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ABSTRACT

Out-of-distribution (OOD) detection plays a crucial role in ensuring the safe deploy-
ment of deep neural network (DNN) classifiers. While a myriad of methods have
focused on improving the performance of OOD detectors, a critical gap remains in
interpreting their decisions. We help bridge this gap by providing explanations for
OOD detectors based on learned high-level concepts. We first propose two new
metrics for assessing the effectiveness of a particular set of concepts for explaining
OOD detectors: 1) detection completeness, which quantifies the sufficiency of
concepts for explaining an OOD-detector’s decisions, and 2) concept separability,
which captures the distributional separation between in-distribution and OOD data
in the concept space. Based on these metrics, we propose a framework for learning
a set of concepts that satisfy the desired properties of detection completeness and
concept separability, and demonstrate the framework’s effectiveness in providing
concept-based explanations for diverse OOD detection techniques. We also show
how to identify prominent concepts that contribute to the detection results via a
modified Shapley value-based importance score.

1 INTRODUCTION

It is well known that machine learning (ML) models can yield uncertain and unreliable predictions
on out-of-distribution (OOD) inputs, i.e., inputs from outside the training distribution (Amodei et al.,
2016; Goodfellow et al., 2015; Nguyen & O’Connor, 2015). The most common line of defense in
this situation is to augment the ML model (e.g., a DNN classifier) with a detector that can identify
and flag such inputs as OOD. The ML model can then abstain from making predictions on such
inputs (Hendrycks et al., 2019; Lin et al., 2021; Mohseni et al., 2020).

Currently, the problem of explaining the decisions of an OOD detector remains largely unexplored.
Much of the focus in learning OOD detectors has been on improving their detection performance (Liu
et al., 2020; Mohseni et al., 2020; Lin et al., 2021; Chen et al., 2021; Sun et al., 2021; Cao & Zhang,
2022), but not on improving their explainability. A potential approach would be to run an existing
interpretation method for DNN classifiers with ID and OOD data separately, and then inspect the
difference between the generated explanations. However, it is not known if an explanation method that
is effective for explaining in-distribution class predictions will also be effective for OOD detectors.
For instance, feature attributions, the most popular type of explanation (Sundararajan et al., 2017;
Ribeiro et al., 2016), may not capture visual differences in the generated explanations between ID
and OOD inputs (Adebayo et al., 2020). Moreover, their explanations based on pixel-level activations
may not provide the most intuitive form of explanations for humans.

This paper addresses the above research gap by proposing the first method (to our knowledge) to help
interpret the decisions of an OOD detector in a human-understandable way. We build upon recent
advances in concept-based explanations for DNN classifiers (Ghorbani et al., 2019; Zhou et al., 2018a;
Bouchacourt & Denoyer, 2019; Yeh et al., 2020), which offer an advantage of providing explanations
in terms of high-level concepts for classification tasks. We make the first effort at extending their
utility to the problem of OOD detection. Consider Figure 1 which illustrates our concept-based
explanations given inputs which are all classified as “Dolphin” by a DNN classifier, but detected as
either ID or OOD by an OOD detector. We observe that the OOD detector predicts a certain input as
ID when its concept-score patterns are similar to that of ID images from the Dolphin class. Likewise,
the detector predicts an input as OOD when its concept-score patterns are very different from that of
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(a) Correct detection: ID (or OOD) dolphin image
correctly detected as ID (or OOD).

(b) Wrong detection: ID (or OOD) dolphin image
falsely detected as OOD (or ID).

Figure 1: Our concept-based explanation for the Energy OOD detector (Liu et al., 2020). On the
x-axis, we present the top-5 important concepts that describe the detector’s behavior given images
classified as “Dolphin”. Concepts C90 and C1 represent “dolphin-like skin” and “wavy surface of
the sea” respectively (see Figure 12b). ID profile shows the concept score patterns for ID images
predicted as Dolphin.

ID inputs. A user can verify whether the OOD detector makes decisions based on the concepts that
are aligned with human intuition (e.g., C90 and C1), and that the incorrect detection (as in Figure 1b)
is an understandable mistake, not a misbehavior of the OOD detector. Such explanations can help the
user evaluate the reliability of the OOD detector and decide upon its adoption in practice.

We aim to provide a general interpretability framework that is applicable to the wide range of OOD
detectors in the world. Accordingly, a research question we ask is: without relying on the internal
mechanism of an OOD detector, can we determine a good set of concepts that are appropriate for
understanding why the OOD detector predicts a certain input to be ID / OOD? A key contribution of
this paper is to show that this can be done in an unsupervised manner without any human annotations.

We make the following contributions in this paper:

• We motivate and propose new metrics to quantify the effectiveness of concept-based explanations
for a black-box OOD detector, namely detection completeness and concept separability (§ 2.2,
§ 3.1, and § 3.2).

• We propose a concept-learning objective with suitable regularization terms that, given an OOD
detector for a DNN classifier, learns a set of concepts with good detection completeness and concept
separability (§ 3.3);

• By treating a given OOD detector as black-box, we show that our method can be applied to explain a
variety of existing OOD detection methods. By identifying prominent concepts that contribute to an
OOD detector’s decisions via a modified Shapley value score based on the detection completeness,
we demonstrate how the discovered concepts can be used to understand the OOD detector. (§ 4).

Related Work. In the literature of OOD detection, recent studies have designed various scoring
functions based on the representation from the final or penultimate layers (Liang et al., 2018; DeVries
& Taylor, 2018), or a combination of different internal layers of DNN model (Lee et al., 2018; Lin
et al., 2021; Raghuram et al., 2021). A recent survey on generalized OOD detection can be found
in Yang et al. (2021). Our work aims to provide post-hoc explanations applicable to a wide range
of black-box OOD detectors without modifying their internals. Among different interpretability
approaches, concept-based explanation (Koh et al., 2020; Alvarez Melis & Jaakkola, 2018) has
gained popularity as it is designed to be better-aligned with human reasoning (Armstrong et al.,
1983; Tenenbaum, 1999) and intuition (Ghorbani et al., 2019; Zhou et al., 2018a; Bouchacourt &
Denoyer, 2019; Yeh et al., 2020). There have been limited attempts to assess the use of concept-based
explanations under data distribution changes such as adversarial manipulation (Kim et al., 2018)
or spurious correlations (Adebayo et al., 2020). Designing concept-based explanations for OOD
detection requires further exploration and is the focus of our work.

2 PROBLEM SETUP AND BACKGROUND

Notations. Let X ⊆ Ra0×b0×d0 denote the space of inputs 1 x, where d0 is the number of channels
and a0 and b0 are the image size along each channel. Let Y := {1, · · · , L} denote the space of

1We focus on images, but the proposed method extends to other domains.
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output class labels y. Let ∆L denote the set of all probabilities over Y (the simplex in L-dimensions).
We assume that natural inputs to the DNN classifier are sampled from an unknown probability
distribution Pin over the space X × Y . The compact notation [n] denotes {1, · · · , n} for a positive
integer n. Boldface symbols are used to denote both vectors and tensors. ⟨x,x′⟩ denotes the standard
inner-product between a pair of vectors. The indicator function 1[c] takes value 1 (0) when the
condition c is true (false).

ID and OOD Datasets. Consider a labeled ID training dataset Dtr
in = {(xi, yi), i = 1, · · · , N tr

in}
sampled from the distribution Pin. We assume the availability of an unlabeled training dataset
Dtr

out = {x̃i, i = 1, · · · , N tr
out} from a different distribution, referred to as the auxiliary OOD dataset.

Similarly, we define the ID test dataset (sampled from Pin) as Dte
in, and the OOD test dataset as

Dte
out. Note that the auxiliary OOD dataset Dtr

in and the test OOD dataset Dte
out are from different

distributions. All the OOD datasets are unlabeled since their label space is usually different from Y .

OOD Detector. The goal of an OOD detector is to determine if a test input to the classifier is ID
(i.e., from the distribution Pin); otherwise the input is declared to be OOD (Yang et al., 2021). Given
a trained classifier f : X 7→ ∆L, the decision function of an OOD detector can be generally defined
as Dγ(x, f) = 1[S(x, f) ≥ γ], where S(x, f) ∈ R is the score function of the detector for an input
x and γ is the threshold. We follow the convention that larger scores correspond to ID inputs, and the
detector outputs of 1 and 0 correspond to ID and OOD respectively. We assume the availability a
pre-trained DNN classifier and a paired OOD detector that is trained to detect inputs for the classifier.

2.1 PROJECTION INTO CONCEPT SPACE

Figure 2: Our two-world view of the classifier and
OOD detector.

Consider a pre-trained DNN classifier f : X 7→
∆L that maps an input x to its corresponding
predicted class probabilities. Without loss of
generality, we can partition the DNN at a con-
volutional layer ℓ into two parts, i.e., f = h ◦ ϕ
where: 1) ϕ : X 7→ Z := Raℓbℓ×dℓ is the first
half of f that maps an input x to the intermediate
feature representation 2 ϕ(x), and 2) h : Z 7→
∆L is the second half of f that maps ϕ(x) to
the predicted class probabilities h(ϕ(x)). We
denote the predicted probability of a class y by
fy(x) = hy(ϕ(x)), and the prediction of the
classifier by ŷ(x) = argmaxy fy(x).

Our work is based on the common implicit as-
sumption of linear interpretability in the concept-
based explanation literature, i.e., high-level con-
cepts lie in a linearly-projected subspace of
the feature representation space Z of the clas-
sifier (Kim et al., 2018). Consider a projec-
tion matrix C = [c1, · · · , cm] ∈ Rdℓ×m (with
m ≪ dℓ) that maps from the space Z into a
reduced-dimension concept space. C consists
of m unit vectors, where ci ∈ Rdℓ is referred to as the concept vector representing the i-th concept
(e.g., “stripe” or “oval face”), and m is the number of concepts. We define the concept score for x as
the linear projection of the high-dimensional layer representation ϕ(x) ∈ Raℓbℓ×dℓ into the concept
space (Yeh et al., 2020), i.e. vC(x) := ϕ(x)C ∈ Raℓbℓ×m. We also define a mapping from the
projected concept space back to the feature space by a non-linear function g : Raℓbℓ×m 7→ Raℓbℓ×dℓ .
The reconstructed feature representation at layer ℓ is then defined as ϕ̂g,C(x) := g(vC(x)).

2We flatten the first two dimensions of the feature representation, thus changing an aℓ × bℓ × dℓ tensor to an
aℓbℓ × dℓ matrix, where aℓ and bℓ are the filter size and dℓ is the number of channels.
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2.2 CANONICAL WORLD AND CONCEPT WORLD

As shown in Fig. 2, we consider a “two-world” view of the classifier and OOD detector consisting of
the canonical world and the concept world, which are defined as follows:

Canonical World. In this case, both the classifier and OOD detector use the original layer representa-
tion ϕ(x) for their predictions. The prediction of the classifier is f(x) = h(ϕ(x)), and the decision
function of the detector is Dγ(x,h ◦ ϕ) with a score function S(x,h ◦ ϕ).
Concept World. We use the following observation in constructing the concept-world formulation:
both the classifier and the OOD detector can be modified to make predictions based on the recon-
structed feature representation, i.e., using ϕ̂g,C(x) instead of ϕ(x). Accordingly, we define the
corresponding classifier, detector, and score function in the concept world as follows:

f con(x) := h(ϕ̂g,C(x)) = h(g(vC(x)))

Dcon
γ (x, f) := Dγ(x,h ◦ ϕ̂g,C) = Dγ(x,h ◦ g ◦ vC)

Scon(x, f) := S(x,h ◦ ϕ̂g,C) = S(x,h ◦ g ◦ vC). (1)

We further elaborate on this two-world view and introduce the following two desirable properties.

Detection Completeness. Given a fixed algorithmic approach for learning the classifier and OOD
detector, and with fixed internal parameters of f , we would ideally like the classifier prediction and
the detection score to be indistinguishable between the two worlds. In other words, for the concepts
to sufficiently explain the OOD detector, we require Dcon

γ (x, f) to closely mimic Dγ(x, f). Likewise,
we require f con(x) to closely mimic f(x) since the detection mechanism of Dγ is closely paired to
the classifier. We refer to this property as the completeness of a set of concepts with respect to the
OOD detector and its paired classifier. As discussed in § 3.1, this extends the notion of classification
completeness introduced by Yeh et al. (2020) to an OOD detector and its paired classifier.

Concept Separability. To improve the interpretability of the resulting explanations for the OOD
detector, we require another desirable property from the learned concepts: data detected as ID by Dγ

(henceforth referred to as detected-ID data) and data detected as OOD by Dγ (henceforth referred to
as detected-OOD data) should be well-separated in the concept-score space. Since our goal is to help
an analyst understand which concepts distinguish the detected-ID data from detected-OOD data, we
would like to learn a set of concepts that have a well-separated concept score pattern for inputs from
these two groups (e.g., the concepts “stripe” and “oval face” in Fig. ?? have distinct concept scores).

3 PROPOSED APPROACH

Given a trained DNN classifier f , a paired OOD detector Dγ , and a set of concepts C, we address
the following questions: 1) Are the concepts sufficient to capture the prediction behavior of both the
classifier and OOD detector? (see § 3.1); 2) Do the concepts show clear distinctions in their scores
between detected-ID data and detected-OOD data? (see § 3.2). We first propose new metrics for
quantifying the set of learned concepts, followed by a general framework for learning concepts that
possess these properties (see § 3.3).

3.1 METRICS FOR DETECTION COMPLETENESS

Definition 1. Given a trained DNN classifier f = h ◦ ϕ and a set of concept vectors C, the
classification completeness with respect to Pin(x, y) is defined as (Yeh et al., 2020):

ηf (C) :=
supg E(x,y)∼Pin

[
1[y = argmaxy′ hy′(ϕ̂g,C(x))]

]
− ar

E(x,y)∼Pin

[
1[y = argmaxy′ hy′(ϕ(x))]

]
− ar

where ar = 1/L is the accuracy of a random L-class classifier.

The denominator of ηf (C) is the accuracy of the original classifier f , while the numerator is the
maximum accuracy that can be achieved in the concept world using the feature representation
reconstructed from the concept scores. The maximization is over the parameters of the neural network
g that reconstructs the feature representation from the vector of concept scores.
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Definition 2. Given a trained DNN classifier f = h ◦ ϕ, a trained OOD detector with score function
S(x, f), and a set of concept vectors C, we define the detection completeness score with respect to
the ID distribution Pin(x, y) and OOD distribution Pout(x) as follows:

ηf ,S(C) :=
supg AUC(h ◦ ϕ̂g,C) − br

AUC(h ◦ ϕ) − br
, (2)

where AUC(f) is the area under the ROC curve of an OOD detector based on f , defined as AUC(f) :=

E(x,y)∼Pin Ex′∼Pout 1
[
S(x, f) > S(x′, f)

]
, and br = 0.5 is the AUROC of a random detector.

The numerator term is the maximum achievable AUROC in the concept world via reconstructed
features from concept scores. In practice, AUC(f) is estimated using the test datasets Dte

in and
Dte

out. Both the classification completeness and detection completeness scores are designed to be
in the range [0, 1]. However, this is not strictly guaranteed since the classifier or OOD detector
in the concept world may empirically have a better (corresponding) metric on a given ID/OOD
dataset. A completeness score close to 1 indicates that the set of concepts C are close to complete in
characterizing the behavior of the classifier and/or the OOD detector.

3.2 CONCEPT SEPARABILITY SCORE

Concept Scores. In Section 2.1, we introduced a projection matrix C ∈ Rdℓ×m that maps ϕ(x)
to vC(x), and consists of m unit concept vectors C = [c1 · · · cm]. The inner product between the
feature representation and a concept vector is referred to as the concept score, and it quantifies how
close an input is to the given concept (Kim et al., 2018; Ghorbani et al., 2019). Specifically, the
concept score corresponding to concept i is defined as vci

(x) := ⟨ϕ(x), ci⟩ = ϕ(x) ci ∈ Raℓbℓ .
The matrix of concept scores from all the concepts is simply the concatenation of the individual
concept scores, i.e., vC(x) = ϕ(x)C = [vc1

(x) · · ·vcm
(x)] ∈ Raℓbℓ×m. We also define a

dimension-reduced version of the concept scores that takes the maximum of the inner-product
over each aℓ × bℓ patch as follows: ṽC(x)

T = [ṽc1
(x), · · · , ṽcm

(x)] ∈ Rm, where ṽci
(x) =

maxp,q |⟨ϕp,q(x), ci⟩| ∈ R. Here ϕp,q(x) is the feature representation corresponding to the (p, q)-th
patch of input x (i.e., receptive field (Araujo et al., 2019)). This reduction operation is done to capture
the most important correlations from each patch, and the m-dimensional concept score will be used
to define our concept separability metric as follows.

We would like the set of concept-score vectors from the detected-ID class Vin(C) := {ṽC(x), x ∈
Dtr

in ∪ Dtr
out : Dγ(x, f) = 1}, and the set of concept-score vectors from the detected-OOD

class Vout(C) := {ṽC(x), x ∈ Dtr
in ∪ Dtr

out : Dγ(x, f) = 0} to be well separated. Let
Jsep(Vin(C), Vout(C)) ∈ R define a general measure of separability between the two subsets, such
that a larger value corresponds to higher separability. We discuss a specific choice for Jsep for which
it is possible to tractably optimize concept separability as part of the learning objective in Section 3.3.

Global Concept Separability. Class separability metrics have been well studied in the pattern
recognition literature, particularly for the two-class case (Fukunaga, 1990b) 3. Motivated by Fisher’s
linear discriminant analysis (LDA), we explore the use of class-separability measures based on
the within-class and between-class scatter matrices (Murphy, 2012). The goal of LDA is to find a
projection vector (direction) such that data from the two classes are maximally separated and form
compact clusters upon projection. Rather than finding an optimal projection direction, we are more
interested in ensuring that the concept-score vectors from the detected-ID and detected-OOD data
have high separability. Consider the within-class and between-class scatter matrices based on Vin(C)
and Vout(C), given by

Sw =
∑

v∈Vin(C)

(v − µin) (v − µin)
T +

∑
v∈Vout(C)

(v − µout) (v − µout)
T , (3)

Sb = (µout − µin) (µout − µin)
T , (4)

where µin and µout are the mean concept-score vectors from Vin(C) and Vout(C) respectively. We
define the following separability metric based on the generalized eigenvalue equation solved by
Fisher’s LDA (Fukunaga, 1990b): Jsep(C) := Jsep(Vin(C), Vout(C)) = tr

[
S−1
w Sb

]
. Maximizing

the above metric is equivalent to maximizing the sum of eigenvalues of the matrix S−1
w Sb, which

3In our problem, the two classes correspond to detected-ID and detected-OOD.

5



Under review as a conference paper at ICLR 2023

in-turn ensures a large between-class separability and a small within-class separability for the detected-
ID and detected-OOD concept scores. We refer to this as a global concept separability metric because
it does not analyze the separability on a per-class level 4. The separability metric is closely related to
the Bhattacharya distance, which is an upper bound on the Bayes error rate (see Appendix A.1).

3.3 PROPOSED CONCEPT LEARNING – KEY IDEAS

Prior Approaches and Limitations. Among post-hoc concept-discovery methods for a DNN clas-
sifier with ID data, unlike Kim et al. and Ghorbani et al., that do not support imposing required
conditions into the concept discovery, Yeh et al. devised a learning-based approach where classifica-
tion completeness and the saliency of concepts are optimized via a regularized objective given by

argmax
C,g

E
(x,y)∼Pin

[
log hy(g(vC(x)))

]
+ λexpl Rexpl(C). (5)

Here C and g (parameterized by a neural network) are jointly optimized, and Rexpl(C) is a regu-
larization term used to ensure that the learned concept vectors have high spatial coherency and low
redundancy among themselves (see (Yeh et al., 2020) for the definition).

While the objective (5) of Yeh et al. can learn a set of sufficient concepts that have a high classification
completeness score, we find that it does not necessarily replicate the per-instance prediction behavior
of the classifier in the concept world. Specifically, there can be discrepancies in the reconstructed
feature representation, whose effect propagates through the remaining part of the classifier. Since
many widely-used OOD detectors rely on the feature representations and/or the classifier’s predictions,
this discrepancy in the existing concept learning approaches makes it hard to closely replicate the
OOD detector in the concept world (see Fig. 3). Furthermore, the scope of Yeh et al. is confined to
concept learning for explaining the classifier’s predictions based on ID data, and there is no guarantee
that the learned concepts would be useful for explaining an OOD detector. To address these gaps, we
propose a general method for concept learning that complements prior work by imposing additional
instance-level constraints on the concepts, and by considering both the OOD detector and OOD data.

Concept Learning Objective. We define a concept learning objective that aims to find a set of
concepts C and a mapping g that have the following properties: 1) high detection completeness
w.r.t the OOD detector; 2) high classification completeness w.r.t the DNN classifier; and 3) high
separability in the concept-score space between detected-ID data and detected-OOD data.

Inspired by recent works on transferring feature information from a teacher model to a student
model (Hinton et al., 2015; Zhou et al., 2018b), we encourage accurate reconstruction of Ẑ based
on the concept scores by adding a regularization term that is the squared ℓ2 distance between the
original and reconstructed representations Jnorm(C,g) = Ex∼Pin ∥ϕ(x) − ϕ̂g,C(x)∥2 . In order
to close the gap between the scores of the OOD detector in the concept world and canonical world on
a per-sample level, we introduce the following mean-squared-error (MSE) based regularization:

Jmse(C,g) = E
x∼Pin

(
S(x,h ◦ ϕ̂g,C)− S(x, f)

)2
+ E

x∼Pout

(
S(x,h ◦ ϕ̂g,C)− S(x, f)

)2
. (6)

MSE terms are computed with both the ID and OOD data because we want to ensure that the ROC
curve corresponding to both the score functions are close to each other (which requires OOD data).
Finally, we include a regularization term to maximize the separability metric between the detected-ID
and detected-OOD data in the concept-score space, resulting in our final concept learning objective:

argmax
C,g

E
(x,y)∼Pin

[
log hy(g(vC(x)))

]
+ λexpl Rexpl(C)

− λmse Jmse(C,g) − λnorm Jnorm(C,g) + λsep Jsep(C). (7)

The λ coefficients are non-negative hyper-parameters that are further discussed in Section 4. We
note that both Jmse(C,g) and Jsep(C) depend on the OOD detector 5. We use the SGD-based Adam
optimizer (Kingma & Ba, 2014)) to solve the learning objective. The expectations involved in
the objective terms are calculated using sample estimates from the training ID and OOD datasets.
Specifically, Dtr

in and Dtr
out are used to compute the expectations over Pin and Pout, respectively. Our

complete concept learning is summarized in Algorithm 1 (Appendix A.4).
4See Appendix A.2 and A.3 for per-class variations of detection completeness and concept separability.
5This dependence may not be obvious for the separability term, but it is clear from its definition.
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4 EXPERIMENTS

We briefly describe the experimental setup here and provide additional details in Appendix B.

Datasets. For the ID dataset, we use Animals with Attributes (AwA) (Xian et al., 2018) with 50
animal classes, and split it into a train set (29841 images), validation set (3709 images), and test
set (3772 images). We use the MSCOCO dataset (Lin et al., 2014) as the auxiliary OOD dataset
Dtr

out for training and validation. For the OOD test dataset Dte
out, we follow a common setting in the

literature of large-scale OOD detection (Huang & Li, 2021) and use three different image datasets:
Places365 (Zhou et al., 2017), SUN (Xiao et al., 2010), and Textures (Cimpoi et al., 2014).

Models. We apply our framework to interpret five prominent OOD detectors from the literature:
MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2018), Generalized-ODIN (Hsu et al., 2020),
Energy (Liu et al., 2020) and Mahalanobis (Lee et al., 2018). The OOD detectors are paired with
the widely-used Inception-V3 model (Szegedy et al., 2016) (following the setup in prior works (Yeh
et al., 2020; Ghorbani et al., 2019; Kim et al., 2018)) trained on the Animals-with-Attributes (AwA)
dataset (Xian et al., 2018), which has a test accuracy of 92.10%.

Metrics. For each set of concepts learned with different OOD detectors and hyperparameters,
we report the classification completeness ηf (C), detection completeness ηf ,S(C), and the relative
concept separability metric (defined below). In contrast to the completeness scores that are almost
always bounded to the range [0, 1], it is hard to gauge the possible range of the separability score
Jsep(C) (or Jy

sep(C)) across different settings (datasets, classification models, and OOD detectors),
and whether the value represents a significant improvement in separability. Hence, we define the
relative concept separability, which captures the relative improvement in concept separability using
concepts C compared to a different set of concepts C′, as follows

Jsep(C,C′) = Median

({
Jy

sep(C) − Jy
sep(C′)

Jy
sep(C′)

}L

y=1

)
. (8)

We choose C′ to be the set of concepts learned by the baseline (Yeh et al., 2020), which is a special
case of our learning objective when λmse = λnorm = λsep = 0. The set of concept C are obtained via
our concept learning objective, with various combinations of hyperparameter values.

OOD
detector

Hyper-
parameters ηf (C) ↑

Test OOD dataset
Places SUN Textures

ηf ,S(C) ↑ Jsep(C,C′) ↑ ηf ,S(C) ↑ Jsep(C,C′) ↑ ηf ,S(C) ↑ Jsep(C,C′) ↑

MSP

(0, 0, 0) 0.977 ± 0.0006 0.774 ± 0.0010 0.694 ± 0.0153 0.782 ± 0.0010 1.088 ± 0.0175 0.593 ± 0.0013 0.765 ± 0.0157
(10, 0.1, 0) 0.994 ± 0.0004 0.947 ± 0.0004 1.892 ± 0.0393 0.946 ± 0.0004 3.074 ± 0.0531 0.920 ± 0.0005 3.577 ± 0.1292
(0, 0, 50) 0.980 ± 0.0005 0.814 ± 0.0008 2.533 ± 0.0714 0.816 ± 0.0009 4.295 ± 0.1048 0.773 ± 0.0010 3.147 ± 0.2076
(10, 0.1, 50) 0.984 ± 0.0004 0.960 ± 0.0004 2.756 ± 0.0854 0.961 ± 0.0005 4.442 ± 0.0830 0.937 ± 0.0004 3.587 ± 0.2145

ODIN

(0, 0, 0) 0.977 ± 0.0006 0.742 ± 0.0011 0.444 ± 0.0119 0.745 ± 0.0010 0.710 ± 0.0156 0.618 ± 0.0013 0.501 ± 0.0121
(108, 0.1, 0) 0.994 ± 0.0004 0.951 ± 0.0004 1.166 ± 0.0303 0.958 ± 0.0004 2.135 ± 0.0450 0.934 ± 0.0004 2.793 ± 0.0865
(0, 0, 50) 0.987 ± 0.0004 0.899 ± 0.0007 1.785 ± 0.0669 0.911 ± 0.0006 3.814 ± 0.0768 0.793 ± 0.0008 3.046 ± 0.2845
(108, 0.1, 50) 0.991 ± 0,0005 0.973 ± 0.0009 1.813 ± 0.0268 0.969 ± 0.0010 4.000 ± 0.0094 0.945 ± 0.0006 3.662 ± 0.1005

General-
ODIN

(0, 0, 0) 0.988 ± 0.0004 0.769 ± 0.0004 0.506 ± 0.0165 0.719 ± 0.0014 0.816 ± 0.0192 0.605 ± 0.0013 0.558 ± 0.1683
(106, 0.1, 0) 0.995 ± 0.0004 0.951 ± 0.0006 1.461 ± 0.0321 0.960 ± 0.0005 3.007 ± 0.0316 0.940 ± 0.0008 2.619 ± 0.1077
(0, 0, 50) 0.981 ± 0.0004 0.859 ± 0.0007 1.814 ± 0.0685 0.803 ± 0.0006 4.204 ± 0.0159 0.826 ± 0.0008 4.014 ± 0.2246
(106, 0.1, 50) 0.990 ± 0.0005 0.971 ± 0.0010 1.835 ± 0.0669 0.963± 0.0004 4.287 ± 0.0284 0.951 ± 0.0005 3.695 ± 0.1921

Energy

(0, 0, 0) 0.977 ± 0.0006 0.671 ± 0.0012 0.453 ± 0.0121 0.682 ± 0.0012 0.675 ± 0.0148 0.557 ± 0.0014 0.521 ± 0.0131
(1.0.1, 0) 0.993 ± 0.0005 0.965 ± 0.0004 1.266 ± 0.0319 0.963 ± 0.0004 2.125 ± 0.0413 0.960 ± 0.0003 2.648 ± 0.0596
(0, 0, 50) 0.987 ± 0.0005 0.779 ± 0.0010 1.920 ± 0.0725 0.793 ± 0.0009 3.659 ± 0.0659 0.767 ± 0.0010 4.397 ± 0.2165
(1, 0.1, 50) 0.980 ± 0.0005 0.943 ± 0.0005 1.839 ± 0.0662 0.941 ± 0.0005 3.421 ± 0.0619 0.936 ± 0.0005 3.917 ± 0.1691

Mahala-
nobis

(0, 0, 0) 0.990 ± 0.0007 0.715 ± 0.0011 0.571 ± 0.0110 0.736 ± 0.0011 0.822 ± 0.0165 0.591 ± 0.0011 0.564 ± 0.0203
(0.1, 0.1, 0) 0.994 ± 0.0004 0.950 ± 0.0009 1.532 ± 0.0351 0.960 ± 0.0010 2.276 ± 0.0466 0.938 ± 0.0004 2.915 ± 0.1132
(0, 0, 50) 0.985 ± 0.0004 0.880 ± 0.0005 2.550 ± 0.0681 0.883 ± 0.0006 4.091 ± 0.1013 0.774 ± 0.0007 4.274 ± 0.2305
(0.1, 0.1, 50) 0.992 ± 0.0006 0.961 ± 0.0005 2.616 ± 0.0857 0.966 ± 0.0005 4.325 ± 0.0055 0.949 ± 0.0003 4.308 ± 0.2011

Table 1: Results of concept learning with different parameter settings across various OOD detectors
and test OOD datasets. The ID dataset is AwA for both training and test, and the auxiliary OOD dataset is
MSCOCO. Hyperparameters are in the order of (λmse, λnorm, λsep), and their values are set based on the scale of
corresponding regularization terms in Eqn. (7), for a specific choice of the OOD detector. Further investigation,
including an ablation study on each regularization term can be found in Appendix B.2. Across the rows (for a
given OOD detector and OOD dataset), the best value is boldfaced, and second best value is underscored. The
95% confidence intervals are estimated by bootstrapping the test set over 200 trials.
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(a) Target distribution of S(x, f) in
the canonical world.

(b) Reconstructed distribution of
Scon(x, f) in the concept world, us-
ing concepts by (Yeh et al., 2020).

(c) Reconstructed distribution of
Scon(x, f) in the concept world, us-
ing concepts by ours.

Figure 3: Detection completeness and estimated density of OOD score S(x, f) from MSP detector.
Concepts by ours are learned using λmse = 10, λnorm = 0.1, λsep = 50. Comparison is made between
AwA test set (ID; blue) vs. SUN (OOD; red).

4.1 EFFECTIVENESS OF OUR METHOD

In this subsection, we carry out experiments to answer the following question: does our concept
learning objective effectively encourage concepts to have the desired properties of detection com-
pleteness and concept separability? Table 1 summarizes the results of concept learning with various
combinations of hyperparameters for the proposed regularization terms in Eqn. (7): i) all the hy-
perparameters are set to 0 (first row); ii) only the terms directly relevant to detection completeness
(i.e., reconstruction error Jnorm(C,g) and mean-squared error Jmse(C,g)) are included (second row);
iii) only the term responsible for concept separability Jsep(C) is included (third row); iv) all the
regularization terms are included (fourth row).

In all cases, we observe that the baseline achieves a high enough classification completeness score, but
the lowest detection completeness and concept separability. This indicates that the concepts discovered
by (Yeh et al., 2020) would be sufficient to describe the DNN classifier, but using the same set of
concepts would be inappropriate for the OOD detector. In contrast, our method significantly improves
the detection completeness (and even the classification completeness) by having λmse > 0, λnorm > 0
and concept separability by having λsep > 0, compared to the baseline. Moreover, the three terms
make the best synergy together in almost all cases.

Detection completeness and accurate reconstruction of Z . Additionally, we observe whether
the proposed evaluation metrics are well-aligned with the interpretability of the resulting concept-
based explanations. In Fig. 3, we observe that concepts by (Yeh et al., 2020) with low detection
completeness (ηf ,S(C) = 0.782 for MSP and ηf ,S(C) = 0.682 for Energy) lead to a strong
mismatch between the score distributions on both ID data and OOD data. In contrast, concepts
learned by our method with high detection completeness (ηf ,S(C) = 0.961 for the MSP detector, and
ηf ,S(C) = 0.941 for the Energy detector) approximate the target score distributions more closely on
both ID data and OOD data. By reducing the performance gap of OOD detector between canonical
world and concept world, it leads to more accurate explanations for OOD detectors.

4.2 CONCEPT-BASED EXPLANATIONS FOR OOD DETECTORS

Contribution of each concept to detection. The proposed concept learning algorithm learns concepts
for both the classifier and OOD detector considering all the classes, and we address the following
question: how much does each concept contribute to the detection results for inputs predicted to
a particular class?. Recent works have adopted the Shapley value from Coalitional Game theory
literature (Shapley, 1953; Fujimoto et al., 2006) for scoring the importance of a feature subset towards
the predictions of a model (Chen et al., 2018; Lundberg & Lee, 2017; Sundararajan & Najmi, 2020).
Extending this idea, we modify the characteristic function of the Shapley value using our per-class
detection completeness metric (Eqn. (11) in Appendix A.2). The modified Shapley value of a concept
ci ∈ C with respect to the predicted class j ∈ [L] is defined as

SHAP(ηjf ,S , ci) :=
∑

C′⊆C\{ci}

(m− |C′| − 1)! |C′|!
m!

(
ηjf ,S(C

′ ∪ {ci})− ηjf ,S(C
′)
)
, (9)
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Figure 4: Concept-based explanations for Energy OOD detector using concepts by Yeh et al.
(2020) vs. ours. Images are randomly selected from AwA test set (ID) and Places (OOD), and all
predicted to class “Collie”. ID profile shows the normal concept-score patterns for ID Collie images.

where C′ is a subset of C excluding concept ci, and ηjf ,S is the per-class detection completeness
with respect to class j. This Shapley value captures the average marginal contribution of concept ci
towards explaining the decisions of the OOD detector for inputs that are predicted into class j.

Eventually, we interpret the behavior of the given OOD detector by plotting the concept score patterns
with respect to the concepts ranked by the above Shapley importance score. Figure 4 illustrates the
generated explanations given correctly-detected inputs (ID / OOD input detected as ID / OOD; first
row of figure), and incorrectly-detected inputs (ID / OOD input detected as OOD / ID; second row of
figure). Overall, we observe that the OOD detector predicts an input as ID when the concept scores
show a similar pattern to the ID profile, or predicts an input as OOD when the concept score pattern
is far from the ID profile. For instance, the fourth input is OOD image from Places dataset but
detected as ID, since its score for C54 (furry dog skin) is as high as usual ID Collie images (which is
true in the image). Thus, we conclude this to be an understandable mistake by the OOD detector.

We also provide qualitative comparison between Yeh et al. and our method in the resulting expla-
nations for OOD detector. We observe that Yeh et al. fails to generate visually-distinguishable
explanations between detected-ID and detected-OOD inputs. The separation between the solid green
bars and the orange bars in each figure becomes more visible in our explanations, which enables more
intuitive interpretation for human users, and this reflects our design goal for concept separability.
It is also noteworthy that our concepts that are most important to distinguish ID Collie from OOD
Collie (i.e., C54 and C30) are more specific, and finer-grained characteristics of Collie, while Yeh
et al. finds concepts that are vaguely similar to the features of dog, but rather generic (i.e., C43 and
C29). This is the reason we require more number of concepts to achieve detection completeness and
concept separability, compared to solely considering the classification completeness 6.

5 CONCLUSION

In this work, we make a first attempt at developing an unsupervised and human-interpretable explana-
tion method for black-box OOD detectors based on high-level concepts derived from the internal layer
representations of a (paired) DNN classifier. We propose novel metrics viz. detection completeness
and concept separability to evaluate the completeness (sufficiency) and quality of the learned concepts
for OOD detection. The proposed concept learning method is quite general and applies to a broad
class of off-the-shelf OOD detectors. Through extensive experiments and qualitative examples, we
demonstrate the practical utility of our method for understanding and debugging an OOD detector.
We discuss additional aspects of our method such as the choice of auxiliary OOD dataset, human
subject study, and societal impact in Appendix E.

6In Figure 4, after concept learning with m = 100 and duplicate removal, we find 44 non-redundant concepts
for Yeh et al. (λmse = λnorm = λsep = 0), and 100 distinct concepts for ours (λmse = 1, λnorm = 0.1, λsep = 10).
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Appendix
In Section A, we discuss the connection of the proposed concept separability to Bhattacharya
Distance, and the per-class variations of detection completeness and concept separability, followed
by the overall algorithm for concept learning. In Section B, we provide the detailed setup for the
experiments. In Section C, we discuss whether our concept learning objective remains effective even
when synthesized auxiliary OOD dataset similar to target ID data is used. In Section D, we illustrate
additional examples of our concept-based explanations.

A CONCEPT LEARNING

A.1 CONNECTION TO THE BHATTACHARYA DISTANCE

We note that the proposed separability metric in Section 3.2 is closely related to the Bhattacharya
distance Bhattacharyya (1943) for the special case when the concept scores from both ID and OOD
data follow a multivariate Gaussian density. The Bhattacharya distance is a well known measure
of divergence between two probability distributions, and it has the nice property of being an upper
bound to the Bayes error rate in the two-class case Fukunaga (1990a). For the special case when the
concept scores from both ID and OOD data follow a multivariate Gaussian with a shared covariance
matrix, it can be shown that the Bhattacharya distance reduces to the separability metric:

Jsep(C) := Jsep(Vin(C), Vout(C)) = tr
[
S−1
w Sb

]
. (10)

(ignoring scale factors).

A.2 PER-CLASS DETECTION COMPLETENESS

Per-Class Variations. We propose per-class measures for the detection completeness, which are
obtained by simply modifying ηf ,S(C) in Eqn. (2) and Jsep(C) based on the subset of ID and OOD
data whose predictions are class y ∈ [L]. We refer to these per-class variations as per-class detection
completeness (denoted by ηyf ,S(C)).
Definition 3. Given a trained DNN classifier f = h ◦ ϕ, a trained OOD detector with score function
S(x, f), and a set of concept vectors C, the detection completeness relative to class j ∈ [L] with
respect to the ID distribution Pin(x, y) and OOD distribution Pout(x) is defined as

ηjf ,S(C) :=
supg AUCj(h ◦ ϕ̂g,C) − br

AUC(h ◦ ϕ) − br
, (11)

where AUCj(h◦ϕ̂g,C) is the AUROC of the detector conditioned on the event that the class predicted
by the concept-world classifier h ◦ ϕ̂g,C is j (note that the denominator has the global AUROC). The
baseline AUROC br is equal to 0.5 as before. This per-class detection completeness is used in the
modified Shapley value defined in section 4.2.

A.3 PER-CLASS CONCEPT SEPARABILITY

In section 3.2, we focused on the separability between the concept scores of ID and OOD data without
considering the class prediction of the classifier. However, it would be more appropriate to impose
a high separability between the concept scores on a per-class level. In other words, we would like
the concept scores of detected-ID and detected-OOD data, that are predicted by the classifier into
any given class y ∈ [L] to be well separated. Consider the set of concept-score vectors from the
detected-ID (or detected-OOD) dataset that are also predicted into class y:

V y
in (C) := {ṽC(x), x ∈ Dtr

in ∪Dtr
out : Dγ(x, f) = 1 and ŷ(x) = y}

V y
out(C) := {ṽC(x), x ∈ Dtr

in ∪Dtr
out : Dγ(x, f) = 0 and ŷ(x) = y}. (12)

We can extend the definition of the global separability metric in Eq. (10) to a given predicted class
y ∈ [L] as follows

Jy
sep(C) := Jsep(V

y
in (C), V y

out(C)) = tr
[
(Sy

w)
−1 Sy

b

]
= (µy

out − µy
in)

T (Sy
w)

−1 (µy
out − µy

in). (13)
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We refer to these per-class variations as per-class concept separability. The scatter matrices Sy
w and

Sy
b are defined similar to Eq. (3), using the per-class subset of concept scores V y

in (C) or V y
out(C), and

the mean concept-score vectors from the detected-ID and detected-OOD dataset are also defined at a
per-class level.

A.4 ALGORITHM FOR CONCEPT LEARNING

To provide the readers with a clear overview of the proposed concept learning approach, we
include Algorithm 1. Note that in line 7 of Algorithm 1, the dimension reduction step in
Vin(C) = {ṽC(x), x ∈ Dtr

in ∪ Dtr
out : Dγ(x, f) = 1} and Vout(C) = {ṽC(x), x ∈

Dtr
in ∪Dtr

out : Dγ(x, f) = 0} involves the maximum function, which is not differentiable; specifically,
the step ṽci(x) = maxp,q |⟨ϕp,q(x), ci⟩|. For calculating the gradients (backward pass), we use the
log-sum-exp function with a temperature parameter to get a differentiable approximation of the
maximum function, i.e., maxp,q |⟨ϕp,q(x), ci⟩| ≈ α log

[∑
p,q exp

(
1
α |⟨ϕp,q(x), ci⟩|

)]
as α → 0.

In our experiments, we set the temperature constant α = 0.001 upon checking that the approximate
value of ṽci

(x) is sufficiently close to the original value using the maximum function.

Algorithm 1 Learning concepts for OOD detector
INPUT: Entire training set Dtr = {Dtr

in, D
tr
out}, entire validation set Dval = {Dval

in , Dval
out}, classifier f ,

detector Dγ .
INITIALIZE: Concept vectors C = [c1 · · · cm] and parameters of the network g.
OUTPUT: C and g.

1: Calculate threshold γ for Dγ using Dval as the score at which true positive rate is 95%.
2: for t = 1, ...T epochs do
3: Compute the prediction accuracy of the concept-world classifier f con using Dtr

in.
4: Compute the explainability regularization term as defined in Yeh et al. (2020).
5: Compute difference of feature representation between canonical world and concept world (i.e.

Jnorm(C,g)).
6: Compute difference of detector outputs between canonical world and concept world using Eqn.

(6).
7: Compute Vin(C) and Vout(C) using Dtr,Dγ and C.
8: Compute separability between Vin(C) and Vout(C) using Eqn. (10) or Eqn. (13).
9: Perform a batch-SGD update of C and g using Eqn. (7) as the objective.

A.5 ACCURATE RECONSTRUCTION OF CLASSIFIER OUTPUTS

We have performed additional experiments to understand if the proposed method can provide im-
provements in the classification setting. Let C1 denote the concept matrix learned by the method
of Yeh et al. Let C2 denote the concept matrix learned by our method with λmse = λsep = 0 and
λnorm = 0.1 (set based on the scale of the regularization term Jnorm). The idea is that we exclude
the terms in the concept-learning objective (Eqn. 7) that depend on the OOD detector, but include
the ℓ2 norm based reconstruction error of the layer representation. To evaluate the utility of these
two sets of concepts for classification, we calculated the per-sample Hellinger distance between the
predicted class probabilities of the original classifier and the concept-world classifier (based on either
C1 or C2). Figure 5 compares the empirical distribution of the Hellinger distance for both sets of
concepts C1 and C2. We observe that the distribution is more skewed towards zero with a higher
density near zero and a shorter (right) tail in the case of C2 (red curve) compared to C1 (blue curve).
This suggests that the class predictions are more accurately reconstructed by the concepts learned
using our method with only the reconstruction error-based regularization. This can in-turn benefit the
concept-based explanations for the classifier.

A.6 ACCURATE RECONSTRUCTION OF OOD SCORES

In addition to Figure 3 where we compared the reconstruction accuracy of OOD scores using concepts
by (Yeh et al., 2020) and ours, Figure 6 confirms that the same observation applies to Energy detector.
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Figure 5: Examples for correct detection

(a) Target distribution of S(x, f) in
the canonical world.

(b) Distribution of Scon(x, f) in
the concept world, using concepts
by (Yeh et al., 2020).

(c) Distribution of Scon(x, f) in the
concept world, using concepts by
ours.

Figure 6: Detection completeness and estimated density of OOD score S(x, f) from Energy
detector. Comparison is made between AwA test set (ID; blue) vs. SUN (OOD; red).

A.7 CONCEPT SEPARABILITY AND VISUAL DISTINCTION IN EXPLANATIONS

In Fig. 7, we take the average of concept scores Vin(C) (or Vout(C)) among the inputs that are
predicted as class y, and detected as ID (or OOD) by Energy detector as an example. We can observe
noticeably distinguishable pattern between detected-ID and detected-OOD concept scores when using
concepts with higher concept separability (Jsep(C,C′) = 3.421), compared to those of low concept
separability (Jsep(C,C′) = 0.675) by Yeh et al. (2020). These observations confirm our design
motivation for the concept separability metric – that a higher value of the concept separability metric
enables better visual distinction between the concept score patterns, suggesting better interpretability
for humans.

B IMPLEMENTATION DETAILS

We run all experiments with Tensorflow, Keras and NVDIA GeForce RTX 2080Ti GPUs. We use
test set bootstrapping with 200 runs to obtain the confidence interval for each hyperparameter set of
concept learning.

B.1 EXPERIMENTAL SETTING.

OOD Datasets. For the auxiliary OOD dataset for concept learning (Dtr
out), we use the unlabeled

images from MSCOCO dataset (120K images in total) Lin et al. (2014). We carefully curate the
dataset to make sure that no images contain overlapping animal objects with our ID dataset (i.e., 50
animal classes of Animals-with-Attributes Xian et al. (2018)), then randomly sample 30K images.
For OOD datasets for evaluation (Dte

out), we use the high-resolution image datasets processed by
Huang and Li Huang & Li (2021).
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Figure 7: Concept separability and visual distinction in the concept score patterns. For the class "Giraffe",
we compare the concept score patterns using two different sets of concepts. Left: Averaged scores of top-10
important concepts out of the concepts learned by Yeh et al. (2020)). Right: Averaged scores of top-10
important concepts out of the concepts learned by our method (λmse = 1, λnorm = 0.1, λsep = 50 with Energy
detector). Concept importance is measured using the Shapley value of Eqn. (9).

Hyperparameters for Concept Learning. Throughout the experiments, we fix the number of
concepts to m = 100 (unless specifically mentioned otherwise), and following the implementation
of Yeh et al. (2020), we set λexpl = 10 and g to be a two-layer fully-connected neural network with
500 neurons in the hidden layer. We learn concepts based on feature representations from the layer
right before the global max-pooling layer of the Inception-V3 model. After concept learning with m
concepts, we remove any duplicate (redundant) concept vectors by removing those with a dot product
larger than 0.95 with the remaining concept vectors Yeh et al. (2020).

B.2 ADDITIONAL RESULTS

Ablation study for concept learning. We perform an ablation study that isolates the effect of
each regularization term in our concept learning objective (Eqn. 7) towards our evaluation metrics:
classification completeness, detection completeness, and relative concept separability. We also
observe the coherency among the learned concepts by varying λmse and λsep. Coherency of concepts
was introduced by Ghorbani et al. Ghorbani et al. (2019) to ensure that the generated concept-based
explanations are understandable to humans. It captures the idea that the examples for a concept should
be similar to each other, while being different from the examples corresponding to other concepts. For
the specific case of the image domain, the receptive fields most correlated to a concept i (e.g., "stripe
pattern") should look different from the receptive fields for a different concept j (e.g., "wavy surface
of sea"). Yeh et al. Yeh et al. (2020) proposed to quantify the coherency of concepts as

1

mK

m∑
i=1

∑
x′∈Tci

⟨ϕ(x′), ci⟩, (14)

where Tci is the set of K-nearest neighbor patches of the concept vector ci from the ID training set
Dtr

in.

We use this metric to quantify how understandable our concepts are for different hyperparameter
choices. Figure 8 shows that aligned with our intuition, large λmse helps to improve the detection
completeness. Having non-zero λmse is also helpful to improve the classification completeness even
further, and surprisingly concept separability as well, without sacrificing the coherency of concepts.
On the other hand, on the right side of Figure 8, we observe that large relative concept separability
with large λsep comes at the expense of lower detection completeness and coherency. Recall that
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(a) Ablation study varying λmse; we set λnorm =
0.1, λsep = 0

(b) Ablation study varying λsep; we set λmse =
0, λnorm = 0.

Figure 8: Ablation study with respect to Jmse(C,g) and Jsep(C). We fix m = 100, λexpl = 10,
and the OOD detector used for concept learing and evaluation is Energy Liu et al. (2020)

when visualizing what each concept represents for human’s convenience, we apply threshold 0.8 to
only presents (see Figure 10). Low coherency with respect to Eqn. 14 (i.e., 0.768 with λsep = 75)
means that there are much less number of examples that can pass the threshold, meaning that users
can hardly understand what the concepts at hand entails. This observation suggests that one needs to
balance between concept coherency and concept separability depending on which property would be
more useful for a specific application of concepts.

Transferability of concepts across OOD detectors. Our work essentially suggests to use different
set of concepts for a specific target OOD detector, as Jmse(C,g) and Jsep(C) in Eqn. (7) depend on a
choice of OOD detector. In practice, however, one might not have enough computational capacity to
prepare multiple sets of concepts for all type of OOD detectors at hand. Here, we inspect whether
the concepts targeted for a certain type of OOD detector are also good to be used for other OOD
detectors.

We explore the transferability of concepts targeted to MSP Hendrycks & Gimpel (2016) detector
in Table 2a, and Energy Liu et al. (2020) in Table 2b. Not surprisingly, we observe that concepts
targeted for Energy yields the best detection completeness score when tested with the same type of
OOD detector, but still make meaningful improvement with other detectors as well. When it comes to
relative concept separability, it is transferred even better across different OOD detectors. For instance,
the concepts lead to Jsep(C,C′) = 0.862 with Textures, the best relative concept separability
is achieved with ODIN detector (i.e., Jsep(C,C′) = 0.862) and which is even higher than the best
results we could obtain using the set of concepts targeted for ODIN (i.e., Jsep(C,C′) = 0.414 with
λmse = 0, λnorm = 0, λsep = 50 in Table 1).

OOD dataset Metrics
D

MSP ODIN Energy Mahal

Places
ηf ,S(C) 0.959 0.952 0.938 0.947
Jsep(C,C′) 0.327 0.288 0.361 0.338

SUN
ηf ,S(C) 0.961 0.954 0.945 0.953
Jsep(C,C′) 0.266 0.294 0.390 0.351

Textures
ηf ,S(C) 0.938 0.946 0.932 0.930
Jsep(C,C′) 0.344 0.279 0.313 0.335

iNaturalist
ηf ,S(C) 0.946 0.946 0.933 0.930
Jsep(C,C′) 0.286 0.181 0.229 0.197

(a) Concepts targeted for MSP with λmse =
10, λnorm = 0.1, λsep = 50

OOD data Metrics
OOD detector

MSP ODIN Energy Mahal

Places
ηf ,S(C) 0.956 0.954 0.971 0.954
Jsep(C,C′) 0.417 0.415 0.365 0.410

SUN
ηf ,S(C) 0.949 0.948 0.970 0.950
Jsep(C,C′) 0.355 0.286 0.400 0.353

Textures
ηf ,S(C) 0.931 0.943 0.964 0.947
Jsep(C,C′) 0.567 0.862 0.494 0.701

iNaturalist
ηf ,S(C) 0.943 0.939 0.973 0.940
Jsep(C,C′) 0.283 0.448 0.280 0.326

(b) Concepts targeted for Energy with λmse =
1, λnorm = 0.1, λsep = 50

Table 2: Transferability of concepts across different OOD detectors.
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C DISCUSSION ON THE CHOICE OF AUXILIARY OOD DATASET IN CONCEPT
LEARNING

Under circumstances where having access to auxiliary OOD dataset for concept learning is not
feasible, we suggest that one could use generative methods to generate synthetic dataset, or apply
data augmentation techniques (Hendrycks et al., 2022). Figure 9 shows an example of AwA image
augmented by Hendrycks et al. (2022).

Figure 9: Random example of augmented AwA dataset. Left: original image in AwA train set.
Right: corresponding image augmented by Hendrycks et al. (2022).

We evaluate the effectiveness of our concept learning objective when such augmented AwA train set
is used as auxiliary OOD dataset. Table C illustrates that the generated concepts with augmented
AwA (i.e., OOD data close to target ID data) have comparable detection completeness and concept
separability compared to when MSCOCO (i.e., OOD data far from ID data) was used. But still,
further evaluation on generated concept-based explanations with different choice of auxiliary OOD
dataset remains as an interesting research question.

OOD
detector

Hyper-
parameters ηf (C) ↑

Test OOD dataset
Places SUN Textures

ηf ,S(C) ↑ Jsep(C,C′) ↑ ηf ,S(C) ↑ Jsep(C,C′) ↑ ηf ,S(C) ↑ Jsep(C,C′) ↑
Energy (1, 0.1, 50) 0.955 ± 0.0006 0.940 ± 0.0005 1.746 ± 0.0712 0.9410 ± 0.0005 3.0703 ± 0.0580 0.927 ± 0.0005 3.417 ± 0.1419

Table 3: Results of concept learning with augmented AwA train set as auxiliary OOD in concept
learning.

D EXPLANATIONS

D.1 IMPORTANT CONCEPTS FOR EACH OOD DETECTOR

We show additional examples for the top-ranked concepts by SHAP(ηf ,S , ci) in Figure ??. For
each figure with a fixed choice of class prediction, we present receptive fields from ID test set
corresponding to top concepts that contribute the most to the decisions of each OOD detector. All
receptive fields passed the threshold test that the inner product between the feature representation and
the corresponding concept vector is over 0.85.

Moreover, in Fig. 11, we compare the important concepts discovered by the baseline method Yeh
et al. (2020) (denoted “baseline”) vs. ours. With the baseline, when the learned concepts are solely
intended for reconstructing the behavior of the classifier, we observe that interpretation of both the
classifier and OOD detector depends on a common set of concepts (i.e., concepts 32, 10, and 47). On
the other hand, the concepts learned by our method focus on reconstructing the behavior of both the
OOD detector and the classifier. In this case, we observe that a distinct set of important concepts
are selected for classification and OOD detection. We also observe that our method requires more
concepts in order to address the decisions of both the classifier and OOD detector. For instance, the
number of concepts obtained by our method and the baseline are 78 and 53 (respectively), out of a
total 100 concepts after the duplicate removal of concept vectors. In short, when the concepts are
only targeted at explaining the DNN classifier (as in the baseline Yeh et al. (2020)), the behavior
of the OOD detector is merely described by the common set of concepts that are important for the
DNN classifier. On the other hand, when not only the DNN classifier but also the OOD detector is
taken into consideration during concept learning (i.e., our method), we obtain a more diverse and
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Figure 10: Top-6 important concepts for Energy with respect. Left: class "Sheep". Right: class
"Giraffe"

Figure 11: Most important concepts for the Energy detector with respect to the predicted class “Buffalo”.
We demonstrate randomly sampled images that are predicted by the classifier into this class. We compare the
top-4 important concepts to describe the DNN classifier (and Energy detector), ranked by the Shapley value
based on classification completeness SHAP(ηj

f , ci) (and detection completeness SHAP(ηj
f ,S , ci)). “Baseline”

corresponds to the case when the concepts are learned with λmse = λnorm = λsep = 0, whereas “Ours”
corresponds to the concepts learned with λmse = 1, λnorm = 0.1, λsep = 0.

expanded set of concepts, and different concepts play a major role in interpreting the classification
and detection results.

D.2 MORE EXAMPLES OF OUR CONCEPT-BASED EXPLANATION

In Figure 12, we provide additional example of our concept-based explanation.
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(a) class “Collie”, Energy OOD detector. Images randomly selected from AwA test set and SUN.

(b) class “Dolphin”, Energy OOD detector. Images randomly selected from AwA test set and Places.

(c) class “Dolphin”, MSP OOD detector. Images randomly selected from AwA test set and Places.

Figure 12: Concept-based explanations using concepts by Yeh et al. vs. ours. ID profile shows
the concept-score patterns for normal ID images.

20



Under review as a conference paper at ICLR 2023

D.3 COUNTERFACTUAL ANALYSIS

Figure 13: Performance of MSP with test-time inter-
ventions on concept scoress.

To verify the important concepts identified by
our modified Shapley value, we perform counter-
factual analysis, addressing the following ques-
tion: if the OOD detector thought the input has
different score for this concept, would the detec-
tion result be different? As we do not assume
to have groundtruth annotation for concepts,
we construct concept score profiles of detected-
ID (or detected-OOD) inputs from held-out ID
(or OOD) dataset, and refer to this as ID (or
OOD) concept profile. With the guidance of ID
and OOD concept profiles, we take intervention
on the concept scores of mis-detected inputs.
Specifically, for ID data mis-detected as OOD,
we update their concept scores using ID profiles,
and similarlly, for OOD data mis-detected as ID,
their concept scores are updated with OOD profiles. The number of concepts to be intervened can be
varied. As shown in Figure 13, with intervention on more number of important concepts (ranked by
SHAP(ηf ,S , ci))), we observe an improved performance of OOD detector in concept world.

E DISCUSSION AND SOCIETAL IMPACT

Auxiliary OOD Dataset. A limitation of our approach is its requirement of an auxiliary OOD dataset
for concept learning, which could be hard to access in certain applications. To overcome that, a
research direction would be to design generative models that simulate domain shifts or anomalous
behavior and could create the auxiliary OOD dataset synthetically, allowing us additional control
on the extent of distributional changes the resulting concepts could deal with (see Appendix C for
further discussion).

Human Subject Study. Performing a human-subject (or user) study would be the ultimate way to
evaluate the effectiveness of explanations, but remains largely unexplored even for in-distribution
classification tasks. We emphasize that designing such a usability test with OOD detectors would
be even more challenging due to the characteristics of the OOD detection task, compared to in-
indistribution classification tasks. For in-distribution classifiers, users could potentially generate
hypotheses about what high-level concepts should attribute to the class prediction, and compare their
hypotheses to the provided explanations to determine the classifier’s reliability. On the other hand,
assessing the reliability of OOD detection involves checking whether a given input belongs to any
of the natural distributions of concepts; this is essentially limited to whether users’ mental models
on such global distributions can be accurately probed via a couple of presented local instances. We
believe that designing a thorough probing method for human interpretability on OOD detection would
be an interesting yet challenging research quest by itself and our paper does not address that.

Societal Impact. Our work helps address the detection results of OOD detectors, giving practitioners
the ability to explain the model’s decision to invested parties. Our explanations can also be used to
keep a data point as an understood mistake by the model rather than throwing it away without further
analysis, which could help guide how to improve the OOD detector with respect to the concepts.
However, this would also mean that more trust is put back into the human practitioner to not abuse
the explanations or misrepresent them.
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