∑
i=1

∥f(xi)− pyi
∥2 + λℓcontrast(f(xi), pyi

, {pk}).

In trajectory imputation scenario, we propose two basic
assumptions which ensure the representiveness of macro-
level human movement patterns: (1) Human trajectory data
is drawn from a mixture of distributions, each localized on
a manifold region M with mean µk. (2) The embedding

f enables diverse prototypes that capture local tangents
and reconstruct manifold structures via linear combinations
(Roweis & Saul, 2000). With these assumptions, we have:

Theorem 3.4 (The Optimality of Prototype Learning). Any
global optimum (f∗, {p∗k}) satisfies:

1. Prototypes approximate conditional expectations:
p∗k ≈ E [f∗(x)|x ∈ Ck] .

2. Contrastive loss enforces prototype separation, form-
ing diverse directional vectors: ⟨p∗i , p∗j ⟩ ≤ ϵ, for i ̸= j.

Proof. Using Pollard’s consistency theorem (Pollard, 1981),
the empirical cluster centers converge to conditional expec-
tations:

p∗k ≈ E [f∗(x)|x ∈ Ck] .

From InfoNCE-based contrastive loss (Saunshi et al., 2019),
optimality conditions ensure prototype distinctiveness:

f∗(x)⊤p∗y − f∗(x)⊤p∗k ≥ δ, ∀k ̸= y.

where δ > 0 .Since the clustering term already guarantees
that p∗y ≈ E [f∗(x) | x ∈ Cy], averaging over cluster Cy

gives:
⟨p∗y, p∗y⟩ − ⟨p∗y, p∗k⟩ ≥ δ.

shifting the terms leads to the observation:

⟨p∗y, p∗k⟩ ≤ ∥p∗y∥2 − δ ≤ ϵ, k ̸= y,

which indicates that contrastive loss forces prototypes into
globally distinct directions, ensuring effective representation
of manifold local structures.

4. Experiments
4.1. Datasets

Our experiments utilize two well-established trajectory
datasets: (1) WuXi: Extracted from mobile signal data
(Song et al., 2017), covering WuXi, China, over six months
(Oct 2013–Mar 2014). It records locations whenever users’
phones are active. For efficiency, we use a 10-day subset,
concatenating individual trajectories. (2) Foursquare: A
public dataset (Yang et al., 2014) containing check-ins over
10 months (Apr 2012–Feb 2013) in New York and Tokyo.
Each check-in includes a timestamp, GPS coordinates, and
semantic tags. All datasets are anonymized, ensuring no
privacy concerns. Tab. 6 in Appendix D provides details.

4.2. Evaluation Metric and Baseline

We evaluate trajectory imputation by comparing against (i)
time-series interpolation methods and (ii) trajectory-specific
approaches, with corresponding evaluation metrics.
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Table 1. Comparison of model performance for different thresholds and different trajectory lengths on WuXi and FourSquare.

Method
WuXi FourSquare

TC@2k TC@4k TC@6k TC@8k TC@10k TC@2k TC@4k TC@6k TC@8k TC@10k

k=
4

VAR (Lütkepohl, 2013) 0.5194 0.5632 0.6050 0.6441 0.6811 0.5000 0.5000 0.5000 0.5000 0.5000
SAITS (Du et al., 2023) 0.5059 0.5224 0.5498 0.5861 0.6311 0.5000 0.5000 0.5000 0.5000 0.5000
TimesNet (Wu et al., 2023) 0.5080 0.5290 0.5593 0.5955 0.6352 0.5015 0.5054 0.5133 0.5258 0.5431
Diff-TS (Yuan & Qiao, 2024) 0.5123 0.5462 0.5951 0.6496 0.7060 0.5268 0.5714 0.6173 0.6571 0.6932
DiffTraj (Zhu et al., 2024a) 0.6958 0.8198 0.8816 0.9169 0.9402 0.5945 0.6845 0.7574 0.8189 0.8666
Diff+Mask (Ours) 0.6584 0.7731 0.8400 0.8834 0.9159 0.6541 0.7379 0.8010 0.8525 0.8928
ProDiff (Ours) 0.7155 0.8414 0.9006 0.9326 0.9520 0.6644 0.7452 0.8087 0.8596 0.8971

k=
6

VAR (Lütkepohl, 2013) 0.3360 0.3437 0.3556 0.3692 0.3840 0.3333 0.3333 0.3334 0.3334 0.3335
SAITS (Du et al., 2023) 0.3427 0.3762 0.4275 0.4880 0.5533 0.3333 0.3333 0.3333 0.3333 0.3333
TimesNet (Wu et al., 2023) 0.3419 0.3654 0.4029 0.4500 0.5044 0.3386 0.3530 0.3756 0.4039 0.4341
Diff-TS (Yuan & Qiao, 2024) 0.3515 0.4011 0.4726 0.5491 0.6211 0.3761 0.4283 0.4827 0.5383 0.5874
DiffTraj (Zhu et al., 2024a) 0.5976 0.7476 0.8227 0.8688 0.9005 0.4277 0.5404 0.6428 0.7314 0.8025
Diff+Mask (Ours) 0.5767 0.7324 0.8228 0.8802 0.9180 0.4859 0.5970 0.6902 0.7671 0.8265
ProDiff (Ours) 0.5978 0.7686 0.8518 0.8992 0.9285 0.5005 0.6093 0.7013 0.7772 0.8345

k=
8

VAR (Lütkepohl, 2013) 0.2537 0.2627 0.2739 0.2861 0.2986 0.2500 0.2500 0.2500 0.2500 0.2500
SAITS (Du et al., 2023) 0.2572 0.2764 0.3059 0.3485 0.3976 0.2500 0.2502 0.2505 0.2509 0.2513
TimesNet (Wu et al., 2023) 0.2520 0.2574 0.2663 0.2785 0.2942 0.2516 0.2563 0.2634 0.2715 0.2808
Diff-TS (Yuan & Qiao, 2024) 0.2689 0.3199 0.3907 0.4676 0.5453 0.3233 0.3932 0.4611 0.5358 0.5964
DiffTraj (Zhu et al., 2024a) 0.5418 0.7009 0.7868 0.8414 0.8795 0.3316 0.4526 0.5671 0.6688 0.7520
Diff+Mask (Ours) 0.4486 0.5946 0.6943 0.7631 0.8107 0.3957 0.5300 0.6431 0.7350 0.8045
ProDiff (Ours) 0.5752 0.7501 0.8236 0.8663 0.8945 0.4000 0.5331 0.6474 0.7404 0.8090

k=
10

VAR (Lütkepohl, 2013) 0.2012 0.2047 0.2102 0.2177 0.2270 0.2000 0.2000 0.2000 0.2000 0.2000
SAITS (Du et al., 2023) 0.2080 0.2316 0.2686 0.3158 0.3692 0.2000 0.2000 0.2000 0.2000 0.2000
TimesNet (Wu et al., 2023) 0.2073 0.2275 0.2591 0.3035 0.3559 0.2003 0.2013 0.2034 0.2064 0.2110
Diff-TS (Yuan & Qiao, 2024) 0.2173 0.2655 0.3367 0.4190 0.5000 0.2751 0.3484 0.4207 0.4990 0.5646
DiffTraj (Zhu et al., 2024a) 0.4994 0.6687 0.7640 0.8259 0.8692 0.2762 0.4024 0.5300 0.6453 0.7386
Diff+Mask (Ours) 0.3793 0.5104 0.6046 0.6773 0.7344 0.3412 0.4800 0.5999 0.7023 0.7868
ProDiff (Ours) 0.4996 0.6994 0.8048 0.8667 0.9053 0.3522 0.4910 0.6105 0.7146 0.7920

For time-series interpolation, we benchmark against classi-
cal methods like Vector Autoregression (VAR) (Lütkepohl,
2005) and state-of-the-art spatio-temporal models, includ-
ing SAITS (Du et al., 2023), TimesNet (Wu et al., 2023),
Diffusion-TS (Yuan & Qiao, 2024), and DiffTraj (Zhu et al.,
2024a). To measure imputation accuracy, we introduce tra-
jectory coverage (TC@τ ), which quantifies the proportion
of generated points ˆsi,j within a threshold τ from the ground
truth si,j :

TC@τ =
1

k

k∑
j=1

I (d( ˆsi,j , si,j) < τ) , (15)

where ˆsi,j is the generated points, and I(·) is an indica-
tor function that equals when d( ˆsi,j , si,j) is less than the
threshold τ and 0 otherwise.

For trajectory-specific baselines, we compare against RN-
TrajRec (Chen et al., 2023), TS-TrajGen (Jiang et al.,
2023b), MM-STGED (Wei et al., 2024), AttnMove (Xia
et al., 2021), and DiffTraj (Zhu et al., 2024a). To ensure
fairness, we remove modules reliant on unavailable auxil-
iary information. Performance is assessed using standard
trajectory generation metrics, including Density, Distance,
Segment Distance, Radius, MAE, and RMSE. Further de-
tails on evaluation protocols and baselines are provided in
Appendix D.

4.3. Implementation Details

Our experiments balance the effectiveness of each module
in the joint training; we set λ1, λ2, λ3 to 1. Gradient updates
were facilitated using the Adam optimizer, initialized with a
learning rate of 2e−4. We summarize the hyperparameter
settings for the diffusion model and PCE in Tab. 2.

Table 2. General setting of ProDiff model
Diffusion PCE

Parameter Setting value Parameter Setting value

Diffusion Steps 500 Prototypes 20
Embedding Dim 128 Embedding Dim 512
β (linear schedule) 0.0001∼ 0.05 Heads 8

ResNet Blocks 2 Encoder Blocks 4
Sampling Blocks 4 Forward Dim 256

Input Length 3 ∼ 10 Dropout ratio 0.1

4.4. Main Results

The trajectory coverage across different baselines and win-
dow sizes is presented in Tab. 1, where “TC@2k” represents
the percentage of generated values within 2km of the true
location, with TC@4k–10k extending up to 10km. The
highest and second-highest values are marked in red and
blue, respectively. We evaluate performance separately for
time-series interpolation methods and trajectory-specific
approaches.
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a bb

Figure 4. a. Radar charts illustrate the normalized performance of different models across six distinct metrics. b. Histogram comparing
the performance of each model across different metrics, with dashed lines indicating the best-performing model’s values for each metric.

(1) Comparison with Time-Series Interpolation Meth-
ods. ProDiff consistently outperforms sequence imputation
models across datasets. On the WuXi dataset with k = 4,
ProDiff achieves 71.55% at TC@2k, exceeding all baselines
(<70%). As the threshold increases (TC@4k–10k), ProDiff
maintains high accuracy (84.14%–95.20%), with its advan-
tage over the second-best method expanding from 1.18% at
TC@2k to 3.61% at TC@10k. Furthermore, ProDiff demon-
strates robustness across datasets and segment sizes, where
other models, such as DiffTraj, suffer sharp declines at
larger thresholds (TC@6k–10k). On the FourSquare dataset,
DiffTraj’s TC@2k score for k = 8 drops by 21.02%, while
ProDiff only decreases by 11.59%. Additionally, while Diff-
Traj loses its second-place ranking to Diff+Mask, ProDiff
retains its lead, indicating its ability to learn stable move-
ment patterns via the prototype condition extractor.

(2) Comparison with Trajectory-Specific Methods. Fig.
4 further validates ProDiff’s superiority among trajectory
models. Panel (a) presents normalized scores across all
metrics, while panel (b) details model-specific performance.
ProDiff consistently sets the benchmark across six addi-
tional metrics. While density scores are similar among mod-
els, ProDiff exhibits a substantial lead in spatial distribution
metrics (e.g., Distance, Segment Distance, Radius, MAE,
RMSE), highlighting its effectiveness in diverse conditions.

4.5. Ablation Study

We conducted three ablation experiments on the WuXi
dataset to validate the contributions of our key components.
We also investigate the accerlaration of the proposed ProD-
iff, and the results are provided in Appendix D.

Effect of Prototype Condition Extractor. To assess the
impact of individual modules, we removed the prototype
condition extractor (PCE), cross-entropy loss (LC1), and
contrastive loss (LC2) while keeping the joint loss intact. As
shown in Tab. 3, PCE consistently improves performance,

with LC1 and LC2 further enhancing its effectiveness in cap-
turing movement patterns. Notably, the performance gain
of PCE is more pronounced at longer distances when k = 8,
suggesting that its effectiveness increases with extended
trajectory segments.

Table 3. Performance comparison of removing different modules.
Method TC@2k TC@4k TC@6k TC@8k TC@10k

k=
6

ProDiff 0.5978 0.7686 0.8518 0.8992 0.9285
w.o. Pro 0.5767 0.7324 0.8228 0.8802 0.9180
w.o. LC1 0.5939 0.7556 0.8371 0.8867 0.9195
w.o. LC2 0.5952 0.7560 0.8374 0.8869 0.9199

k=
8

ProDiff 0.5752 0.7501 0.8236 0.8663 0.8945
w.o. Pro 0.4486 0.5946 0.6943 0.7631 0.8107
w.o. LC1 0.5395 0.7205 0.7966 0.8399 0.8691
w.o. LC2 0.4888 0.6638 0.7473 0.7984 0.8340

Table 4. Performance comparison for cVAE and cGAN.
Method TC@2k TC@4k TC@6k TC@8k TC@10k

cVAE+MASK 0.2616 0.2936 0.3385 0.3926 0.4513
cVAE+pro 0.3416 0.3685 0.4082 0.4540 0.5009
cGAN+MASK 0.2760 0.3240 0.3742 0.4285 0.4896
cGAN+pro 0.3074 0.3997 0.4746 0.5361 0.5883

Generalization Across Generative Models. To evaluate
PCE’s generalizability, we integrated it with cVAE and
cGAN, applying both MASK and PCE to these models (Tab.
4). At the 10k threshold, adding only MASK yields 45.13%
for cVAE and 48.96% for cGAN, whereas incorporating
PCE improves accuracy to 50.09% and 58.83%, respec-
tively. This highlights PCE’s ability to enhance movement
pattern learning across different generative frameworks.

4.6. Utility of Generated Data

To evaluate the real-world applicability of ProDiff generated
data, we tested its performance on traffic flow analysis in
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Figure 5. Trajectory data representation after dimensionality reduction by PaCMAP, randomly selected samples and neighboring samples
plot trajectories to interpret human trajectory patterns captured by prototype learning.

WuXi, using k = 6 trajectory imputations over 7000 individ-
uals across 10 days. The city was divided into 1km × 1km
grids (longitude gap ≈ 0.009◦), where each grid’s value
increments as individuals’ trajectories pass through. Fig.
6(a) (top) compares real and ProDiff-generated traffic maps,
revealing highly similar spatial patterns. To further ana-
lyze peak and trend consistency, we extracted and projected
traffic edges (Fig. 6(a), bottom), showing near-identical
fluctuations between real and generated data. Additionally,
correlation coefficients and spatial distributions between real
and generated data (Fig. 6(b), 6(c)) further confirm the reli-
ability of ProDiff’s imputation. These results demonstrate
that ProDiff can generate realistic and usable trajectory data,
making it applicable to downstream mobility analysis tasks.

Table 5. Impact of different numbers of prototypes (N) and trajec-
tory length (k).

N TC@2k TC@4k TC@6k TC@8k TC@10k

k=
6

15 0.5881 0.7583 0.8433 0.8928 0.9237
20 0.5978 0.7686 0.8518 0.8992 0.9285
25 0.5868 0.7570 0.8441 0.8951 0.9265

k=
8

15 0.5755 0.7552 0.8217 0.8763 0.8951
20 0.5752 0.7501 0.8236 0.8663 0.8945
25 0.5785 0.7553 0.8237 0.8634 0.9017

GroundTruth Generated

Similar 
Flow

a

b c

Correlation 
Coefficient = 0.927

Figure 6. a. Comparison of traffic patterns between groundtruth
and generated data. b. The correlation coefficient between
groundtruth and generated data. c. Comparison of spatial dis-
tributions after normalization of both real and generated data.
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4.7. Hyperparameter Sensitivity.

We analyze the effect of prototype count (N ), trajectory
length (k), and diffusion steps (d) (Tab. 5, Appendix Tab. 7).
Increasing N from 15 to 20 improves TC@10k to 0.9285
for k = 6, while k = 8 benefits from N = 25, suggest-
ing behavioral variations across window sizes. Diffusion
steps significantly affect performance, with 300 steps yield-
ing optimal TC@10k (0.9300). Beyond this, performance
plateaus, while computational cost increases, making 300
steps a practical balance between accuracy and efficiency.

4.8. Interpretability Analysis

Understanding whether prototype learning captures inter-
pretable movement patterns in low-dimensional space is
essential for evaluating the effectiveness of the joint proto-
type learning-diffusion framework. Fig. 5 visualizes this
process, where trajectory data is fed into the trained pro-
totype condition extractor, clustered using K-means (top 6
classes), and reduced in dimensionality via PaCMAP. To
interpret the latent space, we zoom into each class, plotting
selected samples and their nearest neighbors. The learned
movement patterns exhibit clear semantic coherence. Re-
gion A captures trajectories with start and end points in
close proximity, reflecting movement within similar loca-
tions. Region B extends this pattern, with slightly farther
start and end points, aligning with the proximity of the yel-
low and green clusters. Region C represents trajectories con-
strained within similar locations. Region D deviates from
previous patterns, showing long-distance migration with a
return to the starting point. Region E follows a linear mi-
gration and return pattern. Region F is similar to Region A,
but its neighboring trajectories occur in different locations.
These findings demonstrate the model’s ability to embed
human trajectory, capture structured movement behaviors,
distinguish variations, and optimize representations during
training, improving trajectory imputation performance when
integrated with the diffusion framework.

5. Conclusion
This paper addresses the trajectory imputation problem, fo-
cusing on generating realistic trajectories with minimal in-
formation. Unlike conventional methods that rely on sparse
trajectory pattern, we propose ProDiff, a prototype-guided
diffusion model that captures macro-level mobility patterns
while maintaining high fidelity in trajectory generation. Our
experiments demonstrate that ProDiff outperforms state-of-
the-art approaches on two datasets, improving trajectory
imputation accuracy. Ablation studies confirm that pro-
totype learning significantly enhances trajectory represen-
tation, while diffusion modeling effectively reconstructs
realistic movements. Beyond imputation, ProDiff may be
generalized to broader trajectory-related tasks, offering a

scalable solution for urban mobility analysis and behavioral
modeling. Moving forward, we aim to extend ProDiff to
adaptive and personalized trajectory generation, integrat-
ing reinforcement learning and uncertainty-aware models to
enhance reliability under dynamic and noisy conditions.
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A. Detailed Related Work
Spatial-Temporal Sequence Imputation. Imputation methods for spatial-temporal sequences can be broadly divided into
two categories: traditional methods and deep learning methods. Traditional methods include linear interpolation (Blu et al.,
2004) and mean value filling, which are fast but overly simplistic and struggle to estimate the overall data distribution
(Huang et al., 2023). More advanced probabilistic methods, such as probabilistic PCA (Qu et al., 2009) and expectation
maximization (Shi et al., 2013), aim to capture the data distribution more accurately. Autoregressive methods like Vector
Autoregressive (VAR) (Lütkepohl, 2013) and matrix/tensor-based methods (e.g., Tucker decomposition (Tan et al., 2013))
have also been used to address missing data in spatial-temporal contexts.

Deep learning-based imputation methods can be further divided into non-generative and generative approaches. Non-
generative methods primarily rely on RNNs and attention mechanisms. For example, GRU-D (Che et al., 2018) proposes a
variant of the gated recurrent unit (GRU) to handle missing data in time series, while TimesNet (Wu et al., 2023) leverages 2D
convolutional neural networks to model temporal dependencies. Attention-based methods, such as CDSA (Ma et al., 2019)
and SAITS (Du et al., 2023), focus on capturing both short-term and long-term dependencies across multiple dimensions
(time, location, measurement). Generative methods include variational autoencoders (VAEs) (Doersch, 2016), generative
adversarial networks (GANs) (Goodfellow et al., 2020), and diffusion probabilistic models, which have become increasingly
popular. For instance, Diffusion-TS (Yuan & Qiao, 2024) combines diffusion models with time series decomposition to
address missing data.

Trajectory Data Mining. Trajectory data mining based on deep learning methods can be categorized into several tasks,
including trajectory forecasting, travel time estimation, and anomaly detection (Chen et al., 2024). Trajectory forecasting
involves predicting future locations(Wang et al., 2021; Wu et al., 2019) or traffic conditions(Wu et al., 2020; Liu et al.,
2024; Ji et al., 2023; Jiang et al., 2023a; Ji et al., 2022a). Common approaches include CNN-based models (Bao et al.,
2021) and RNN-based models (Yang et al., 2017; Yao et al., 2017), with recent advances exploring diffusion techniques
like BCDiff (Li et al., 2023) that bidirectionally refine historical and future trajectories through coupled diffusion models
with adaptive gating mechanisms. Travel Time Estimation (TTE) or Estimated Time of Arrival (ETA) involves analyzing
trajectory sequences to predict travel time. For example, eRCNN (Wang et al., 2016) uses raw GPS data with a recurrent
convolutional neural network to estimate travel time and speed. Road-based TTE approaches, such as WDR (Wang et al.,
2018), model the correlation between trips and roads using a regression framework.

Trajectory anomaly detection aims to identify abnormal movement patterns. Offline detection methods, like ATD-RNN
(Song et al., 2018), use RNNs with fully connected layers for anomaly detection. Online detection methods leverage
reinforcement learning to model the transition probability between road segments, treating anomaly detection as a sequential
decision problem (Chen et al., 2024). GM-VSAE (Liu et al., 2020) adapts an RNN-based VAE model to learn the probability
distribution in the latent space.

Recent advancements address data incompleteness challenges through unified frameworks, GC-VRNN (Xu et al., 2023)
pioneers joint trajectory imputation and prediction using multi-space graph neural networks to capture spatio-temporal
missing patterns and temporal decay modules for information recovery. Mobility generation tasks have also gained attention,
with models like DiffTraj (Zhu et al., 2024a) utilizing diffusion models to generate synthetic trajectories at the population
level. Our proposed task combines trajectory forecasting and mobility generation, where generative trajectory interpolation
aligns with mobility generation, and generalized trajectory interpolation is considered a higher-order forecasting task.

Mobility Data Synthesizing. The generation of synthetic mobility data has been extensively studied to address privacy
concerns, data scarcity, and high collection costs (Jia et al., 2020; Zhang et al., 2023; Zheng et al., 2014). Early non-
generative approaches primarily relied on statistical models (Simini et al., 2021; Wang et al., 2019), perturbation techniques
(Zandbergen, 2014), or simulations (Simini et al., 2021). While these methods offer insights into movement dynamics, they
often fail to capture complex spatial-temporal relationships in real-world scenarios (Pappalardo et al., 2023).

With advancements in deep learning, generative approaches have gained prominence. Variational Autoencoders (VAEs) like
TrajVAE (Chen et al., 2021) leverage temporal dependencies to produce realistic trajectories, while GAN-based frameworks
such as TS-TrajGen (Jiang et al., 2023b) use coarse-to-fine modeling to generate synthetic trajectories from spatial grid
transformations. However, these models often face limitations in achieving high-resolution fidelity, particularly when
translating grid-based representations into fine-grained data.

Graph-based approaches have been widely investigated due to their ability to capture spatial-temporal relationships effectively.
For example, RNTrajRec (Chen et al., 2023) employs a graph-based framework that integrates graph representations of
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trajectory points and spatial-temporal transformers to model dependencies along the trajectory, significantly enhancing
trajectory recovery accuracy. Similarly, MM-STGED (Wei et al., 2024) utilizes a graph-based encoder-decoder structure
to represent trajectories as spatial-temporal graphs, capturing both micro-level semantics of GPS points and macro-level
semantics of shared travel patterns.

Attention-based architectures, such as AttnMove (Xia et al., 2021), leverage attention mechanisms to model spatial-temporal
correlations explicitly, facilitating the reconstruction of missing trajectory data and improving performance in downstream
applications. Recent innovations in trajectory generation include the use of denoising diffusion probabilistic models
(DDPMs) (Ho et al., 2020), which iteratively refine noisy inputs to produce high-fidelity synthetic data. For instance,
DiffTraj (Zhu et al., 2024a) captures spatial-temporal dependencies without relying on intermediate transformations, offering
significant advantages in privacy preservation and data utility. Additionally, ControlTraj (Zhu et al., 2024b) extends the
diffusion framework by integrating conditional signals for controllable generation, improving its applicability across varied
scenarios.

B. Detailed Denoising Network
B.1. Denoising Diffusion Probabilistic Model

The diffusion probabilistic model has gained increasing attention in recent years for its success in various data generation
tasks. The model consists of a forward process that gradually perturbs the data distribution with noise, and a reverse
(denoising) process that learns to reconstrust the original data distribution.

Forward Process. Given a set of data samples x0 ∼ q(x0), the forward process adds T time-steps of Gaussian noise N (·)
to it, where T is an adjustable parameter. Formally, the forward process can be defined as a Markov chain from data x0 to
the latent variable xT :

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1) (16)

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (17)

in which {βt ∈ (0, 1)}Tt=1(β1 < β2 < ... < βT ) is the corresponding variance schedule. Since it is impractical to
back-propagate the gradient by sampling from a Gaussian distribution, we adopt a parameterization trick to keep the gradient
derivable and the xt can be expressed as xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) and ᾱt =

∏t
i=1(1− βi).

Reverse Process. The reverse diffusion process, also known as the denoising processing, aims to reconstruct the original
data distribution from the noisy data xT ∼ N (0, I). Accordingly, this process can be formulated by the following Markov
chain:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt) (18)

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t),σθ(xt, t)

2I
)
, (19)

where µθ(xt, t) and σθ(xt, t) are the mean and variance parameterized by θ, respectively. Based on the literature, for any
β̃t =

1−ᾱt−1

1−ᾱt
βt(t > 1) and β̃1 = β1, the parameterizations of µθ and σθ are defined by:

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵ(xt, t)

)
,σθ(xt, t) = β̃

1
2
t . (20)
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C. Method

Algorithm 1 Training of ProDiff
for i = 1, 2, . . . , do

Get base condition Bc

Get prototype condition P c by PCE network
Get WD(Bc),WD(P c) by Wide & Deep network
Get conditional guidance J c = WD(Bc) +WD(P c)
fγ(Z0) = J c

Sample Z ∼ p where p represents the distribution of original data
Sample t ∼ U [0, T ], ϵ ∼ N (0, Il×d)
Zt =

√
ᾱtZ0 +

√
1− ᾱtϵ

Updating the gradient ∇θ/γLJ which means optimizing Et∼U [0,T ]EZ0∼p,ϵ∼N
[
∇θ/γ∥ϵ− ϵθ(Zt, t, fγ(Z0))∥2

]
end for

Algorithm 2 Sampling of ProDiff

1: Get data and Sample Z̃T ∼ N (0, I)
2: Get base condition Bc

3: Get prototype condition P c by PCE network
4: Get WD(Bc),WD(P c) by Wide & Deep network
5: Get conditional guidance J c = WD(Bc) +WD(P c)
6: for t = T, T − S, . . . , 1 do
7: Compute µθ

(
Z̃t, t,J c

)
according to Eq.(20)

8: Compute pθ

(
Z̃t−1 | Z̃t,J c

)
according to Eq.(19)

9: end for
10: Return: Z̃0

D. Experiment
D.1. Dataset

We evaluate the performance of ProDiff and all baselines methods on two datasets, WuXi and FourSquare.

The mobile phone dataset WuXi used in this study were collected between October 24, 2013, and March 24, 2014, in
Wuxi, China, encompassing approximately six million users evenly distributed across the area. Every hour, these users
generate around 40 million raw records, each containing essential location information, including cell-id and area-id,
which correspond to specific cell towers. Each record in the dataset includes four key components: user ID, cell tower
ID, timestamp, and a tag. The timestamp indicates the exact moment the record was created, while the tag specifies the
type of activity associated with the record. For the purpose of this study, we focused on data from ten consecutive days,
concatenating individual trajectories during this period. This subset includes 33000 active users and 671,124 location
updates, of which 30,000 users are used for training and 3,000 users for testing.

The FourSquare dataset contains Foursquare check-ins over ten months (from April 12, 2012, to February 16, 2013), filtered
for noise and invalid check-ins. It includes active users in two major cities, New York and Tokyo, with each check-in
associated with a timestamp, GPS coordinates, and semantic meaning. We did not use the taxi-related dataset because
human trajectories have a higher degree of freedom compared to car trajectories. Due to the volume of data, only Tokyo
data was used on the FourSquare dataset. Tab. 6 summarizes the statistical information of these two datasets, which includes
2,293 active users with 573,703 location updates.

D.2. Preprocess

In trajectory data analysis, careful preparation of raw data is fundamental to ensure the reliability and precision of
computational models. Our preprocessing approach transforms raw GPS coordinates into a format optimized for training
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Table 6. Statistics of two human mobility datasets.

Dataset WuXi FourSquare

Time Span (day) 111 310
Used Time Span (day) 10 310
Train Active Users 30000 1834
Test Active Users 3000 459
Location Updates 671,124 573,703
Average Distance (meter) 3336.33 4301.51
Average Time (hour) 7.8 37.15

deep learning systems, focusing on two key steps: segmentation and normalization.

Segmentation involves dividing continuous trajectory data into fixed-length segments using a sliding window method. This
technique incrementally generates samples from a single trajectory. Trajectories matching the target length are directly
included as individual samples, while longer paths are systematically partitioned into uniform segments. This creates
discrete, standardized inputs for model training.

Normalization adapts the data for diffusion-based models, which rely on introducing and removing Gaussian noise during
training. To align with the noise distribution, spatial coordinates are scaled to a dimensionless, standardized range (e.g.,
[0, 1]). This eliminates scale variations between features, allowing the model to focus on spatial patterns rather than
magnitude differences. Crucially, the process is fully reversible—after model inference, outputs can be rescaled to their
original geographic coordinates, preserving real-world interpretability.

D.3. Evaluation Metric and Baseline

The trajectory imputation task aims to fill in missing points as accurately as possible under the given point conditions. To
assess performance, we propose a novel trajectory coverage metric, measuring the percentage of generated locations within
a specified distance from the groundtruth. Given a threshold τ , we count the number of generated points within τ distance
from the groundtruth and divide by the total length of the trajectory to limit it to the [0, 1] interval. For any trajectory
Si = [si,1, si,2, ..., si,k] of length k, we construct a masked trajectory Sm

i = [si,1, si,k]. Given this condition and threshold
τ , ProDiff generates the missing points, and we calculate the trajectory coverage TC@τ as the following equation:

TC@τ =
1

k

k∑
j=1

I(d( ˆsi,j , si,j) < τ), (21)

where ˆsi,j is the generated points from ProDiff, and I(·) is an indicator function that equals 1 when d( ˆsi,j , si,j) is less than
the threshold τ and 0 otherwise. We use the haversine function as the distance metric, which calculates the great-circle
distance between two points on the Earth’s surface, accurately reflecting the true distance by converting latitude and longitude
into radians.

We select some traditional methods and the current state-of-the-art spatio-temporal sequence methods based on the Diffusion
model, as well as trajectory-related methods to realize the trajectory imputation task. The compared baselines are set as
follows:

VAR: Vector Autoregression (VAR) is a traditional model used to capture the linear interdependencies among multiple time
series data. By considering each variable’s own lagged values and the lagged values of other variables in the system, VAR
models can effectively analyze the dynamic relationships and forecast future movements of the variables (Lütkepohl, 2005).

SAITS: SAITS is an advanced model(Du et al., 2023) designed to handling missing data in time series analysis. By
leveraging self-attention mechanisms, SAITS aims to capture both short-term and long-term dependencies within time series
data, This model stands out due to its ability to focus on the most relevant parts of the input data.

TimesNet: TimesNet is a progressive model (Wu et al., 2023) which treats time series data as 2D tensors, allowing it to
leverage powerful 2D convolutional neural networks to model temporal dependencies. This approach is suitable for a wide
range of applications, including missing value handling, forecasting, and anomaly detection.
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Diffusion-TS: A current SOTA method (Yuan & Qiao, 2024) for time series generation task based on diffusion model and it
also applies to missing value processing tasks. Diffusion-TS decomposes time series into interpretable variables, combining
seasonal trend decomposition techniques and denoising diffusion models.

DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model is a SOTA model(Zhu et al., 2024a) designed
for generating realistic GPS trajectories. DiffTraj progressively refines random noise into coherent and plausible GPS
trajectory data through a series of probabilistic steps. It is worth noting that while DiffTraj can also be used for the trajectory
imputation task, it generates trajectories at the population level, which is fundamentally different from what we have done at
the individual level.

We further evaluated our model against external baselines and metrics. Specifically, we incorporated RNTrajRec(Chen et al.,
2023), TS-TrajGen(Jiang et al., 2023b), MM-STGED(Wei et al., 2024), and AttnMove(Xia et al., 2021) as baseline models:

RNTrajRec: RNTrajRec(Chen et al., 2023) employs a graph-based framework that integrates graph representations of
trajectory points and spatial-temporal transformers to model dependencies along the trajectory, significantly enhancing
trajectory recovery accuracy.

TS-TrajGen: TS-TrajGen(Jiang et al., 2023b) proposes a hierarchical generation framework that employs coarse-to-fine
modeling to synthesize realistic trajectories. It first learns spatial grid-based latent representations to capture macroscopic
movement patterns, then refines trajectories through adaptive spatial transformations and temporal interpolation. This
approach effectively addresses the sparsity of raw GPS data while preserving topological consistency with road networks.

MM-STGED: MM-STGED(Wei et al., 2024) utilizes a graph-based encoder-decoder structure to represent trajectories as
spatial-temporal graphs, capturing micro-level semantics of GPS points and macro-level semantics of shared travel patterns.

AttnMove: AttnMove(Xia et al., 2021), leverage attention mechanisms to model spatial-temporal correlations explicitly,
facilitating the reconstruction of missing trajectory data and improving performance in downstream applications.

To ensure fair comparisons, specific modules in these baselines were removed to avoid reliance on unavailable additional
information from our datasets. Additionally, we introduced extra metrics to assess the spatial distribution of generated
trajectories:

• Density: Measures the cosine similarity of grid density between real and generated trajectories (higher is better).

• Distance: Evaluates the difference in travel distance between real and generated data, calculated as the sum of distances
between consecutive points (lower is better).

• Segment Distance: Assesses the difference in segment distance between real and generated data, defined as the distance
between consecutive points (lower is better).

• Radius: Evaluates the root mean square distance of all activity locations from the central location, indicating the spatial
range (lower is better).

• MAE: Mean absolute error, measuring the average magnitude of errors between real and generated trajectories (lower
is better).

• RMSE: Root mean square error, evaluating the square root of the average squared differences between predicted and
actual values (lower is better).

D.4. Exploratory Study

To assess ProDiff’s performance under varying information conditions, we conducted two additional sets of experiments for
the trajectory imputation task. Specifically, given a trajectory length of 10, in addition to fixing the begin and end points,
supplementary information points were added to guide the model to accomplish better generation, as shown in the first
four rows of Tab. 8. Meanwhile, motivated by the conclusion in the literature (De Montjoye et al., 2013) (that 95% of the
personnel’s trajectories can be determined by arbitrarily giving 4 points), we modify the information of the fixed points to
randomly selecting x points during both training and testing. This scenario, represented in the last four rows of Tab. 8, is
more challenging since the selected points vary and thus introduce more complexity. From the results of whole table, some
key findings can be obtained: (i) Impact of Increased Information: The results show a significant improvement in trajectory
imputation when the number of given points increases from 2 to 4. Beyond four points, the enhancement in performance
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becomes marginal. (ii) Fixed vs. Random Points: When fixing four points, our method’s performance aligns closely with the
findings of (De Montjoye et al., 2013). However, when points are selected randomly, the model’s performance diverges more
noticeably from the literature’s conclusion. This discrepancy likely arises because random points disrupt the consistency of
trajectory sampling, increasing the difficulty of model learning. The results highlight the potential of ProDiff in accurately
imputing missing trajectory points with a sufficient number of fixed reference points. However, the challenge remains when
dealing with randomly selected points, indicating an area for future improvement.

Table 7. Impact of different diffusion steps (d).

d TC@2k TC@4k TC@6k TC@8k TC@10k

100 0.5750 0.7445 0.8329 0.8853 0.9187
300 0.6015 0.7697 0.8524 0.9005 0.9300
500 0.5978 0.7686 0.8515 0.8992 0.9285
700 0.5881 0.7551 0.8399 0.8897 0.9216

Table 8. Comparison of the performance of fixed and randomized trajectory points with different amount of information. ”3/10” means
that given a trajectory of length 10, three points are provided at indices [0, 4, 9]. Similarly, ”4/10” provides points at indices [0, 3, 6, 9],
and ”5/10” at indices [0, 2, 4, 6, 9]. † represents the random selecting experiments.

Info TC@2k TC@4k TC@6k TC@8k TC@10k

2/10 0.4996 0.6994 0.8048 0.8667 0.9053
3/10 0.5865 0.7638 0.8498 0.8990 0.9292
4/10 0.6820 0.8305 0.8979 0.9347 0.9561
5/10 0.7362 0.8637 0.9179 0.9466 0.9633

2/10† 0.4143 0.6282 0.7402 0.7996 0.8351
3/10† 0.5364 0.7098 0.7897 0.8363 0.8663
4/10† 0.6051 0.7501 0.8269 0.8738 0.9047
5/10† 0.6817 0.8062 0.8706 0.9089 0.9336

D.5. Ablation Study

Diffusion models typically involve higher computational costs, which may potentially limit their application in large-scale
trajectory data scenarios. To tackle the efficiency issue, we have developed two variants that integrate DDIM sampling
(ProDDIM) (Song et al., 2020) and LA (ProDDIM+Linear Attention) (Katharopoulos et al., 2020), respectively.

We carried out experiments on the WuXi dataset with k=8. As presented in Tab. 9, both variants achieve at least approximately
10× speed-up compared to ProDDPM, while only experiencing minor performance reductions. These findings indicate that
our proposed model serves as a general framework. It can be effectively combined with various acceleration techniques,
thereby facilitating its deployment in real-world applications and addressing the computational efficiency concerns associated
with diffusion models in the context of large-scale trajectory data.

Table 9. Accelerated verisons of the ProDiff model (Thpt: Throughput; PPT: Processing Per Time-unit)

Method TC@2k TC@4k TC@6k TC@8k TC@10k Thpt(s/sample) PPT(sample/s)

ProDDPM (Ours) 0.5752 0.7501 0.8236 0.8663 0.8945 77.9346 0.0128

ProDDIM(Ours) 0.5430 0.7131 0.7773 0.8303 0.8741 788.6852 0.0013

ProDDIM+LA(Ours) 0.5350 0.7197 0.7725 0.836 0.8785 768.5845 0.0013
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