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Abstract

Small Language Models (SLMs) have become001
increasingly important due to their efficiency002
and performance to perform various language003
tasks with minimal computational resources,004
making them ideal for various settings includ-005
ing on-device, mobile, edge devices, among006
many others. In this article, we present a com-007
prehensive survey on SLMs, focusing on their008
architectures, training techniques, and model009
compression techniques. We propose a novel010
taxonomy for categorizing the methods used to011
optimize SLMs, including model compression,012
pruning, and quantization techniques. We sum-013
marize the benchmark datasets that are useful014
for benchmarking SLMs along with the evalua-015
tion metrics commonly used. Additionally, we016
highlight key open challenges that remain to be017
addressed. Our survey aims to serve as a valu-018
able resource for researchers and practitioners019
interested in developing and deploying small020
yet efficient language models.021

1 Introduction022

Large Language Models (LLMs) have demon-023

strated remarkable capabilities across a wide ar-024

ray of natural language tasks, achieving state-of-025

the-art performance on numerous benchmarks and026

real-world applications. However, their success027

comes at a significant cost, requiring substantial028

computational resources for both training and in-029

ference, often necessitating deployment on spe-030

cialized hardware in data centers. This resource031

intensity poses challenges for accessibility, cost-032

effectiveness, and the ability to deploy these mod-033

els in resource-constrained environments.034

In response to these limitations, there has been035

a growing interest in Small Language Models036

(SLMs). In this survey, we primarily target lan-037

guage models with a parameter count below 1038

billion parameters. This range reflects a balance039

between model capacity and the ability to deploy040

efficiently on devices such as smartphones, edge041

devices, and embedded systems. Importantly, the 042

effective size of a model also depends on the bit- 043

precision of its parameters, as memory footprint 044

and computational cost vary significantly across 045

precision levels. While the definition of "small" is 046

inherently relative and may evolve over time with 047

advancements in hardware and model compression 048

techniques, models in this range represent the cur- 049

rent frontier of resource-efficient NLP. 050

The primary goal of SLMs is to retain a sub- 051

stantial portion of the accuracy and adaptability of 052

LLMs while operating under specific constraints. 053

These constraints may include limitations on train- 054

ing or inference hardware, data availability, band- 055

width, or latency requirements. By optimizing 056

model performance relative to these constraints, 057

SLMs can enable downstream goals such as en- 058

hanced privacy, reduced operational costs, and the 059

ability to run complex natural language processing 060

tasks on consumer devices. 061

This survey examines key techniques for build- 062

ing and inferring SLMs, focusing on architectures, 063

training methods, and model compression for ef- 064

ficiency. We will also summarize the benchmark 065

datasets and evaluation metrics commonly used to 066

assess SLM performance. To structure this explo- 067

ration, we propose a novel taxonomy for organizing 068

methods along two axes: 069

• The techniques used in pre-processing 070

(model architecture), training, and post- 071

processing (model compression) SLMs; and 072

• The constraints the technique is attempting 073

to optimize for, such as inference compute, 074

training time, speed, etc. 075

An overview of these axes can be found in Table 1 076

(techniques) and Table 2 (constraints). 077

It is important to note that progress on any one 078

of these goals does not necessarily imply progress 079

on the others. In fact, there are often trade-offs 080

between them. For instance, memory-efficient 081

training methods like quantization-aware training 082
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(Dettmers et al., 2022a, 2024) are often slower than083

their full-precision counterparts. However, by us-084

ing mixed precision to represent the weights and085

gradients, they allow training or finetuning using086

less memory. Finally, although there have been087

several recent surveys on LLMs and their learn-088

ing methods (Rogers et al., 2020; Min et al., 2021;089

Zhu et al., 2023; Shen et al., 2023), to the best of090

our knowledge, this is the first survey focused on091

SLMs.092

Organization of the Survey. This survey is struc-093

tured into three main sections, each covering a key094

aspect of optimizing SLMs. Section 2 focuses on095

model architectures, including lightweight designs,096

efficient self-attention approximations, and neu-097

ral architecture search to efficiently build smaller098

models. Section 3 covers efficient pre-training099

and fine-tuning techniques to enhance performance100

for SLMs while managing resource constraints.101

Section 4 explores model compression techniques,102

such as pruning, quantization, and knowledge dis-103

tillation, which reduce model size and latency with-104

out sacrificing significant accuracy. Section 5 intro-105

duces an overview of benchmark datasets and eval-106

uation metrics, providing a comprehensive frame-107

work for assessing the effectiveness of these meth-108

ods. Section 6 discusses the applications that are109

enabled by SLMs, organized by constraints. Fi-110

nally, a discussion of open challenges for SMLs is111

presented in Appendix D.112

Summary of Main Contributions. The key con-113

tributions of this work are as follows:114

• A comprehensive survey of existing work on115

small language models for practitioners. We116

also survey the problem settings, evaluation117

metrics, and datasets used in the literature.118

• We introduce a few intuitive taxonomies for119

SLMs and survey existing work using these120

taxonomies.121

• We identify important applications, open prob-122

lems, and challenges of SLMs for future work123

to address.124

2 Model Architectures125

This section discusses the architectural designs126

for developing SLMs. Specifically, we cover127

lightweight architectures (Section 2.1), efficient128

self-attention approximations (Section 2.2), and129

neural architecture search (Section 2.3).130

2.1 Lightweight Architectures 131

Lightweight language model architectures are 132

designed to achieve efficient performance with 133

fewer parameters and reduced computational over- 134

head, which is ideal for deployment on resource- 135

constrained devices such as mobile phones, edge 136

devices, and embedded systems. Representative 137

lightweight models often follow the encoder-only 138

and decoder-only architectures. 139

Lightweight encoder-only architectures are 140

mostly optimized versions of BERT (Devlin et al., 141

2019). For example, MobileBERT (Sun et al., 142

2020) introduces an inverted-bottleneck structure 143

to maintain a balance between self-attention and 144

feed-forward networks, achieving a 4.3x size re- 145

duction and a 5.5x speedup compared to the base 146

version of BERT. DistilBERT (Sanh, 2019) and 147

TinyBERT (Jiao et al., 2019) achieve more than 148

96% of BERT’s performance while being less than 149

45% smaller and 60% faster by leveraging language 150

modeling, distillation, and cosine-distance losses. 151

Lightweight decoder-only architectures are de- 152

signed to scale down autoregressive language mod- 153

els, such as GPT (Radford et al., 2018, 2019) 154

and the LLaMA series (Touvron et al., 2023b), 155

into compact and efficient models. These mod- 156

els emphasize knowledge distillation, memory 157

overhead optimization, parameter sharing, em- 158

bedding sharing to enhance efficiency and scal- 159

ability. BabyLLaMA (Timiryasov and Tastet, 160

2023a) and BabyLLaMA-2 (Tastet and Timiryasov, 161

2024) distill knowledge from multiple teachers into 162

a 58M-parameter model and a 345M-parameter 163

model respectively, demonstrating that distillation 164

can exceed teacher models’ performance partic- 165

ularly under data-constrained conditions. TinyL- 166

LaMA (Zhang et al., 2024), with only 1.1B pa- 167

rameters, achieves high efficiency by optimiz- 168

ing memory overhead, e.g., via FlashAttention 169

(Dao et al., 2022), while maintaining competi- 170

tive performance for various downstream tasks. 171

MobilLLaMA (Thawakar et al., 2024) applies a 172

parameter-sharing scheme that reduces both pre- 173

training and deployment costs, introducing a 0.5B- 174

parameter model for resource-constrained devices. 175

MobileLLM (Liu et al., 2024d) investigates the im- 176

pact of model depth (i.e., number of layers) and 177

width (i.e., number of heads) on performance, ef- 178

fectively conducting a targeted architecture search 179

within a smaller parameter range for language mod- 180

els with millions of parameters. 181
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Model Architectures (Sec. 2)
Lightweight Models (Sec. 2.1) ✓ ✓ ✓ ✓

Efficient Self-Attention (Sec. 2.2) ✓ ✓ ✓ ✓

Neural Arch. Search (Sec. 2.3) ✓ ✓ ✓

Training Techniques (Sec. 3)
Pre-training (Sec. 3.1) ✓ ✓ ✓ ✓ ✓

Finetuning (Sec. 3.2) ✓ ✓

Model Compression (Sec. 4)

Pruning (Sec. 4.1) ✓ ✓ ✓ ✓

Quantization (Sec. 4.2) ✓ ✓ ✓ ✓

Knowledge Distillation (Sec. 4.3) ✓

Table 1: General techniques used for optimizing small language models, categorized by type of model optimization
and most central constraints they address.

2.2 Efficient Self-Attention Approximations182

Deploying large language models can be challeng-183

ing due to the substantial number of parameters in184

the self-attention layers, as well as the computa-185

tional cost associated with self-attention. In this186

section, we discuss strategies towards decreasing187

this computational cost which can ultimately be188

useful in creating small language models.189

Reformer (Kitaev et al., 2020) improves the190

complexity of the self-attention from O(N2) to191

O(N logN) by replacing the dot product attention192

with one which uses locality-sensitivity hashing.193

Roy et al. (2021) use a sparse routing module based194

on an online k-means clustering, which reduces the195

complexity of the attention computation.196

To reduce the computational quadratic com-197

plexity of the self-attention layer from O(N2)198

to O(N), several works, including (Wang et al.,199

2020a; Katharopoulos et al., 2020; Xiong et al.,200

2021; Beltagy et al., 2020), propose linear atten-201

tion mechanisms. In particular, (Katharopoulos202

et al., 2020) express self-attention as a linear dot-203

product of kernel feature maps, thus reducing the204

quadratic complexity. The authors further show205

that transformers with this linear attention mecha-206

nism can be viewed as a recurrent neural network207

which enables faster inference. Building on these208

foundations, recent advancements have led to more209

advanced architectures. Notable examples include210

Mamba (Gu and Dao, 2023; Dao and Gu, 2024),211

which introduces a selective state space model212

with input-dependent transitions, and RWKV (Peng213

et al., 2023a), which combines elements of trans- 214

formers and RNNs with a linear attention mecha- 215

nism. These models not only achieve linear time 216

and space complexity but also demonstrate com- 217

petitive performance across various tasks. This 218

ongoing trend towards efficient sequence modeling 219

architectures aims to maintain the expressiveness 220

of attention-based models while significantly re- 221

ducing computational complexity. 222

Hybrid models that combine the efficiency of 223

SSMs with the recall capabilities of attention 224

mechanisms have also gained attention. Mam- 225

baFormer (Park et al., 2024) interleaves Mamba- 226

based SSM layers with attention modules, im- 227

proving in-context learning capabilities. Similarly, 228

Jamba (Lieber et al., 2024) employ sequentially 229

stacked Mamba-Attention layers to enhance perfor- 230

mance on long-sequence tasks. Samba (Ren et al., 231

2024) extends this idea by introducing a block 232

structure that alternates between Mamba, MLP, and 233

SWA layers, achieving constant throughput as se- 234

quence lengths increase. Hymba (Dong et al., 2024) 235

further innovates with a hybrid-head architecture 236

combining attention for recall and SSMs for effi- 237

cient summarization, achieving state-of-the-art effi- 238

ciency and accuracy for small LMs. These hybrid 239

designs illustrate the effectiveness of combining 240

complementary mechanisms to address the limita- 241

tions of standalone architectures. Finally, refer to 242

Appendix C for a discussion on small multi-modal 243

models. 244
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2.3 Neural Architecture Search Techniques245

This section discusses automated methods to dis-246

cover the most efficient model architectures for247

specific tasks and hardware constraints. Previous248

research has primarily concentrated on Neural Ar-249

chitecture Search (NAS) for vision tasks (Tan and250

Le, 2019; Zoph and Le, 2016; Wu et al., 2019;251

Guo et al., 2020) and BERT models (Xu et al.,252

2021; Jawahar et al., 2023; Ganesan et al., 2021), as253

these models have comparatively fewer parameters,254

which reduces the cost of the search process for255

efficient architectures. However, models with over256

a billion parameters pose a significant challenge in257

searching for smaller, more efficient models.258

3 Training Techniques259

This section explores training techniques specif-260

ically optimized for Small Language Models261

(SLMs), with a primary focus on how these meth-262

ods enable efficient training within limited resource263

environments. A key consideration is the inter-264

play between model size and bit-precision, as a265

model with a large parameter count at a very low266

bit-precision may have a similar memory footprint267

to a model with fewer parameters at a higher bit-268

precision.269

3.1 Low-Resource Pre-training270

Low-Precision Training SLMs are designed to271

operate under strict memory constraints. There-272

fore, training with extremely low precision allows273

these models to fit within limited resources. This274

approach enables significant memory savings, al-275

lowing for larger batch sizes or more complex276

models within the same memory footprint. Au-277

tomatic Mixed Precision (AMP) with FP16 (Mi-278

cikevicius et al., 2018) has been widely adopted279

for its efficiency, but its limited dynamic range can280

lead to numerical instability. BFLOAT16 (Burgess281

et al., 2019), with its broader dynamic range, of-282

fers greater stability and is particularly effective for283

smaller batch sizes. Further efficiency gains can be284

achieved with FP8 formats, supported by hardware285

like NVIDIA’s Hopper architecture. These formats286

reduce memory usage and accelerate computation287

but require advanced techniques, such as dynamic288

scaling, stochastic rounding, and hybrid formats,289

to maintain numerical stability. Innovations like290

FP8-LM (Peng et al., 2023b) and methods for scal-291

ing FP8 training to trillion-token LLMs (Fishman292

et al., 2024) demonstrate the effectiveness of these293

approaches. For even greater savings, integer-based 294

training with INT8 and INT4 formats offers com- 295

pelling benefits. Techniques like Jetfire (Xi et al., 296

2024) and INT4 training (Xi et al., 2023) rely on 297

precise quantization to minimize accuracy loss. 298

Emerging methods such as BitNet (Wang et al., 299

2023) and BitNet-1.58 (Ma et al., 2024), which 300

use 1-bit weights and low-bit activations, achieve 301

extreme memory reductions. It is important to note 302

that the choice of precision—ranging from FP16 to 303

INT4 or 1-bit should be guided by the trade-offs be- 304

tween hardware compatibility, training speed, and 305

model accuracy. 306

Parallelism Training: SLMs are typically pre- 307

trained across multiple machine nodes to leverage 308

distributed computing resources efficiently. Several 309

system-level optimization techniques have been de- 310

veloped to this end. Zero Redundancy Data Par- 311

allelism (ZeRO) (Rajbhandari et al., 2020) offers 312

three progressive stages of optimization, each parti- 313

tioning more training states across devices: ZeRO-1 314

partitions optimizer states, ZeRO-2 adds gradient 315

partitioning, and ZeRO-3 further partitions model 316

parameters. PyTorch’s Fully Sharded Data Paral- 317

lel (FSDP) (Zhao et al., 2023b) implements simi- 318

lar concepts. These parallelism techniques enable 319

training with larger batch sizes, significantly im- 320

proving efficiency and scalability for SLMs. 321

3.2 Fine-tuning Techniques 322

Fine-tuning on smaller, task-specific datasets al- 323

lows models to leverage the knowledge gained dur- 324

ing pre-training, enabling them to excel in special- 325

ized tasks or domains. Fine-tuning techniques are 326

designed to address challenges like limited com- 327

puting resources, data quality, availability, and ro- 328

bustness, ensuring efficient adaptation to new tasks 329

without extensive retraining. 330

3.2.1 Parameter-Efficient Fine-Tuning 331

Parameter-Efficient Fine-Tuning (PEFT) updates 332

a small subset of parameters or adds lightweight 333

modules, keeping most of the pre-trained model’s 334

parameters fixed. This approach reduces computa- 335

tional costs during SLM fine-tuning, preserves the 336

model’s pre-trained knowledge, minimizes overfit- 337

ting, and improves flexibility. 338

LoRA uses low-rank decomposition (Hu et al., 339

2021), Prompt Tuning (Lester et al., 2021) inserts 340

learnable prompts into inputs, and Llama-Adapter 341

(Zhang et al., 2023b; Gao et al., 2023) adds prompts 342

to LLaMA’s attention blocks. Dynamic Adapters 343
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(Kong et al., 2024; Feng et al., 2024; Gou et al.,344

2023; Liu et al., 2023b; Luo et al., 2024b) automat-345

ically combine multiple adapters as a mixture-of-346

experts model to enable multi-tasking and prevent347

forgetting (Han et al., 2024; Yang et al., 2024).348

To further optimize PEFT, some tools combine349

these techniques with fused kernels for improved350

performance and resource efficiency. For example,351

Unsloth (Daniel Han and team, 2023) is a cutting-352

edge tool that enables fine-tuning of large-scale353

models up to 5x faster, while reducing memory us-354

age by as much as 80%. By leveraging innovations355

such as dynamic 4-bit quantization and gradient356

checkpointing, Unsloth accelerates training with-357

out sacrificing accuracy.358

3.2.2 Data Augmentation359

Data augmentation increases the complexity, di-360

versity and quality of training data, leading to im-361

proved generalization and performance on down-362

stream tasks. AugGPT (Dai et al., 2023) rephrases363

training samples using ChatGPT. Evol-Instruct (Xu364

et al., 2023) uses multistep revisions to generate365

diverse, open-domain instructions with increased366

complexity. Reflection-tuning (Li et al., 2023a,367

2024a) enhances data quality and instruction-368

response consistency for instruction tuning by re-369

fining both instructions and responses using GPT-370

4 based on predefined criteria. FANNO (Zhu371

et al., 2024) augments instructions and generates372

responses by incorporating external knowledge373

sources through retrieval-augmented generation.374

LLM2LLM (Lee et al., 2024b) generates more hard375

samples based on model prediction on training data376

during training.377

Data augmentation is also effective for synthe-378

sizing new data when training data is limited, such379

as for low-resource languages (Whitehouse et al.,380

2023), medical and clinical applications (Chinta-381

gunta et al., 2021), and privacy-sensitive data (Song382

et al., 2024), enabling models to generalize better383

and perform more robustly in constrained settings.384

4 Model Compression Techniques385

Model compression techniques focus on reducing386

the size and complexity of large pre-trained lan-387

guage models while maintaining their performance.388

As a result, these methods are a key approach to389

deriving SLMs from LLMs. In this section, we pro-390

pose a taxonomy for model compression that cate-391

gorizes such techniques by whether they perform392

pruning (Section 4.1), quantization (Section 4.2), 393

or knowledge distillation (Section 4.3). 394

4.1 Pruning Techniques 395

Weight pruning is a model optimization technique 396

that reduces the number of parameters to enhance 397

computational efficiency and lower memory usage, 398

all while maintaining performance levels. We dif- 399

ferentiate between two major approaches for prun- 400

ing: unstructured pruning and structured pruning. 401

Unstructured pruning removes less significant 402

individual weights, offering fine-grained control 403

and flexibility in reducing model size. For exam- 404

ple, to perform irregular pruning on large language 405

models, SparseGPT (Frantar and Alistarh, 2023) 406

reformulates the pruning task as a sparse regres- 407

sion problem, optimizing both the remaining and 408

pruned weights using a layer-wise approximate re- 409

gression solver. SparseGPT can efficiently handle 410

large-scale models like OPT-175B and BLOOM- 411

176B. Additionally, (Boža, 2024) integrates the 412

ADMM (Boyd et al., 2011) algorithm for weight 413

updates to further mitigate pruning errors. 414

Structured pruning (Wang et al., 2020b; San- 415

tacroce et al., 2023; Ma et al., 2023; Tao et al., 416

2023; Xia et al., 2024; Kurtić et al., 2024) aims to 417

compress LLMs while maintaining performance 418

by removing groups of parameters in a structured 419

manner, which enables more efficient hardware im- 420

plementation. A major direction in this approach 421

concerns the sparsity of neurons in the model. For 422

instance, Li et al. (2023b) observes prevalent spar- 423

sity in feed-forward networks. Liu et al. (2023e) 424

proposes using small neural networks for dynamic 425

pruning based on input, termed “contextual spar- 426

sity”. Mirzadeh et al. (2024) change the activation 427

functions in pre-trained models to ReLU and fine- 428

tune to improve activation sparsity. 429

Recent work has also addressed the redundancy 430

in the Transformer architecture to achieve reduc- 431

tion of GPU memory usage and speed enhance- 432

ment (Michel et al., 2019; Voita et al., 2019; Ge 433

et al., 2024). For example, Sajjad et al. (2023); 434

Xia et al. (2022) investigates the layer redundancy 435

for effective structured pruning. We also highlight 436

input-dependent pruning methods, such as contex- 437

tual sparsity (Liu et al., 2023e) and FastGen (Ge 438

et al., 2024), which should be considered along 439

with the challenges of efficient implementation for 440

optimizing computation and memory. Appendix A 441

provides further discussion of pruning techniques. 442
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4.2 Quantization443

Quantization is widely adopted to compress LLMs444

with vast parameter counts. The GPTQ (Frantar445

et al., 2022) focuses on layer-wise weight-only446

quantization, using inverse Hessian matrices to447

minimize the reconstruction error. To fully lever-448

age the benefits of fast integer matrix multiplica-449

tion, more quantization methods (Liu et al., 2023a;450

Dettmers et al., 2022b; Kim et al., 2023; Xiao et al.,451

2023; Yao et al., 2022; Lin et al., 2024; Liu et al.,452

2023d, 2024c, 2023c; Shao et al., 2023) that quan-453

tize both weights and activations are increasingly454

being adopted for LLMs. AWQ (Lin et al., 2024)455

and ZeroQuant (Yao et al., 2022) take activation456

into account to assess the importance of weights,457

enabling more effective optimization for weight458

quantization. In addition, for K/V Cache Quanti-459

zation (Hooper et al., 2024; Liu et al., 2024e; Yue460

et al., 2024), Key-Value cache is specifically quan-461

tized for enabling efficient long-sequence length462

inference.463

Another challenge of activation quantization lies464

in the outliers that fall outside the typical activa-465

tion distribution. SmoothQuant (Xiao et al., 2023)466

smoothes activation outliers by migrating quanti-467

zation difficulty from activations to weights. Spin-468

Quant (Liu et al., 2024c) introduces rotation ma-469

trices to transform outliers into a new space. Re-470

cently, quantization-aware training (QAT) methods,471

such as LLM-QAT (Liu et al., 2023d) and Edge-472

QAT (Shen et al., 2024b), have gained attention473

due to the strong performance. Both methods adopt474

distillation with float16 models to recover the quan-475

tizationi error. We also note recent work (Shen476

et al., 2024a,b; Zeng et al., 2024) that implements477

the quantized LLMs on mobile devices and FPGAs478

to demonstrate the effectiveness and efficiency of479

the weight and activation quantization for LLMs.480

4.3 Knowledge Distillation Techniques481

In its classical form, knowledge distillation (Hinton482

et al., 2015) involves training an efficient model,483

known as the “student,” to replicate the behavior484

of a larger, more complex model, referred to as485

the “teacher.” In this section, we particularly fo-486

cus on distillation strategies from one or multiple487

white-box teacher language model to a target stu-488

dent language model.489

Babyllama (Timiryasov and Tastet, 2023b) is490

among the first to develop a compact 58M param-491

eter language model using a Llama model as the492

teacher. A key finding of this work is that distil- 493

lation from a robust teacher can outperform tra- 494

ditional pre-training on the same dataset. In a 495

similar vein, (Gu et al., 2024) introduce mod- 496

ifications in the distillation loss, which enables 497

the student models to generate better quality re- 498

sponses with improved calibration and lower ex- 499

posure bias. Sequence-level distillation loss can 500

also be improved by using a generalized version 501

of f-divergences as shown in (Wen et al., 2023). 502

Liang et al. (2023) extend layer-wise distillation 503

strategies for language models by using task-aware 504

filters which distill only the task specific knowl- 505

edge from the teacher. Recent works (Wan et al., 506

2024a,b) show that multiple language models can 507

be fused as a teacher towards distilling knowledge 508

into small language models by strategically merg- 509

ing their output probability distributions. 510

One of the issues in knowledge distillation for 511

language models is that the distillation strategies 512

are primarily effective when (1) the teacher and the 513

student language model share the same tokenizer 514

and (2) the teacher’s pre-training data is available. 515

Boizard et al. (2024) addresses this issue by intro- 516

ducing an universal logit distillation loss inspired 517

from the optimal transport literature. Often distil- 518

lation is also combined with pruning techniques 519

towards creating smaller language models. For ex- 520

ample, (Sreenivas et al., 2024; Muralidharan et al., 521

2024) show that an iterative step of pruning a large 522

language model followed by retraining with distil- 523

lation losses, can enable strong smaller models. 524

Recent advancements have explored methods be- 525

yond traditional label distillation by incorporating 526

additional supervision during the distillation pro- 527

cess to create smaller language models. Hsieh et al. 528

(2023) find that using “rationales” as an additional 529

source of supervision during distillation makes it 530

more sample-efficient. Moreover, the authors find 531

that the distilled model outperforms large-language 532

models on commonly used NLI, Commonsense QA 533

and arithmetic reasoning benchmarks. In a similar 534

vein, (Dai et al., 2024; Magister et al., 2023; Ho 535

et al., 2023; Fu et al., 2023) distill the reasoning 536

chain from a larger language model to a smaller 537

language model along with the label information. 538

Such distilled models have been shown to possess 539

improved arithmetic, multi-step math, symbolic 540

and commonsense reasoning abilities. 541
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Setting Constraints Datasets Metrics

Efficient Inference Latency SuperGLUE (Sarlin et al., 2020), SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017),
CoQA (Reddy et al., 2019), Natural Questions (NQ)
(Kwiatkowski et al., 2019)

Inference Time (Narayanan et al., 2023), Throughput
(Arora et al., 2024)

On-device/Mobile Memory TinyBERT (Jiao et al., 2020) and OpenOrca (Lian
et al., 2023)

Peak Memory Usage (Lee et al., 2024a), Memory
Footprint, Compression Ratio (Cao et al., 2024)

Privacy-Preserving Privacy PrivacyGLUE (Shankar et al., 2023), MIMIC (John-
son et al., 2020)

Privacy Budget (Yu et al., 2024), Noise Level
(Havrilla et al., 2024)

Energy-Efficient AI Energy Optimiza-
tion

- Energy Efficiency Ratio (Stojkovic et al., 2024b),
Thermal Efficiency, Idle Power Consumption (Patel
et al., 2024)

Table 2: Overview of Settings, Constraints, and Metrics.

5 Evaluation542

Table 2 presents different evaluation settings along543

with their corresponding datasets and metrics for544

SLMs. In this section, we focus on the evaluation545

metrics for SLMs. These settings and metrics are546

organized according to the constraints they address547

for SLMs. We discuss datasets used for evaluation548

in Appendix B.549

Latency Two key metrics to evaluate latency550

are inference time (Narayanan et al., 2023) and551

throughput (Arora et al., 2024). Inference time552

measures how quickly a model can process input553

and generate an output, which is crucial for user-554

facing applications that require immediate feed-555

back. Throughput, on the other hand, evaluates the556

number of tokens or samples a model can process557

in a given period, making it especially relevant for558

large-scale tasks or time-sensitive applications.559

Memory When deploying models in memory-560

constrained environments, memory efficiency be-561

comes a primary consideration. Metrics such as562

peak memory usage (Lee et al., 2024a) capture the563

highest amount of memory the model consumes564

during inference. Similarly, memory footprint and565

compression ratio (Cao et al., 2024) are used to566

measure how compact a model is and the efficiency567

of the compression techniques applied, enabling568

models to operate within memory constraints with-569

out sacrificing performance.570

Privacy Privacy budget (Yu et al., 2024), a mea-571

sure rooted in differential privacy, quantifies the572

model’s ability to protect sensitive information dur-573

ing both training and inference. Alongside this,574

noise level (Havrilla et al., 2024) measures the575

trade-off between privacy and accuracy by assess-576

ing how much noise is added to ensure privacy577

while maintaining the model’s performance.578

Energy Optimization The energy efficiency ra- 579

tio (Stojkovic et al., 2024b) evaluates the energy 580

used relative to the model’s overall performance, 581

providing insights into how energy-intensive an 582

SLM is in practice. Other metrics, such as ther- 583

mal efficiency and idle power consumption (Patel 584

et al., 2024), measure the energy consumed when 585

the model is either actively processing tasks or 586

idle, which is crucial for long-term deployment in 587

energy-constrained environments like embedded 588

systems or mobile devices. 589

6 Applications 590

In this section, we consider applications of SLMs, 591

that is, specific use-cases like translation and auto- 592

completion. 593

6.1 Real-Time Interaction 594

GPT-4o, released in May 2024, processes text, vi- 595

sion, and audio input end-to-end and is faster than 596

GPT-4 Turbo (OpenAI, 2024b). The demonstration 597

involved responses in the style of human conver- 598

sation. LLaMA-Omni combine a speech encoder, 599

adaptor, LLM, and streaming decoder to enable 600

real-time interaction with speech input based on 601

LLaMA-3-8B-Instruct (Fang et al., 2024). Emo- 602

tionally Omni-present Voice Assistant, or EMOVA, 603

apply LLaMA-3.1-8B as an end-to-end speech 604

model that can generate poems and describe images 605

at the user’s request. Google Deepmind’s Project 606

Astra uses Gemini to process audio and video infor- 607

mation from a smartphone or glasses and respond 608

to respond to queries like mathematics problems 609

and memorize object sequences (Deepmind, 2024). 610

6.2 Content Generation and Processing 611

LLMR uses LLMs in mixed reality to generate 612

and modify 3D scenes. It combines language mod- 613

els used in several roles - a Scene Analyzer GPT 614
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Real-Time Interaction

Chatbots Real-time response needed, lightweight ✓ ✓ ✓ ✓

Voice Interfaces Low latency required for real-time ✓ ✓ ✓

Translation Real-time translation with low-resources ✓ ✓ ✓ ✓

Content Generation

Text Summarization Faster inference, minimal resource use ✓ ✓ ✓ ✓

& Processing

Sentiment Analysis Efficient analysis in low-resource envir. ✓ ✓ ✓ ✓

Text Classification Low latency, on-the-fly processing ✓ ✓ ✓ ✓

NLP for Search Low latency for real-time search ✓ ✓ ✓

Autocompletion Fast prediction with low memory ✓ ✓ ✓ ✓

Table 3: Taxonomy of Applications of Small Language Models.

to summarize objects and give further details like615

color, Skill Library GPT to determine what is re-616

quired to fufill a user’s request, Builder GPT to617

generate code for the request, and Inspector GPT618

to evaluate its code (Torre et al., 2024). Dream-619

CodeVR assists users in editing an application in620

the Unity engine through code generation (Giunchi621

et al., 2024; Juliani et al., 2020). This permits users622

to edit VR applications without requiring extensive623

programming knowledge.624

6.3 Edge Inference and Privacy625

On-device LLMs maintain usability even when626

MobileLLM improve on various chat benchmarks627

and performs comparably with LLaMA-2-7B in628

API calling (Liu et al., 2024d). Apple Intelli-629

gence applies an 3B parameter model to perform630

on-device inference for a broad range of tasks,631

such as text and notification summarization, im-632

age and emoji generation, and code completion633

for XCode (Gunter et al., 2024; Research, 2024).634

On-device inference reduces latency as measured635

by the time to first generated token (Hu et al.,636

2024; Gerganov). HuatuoGPT is a domain-adapted637

LLM for medical dialogue and BioMistral is an638

LLM tailored for biomedical work (Zhang et al.,639

2023a; Labrak et al., 2024). Applications related640

to medicine may need to adhere to stringent pri-641

vacy regulations and represent a promising area for642

future work. TalkBack with GeminiNano assists643

blind and low vision people by describing and cap-644

tioning images and runs on Android devices (Team,645

2024b). On-device inference makes this technol-646

ogy usable without an internet connection. 647

Mixture-of-Experts can reduce inference cost 648

by using a gating network to use only a subset of 649

layers during inference time (Shazeer et al., 2017). 650

Google’s GLaM uses mixture-of-experts (Du et al., 651

2022) but is a 1.2T parameter model. EdgeMoE ex- 652

tend misture-of-experts to edge computing using an 653

Nvidia Jetson TX2 and Raspberry Pi 4B, with the 654

latter device being CPU-only (Sarkar et al., 2023). 655

Based on experimental findings that most weights 656

contribute little to the final computation, the au- 657

thors compress weights and predict the relevant 658

experts in advance. 659

Finally, we discuss open problems and highlight 660

important areas for future work of SLMs in Ap- 661

pendix D. Key issues include hallucination, bias, 662

inference energy efficiency, and data privacy. 663

7 Conclusion 664

This paper has surveyed SLMs including model 665

architectures, training techniques, and model com- 666

pression techniques for optimizing SLMs. We also 667

introduced an intuitive taxonomy of evaluation met- 668

rics for SLMs and summarize various settings and 669

applications where they are important. Further- 670

more, we summarized the training and benchmark 671

datasets that have been used for SLMs. Finally, we 672

highlighted the fundamental challenges and open 673

problems that remain to be addressed. We hope 674

this survey serves as a valuable resource for both 675

researchers and practitioners. driving the next ad- 676

vancements in small yet powerful language models. 677
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8 Limitations678

While SLMs present a broad array of benefits, risks679

and limitations must also be considered. Halluci-680

nation (discussed in Appendix D.1) and reinforce-681

ment of societal biases (discussed in Appendix D.2)682

are widely recognized risks of large language mod-683

els. While research has been performed to mea-684

sure and reduce these behaviors, they have yet to685

be fully mitigated. Utama et al. (2020) introduce686

a framework to reduce self-bias without the spe-687

cific bias known at test time. Such methods may688

become more effective with general increases in689

model capability. However, risks specific to groups690

from which researchers are not primarily drawn691

may remain unrecognized.692
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A Further Discussion on Pruning1589

Techniques1590

For unstructured pruning for SLMs, we further1591

note that Wanda (Sun et al., 2023) incorporates1592

both weights and activations into consideration dur-1593

ing pruning process, and eliminates the need of1594

weight updates. In addition, the n:m pruning strat-1595

egy (Zhou et al., 2021) brings unstructured pruning1596

to model acceleration by pruning exactly n weights1597

out of every m, balancing pruning flexibility and1598

computational efficiency for significant speedups.1599

NVIDIA’s TensorRT leverages such sparse patterns1600

to optimize memory access and reduce computa-1601

tional loads, accelerating inference on GPUs, par-1602

ticularly hardware like the A100. Additionally, the1603

n:m sparse pattern can also be applied in edge AI1604

applications on NVIDIA Jetson Nano to enhance1605

power efficiency and optimize model size. Finally,1606

unstructured pruning often results in sparse matri-1607

ces requiring specialized hardware or algorithms1608

to maximize computational benefits (Frantar and1609

Alistarh, 2023).1610

B Datasets1611

In this section, we outline the datasets commonly1612

used for pre-training and evaluating SLMs across1613

various settings in Table 2. These datasets are im-1614

portant for developing models with a diverse range1615

of contexts, enabling the models to generalize ef-1616

fectively across different learning settings.1617

Efficient Inference This setting requires mod-1618

els to generate output as quickly as possible, with1619

minimal latency and high throughput. Evaluation1620

datasets for this setting often focus on tasks that1621

require fast response times, such as question an-1622

swering, text classification, and natural language1623

understanding. To this end, some of the exam-1624

ple evaluation datasets for this setting can include1625

SuperGLUE (Sarlin et al., 2020), SQuAD (Ra-1626

jpurkar et al., 2016), TriviaQA (Joshi et al., 2017),1627

CoQA (Reddy et al., 2019), Natural Questions1628

(NQ) (Kwiatkowski et al., 2019), and many more1629

(Chang et al., 2024) that cover various tasks that1630

require faster response time.1631

Privacy-preserving Privacy-preserving datasets1632

play an important role in enabling the development1633

of SLMs while safeguarding sensitive information.1634

Datasets such as PrivacyGLUE (Shankar et al.,1635

2023) apply differential privacy techniques to com-1636

mon tasks such as sentiment analysis. Anonymized1637

datasets such as MIMIC (Johnson et al., 2020) and 1638

n2c2 datasets1 contain de-identified clinical notes 1639

for medical tasks, protecting personal health in- 1640

formation. Additionally, federated datasets such 1641

as LEAF2 allow data to remain distributed across 1642

devices, supporting privacy by design through fed- 1643

erated learning frameworks. 1644

TinyML and On-device In these settings, the 1645

focus is on deploying SLMs in highly resource- 1646

constrained environments. Frameworks such as 1647

TinyBERT (Jiao et al., 2020) and OpenOrca (Lian 1648

et al., 2023) play a pivotal role by enabling the train- 1649

ing and evaluation of SLMs on curated datasets 1650

tailored for such environments. TinyBERT, a dis- 1651

tilled version of BERT, is optimized for both size 1652

and speed, making it suitable for on-device applica- 1653

tions with minimal latency requirements. Similarly, 1654

subsets like OpenOrca provide useful datasets that 1655

balance performance and resource constraints, sup- 1656

porting the development of small, efficient models 1657

that can be deployed on low-power devices without 1658

sacrificing accuracy. 1659

C Small Multi-modal Models 1660

Recent large multi-modal models (LMMs) have 1661

achieved comparable or superior performance to 1662

their predecessors while significantly reducing the 1663

number of parameters. Notable examples include 1664

the LLaVA-Next (Liu et al., 2024a), Idefics2 (Lau- 1665

rençon et al., 2024), and InternVL2 (Chen et al., 1666

2023) series. This progress is partly driven by more 1667

efficient, smaller language models like Gemma 1668

(Team et al., 2024), phi-3-mini (Abdin et al., 2024), 1669

and emphasizes the critical role of curated datasets. 1670

Additionally, there has been a concerted effort 1671

to reduce the size of the vision encoder during 1672

multi-modal fusion. InternVL2, for example, lever- 1673

ages outputs from intermediate layers of large vi- 1674

sual encoders while discarding the later blocks. 1675

Smaller models, such as PaliGemma (Beyer et al., 1676

2024) and Mini-Gemini (Li et al., 2024c), adopt 1677

lightweight vision encoders. Monolithic multi- 1678

modal models take this further by completely elimi- 1679

nating the visual encoder, instead using lightweight 1680

architectures to generate visual tokens. For exam- 1681

ple, Chameleon (Team, 2024a) employs a VQ-VAE 1682

model to encode and decode images into discrete 1683

tokens, while Mono-InternVL (Luo et al., 2024a) 1684

1https://portal.dbmi.hms.harvard.edu/
projects/n2c2-nlp/

2https://github.com/TalwalkarLab/leaf
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uses an MLP to generate visual tokens for image1685

patches, incorporating a modality-specific feed-1686

forward network, termed multi-modal Mixture-of-1687

Experts, to differentiate between modalities.1688

D Open Problems1689

In this section, we discuss open problems and high-1690

light important areas for future work. Hallucination1691

and bias are a concern shared by SLMs and LLMs1692

(Appendix D.1 and D.2). In Appendix D.3, we1693

discuss the increased demand of energy efficiency1694

during inference. Finally, we examine the privacy1695

risks of SLMs in Appendix D.4.1696

D.1 Hallucination1697

A pervasive problem with LLMs is hallucination,1698

defined as content that is nonsensical or untruth-1699

ful in relation to certain sources (OpenAI, 2024a).1700

OpenAI (2024a) propose that as users rely more1701

on models, the harm caused by hallucinations may1702

be increased. Hallucination can be classified into1703

two types: factuality and faithfulness (relevance).1704

With hallucination of factuality, the generation is1705

inconsistent with verifiable facts. In faithfulness1706

hallucination, generation lacks relevance to user1707

queries (Huang et al., 2023). HallusionBench, a1708

benchmark for image-context reasoning in vision-1709

language models, found that larger sizes reduced1710

hallucinations (Guan et al., 2024). Analysis of the1711

AMBER hallucination benchmark find that the type1712

of hallucination varies as parameter count changes1713

in Minigpt-4 (Wang et al., 2024). However, find1714

that bias increases with parameter count for the1715

LLaMA series of models (Zhao et al., 2023a). Fu-1716

ture work may need to consider not only how total1717

hallucinations change in SLMs, but also the type1718

and severity may be influenced by model size.1719

D.2 Biases1720

Language models have been found to reproduce1721

biases present in training data (Brown et al., 2020;1722

OpenAI, 2024a; Touvron et al., 2023a).1723

Measuring Bias Methods for measuring bias1724

such as Bias Benchmark for Question Answer-1725

ing (BBQ) (Parrish et al., 2022), RealToxici-1726

tyPrompts (Gehman et al., 2020), and Crowd-1727

sourced Stereotype Pairs benchmark (CrowS-1728

Pairs) (Nangia et al., 2020).1729

Influence of Parameter Count (Touvron et al.,1730

2023a) find that larger LLaMA models exhibit in-1731

creased measured bias on RealToxicityPrompts.1732

(Zhao et al., 2023a) replicate this with Stere- 1733

oSet (Nadeem et al., 2021) and their metric GPT- 1734

BIAS, which uses GPT-4 to classify responses as 1735

biased or unbiased. For comparable model sizes, 1736

LLaMA-2 had less measured bias than the previous 1737

generation (Touvron et al., 2023c). 1738

D.3 Inference-time Energy Use 1739

Energy efficiency is a high priority for SLMs, espe- 1740

cially when used on battery-powered devices. Hu- 1741

som et al. (2024) find that architecture significantly 1742

influences power consumption using the MELODI 1743

benchmar. CPU-only inference was found to be 1744

generally less efficient than on GPU and that lap- 1745

tops require more energy for inference. The au- 1746

thors find response token length to be the most 1747

effective predictor of energy usage, suggesting that 1748

more concise responses can help to extend battery 1749

life. Stojkovic et al. (2024a) find that energy usage 1750

can be reduced by about 20% with minimal impact 1751

to throughput by reducing GPU frequency. 1752

D.4 Data Privacy 1753

Privacy concerns can be broadly classified into 1754

three categories: training data, the system prompt 1755

used at inference time, and the user query. Query 1756

privacy is especially important in SLMs. 1757

Training Data Li et al. (2024b) address training 1758

and system prompt leaking. The authors find that 1759

the risk of training data leakage increased faster 1760

than their measure of utility for the model series 1761

Pythia (Biderman et al., 2023). They also find that 1762

data towards the end of pre-training is easier to 1763

extract, with attention layers as a possible cause. 1764

System Prompt Liu et al. (2024b) describe unau- 1765

thorized retrieval of the system prompt as prompt 1766

leaking and use of the prompt for unintended pur- 1767

poses as prompt abuse. They give the example of 1768

getting a prompt designed to rephrase user queries 1769

to generate code, leading to unexpected cost using 1770

Pear AI3. 1771

Inference-time Data Unlike with the leakage of 1772

training data and the system prompt, this primarily 1773

impacts the end-users of a model. In June 2024, 1774

Apple announced the application of language mod- 1775

els to the digital assistant Siri (Research, 2024). In 1776

the context of digital assistants, SLMs may need to 1777

interface with user data like location history or pro- 1778

tected health information. If such data were used to 1779

3https://www.parea.ai
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train or protect a model from misuse, users might1780

face externalities. Existing literature is limited.1781

20


