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Abstract

Deep neural networks are found to be vulnerable
to adversarial perturbations. The prompt-based
defense has been increasingly studied due to its
high efficiency. However, existing prompt-based
defenses mainly exploited mixed prompt patterns,
where critical patterns closely related to object
semantics lack sufficient focus. The phase and
amplitude spectra have been proven to be highly
related to specific semantic patterns and crucial
for robustness. To this end, in this paper, we pro-
pose a Phase and Amplitude-aware Prompting
(PAP) defense. Specifically, we construct phase-
level and amplitude-level prompts for each class,
and adjust weights for prompting according to the
model’s robust performance under these prompts
during training. During testing, we select prompts
for each image using its predicted label to ob-
tain the prompted image, which is inputted to the
model to get the final prediction. Experimental re-
sults demonstrate the effectiveness of our method.

1. Introduction

Deep Neural Networks (DNNs) have been found to be vul-
nerable to adversarial noises (Szegedy et al., 2014; Xiao
et al., 2018; Yang et al., 2023). This vulnerability has
posed a significant threat to many deep learning applications
(Jaiswal et al., 2022; Mi et al., 2023; Shukla et al., 2024),
promoting the development of defenses (Madry et al., 2018;
Zhou et al., 2022; Zhao et al., 2024; Xia et al., 2024).

Recently, prompt-based defenses have been increasingly
investigated (Huang et al., 2023; Chen et al., 2023; Zhou
et al., 2024). It is of interest since it does not retrain target
models like adversarial training does (Wu et al., 2020; Wei
et al., 2023; Singh et al., 2024), and does not perform major
modifications on data as in denoising methods (Nie et al.,
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Figure 1. Differences between previous defenses and our defense.
Previous method use mixed patterns like pixel or frequency do-
mains for prompting. However, they do not explicitly focus on
specific semantic patterns. The phase and amplitude spectra can re-
flect structures and textures specifically. Our method utilizes these
specific patterns for prompting, further improving the robustness.
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2022; Zhou et al., 2023). However, existing prompt-based
defenses mainly focus on mixed patterns, such as pixel and
frequency domains (see Figure 1). These patterns cannot
explicitly reflect specific patterns like structures and tex-
tures. To this end, we seek to disentangle the mixed patterns,
and construct prompts for stabilizing model predictions by
utilizing patterns closely related to the object semantics.

The amplitude and phase spectra of the data have been
proven to be able to reflect the specific semantic patterns.
Previous studies indicated the amplitude spectrum holds
texture patterns (Randen & Husoy, 1999; Sidhu & Raa-
hemifar, 2005), while the phase spectrum reflects structural
patterns (Kovesi, 2000; Zhang et al., 2011). Besides, cogni-
tive sciences reveal that people tend to recognize objects by
utilizing the phase spectrum (Freeman & Simoncelli, 2011;
Gladilin & Eils, 2015), which can also help improve the
model’s generalization ability (Chen et al., 2021). Also, the
amplitude spectrum has been proven to be easily manip-
ulated by noises and thus further processes are needed to
mitigate this problem for robustness (Chen et al., 2021). To
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this end, constructing prompts using amplitude and phase
spectra is expected to provide positive effects for prompt-
based defenses (see Figure 1).

Motivated by the above studies, we propose a Phase and
Amplitude-aware Prompting (PAP) defense mechanism,
which constructs phase and amplitude-level prompts to sta-
bilize the model’s predictions during testing. We learn a
phase-level prompt and an amplitude-level prompt for each
class, since it can help learn more precise semantic patterns
while reducing computational costs compared with learning
prompts for each instance. Naturally, a question arises here:
Do amplitude-level prompts and phase-level prompts have
the same effect on the model robustness? To answer it, we
utilize phase and amplitude spectra of natural examples to
replace the corresponding spectra of adversarial examples
respectively for testing as in Table 1. It shows phase and am-
plitude spectra have different effects on model’s predictions.
Furthermore, we construct phase-level and amplitude-level
prompts, training them under different prompting weights.
Table 2 shows different weights lead to different robustness,
and thus we need to adjust their weights appropriately.

Based on these analyses, we propose a weighting method for
our prompts. Since different weights for prompting lead to
different robust performances, we adjust their weights based
on their influences on robustness during training. We adjust
the weight for amplitude-level prompts by the ratio of ac-
curacy under adversarial training examples with amplitude-
level prompts to that with phase-level prompts, since the
ratio can reflect the relative importance of amplitude-level
prompts compared to phase-level prompts.

During testing, we select prompts for each image according
to the model’s predicted label for it. Previous method (Chen
et al., 2023) traverses all the prompts for different classes
for testing, causing great time consumptions especially on
datasets with many classes. To alleviate this problem, we
directly select prompts for tested images according to their
predicted labels. To further reduce the negative effect of mis-
matches between images and selected prompts, we design a
loss that helps images with prompts not coming from their
ground-truth labels to still be correctly classified. Our code
is available at https://github.com/yeebox/PAP.

Our contributions can be summarized as follows:

* Considering the amplitude and phase spectra are
closely related to specific semantic patterns and cru-
cial for robustness, we seek to design phase-level and
amplitude-level prompts to provide positive gains for
prompt-based defenses.

* We propose a Phase and Amplitude-aware Prompt-
ing (PAP) defense. Specifically, we propose a weight-
ing method for prompts based on their impacts on the
model’s robust performances for training, and propose

to directly select the prompts for images based on their
predicted labels for testing.

* We evaluate the effectiveness of our method for both
naturally and adversarially pre-trained models against
general attacks and adaptive attacks. Experimental
results reveal that our method outperforms state-of-the-
art methods and achieves superior transferability.

2. Related Work
2.1. Adversarial Attacks

Adpversarial attacks craft malicious noises to mislead target
models. White-box attacks like Projected Gradient Descent
(PGD) attack (Madry et al., 2018), AutoAttack (AA) (Croce
& Hein, 2020), Carlini&Wagner (C&W) (Carlini & Wagner,
2017) and Decoupling Direction and Norm (DDN) (Rony
et al., 2019) craft noises through accessing and utilizing
models’ intrinsic information like structures and parameters.
For black-box attacks like transfer-based attacks and query-
based attacks (Andriushchenko et al., 2020), attackers have
no access to the models’ internal information, and thus
perform attacks only by interacting with the model’s inputs
and corresponding outputs.

2.2. Adversarial Defenses

Adversarial training methods (ATs) (Madry et al., 2018;
Zhang et al., 2019; Wang et al., 2019) aim at augmenting
training examples through adversarial noises for training.
However, ATs require modifying parameters of models and
crafting noises for training, consuming significant resources.
In addition, denoising methods (Jin et al., 2019; Zhou et al.,
2023) purify images before feeding them into target models.
It introduces an additional module for substantially modi-
fying data to remove noises, thereby also consuming great
computational resources.

To alleviate this problem, prompt-based defenses has at-
tracted more and more interests due to its efficiency (Huang
et al., 2023; Chen et al., 2023; Zhou et al., 2024). C-AVP
(Chen et al., 2023) trains pixel-level prompts for each class,
and traverses all the prompts for testing. However, it re-
quires high computation costs on datasets with numerous
classes. Frequency Prompting (Freq) (Huang et al., 2023)
aims at mitigating the vulnerability of models in the high-
frequency domain by a masked prompting strategy. How-
ever, it does not explicitly focus on specific semantic pat-
terns, where the semantic pattern which C-AVP focused
on is also mixed (i.e., the pixel domain). Differently, we
focus on specific textures and structures by prompting on
the amplitude and phase spectra. Also, our method does
not traverse all the prompts for testing, achieving superior
performances efficiently through selecting prompts using
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Figure 2. The framework of our method. First, We construct phase-level and amplitude-level prompts, and adjust the weights of amplitude-
level prompts according to their influences on robustness for training. Then, we select prompts from predicted labels to get prompted

images using the finally adjusted weights for testing.

predicted labels.

3. Methodology

3.1. Preliminary

In this paper, we focus on classification tasks under adver-
sarial settings. Given a model hy with parameters ¢ and
natural data (z,y), the adversarial example Z is crafted
for misleading hy. Since we focus on images, we utilize
Discrete Fourier Transform (DFT) and its inverse version
(IDFT), denoted as F(-) and F~1(-,-), respectively. The
phase and amplitude spectra are derived as ¢, = Fy(x)
and {, = F¢(x). We use ¢, and &, to denote phase and
amplitude spectra of a natural image x, while ¢z and &; de-
note the corresponding spectra of 2. In addition, the process
to recover an image from its phase and amplitude spectra
is expressed as ¥ = F (¢, &,). Our goal is to design
prompts to assist hg in making accurate predictions without
the need of the model retraining.

3.2. Motivation

DNNss can be easily fooled by adversarial noises. Defenses
like adversarial training and denoising methods all improve
robustness with a high computational cost, promoting the
development of prompt-based defenses due to the efficiency.
However, existing prompt-based defenses focus on mixed
patterns like pixel or frequency information, which cannot
capture specific patterns like structures and textures (Ying

et al., 2001; Ren et al., 2015). Thus, we seek to further dis-
entangle these semantic patterns for enhancing robustness.

The phase and amplitude spectra have been proven to be
able to reflect specific semantic patterns. Through Fourier
transform, image signals in the pixel domain can be con-
verted into the frequency domain, which can be further
decoupled into phase and amplitude spectra. The phase
spectrum can reflect structures (Kovesi, 2000; Zhang et al.,
2011), while the amplitude spectrum carries textures (Ran-
den & Husoy, 1999; Sidhu & Raahemifar, 2005). Cogni-
tive sciences indicate people tend to recognize objects by
leveraging structures from the phase spectrum (Freeman &
Simoncelli, 2011; Gladilin & Eils, 2015), which has been
proven to be able to help DNNs improve their generaliza-
tion performances (Chen et al., 2021). Also, the amplitude
spectrum has been analyzed to be easily manipulated by
noises, indicating the necessity to mitigate this problem for
robustness (Chen et al., 2021). 7o this end, constructing
phase-level and amplitude-level prompts to disentangle the
mixed patterns is considered to be beneficial for improving
prompt-based defenses (see Figure 1).

3.3. Defense

Based on the above analyses, we introduce the designed
Phase and Amplitude-aware Prompting (PAP) defense. We
first construct prompts and adjust the weights of amplitude-
level prompts based on their influences on robustness. Dur-
ing testing, we select prompts from predicted labels for
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prompting. The framework is shown in Figure 2.

3.3.1. PROMPT CONSTRUCTION AND TRAINING

We firstly construct and train a phase-level prompt and an
amplitude-level prompt for each class, since it can help learn
precise natural semantic patterns for each class while reduc-
ing computational costs compared with learning prompts
for each instance. We randomly sample a natural example z
from class y, and obtain its phase spectrum ¢, = Fy(x) and
amplitude spectrum &, = F¢(x) as the prompt initialization
for class y. The prompt initialization for other classes is
performed following the above operation. Then, the initial-
ized phase-level and amplitude-level prompts are denoted
as {pg; }5=o and {pg, }$=5, where c is the number of classes.
The prompted image z? for z is obtained as follows:

a? = F Hdo + po, & + Pe, ) (1

where py, and pg, denote the phase-level prompt and the
amplitude-level prompt corresponding to the ground-truth
label y of x. We perform prompting for the adversarial
example 7 following the same way as Equation 1. Then, the
designed training losses are introduced as follows:

Classification Loss. To enforce our prompts to stabilize the
model’s predictions, we promote our prompts to learn to
help correct wrong predictions of models, and thus exploit
the prompted examples to construct the classification loss:

1 N
Lago = _N Z[yllog(hg(if))], 2

=1

where N is the number of examples, and :Ef denotes the
prompted image of the adversarial example Z; using the
prompts from its ground-truth label y;. Then, the classifica-
tion loss for the natural prompted data is presented as:

1 N
Lnat = 7N Z[yllog(he(xf))]v (3)

=1

where 2’ denotes the prompted image of the natural example
x; using the prompts from its ground-truth label y;.

Reconstruction Loss. The constructed prompt could mod-
ify the phase and amplitude spectra during prompting. To
ensure these modifications do not severely disrupt the orig-
inal semantic patterns, we design a reconstruction loss be-
tween the prompted adversarial images and natural images
as:

N

1 H W -
£sim = m Z Z Z €|77”Lj.,k*mj»lc|7 (4)

i=1 j=1k=1

where 7, and m; ;. denote the pixel value of #} and the
pixel value of z; in the j-th row and k-th colum respectively,
and H, W denote the height and weight of the image.

{pg, Jia
X We

= Fy —>(+)—>F 1 —| Target
Update
| model w,
= Fp —+—F1

Adversarial L)
examples

{P(pyi}fy:l

Figure 3. The weighting method for amplitude-level prompts. We
use amplitude-level and phase-level prompts respectively for
prompting, and adjust weights by the ratio of accuracy of images
with amplitude-level prompts to that with phase-level prompts.

Data-prompt Mismatching Loss. Note that we learn a
phase-level prompt and an amplitude-level prompt for each
class. Also, we select prompts according to predicted labels
during testing. Therefore, there exist mismatches between
test images and selected prompts when testing. Previous
studies (Chen et al., 2023) indicate we can get prompted
images using prompts from classes different from ground-
truth labels, and enforce their outputs on ground-truth labels
to be larger than those on other labels, so that these images
can still be correctly classified to some extent. To this end,
we construct a data-prompt mismatching loss as:
1 & o /
Lmis = 57 >_{man{hy' (i) = hg* (&7 ), =73}, 9
i=1

where z¥ " is the prompted adversarial example using
prompts from g/, which is a randomly selected label differ-

ent from its ground-truth label y;. th (-) and hj () denote
outputs on y} and y;, and 7 is a threshold.

3.3.2. WEIGHTING METHOD

The designed prompts with the corresponding training pro-
cedure focus on helping the model make predictions accu-
rately during testing. However, it is natural for us to ques-
tion whether the amplitude-level and phase-level prompts
have the same influence on the robustness. To this end, we
conduct several experimental analyses to answer it.

We firstly replace the amplitude and phase spectra of adver-
sarial examples with the corresponding spectrum of natural
examples respectively. As shown in Table 1, for different
models, the natural amplitude spectrum and natural phase
spectrum contribute differently to the model’s robust perfor-
mances. It indicates that the amplitude and phase spectra
have different influences on the model’s robustness.

Due to their different influences on robustness, we may
need to assign different weights for phase-level prompts and
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Table 1. The impact of different spectra on robustness. Adv. All
denotes normal noises. Nat. Pha./Amp. indicates we replace
phase/amplitude spectra with corresponding natural spectra.

Adv. Al Nat. Pha. Nat. Amp.
NAT 0.00 47.81 13.41
AT 46.82 69.00 70.10

Table 2. Robust accuracy (percentage) under different weights. «
and 3 are weights of phase-level and amplitude-level prompts.

o 3 NAT AT
None PGD | None PGD
1 0.01 | 88.82 3444 | 8431 47.69
0.01 1 91.11 5.64 | 73.84 50.87

amplitude-level prompts to further improve the robustness.
To show this, we assign different weights for them to obtain
the prompted images for training and testing. As shown in
Table 2, it is clear that different weight assignments result in
different robust performances. Therefore, we need to design
a strategy which can appropriately adjust their weights.

Based on it, we enforce prompts to assign weights for them-
selves according to their influences on the robustness. The
robust accuracy after prompting can explicitly reflect the
influence of these prompts on robustness, which has been
proven to be suitable for measuring the importance of them
and adjusting their weights (Wang et al., 2019; Wei et al.,
2023). Therefore, we use the robust accuracy under these
prompts to adjust their weights. Specifically, during training,
we obtain robust accuracies in training data using amplitude-
level and phase-level prompts for prompting respectively.
Then, the weights for amplitude-level prompts are adjusted
by the ratio of accuracy under amplitude-level prompts to
accuracy under phase-level prompts, since it can reflect the
relative importance of amplitude-level prompts compared
with phase-level prompts for robustness. The weight strat-
egy is specified as:

; (6

Wi = Weg—1 X

SN IFED) = i)
SN If(E) = yi)

where ¢ = FY(¢z,,&, + wy_1pe, ) and it =
F~ Yoz, + Py, » &z, )» and y; is the ground-truth label of the
adversarial example Z;. I(-) denotes the indicator function,
and w; is the weight during the t-th epoch. The Equation 1
is then incorporated with the designed weight as:

z? :‘F_l(d)ﬂr +p¢y7£x+wtp£y)v @)

where we use Equation 7 for training. The finally learned
weight w* is utilized for testing, and is shown in Table 5.
The weighting strategy is illustrated in Figure 3.

Algorithm 1 Phase and Amplitude-aware Prompting (PAP).

1: Input: The target model hy, training dataset D, batch size
n, the number of batches M, epoch number 7", perturbation
budget e, the initialized phase-level prompts {pg, }5—4 and

amplitude-level prompts {pe, }52, .

2: fort =1toT do

3:  form =1to M do

4: Read mini-batch B = {x;};—, from training set D;

5: Craft corresponding adversarial samples B= {Z;}iz, at
the given perturbation budget ¢;

6: Calculate Ly by Equation 8 to optimize {pg, }5—5 and
{pe; 16;(} ;

7:  end for

8: iff mod 5 = 0 then

9: update w; via Equation 6;

10:  endif

11: end for

3.3.3. OVERALL DEFENSE PROCEDURE

To improve the overall effectiveness of our combined de-
fense, we incorporate the the weighting strategy into the
training process. The overall loss function is denoted as:

‘Call = ['adv + )\1£7Lat + A2‘Csim + A3Lmisy (8)
where A1, A2, A3 are hyper-parameters.

The overall defense procedure is presented in Algorithm 1.
Specifically, during training, for each mini-batch 53, we craft
adversarial examples B. Then, we forward-pass 55 and B
to calculate L,;; using Equation 8, and further optimize
phase-level prompts {py, f;& and amplitude-level prompts
{pe,}5=4. The weight for amplitude-level prompts is ad-
justed by Equation 6. Through iteratively optimizing the
prompts and adjusting the weights, the prompts are expected
to provide superior robustness gains.

3.3.4. PROMPT SELECTION FOR TESTING

After acquiring our prompts, we need to explore an effective
prompt selection method during testing. Previous methods
(Chen et al., 2023) traverse all the prompts from all the
classes for testing on naturally pre-trained models, which
sets the label with the largest output among all the prompting
cases as the final prediction (see Appendix B). However,
it can easily cause high computational costs for testing on
large datasets with numerous classes. To address it, we
promote the test image to choose prompts corresponding to
its predicted label directly. Incorporated with the learned
weight, we obtain the prompted image for testing as:

x?est = F_1(¢1test + pd)ypmd ) gl’test + w*pfypmd)v (9)

where Doy, and Pe,,, ., are selected prompts from the
predicted label y,,.q. Since this strategy may result in mis-
matches between images and selected prompts, we introduce
a data-prompt mismatching loss to alleviate its negative ef-
fects on robustness, which can be seen in Section 3.3.1.
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Table 3. Robust accuracy (percentage) of defenses against adversarial attacks on CIFAR-10 and Tiny-ImageNet. The target models are
ResNet18 and WRN28-10. We present the most successful defense results with bold.

Defense CIFAR-10 (ResNet18) Tiny-ImageNet (WRN28-10)
None AA C&W DDN None AA C&W DDN
None 94.83+0.05 0.00+0.00 0.00£0.00 0.00£0.00 | 66.62+0.11 0.004+0.00 0.00£0.00 0.02+0.00
+Freq 94.50+0.21 0.444+0.08 11.57+£0.15 4.60+£0.07 | 60.434+0.17 2.564+0.03 14.82+0.20 10.5140.22
+C-AVP 92.67+0.51 0.61+0.11 1.934+0.07 1.05£0.17 | 66.524+0.02 0.394+0.00 5.83+£0.07 4.19+0.25
+PAP(Ours) | 87.124+0.21 37.34+0.11 80.27+0.28 66.224+0.21 | 57.30+0.15 5.33+0.07 42.144+0.36 33.27+0.41
VN 84224021 44.94%0.44  0.84£0.18 29740.34 | 51.39£0.17 1829+0.42 0.19+£0.02 "11.48+0.27
+Freq 78.26+0.11 51.504+0.31 35.67+£0.35 35.12+0.17 | 44.844+0.28 22.93+0.26 19.25+0.41 21.764+0.20
+C-AVP 84.28+0.24 45.7940.33 11.004+0.14 10.35+£0.24 | 51.16£0.07 19.824+0.21 12.424+0.19 17.45+0.22
+PAP(Ours) | 84.344+0.12 52.31+0.19 66.66+0.18 60.294+0.07 | 51.40+0.09 23.44+0.24 35.761+0.34 34.98+0.16
"TRADES ~ | 81.59+021 4898%0.23 ~ 0.74£0.10 ~ 5.03+0.09 | 48.98+£0.07 17.87+0.07 0.15+0.00 14.29%+0.09
+Freq 75.62+0.22 52.874+0.24 30.98+0.15 30.74+0.05 | 41.804+0.11 21.64+0.33 15.47+0.07 21.3640.20
+C-AVP 81.58+0.17 49.444+0.24 4.47+0.20 7.97+0.35 | 48.59+0.19 19.154+0.34 9.18+0.17 18.57+0.13
+PAP(Ours) | 81.624+0.14 54.36+0.24 63.89+0.27 57.58+0.20 | 48.03+0.24 22.73+0.34 30.431+0.14 31.81+0.26
"MART ™~ | 80.31+0.24 46.95F£0.24 ~ 0.75£0.07 ~ 3.85+0.15 | 44.29+£0.04  19.18+0.17 0.3420.02° 15.31+0.07
+Freq 74.14+0.18 52.604+0.22 34.40+0.16 32.79+0.19 | 37.764+0.28 22.80+£0.27 15.46+0.24 21.754+0.24
+C-AVP 80.29+0.25 47.254+0.27 3.51+£0.45 6.11£0.08 | 43.86£0.27 20.664+0.20 10.78+0.33 20.09+0.27
+PAP(Ours) | 79.4940.20 53.79+0.11 60.36+0.22 56.66+0.30 | 43.71+0.23 23.74+0.27 30.391+0.09 32.18+0.08

Table 4. Robust accuracy (percentage) of defenses against adver-
sarial attacks on CIFAR-10 using the prompt selection method of
C-AVP. The target model is ResNet18.

Defense None AA C&W DDN

NAT 94.83  0.00 0.00 0.00
+Freq 56.80 7.54 4922 30.25
+C-AVP 52.17 3226 46.78 39.51
+PAP(Ours) | 86.59 38.33 83.88 70.24

Table 5. The learned weights for the amplitude-level prompts. We
show the results of ResNet18 and WRN28-10.

Model Dataset
ResNetl8 |CIFAR-10
WRN28-10| Tiny-ImageNet

None AT TRADES MART
0 03054 0.2572 0.3258
0 0.2702 0.3022 0.2848

4. Experiments
4.1. Experimental Settings

Datasets and Models. We use two popular benchmark
datasets CIFAR-10 (Krizhevsky et al., 2009) and Tiny-
ImageNet (Le & Yang, 2015) for defense evaluations.
CIFAR-10 has 10 classes with 50,000 training images and
10,000 testing images, and Tiny-ImageNet has 200 classes
with 100,000 training images, 10,000 validation images
and 10,000 testing images. All the images are normal-
ized into [0,1]. We use ResNet18 (He et al., 2016) and
WideResNet28-10 (WRN28-10) (Zagoruyko, 2016) as tar-
get models, and use WRN28-10, VGG19 (Simonyan &
Zisserman, 2014) and popular Swin Transformer (Liu et al.,
2021) for evaluating the transferability of defenses across
different models.

Attack Settings. We use various adversarial attacks across
two norms for evaluations. Specifically, we utilize Lo-
norm AA (Croce & Hein, 2020), Lo-norm C&W (Carlini
& Wagner, 2017) and Ly-norm DDN (Rony et al., 2019).
The iteration number of Lo-norm DDN is set as 20, while
that of Lo-norm C&W is 50. The perturbation budget for
L-norm AA is set as 8/255.

Defense Settings. We use prompt-based defenses C-AVP
(Chen et al., 2023) and Freq (Huang et al., 2023) as base-
lines, where they are designed only for defending on natu-
rally pre-trained models. We use the natural training (NAT),
AT (Madry et al., 2018), TRADES (Zhang et al., 2019) and
MART (Wang et al., 2019) to obtain pre-trained models.
We use PGD with perturbation budget 8/255, perturb step
10 and step size 2/255 for training. We train prompts by
SGD (Andrew & Gao, 2007) for 100 epochs, where the
initial learning rate is 0.1 and is divided by 10 at the 75-th
epoch. The batch size is 512 for CIFAR-10, and 256 for
Tiny-ImageNet. We set A\; = 3, Ao=400, A3 = 4 for natu-
rally pre-trained models, and A\; =1, Ao =5000, \3 =4 for
adversarially pre-trained models. The threshold 7 is set as
0.1, and we adjust the weights of amplitude-level prompts
every 5 epochs. We omit deviations in several tables due to
their small values (<0.60%). More details of settings can
be found in Appendix C.

4.2. Defending against General Attacks

Defending against White-box Attacks. We apply vari-
ous attacks to evaluate the robustness of our method and
baselines. The average accuracies with the deviations are
presented in Table 3.

Figure 4 shows our method can preserve complete semantic
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Table 6. Robust accuracy (percentage) of defenses on different models. All the prompt-based defenses are trained on ResNet18, and then

applied to the VGG19 and WRN28-10 respectively. We present the most successful defense results with bold.

CIFAR-10 Tiny-ImageNet
Model Defense None AA C&W — DDN | None AA C&W — DDN
NAT 9313 000 0.00 000 | 59.40 0.0 0.00 0.03
+Freq 90.77 1.69 2008 1107 | 4779 427 1658 1255
+C-AVP 2060 1078 1558 1232 | 5095 3.00 1797 1361
VGGlo | _ +PAPOu) | 8765 3428 8133 6565 | 4930 739 3866 _ 3126
AT 80.12° ~ 4261 038 342~ T 3899 ~ T 073 013 5.40
+Freq 7378 4904 3408 3310 | 3001 1569 1623 1693
+C-AVP 7999 4360 1067 1041 | 3886 1420 1685  16.60
+PAP(Ours) | 79.53 4943 5626 5122 | 3837 1655 2998 2776
NAT 9542 000 0.00 000 | 6662 0.0 0.00 0.02
+Freq 9453 098 18.29 7.95 54.47 3.67 1829 1378
+C-AVP 1024 995 1032 1014 | 6183 207 1901 13.49
WRN2S.10 | PAPOurs) | 8783 4181 LS8 6919 | 5493 688 4090 _ 3405
AT §7.85° ~ 4945 116 562 [ “51.50° ~ 827 019 11.48
+Freq 8250 5440 3479 3454 | 4420 2332 1988 2218
+C-AVP 8774 5050 1201 1293 | 5118 2003 1531 1931
+PAPOurs) | 8726 5499 7029  63.62 | 5127 2371 3627 3541

Input
examples

Freq

C-AVP

Figure 4. Visualizations of prompted images for input examples.
For each pair of images, the left part denotes the prompted image,
while the right part denotes the difference heatmap compared to
the original input (i.e., adversarial) example.

patterns after prompting. Quantitative analyses in Table 3
show that our method improves the robustness by a large
margin on various attacks compared with existing defenses.
On AutoAttack, our PAP helps increase the robust accuracy
by about 37% on CIFAR-10 and 4% on Tiny-ImageNet for
naturally pre-trained models, and achieves better robustness
on adversarially pre-trained models from both datasets. Al-
though Frequency Prompting improves robustness against
AA for adversarially pre-trained models to some degrees,
it decreases natural accuracy by about 7% on these models.
On C&W and DDN, our method provides great positive
effects for robustness. In addition, although our method
sacrifies natural accuracy on naturally pre-trained models
to some extent, it greatly improves robustness against all of
these attacks (e.g., 80.27% and 42.14% against C&W on
CIFAR-10 and Tiny-ImageNet).

Defending against Black-box Attacks. We apply transfer-

Table 7. Robust accuracy (percentage) of defenses against adaptive
attacks on CIFAR-10. The target model is ResNet18.

Defense None AdaA20 AdaA40
NAT+Freq 94.35 0.68 0.88
NAT+C-AVP 77.74 0.01 0.01
NAT+PAP(Ours) | 90.44 27.95 17.64

T AT+Freq” ~ ~ T | 7830 © 3244 T 3222
AT+C-AVP 83.08 45.32 45.08
AT+PAP(Ours) 84.70 47.94 47.04

based attacks using VGG19 as the surrogate model and
query-based attack Square (Andriushchenko et al., 2020)
for evaluations. Table 12 in Appendix D shows our method
achieves superior performances, verifying the practicality
of our defense in real scenarios.

Defenses on the Prompt Selection Method of C-AVP. To
further verify the stability of our method, we use the prompt
selection strategy of C-AVP on the naturally pre-trained
ResNet18 on CIFAR-10 for evaluations. Table 4 shows al-
though previous methods achieve some improvements on
robustness, they reduce natural accuracy by a large mar-
gin. In comparison, our method can still protect models
more effectively without losing natural accuracy too much,
achieving more stable performances.

4.3. Defense Transferability

To evaluate the transferability across different models, we
applied our method trained on ResNetl8 to other target
models, i.e., WRN28-10, VGG19 and Swin Transformer.
Table 6 and Table 13 (see Appendix E) show our PAP can
effectively help defend against various attacks across both
convolutional neural networks and vision transformers. It in-
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Table 8. The impact of different losses on CIFAR-10. We report
average robust accuracies due to space limitations.

Losses NAT AT
Lnat Lsim Lmis | None  Avg | None  Avg
X Vv v 4827 41.35 | 84.32 59.77
V4 X V4 83.64 61.56 | 83.20 54.19
Vv V4 X 10.01 1043 | 84.34 59.48
4 V4 V4 87.12 61.27 | 84.34 59.57

Table 9. The effectiveness of the weight for prompting. We report
average robust accuracies on both datasets.

weight CIFAR-10 Tiny-ImageNet
None Avg None Avg

X 75.92 57.27 41.59 28.70
V4 84.34 59.57 51.40 31.39

dicates that we can train our prompts only once and directly
apply them to other models for defenses effectively.

4.4. Defending against Adaptive Attacks

Since we achieve defenses by prompting, the prompts
could be leaked to attackers for performing adaptive attacks
(AdaA). In this case, attackers focus on crafting adversarial
noises for misleading predictions after prompting as:

mglxgce (—F_l (-7:(1) (:IH'(S) +pd>y ) ]:E (il'-I-(S) +wtp§y )7 y)7 (10)

where /.. denotes the cross-entropy loss and 4 is the per-
turbation. For fairness, we retrain our PAP on this attack
and apply the same adaptive attack strategy on baselines
using their own prompts to retrain them. Then, the retrained
defenses are evaluated on adaptive attacks. The iteration
number of attack for training is 10, while that for testing is
20 and 40. Table 7 shows our method achieves better robust
accuracy, verifying the effectiveness of our method.

4.5. Ablation Studies

Loss Functions. We explore impacts of losses with differ-
ent hyper-parameters. Table 8 shows removing any of these
losses will damage performances, such as the extremely
accuracy drop when removing L, 4; or L,,;s on NAT. Also,
Appendix F shows natural and robust accuracies vary dif-
ferently in various hyper-parameter settings for these losses.
As a whole, the hyper-parameters we set achieve superior
performances in both natural and robust accuracies.

The Weighting Strategy. To verify the effectiveness of the
weighting strategy, we remove it for evaluations. As shown
in Table 9, the performances drop a lot when removing the
weighting strategy. Therefore, this strategy for dealing with
different effects of phase-level and amplitude-level prompts
on robustness is necessary and rational.

Table 10. The effectiveness of learning prompts for each class on
CIFAR-10 using ResNet18 compared with universal prompts.

Defense None AA || Defense None AA

NAT 94.83 0.00 || AT 84.22 4494
+Universal | 87.54 31.81 +Universal | 84.56 51.92
+PAP(Ours) | 87.12 37.34|| +PAP 84.34 52.31

Table 11. The effectiveness of defenses with Gaussian Blur on
CIFAR-10. The target model is ResNet18.

Defense None AA C&W DDN
NAT 70.57 2592 56.79  40.10
+Freq 70.50 26.51 5794  40.88
+C-AVP 65.83 2575 53.01 37.04
+PAP(Ours) | 67.83 46.57 65.38 58.85
AT T T T T T | 7855 7 55517 5778 T 54717 T
+Freq 7272 5594 5757 55.61
+C-AVP 78.09 55.68 59.16 5595
+PAP(Ours) | 77.01 5741 64.57 61.68

Comparison with Universal Prompts. To verify the superi-
ority of learning prompts for each class, we train a universal
phase-level prompt and a universal amplitude-level prompt
for comparisons. For fairness, the data-prompt mismatching
loss is removed on universal prompts, and other settings for
universal prompts are the same as those from our method.
Table 10 shows performances under universal prompts are
worse than those of ours, indicating that our method helps
enhance the robustness.

Effectiveness When Blurring the Edges. Some attacks
like DDN tend to disrupt edges of objectives. Therefore, it’s
natural to question whether robustness gains from our PAP
come from edge blurring. To this end, we apply Gaussian
Blur on the test image for evaluations. As shown in Table 11,
when blurring edges, our method can still achieve superior
defenses, indicating the effectiveness of PAP does not come
from edge blurring.

5. Limitation

Despite the advances in adversarial defenses, our method
still has several limitations. First, our method sacrifices
some natural accuracy when prompting on naturally pre-
trained models. We will address it in the future such as
using Contrastive Learning, since it is a useful method for
mitigating the trade-off problem between natural and robust
accuracies (Kim et al., 2020; Jiang et al., 2020; Xu et al.,
2024). Second, we do not perform evaluations on ImageNet
due to the limited computational resources. However, we
conduct experiments on Tiny-ImageNet which has been
widely used. Tiny-ImageNet-200 is larger and has a larger
resolution than CIFAR-10, with more numbers of classes
than those of ImageNet-100. Results show that our method
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achieves superior performances, leading us to believe that
our method can also work well on ImageNet. We leave them
to the future work.

6. Conclusion

In this paper, we focus on specific semantic patterns for
improving prompt-based defenses. It has been proven that
phase and amplitude spectra reflect structures and textures,
and both of them need to be manipulated for robustness.
Therefore, we construct prompts using these spectra, and
propose a Phase and Amplitude-aware Prompting (PAP) de-
fense, which learns a phase-level prompt and an amplitude-
level prompt for each class. Considering different influences
of phase-level and amplitude-level prompts for robustness,
we design a weighting method for them according to the ro-
bustness under these prompts. To perform testing efficiently,
we select prompts according to predicted labels, and design
a data-prompt mismatching loss to mitigate the negative
effects of mismatches between images and their selected
prompts. Experimental results demonstrate our method
helps defend against general attacks and adaptive attacks,
achieving superior transferability. Overall, our defense ex-
plores specific semantic patterns to improve performances
of prompt-based defenses.
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A. Preliminary

Notation. We use capital letters like X and Y to represent random variables. Correspondingly, lower-case letters such as
x and y are presented as the realizations of X and Y. We use B(z, €) to denote the neighborhood of z: {Z: ||x — Z|| <€},
where e is the perturbation budget. Here, || - || represents the norm, which can be specified as Lo,-norm || - || oo and Lo-norm
I+ |l2- We define f: x — {1,2,...,C} as a classification function, where the f can be parameterized by a deep neural
network hy with the parameter 6.

Problem Setting. In this paper, the task we focus on is the classification under adversarial settings, which means target
models may be misled by adversarial noises. We sample natural data {(z;,v;)}!"_, based on the distribution of (X,Y),
where X and Y are the variables of natural instances and their ground-truth labels. Here, (X,Y") € x x {1,2,...,c} and cis
the number of classes. Given a deep neural network hy and a pair of natural data (x, y), the adversarial example Z is crafted
following such a constraint:

ho(x) £y st |z —Z| <e, (11)

where £ = x + § and ¢ represents the adversarial noises. Since our focus is on attacking and defending for images, we utilize
the Discrete Fourier Transform (DFT) and its inverse version (IDFT), denoted as F(-) and F 1 (-, -), respectively. The phase
and amplitude spectra are derived as ¢, = Fy(x) and &, = F¢(x). Specifically, we use ¢, and &, to denote the phase and
amplitude spectra of a natural image x, while ¢; and &; represent the corresponding spectra of an adversarial example Z. In
addition, the process to recover an image from its phase and amplitude spectra is expressed as z = F (¢, &, ). Our goal
is to design a set of prompts to assist the classification model hy in making accurate predictions. These prompts are trained
without the need of model retraining, and are further utilized during testing.

B. Prompt Selection Method for Testing from C-AVP

C-AVP (Chen et al., 2023) aims at utilizing pixel domains for prompting. It trains a prompt for each class, and designs a
prompt selection method that traverses all the prompts from all the classes to get the final predictions for testing on naturally
pre-trained models especially for CIFAR-10, which can be formulated as:

p = pir,i* = argmazicchly(Tiest + pi), (12)

where p is the selected prompt for the test image x1es;, while p; is the prompt of class i and h}, is the output of class i, and
C denotes the set of classes. Clearly, when the number of classes becomes large, this strategy for testing can easily cause
extremely high computational costs. The prompt selection strategy of C-AVP is inefficient on numerous classes, and results
in Table 4 show baselines with this strategy lose natural accuracy a lot. In comparison, our prompt selection strategy is
efficient on numerous classes, and our defense with this strategy achieves superior defenses with higher natural accuracy,
verifying the superiority of our prompt selection strategy.

C. Experimental Settings

Datasets and Models. In this paper, we consider two popular benchmark datasets CIFAR-10 (Krizhevsky et al., 2009)
and Tiny-ImageNet (Le & Yang, 2015). CIFAR-10 has 10 classes of images with a resolution of 32 x 32, which contains
50,000 training images and 10,000 testing images. The larger dataset Tiny-ImageNet has 200 classes with a resolution
of 64 x 64 and has 100,000 training images, 10,000 validation images and 10,000 testing images. Images in all of these
datasets are regarded as natural examples. We normalize all the images into the range of [0, 1]. Data augmentations including
random crop and random horizontal flip are performed for all the data in the training stage. For the target model, we use
ResNet18 (He et al., 2016) and WideResNet28-10 (WRN28-10) (Zagoruyko, 2016) for these datasets. We use WRN28-10,
VGG19 (Simonyan & Zisserman, 2014) and a popular vision transformer architecture Swin Transformer (Liu et al., 2021)
for evaluating the defense transferability across different models. The Swin Transformer is trained following previous
studies about evaluating its defense performances (Liu et al., 2023).

Attack Settings. We introduce white-box attacks and black-box attacks to evaluate the defense. For white-box attack, we
utilize Lo.-norm AA (Croce & Hein, 2020), Lo-norm C&W (Carlini & Wagner, 2017) and Ls-norm DDN (Rony et al.,
2019). The iteration number of Ly-norm DDN is set to 20, while that of Le-norm C&W is 50. The perturbation budget for
Loo-norm AA is 8/255. For Lo,-norm C&W, the learning rate is 0.01 and the confidence is 0. All the attacks mentioned
above are set as non-targeted attacks. For black-box attacks, we apply transfer-based attacks under L,,-norm AA, Lo-norm
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DDN using VGG19 as the surrogate model and query-based attacks under Square (Andriushchenko et al., 2020). The
number of queries for Square is set to 200.

Defense Settings. We introduce two recently proposed prompt-based defenses C-AVP (Chen et al., 2023) and Freq (Huang
et al., 2023) as baselines, which utilize the pixel domain and the frequency domain for prompting respectively. In addition,
for the pre-trained models for optimizing and evaluating our prompts, we introduce natural training, AT (Madry et al.,
2018), TRADES (Zhang et al., 2019) and MART (Wang et al., 2019). Note that all the pre-trained models are fixed without
participating in any prompt training procedure. For the attack during training, we use PGD, where the perturbation budget
and perturb step are 8/255 and 10, and the step size is 2/255. We train them using SGD (Andrew & Gao, 2007) for 100
epochs. The initial learning rate is 0.1 with batch size 512 for CIFAR-10, and batch size 256 for Tiny-ImageNet. The initial
learning rate is divided by 10 at the 75-th epoch. We set A\; = 3, Ao = 400, A3 = 4 for naturally pre-trained models, and
A1 =1, Ay = 5000, A3 = 4 for adversarially pre-trained models.

D. Defending against Black-box Attacks

We perform black-box attacks under transfer-based attacks and query-based attacks. The results are shown in Table 12. It is
shown that our method achieve superior robust performances under black-box settings compared with baselines.

Table 12. Robust accuracy (percentage) of defenses against black-box attacks on CIFAR-10. The target model is ResNet18, and the
surrogate model is VGG19. we perform AA and DDN as the transfer-based attack strategies.

Defense None AA DDN Square
NAT 94.83 16.91 53.46 22.10
+Freq 94.50 19.37 53.85 26.43
+C-AVP 92.67 17.27 52.87 22.64
+PAP(Ours) 87.12 51.90 74.79 61.38

E. Defense Transferability to Vision Transformers

We further transfer our prompts trained on ResNet18 to popular Swin Transformer for evaluating the defense transferability
of our method. As shown in Table 13, our method can be transferred well to vision transformers for improving their
robustness, verifying the superior transferability across both convolutional neural networks and vision transformers.

Table 13. Robust accuracy (percentage) of our prompts transferred to vision transformers. The prompts are trained on ResNet18, and the
vision transformer we introduced is Swin Transformer.

Defense None AA C&W DDN
NAT 88.98 0.00 0.00 0.00
+Freq 82.77 3.47 27.55 15.50
+C-AVP 30.33 9.00 17.28 12.90
+PAP(Ours) 84.82 10.13 71.97 49.15

F. Hyper-parameter Studies

We perform several ablation studies for losses with different hyper-parameters as follows. For each hyper-parameter, it
varies within a certain range while other hyper-paremeters are fixed. It can be seen that the natural and robust accuracies
vary under different settings, and the hyper-parameters we set can achieve superior performances in both natural accuracy
and robust accuracy.

There exists a trade-off problem in our method. As shown in Figure 5, for naturally pre-trained models, the natural accuracy
increases while the robust accuracy drops as A1 or ) increases. As shown in Figure 6, for adversarially pre-trained models,
when )\, varies from 0 to 5000, the trade-off problem exists explicitly. Overall, the hyper-parameters we set achieve superior
performances in both natural and robust accuracies.
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Figure 5. The impact of losses with different hyper-parameters on naturally pre-trained ResNet18 in CIFAR-10. For each hyper-parameter,
it varies within a certain range while other hyper-parameters are fixed. We show the natural accuracy and robust accuracy against AA.
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Figure 6. The impact of losses with different hyper-parameters on adversarially pre-trained ResNet18 in CIFAR-10. For each hyper-
parameter, it varies within a certain range while other hyper-parameters are fixed. We show the natural accuracy and robust accuracy
against AA.

G. Visualizations of Prompted Images

We present additional visualized results of prompted images using our prompts, which are presented as follows. Here,
following previous works (Elsayed et al., 2018; Tsai et al., 2020; Zhang et al., 2022), C-AVP performs prompting in the
pixel space by adding random noises to the surrounding area inside the image, only keeping the square area in the center
unchanged. Therefore, C-AVP is only a frame. It can be seen that our method retains complete and natural semantic patterns
after prompting.

C-AVP performs prompting by adding noises around the image in the pixel domain, while Freq performs prompting on the
high-frequency domain. They both train their prompts without considering their disruptions on the natural semantic patterns.
In comparison, our method construct prompts on more specific semantic patterns, training them to enforce the prompted
images to be as similar as possible to corresponding natural images. This can preserve more natural semantic patterns as
shown in Figure 4, 7 and 8.

H. Stability in Natural Accuracy

As a whole, our method performs more stably in natural accuracy. As shown in Section 4, baselines lose more natural
accuracy under many cases, such as the worse transferability and performances under adaptive attacks of C-AVP and the
natural accuray drop of Freq shown in Table 3 under adversarially pre-trained models. In comparison, our defense remains
high natural accuracy in all of these cases, verifying the stability of our defense.
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I. Effectiveness on C&W

C&W method generates adversarial perturbations by performing optimizations in the pixel domain. Differently, our approach
additionally considers the frequency domain. It disentangles the frequency domain information and leverages the amplitude
and phase spectra as a way to focus more finely on important structural semantics and textures, which are not covered in the
compared baselines. Therefore, our method can provide a more effective defense against perturbations generated by C&W.
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Figure 7. Visualizations of prompted images for input examples on CIFAR-10. The target model is naturally pre-trained ResNet18. For
each pair of images, the left part denotes the prompted image, while the right part denotes the difference heatmap compared to the original
input (i.e., adversarial) example.
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Figure 8. Visualizations of prompted images for input examples on Tiny-ImageNet. The target model is naturally pre-trained WRN28-10.
For each pair of images, the left part denotes the prompted image, while the right part denotes the difference heatmap compared to the
original input (i.e., adversarial) example.
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