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Abstract. Mixed-Integer Linear Programming (MILP) is a widely used
method for modeling combinatorial optimization problems. Due to the
NP-hard nature of many of these problems, efforts using machine-learning
(ML) have been proposed to generate heuristics to speed up solvers, while
maintaining optimality. While there is prior work on using graph neural
networks (GNNs) to produce high-quality partial solutions, the meth-
ods used are non-auto-regressive which model the prediction of variables
as conditionally independent due to concerns with solver runtimes. In
this paper, we propose a novel auto-regressive reinforcement learning
(RL) framework using GNNs which directly optimize for optimality and
solver runtimes. Experimental results show our RL method outperforms
the benchmark Predict-And-Search (PNS) method on harder real-world
problems (55.7% speedup) with time limits and matches performance on
easier problems.

Keywords: Graph Neural Networks · ML for OR · Reinforcement Learn-
ing.

1 Introduction

Mixed-Integer Linear Programming (MILP) has widespread applications in var-
ious industries, from logistics to finance. These problems are combinatorial opti-
mization problems that can be formulated using linear constraints and objective
functions. Commercial solvers have been developed to tackle MILPs in general;
however, due to scalability issues, there is ample opportunity for data-driven
machine learning (ML) methods to learn domain-specific heuristics and solve
MILPs more efficiently.

[1, 3] is a primal heuristic that obtains a feasible solution for MILPs by assign-
ing all or a subset of variables. Prior ML-based diving approaches often assign
a subset of variables in a non-autoregressive manner (i.e., predicting all variable
assignments in parallel). These methods frame the task as learning a probability
distribution over variable assignments, which is trained to match the distribution
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of assignments sampled from a pool of reference solutions. A key assumption in
these approaches is that variable assignments are conditionally independent of
one another.

In contrast, this paper proposes a novel autoregressive constructive heuristic
for generating partial solutions to MILPs. By framing the task as learning a
policy that maximizes a cumulative reward. Incorporating both the optimality
gap and a time limit, we train a reinforcement learning (RL) model that directly
optimizes the optimality gap within a specified time budget, closely aligning with
real-world requirements.

Additionally, our method leverages the additive nature of partial-solution
construction by interleaving a variable propagation step into the process. This
reduces the number of variables that need to be predicted, distinguishing our
approach from existing methods.

The contributions of this paper are as follows: i) a novel constructive heuris-
tic that directly optimizes for a desired optimality gap within a specified time
limit; ii) a variable assignment propagation procedure, interleaved into the RL
environment, that reduces the number of assigned variables while maintaining
solution feasibility.

2 Related Work

2.1 Graph Neural Networks(GNNs) for MILPs

Before selecting an ML method to solve a MILP, the problem must be repre-
sented in a form that downstream models can ingest. MILPs are flexible: we
can add or remove decision variables and constraints, and both variables and
constraints are permutation invariant. Following [4], we represent a MILP as a
bipartite graph. This graph can be processed by GNNs to produce predictions
at the graph level, as well as at the variable-node and constraint-node levels.
A common architecture [4, 11, 6, 9] is the bipartite Graph Convolutional Net-
work (GCN), which uses separate learnable weights for message passing from
constraint to variable nodes and from variable to constraint nodes. Our work
extends the bipartite graph input representation and utilizes the bipartite GCN
as the underlying architecture.

2.2 Reinforcement Learning (RL) for Combinatorial Optimization

There is extensive literature on applying RL to combinatorial optimization,
but most approaches target specific problems—such as the Traveling Salesman
Problem (TSP) or the Maximum Independent Set (MIS)—and often rely on
hand-engineered decoding techniques [2].

RL-MILP [10] is an RL framework that trains a GNN model to learn a
local-search heuristic for mixed-integer programming. In contrast, our approach
formulates the task as learning a constructive heuristic that directly optimizes
both solution quality and solver runtimes.
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3 Preliminaries

3.1 MILP Formulation and Terminology

Formally, MILPs can be formulated as shown in Equation 1.

argmin
x

{c⊤x|x ∈ Zq × Rn−q, Ax ≤ b, l ≤ x ≤ u}, (1)

where

– x is a solution vector comprising q integer and (n− q) real components,
– c ∈ Rn is the objective-function coefficient vector,
– A ∈ Rm×n is the constraint-coefficient matrix,
– b ∈ Rm is the right-hand-side (RHS) constant vector,
– l, u ∈ Rn are the component-wise lower and upper bounds on x.

We adopt the following terminology throughout the paper:

– LHS: the left-hand-side linear expression in each constraint (row of Ax).
– RHS: the right-hand-side constant term in each constraint (b).
– Sense: the inequality symbol (≤, ≥, =). Although one can standardize a

MILP to a single sense (e.g., all constraints as “≤”), we retain each original
sense, since different inequalities may require distinct feature-engineering
treatments.

– LB / UB: the lower and upper bounds on the LHS value given a partial
assignment x. We denote these bounds by LBx and UBx, respectively.

3.2 Bipartite Graph Representation

A key development in applying ML techniques to MILP problems has been the
introduction of graph-based representations. Gasse et al. [4] proposed a loss-
less representation of MILPs as bipartite graphs. This formulation captures the
structure of a MILP in a way that can be efficiently processed by graph neural
networks (GNNs).

In this representation, one set of nodes corresponds to the MILP’s variables,
while the other represents its constraints. Edges connect each variable to the
constraints in which it appears, and the edge weights encode the corresponding
coefficients from the constraint matrix. This approach enables the encoding of
both the problem’s structural information and its numerical data.

The bipartite graph representation offers several advantages:

1. It naturally captures variable–constraint interactions.
2. It enables the use of graph-based ML models (e.g., GNNs) that can effectively

learn from graph-structured data.
3. It scales to large MILP instances, since the size of the graph grows linearly

with the number of variables and constraints.

This graph-based approach has been used in various ML frameworks for
MILP solving, including those that predict branching decisions in branch-and-bound
algorithms and those that generate initial solutions or guide the search process
[4, 11, 9].



4 P. Tang et al.

3.3 Reinforcement Learning

The fundamental components of RL include the environment, states, actions, and
rewards. Let S denote the set of possible states, A the set of possible actions, and
R the set of possible rewards. At each time step t, the agent observes the current
state st ∈ S, takes an action at ∈ A, and receives a reward rt ∈ R from the
environment. The environment then transitions to a new state st+1 according to
a transition probability function P (st+1|st, at). The agent’s behavior is governed
by a policy π : S → A, which maps states to actions. The agent’s goal is to learn
a policy π that maximizes the expected cumulative reward.

3.4 MDP Formulation

Previous work commonly predicts all decision variables in a non-autoregressive
manner, primarily due to concerns over long training times associated with au-
toregressive models. As a result, these methods explicitly model the probability
distribution of variable assignments under the assumption of conditional inde-
pendence, as shown in Equation 2.

pθ(x|M) =

n∏
i=1

pθ(xi|M) (2)

As noted in previous work, a key limitation of non-autoregressive prediction
is its inability to capture multi-modal distributions. In contrast, our approach
employs an autoregressive model that avoids the strong assumption that optimal
solutions to an MILP are unimodal. We empirically evaluate the benefits of our
method on MILP instances known to exhibit multi-modality.

To formulate an autoregressive model, we build upon an idea proposed in the
autoregressive ablation study from [11]. The study introduced a fixed number
and order of variables to be predicted at each step and explored three different
variable ordering strategies: input order, objective coefficient order, and frac-
tionality order. The formulation is presented in Equation 3.

pθ(x|M) =

D∏
d=1

pθ(xd|xd−1, xd−2, ..., x1;M) (3)

Our work proposes to allow the GNN to vary the number and order of vari-
ables predicted per step, as well as allow the agent to terminate the partial
solution construction process to allow the solver to complete the remaining as-
signments.

Our approach allows the GNN to vary both the number and order of vari-
ables predicted at each step, and enables the agent to terminate partial solution
construction early, deferring the remaining assignments to the solver.
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Fig. 1. Overall framework: our approach employs a reinforcement learning–based con-
structive heuristic that predicts a subset of variable assignments at each step. Once a
terminal state is reached, the MILP is solved with the partially assigned variables.

4 Methodology

We propose a novel reinforcement learning framework to solve MILPs.

1. Bipartite Graph Construction. We begin by converting the MILP into a
bipartite graph, with one node set for variables and another for constraints.
Edge weights encode the corresponding entries of the constraint matrix A.

2. Reinforcement Learning Environment. The core of our approach un-
folds as an episodic interaction between an RL agent and the environment,
structured into three sub-steps:
2a) Partial-Solution Features. At each time step, the environment extends

the bipartite graph representation with the following: (i) a tightness
metric for each constraint (i.e., how close the constraint is to bind-
ing due to the current partial assignment), and (ii) a partial solution
assignment, initially all “unknown.”

2b) ActorNet Constructive Action. The GNN-based ActorNet ingests the
current bipartite graph with updated features and outputs a selection
and assignment of a subset of variables, producing a post-action partial
solution.

2c) Variable Propagation. Given the newly assigned variables, our prop-
agation algorithm infers additional assignments implied by the post-
action partial solution, yielding a propagated solution.This solution—if
feasible—is used to update both the tightness metric and the partial
solution assignment for the next step.

The agent repeats steps 2a–2c until a termination criterion is met (maximum
number of steps reached or infeasible).

3. Sub-MIP Solve and Reward Generation. Once the episode terminates,
we are able to fix the assignments according to the partial solution generated
using one of two methods:
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– Direct Fixing: apply the post-processing technique of [11] to complete and
fix the assignments;

– Trust-Region: invoke the trust-region method of [6] to adjust assignments
within a local neighbourhood.

Finally, we solve a small “Sub-MIP” to obtain a feasible full solution and
compute the episode reward based on the resulting optimality gap and total
solve time.

By iteratively selecting variable subsets and propagating implications, the
GNN-based ActorNet learns to capture rich conditional dependencies among
variables, directly optimizing for both solution quality and solver runtime.

Proximal Policy Optimization (PPO) In our approach, we used the state-
of-the-art RL PPO training method, requiring an Actor Network that is used
to select actions in the environment, and a Critic Network, used to estimate the
value of the state-action pair taken at that specific state. The model architecture
is elaborated further in 4.2.

4.1 Environment Design

State Space. We extend the variable and constraint node feature-engineering
used in Predict-And-Search [11] to include the additional information introduced
by the partial solution condition. This modified bipartite graph representation
defines the observed state space for our RL agent.

To add the partial solution condition into the bipartite graph representation
(G, C,V), we concatenate the additional feature column to V, where 0 and 1
represents a fixed assignment and 2 represents an unknown assignment.

With the inclusion of a partial solution, we enhance the features for the
constraints. In this section, we introduce a new feature, tightness, which measures
the range of possible values the LHS of the constraint can take.

We define tightness as shown in Equation 4

α =
RHS− LBx

UBx − LBx
,

Tc,x =


α, if c.Sense is ≥
1− α, if c.Sense is ≤
max(α, 1− α), if c.Sense is =

(4)

The tightness feature has the following properties:

– When Tc,x = 1, it implies that the constraint c is binding. This allows us to
infer the assignment of these variables given a partial solution, and is used
in our variable propagation method.

– When Tc,x ≤ 0, it implies that the constraint c is redundant and can be
relaxed. We also make use of this in our variable propagation method.

– when Tc,x > 1, there is no feasible assignment of the remaining unfixed
variables for this constraint c.
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Action Space. The action space for assigning values to n binary variables is
defined as:

A = {0, 1, 2}n,
where each action vector a = (a1, . . . , an) corresponds to one of three possible
assignments for variable i:

0/1: Fix variable i to ai = 0 or ai = 1
2: Defer assignment (leaving ai unresolved)

State Transition. In our RL environment, executing action at in state st yields
the next state st+1 and reward rt+1. The transition proceeds as follows:

1. Action Filtering. Mask at by the set of variables already fixed in st, pro-
ducing a filtered action a′t. Represent each new assignment in a′t as a tuple
(v, x) where variable v is assigned a value x for each assignment.

2. Variable Propagation. By iteratively assigning each v to the value x,
we compute the updated bounds of the constraints’ LHS which allow us to
find implied assignments to other variables and obtain a larger propagated
partial solution. The variable propagation routine is described in (Algorithm
1), which
– uses the Propagate-Binding subroutine (Algorithm 2) on binding con-

straints, and
– uses the Propagate-Redundant subroutine (Algorithm 3) on redundant

constraints,
to infer any additional assignments or detect infeasibility.

Termination Criterion To prevent the risk of over-assigning variables, which
could lead to infeasible solutions, the environment terminates when the number
of assigned variables reaches a predetermined proportion. This strategy not only
caps excessive assignments but also maintains sufficient flexibility during solve,
reducing the likelihood of infeasible outcomes.

Upon triggering the termination condition, the chosen variable assignments
are configured and solved using Gurobi. The output from this phase yields met-
rics that are used in formulating a reward function designed to balance solution
quality with solver runtimes.

Reward Computation. The purpose of the reward is to guide the actor to
produce actions that match our desired outcomes. There are 2 main objectives
we want to optimize for: 1) optimality and feasibility, 2) solver runtimes, which
is affected by solver time.

Additionally, to use Proximal Policy Optimization (PPO) efficiently, the re-
wards produced by the environment should not be sparse. We introduce an
intermediate reward (action reward) to avoid a sparse reward landscape.

The reward function is computed in a lexicographic manner, prioritizing in
the following order:
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Algorithm 1: Propagate Assignment Algorithm
Input : Problem P , Current Solution S, Assignments(Dict) A
Output: isFeasible

1 while A is not empty and isFeasible do
2 Variable v, Assignment x = A.pop()
3 if S[v] = x then
4 continue

5 if S[v] = !x then
6 return isFeasible = False

7 S[v]← x
8 for Constraint C, weight W in v.Constraints do
9 Update C.lb and C.ub given v, w, x

10 isFeasible = PropagateBinding(S, A, C)
11 PropagateRedundant(S, A, C)
12 if not isFeasible then
13 return isFeasible = False

14 #PropagateBinding (PB) and PropagateRedundant (PR) details in
Algorithms 2 and 3

15 return isFeasible = True

1. Feasibility (rf )
2. Optimality (ro)
3. Speed (rt)

An exploration reward (ra) and a step penalty (stepP) are given regardless of
the 3-stage reward results above. This is formulated as in Equations 5 to 9.

r = ra − stepP +


rf , if infeasible
ro, if feasible
ro + rt, if near-optimal

(5)

rf = − numViols

numConstrs
× ϕ1 (6)

ro = (1− optGap)× ϕ2 + ϕ3 (7)

rt =
BST− CST

BST
× ϕ4 (8)

ra = ϕ5 × 1[num1s > 0]︸ ︷︷ ︸
num 1’s reward

+ϕ6 ×
max(num2s− solLen/3, 0)

2/3× solLen︸ ︷︷ ︸
num 2’s reward

(9)

The reward components are as follows:
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Algorithm 2: PB Algo
Input : CurrentSol S,

Assignments A,
Constraint C

Output: isFeasible

1 if C.sense is ≤ and
C.lb(S) = C.rhs then

2 Minimize assignments of
v ∈ C.vars if S[v]
unassigned.

3 if C.sense is ≥ and
C.ub(S) = C.rhs then

4 Maximize assignments of
v ∈ C.vars if S[v]
unassigned.

5 if new assignments conflict with
A or S then

6 return isFeasible = False

7 Push new assignments to A

Algorithm 3: PR Algo
Input : CurrentSol S,

Assignments A,
Constraint C

1 if (C.sense is ≤ and
C.ub(S) ≤ C.rhs) or

2 (C.sense is ≥ and
C.lb(S) ≥ C.rhs) then

3 for v ∈ C.variables do
4 v.Degree← v.Degree− 1
5 if v.Degree = 0 then
6 Assign v which

minimizes Objective

Fig. 2. Propagate-Binding (PB) and Propagate-Redundant (PR) algorithms

– r is the Total Reward.
– ra is the Action Reward. The action reward functions as an intermediate

reward, which provides a positive reward for 2 properties: i) assigning at least
one 1; ii) assigning a large number of 2’s in the output action. The reason for
actions having at least one assignment of 1 is to encourage each action have
significant information as problem instance solutions tend to have a sparse
number of 1’s which are crucial to the optimality of the solution. Additionally,
encouraging small actions by providing a positive reward when the number
of 2’s assigned (deferring the variable assignment) will allow the variable
propagation method to mask further actions and provide more information
in the next step. Large actions can easily reach infeasible solutions.The choice
of normalizing by solLen/3 is to allow the model to learn better solutions
from a random actor output (having 1

3 probability of assigning a 2).
– rf is the Feasibility Reward. The feasibility reward assigns a negative

reward when the solution or partial solution is infeasible. It computes the
percentage of violated constraints by solving a maximum satisfiable version
of the problem instance.

– ro is the Optimality Reward. The optimality reward assigns a positive
reward for reducing the optimality gap optGap = obj−BKS

|BKS| , scaled by ϕ2.
This includes a fixed reward for obtaining a feasible solution ϕ3.

– rt is the Time reward. The time reward assigns a positive reward which
corresponds to the percentage speed-up obtained from solving the current
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sub-MIP, which has a current solve runtime CST, compared to the base solve
time BST.

The choice of ϕ scales the various components, which we use [20, 20, 10, 10, 2, 10]
for ϕ1 to ϕ6 respectively. The step penalty stepP is set to 1

BST . Lastly, we clip the
reward to ensure more stable training for large negative values to -30. Formally,
r = max(r,−30).

4.2 Model Training

We employ two primary networks in our framework: the Actor Network and the
Critic Network. Additionally, an Observer network is used to enrich the state
features that are passed to both the Actor and Critic Networks.

Network Components

– Observer Network builds on the GCN architecture from Predict and
Search [6], it is pre-trained via supervised learning for one-step variable solu-
tion prediction. As shown in Figure 3, the Observer (OBS GNN) is integrated
into both Actor and Critic networks.

– Actor Network is a Probabilistic Actor that uses the enriched state features
to select actions for the current step. An additional skip connection carries
the current solution directly to the layer immediately preceding the output.
This connection helps retain critical information from the previous state’s
partial solution.

– Critic Network In parallel, the Critic network aggregates the state features
before processing them through its MLP to predict the Q-value of the state-
action pair.

OBS

GNN

Actor 

MLP
?

?

?

0

?

Cur. Sol.

1

0

1

Action

Actor Network

BG Data

OBS

GNN

Critic 

MLP
?

?

?

0

?

Cur. Sol.

Q-value

Critic Network

BG Data

Fig. 3. Actor-Critic Network Architecture: Both the Actor and Critic Network utilize
the pre-trained Observer Graph-Neural-Network (OBS GNN) to produce latent graph
embeddings of the state features. The Actor’s primary goal is to select actions while
the critic’s role is to evaluate the value of the actions taken within a given state, which
are modeled using Multi-Layer Perceptrons (MLP).



Autoregressive RL Approach for Mixed-Integer Linear Programs 11

Decoding Method We investigate two distinct decoding strategies for config-
uring the solver:

– Neural Diving: This approach fixes variables directly and selects the optimal
solution from k candidate samples.

– Trust Region Method: Here, the solver is constrained to search within a
predefined radius to balance exploration and exploitation [6].

Additionally, we explore the impact of excluding variables assigned to 0 in
the predicted solutions. Potentially, predicting only variables to fix as 1 (while
omitting 0s) may suffice and even improve solver performance. By restricting
assignments to a subset of promising variables, the solver retains flexibility to
explore complementary assignments, provided the selected variables (fixed as 1)
are high-quality candidates.
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Fig. 4. Expert Heuristic. The expert heuristic iteratively samples a small percentage
of 0’s and 1’s to assign to the current partial solution from a reference solution found
in the base solve. Trajectories simulated by this expert heuristic is used to train the
actor net using behavior cloning.

Imitation Learning Similar to the imitation learning scheme to learn the
strong branching rule for a Branch and Bound GNN model in [4], our work uses
behavior cloning to warm-start the actor net using an expert heuristic as shown
in Figure 4. The expert heuristic samples actions containing a small fraction of 0’s
and 1’s from a reference solution, and terminates if the size of the partial solution
is sufficiently large. Details for the implementation of the expert heuristic is
shown in Algorithm 4 in Appendix A.
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5 Experiments

5.1 Datasets

We use the following Distributional MIPLIB[8] datasets to evaluate our method,
taking 50 instances each (30 for training, 10 for validation, 10 for testing):

1. Set Covering Problem (SC)
2. Combinatorial Auction (CA)
3. Generalized Independent Set Problem (GISP)

We benchmark our RL method against the Predict-and-Search (PNS) ap-
proach [6], which trains a one-step, non-autoregressive prediction model using
the same trust region decoding strategy.

Preliminaries To reflect real-world scenarios requiring quick solutions, each
dataset was solved as a MILP with a 300 seconds time limit, from which the top
100 solutions were extracted. Optimal solutions were found for SC, while CA
included some suboptimal ones, and GISP had many.

Set Covering Problem We use the Set Covering Problem as an easy bench-
mark, focusing on medium-difficulty instances from Distributional MIPLIB. Each
instance contains 1000 variables and 1000 constraints, with average solve times
under 10 seconds. Although the PNS paper suggests these instances are too easy
for the solver, we include them to assess performance on simpler problems.

Combinatorial Auction For comparison with PNS, we evaluate on the CA
Medium dataset using the same trust region parameters, applied to our RL
method. The key difference is that our approach uses propagation to predict a
much smaller subset of variables.

Generalized Independent Set Problem To evaluate on a problem closer
to real-world instances—where Gurobi is unable to reach an optimal solution
within a 300-second time limit—we use the GISP hard instances. GISP can
model forest harvesting optimization problems [7] and presents a challenging
task even on relatively small Erdős–Rényi graphs with 150 nodes and an edge
probability of 0.3. After 300 seconds, Gurobi reports an optimality gap (between
the best bound and best-known solution) ranging from 5% to 20%, providing an
opportunity for our method to surpass the BKS.

5.2 Metrics

We report the average primal gap and percentage speedup as primary evaluation
metrics, following the PNS paper.
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Average Primal Gap To compare our RL model with the PNS baseline, we use
the average primal gap metric, computed against the best known objective value
z∗ from the 300 seconds base solve—even if better solutions are later found. To
ensure consistency across hardware, solver times are calibrated using a scaling
factor, following the Neural Diving paper [11].

Speedup Speedup offers a more intuitive measure, reporting the percentage of
time saved by a method relative to the base solve in reaching a solution with
objective value at least as good as the base method’s best-known solution (BKS).

Evaluation Configurations All evaluations are performed with the same con-
figurations. The hardware we used has a one Intel(R) Core(TM) i7-14700HX @
2.1Ghz with 20 Cores and 28 logical processors, 64GB of RAM and and one
NVIDIA GeForce RTX 4070 GPU. For software, we used Gurobi 12.0.0 Gurobi
Optimization, LLC (2025) [5] and pyTorch version 2.5.1. [12]

5.3 Results
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Fig. 5. Average primal gap over calibrated time for SC, CA and GISP datasets. Note
that the average primal gap can go below 0 because the BKS objective value used is
according to the base solve with a 300s time limit. A negative gap implies a better so-
lution found compared to the base solve. The graphs displayed are of the best decoding
methods - see decoding methods ablations in Appendix B.

As shown in Figure 5, our RL-based method outperforms the benchmark
PNS approach for all three data sets.

SC Medium Dataset Both methods achieved a 0% optimality gap within
the time limit. However, our RL method converged much faster, achieving a
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90.5% speedup over the base solver, while PNS showed a more modest 6.5%
improvement.

CA Medium Dataset Our method initially took 22.2% longer to match the
base solver’s best-known value but later found better solutions, yielding a neg-
ative average primal gap of 0.04% within 15.34 calibrated seconds. In contrast,
PNS reached within 0.02% of the base value but made no further progress.

GISP Hard Dataset Our RL method outperformed both benchmarks, reach-
ing the base solver’s best-known value 55.7% faster and achieving a better solu-
tion with a negative average primal gap of 1.8% in 75.2 calibrated seconds—faster
than the base solver’s 80.2 calibrated seconds. PNS failed to reach the base
solver’s best-known value.

Methodological Considerations The observed under-performance of PNS
relative to our base solver, particularly on the combinatorial auction dataset,
warrants discussion. Two key factors may explain this discrepancy:

1. Dataset Scale: Although we matched the original variable and constraint
structure, we trained the PNS model on fewer instances due to computational
limitations.

2. Solver Configuration: Our experiments used Gurobi’s default multi-threaded
setting to reflect practical usage, whereas the original PNS results were ob-
tained using single-threaded execution.

Table 1. Average number of predicted ones and zeros and propagated assignments
(For RL only) based on the best results shown in Figure 5.

Problem Instance
PNS RL

Predicted Predicted Propagated
0’s 1’s 0’s 1’s 0’s 1’s

SC_Medium 500 0 19.5 1.6 0 0
CA_Medium 300 0 15.7 1.2 178.2 0.2
GISP_Hard 600 5 143 3.2 706.9 0

Variable Propagation Analysis The figures shown in Table 1 present the av-
erage number of predicted ones and zeros, as well as propagated assignments, for
a terminal partial solution obtained using our RL method. Compared to PNS,
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the results demonstrate how our method reduces the number of predicted vari-
ables needed to construct a high-quality partial solution that directly optimizes
for solver speedup.

Note that there are no propagated variables for SC Medium. The set cover-
ing constraints take the form

∑
v∈Si

v ≥ 1, and each variable typically appears in
many constraints. Given this, for PropagateBinding to be triggered, all but one
variable in the constraint must be assigned a value of 0. For PropagateRedundant
to be triggered, only one variable in the constraint needs to be set to 1. However,
this propagation only relaxes the constraint—it does not lead to direct variable
assignment unless the degree of the variable is zero. In contrast, the CA and
GISP constraints follow different forms:

∑
v∈Si

v ≤ 1 for CA, and xi + xj ≤ 1
for GISP.

6 Conclusions and Future Work

In conclusion, this paper presents a novel autoregressive RL framework for a
constructive MILP partial solution heuristic, which directly optimizes to obtain
solutions within an expected optimality gap and specified time limit.

Although our method outperforms the benchmark PNS method and the base
Gurobi solver, it should be noted that there are limitations to our framework.
A common issue with running RL algorithms is catastrophic forgetting, which
we currently avoid by terminating model training at its onset. A possible future
direction could be to explore other RL techniques to improve the stability of the
training.

Furthermore, further investigation of the use of more sophisticated GNN
models, such as Graph Transformers[10], could be used to further improve cur-
rent performance. This paper limits itself to simple MLPs for downstream net-
works with concerns regarding inference speed and memory usage.

Lastly, there exist more sophisticated propagation methods (consider the pre-
solve methods utilized in commercial solvers that simplify MILPs) that have the
potential to propagate more assignments given the same partial solution. Fu-
ture work could also consider more complex actions, such as repairing infeasible
partial solutions, as described in [13].
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Appendix A Heuristic Expert Algorithm

Algorithm 4: HeuristicNet Forward Pass
Input : Partial Solution S, Reference solution R
Output: action

1 coverage ←
∑

(S ̸=2)
|S|

2 if coverage > coverageThreshold then
3 return Terminate action

4 k1← max(1, ⌊0.05× |S.ones|⌋)
5 k0← max(1, ⌊0.005× |S.zeros|⌋)
6 sampledOnes ← RandomSample(S.ones, k1)
7 sampledZeros ← RandomSample(S.zeros, k0)
8 #Filter sample 0’s and 1’s by variables already assigned in S
9 action ← sampledOnes + sampledZeros - S

10 return action
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Appendix B Decoding Methods Ablation

We perform an ablation study exploring the effectiveness of the PNS’s trust
region decoding against ND’s fixed variable decoding, when applied to our RL
method. Specifically, the sub-MIP solve uses the trust region constraint

∑
v∈X0

v+∑
v′∈X1

(1− v′) ≤ δ instead of the fixed variable constraints v = 0,∀v ∈ X0 and
v′ = 1,∀v′ ∈ X1, where X0 and X1 are the assigned 0’s and 1’s in the partial
solution respectively.
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(b) CA Medium.
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Fig. 6. Average primal gap over calibrated time for set covering, combinatorial auction
and generalized independent set datasets, including the various decoding method con-
figurations. ND and TR refer to Neural Diving decoding and Trust Region decoding
respectively. w/ zeros and w/o zeros refer to whether the zeros in the terminal partial
solution are kept / removed prior to solving.

We can see from the results in Figure 6 that for SC and CA datasets the
PNS method outperforms the ND method. ND for GISP however can perform
well when configured to decode without zeros. Across all 3 datasets, ND with
zeros (missing in SC diagram because it performs too poorly) does not perform
well, which is expected given the lack of flexibility during prediction.


