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ABSTRACT

Recent years have witnessed the widespread success of stochastic gradient descent
(SGD)-type algorithms across various problem domains, including those involving
covariate shift tasks. However, the underlying mechanisms that enable SGD to
generalize effectively in covariate shift settings, as well as the specific types of
covariate shift problems where SGD demonstrates provable efficiency, remain
insufficiently understood. This paper investigates SGD in the context of linear
regression under a canonical covariate shift problem. Our analysis is two-fold:
First, we derive an upper bound for the target excess risk of SGD, incorporating two
critical practical techniques—momentum acceleration and step decay scheduling.
Second, we analyze SGD’s performance by framing it as a preconditioned estimator,
enabling us to identify conditions under which SGD achieves statistical optimality.
We demonstrate that SGD attains optimal performance in several commonly studied
settings. Additionally, we demonstrate that there exist separations between several
commonly used methods.

1 INTRODUCTION

Out-of-distribution generalization ability is necessitated by the ubiquitous distributional shift in
modern machine learning tasks. Covariate shift, as a critical form of distribution shift, arises when
the input distribution diverges across source and target domains, while the conditional distribution of
the target given the input remains invariant (Sugiyama and Kawanabe, 2012). This phenomenon is
ubiquitous in modern learning tasks. It can be exemplified by clinical tasks’ heterogeneity stemming
from inter-hospital variations in equipment and treatment (Guan and Liu, 2021), as well as biases
in basic financial problems of loan applications where training covariate distributions are skewed
toward approved applicants (Marshall et al., 2010). It also has implications for the large language
model training, where curated training data diversifies real-world user prompts (Jin et al., 2024;
Wang et al., 2020). A broad range of approaches has been revisited and proposed for covariate shift,
spanning importance-weighting, distributionally robust optimization, and classical estimators such as
maximum likelihood and ridge regression.

In contrast, the prevailing practice remains a straightforward, computationally efficient, source-only
method: models are trained with SGD-type algorithms. SGD-type algorithms utilize little knowledge
of the target distribution (Bottou and Bousquet, 2007; Kingma and Ba, 2015; Bottou et al., 2018).
The training trajectory is determined entirely by the source data, while only a few parameters, such
as momentum and step size, remain tunable (Sutskever et al., 2013; Zhang and Mitliagkas, 2019;
Zhuang et al., 2020; Xie et al., 2024).

The success of SGD-type algorithms rests on the hope that knowledge distilled from the source
distribution can transfer effectively to the target (Shen et al., 2021; Wenzel et al., 2022). Consequently,
their empirical effectiveness naturally raises a fundamental question:

When and why do source-driven SGD procedures remain effective under distribution shift?

A theoretical characterization of SGD-type algorithms’s generalization over covariate shift is naturally
motivated and crucial to answering this question, yet remains limited.
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Prevailing theoretical analyses of covariate shift use high-dimensional linear regression as a canonical
setup (Ma et al., 2023). The focus on linear models is twofold. First, linear models are a cornerstone
of statistical and machine-learning theory, with broad implications—including their correspondence
to infinitely wide neural networks via the neural tangent kernel (Jacot et al., 2018). Many phenomena
are not model-specific but already emerge in these canonical settings (Du et al., 2020; Lee et al.,
2021). Second, linear models accommodate structural assumptions originate from kernel regimes
(Caponnetto and De Vito, 2007), enabling fine-grained theoretical analyses and thereby yielding
deeper insights (Arora et al., 2019).

Concretely, we study SGD-type methods for covariate shift in high-dimensional linear regression
through the framework of preconditioned estimator: (1) First, we derive an upper bound on the excess
risk of accelerated SGD (ASGD) with the exponentially decaying stepsize schedule, and translate the
upper bound as the excess risk of a suitably preconditioned estimator (Pathak et al., 2024); (2) Second,
from the preconditioned estimator’s viewpoint, we identify minimax optimal regimes for ASGD,
which cover widely examined settings. Furthermore, we demonstrate that there exist separations in
the optimality regions of several methods.

Problem (1) is the technical challenging part, where we derive an upper bound on the target excess risk
for ASGD under an exponentially decaying stepsize schedule in Section 4. Both ASGD and stepsize
schedule are standard in linear regression optimization and crucial for achieving near-statistically
optimal last-iterate excess risk. Practically, momentum and stepwise learning-rate schedules are
defining features of many widely used optimizers (Nesterov, 1983; Kingma and Ba, 2015; He et al.,
2016; Loshchilov and Hutter, 2017; Brown et al., 2020). Theoretically, ASGD accelerates convergence
of the expected iterate, while an exponential step-size decay reduces the variance. Though both are
standard, the excess risk under our framework remains chanllenging and underexplored, even in the
in-distribution low-dimensional setting. Furthermore, equipped with the excess risk upper bound, we
formulate ASGD as a parallel preconditioning estimator in Section 4.1, thereby clarifying our bound
and facilitating the subsequent minimax analyses.

For problem (2), we provide a general condition where ASGD achieves minimax optimal rates in
Section 5. The condition is shown to hold across a broad range of commonly-studied problem class.
In addition, we demonstrate separations in the optimality region between several commonly used
methods. First, under a construction where the target prioritizes the large eigenspace of the source
covariance, ASGD achieves the optimal Õ (1/

√
n) rate whereas ridge regression attains a suboptimal

Õ (1/n). Second, despite momentum can increases the noise, it can still broaden the optimality
regime of SGD when the initial bias is large.

2 RELATED WORK

Optimality in Covariate Shift. There is a vast theoretical literature on the covariate shift problem
(e.g., Ben-David et al. (2010); Germain et al. (2013); Cortes et al. (2010; 2019) and the review in
Sugiyama and Kawanabe (2012); Kouw and Loog (2019)). Confining to the context of optimality,
pioneering work includes Shimodaira (2000), which studies the weighted maximum likelihood method
in the asymptotic setting, Kpotufe and Martinet (2021), which delves into a local nonparametric setup
and considers the minimax optimality of a nearest-neighbor-based method. More recently, a thread
of research considers the optimality of the covariate shift problem under linear/kernel regression.
This includes minimax optimality under general distribution shifts, which lead to suboptimal or
inapplicable results under the covariate shift problem (Zhang et al., 2022; Mousavi Kalan et al., 2020).
As for the specific covariate shift problem in linear/kernel regression, seminal works Lei et al. (2021);
Pathak et al. (2024) consider the preconditioned linear estimator in the linear/kernel regression setup,
and establish their instance-wise minimax optimality framework. In parallel, research has examined
the optimality of specific algorithms. Principal component regression has been analyzed in (Cai and
Hall, 2006; Tang et al., 2025) under setups like single-point prediction. (Ma et al., 2023; Pathak et al.,
2022) consider the optimality region of kernel ridge regression under function classes defined by
bounded likelihood discrepancy. Ge et al. (2024) demonstrates that maximum likelihood estimation
achieves optimality in low-dimensional settings. Our results delve into the prevalent SGD-type
algorithm and establish a general optimality framework covering broad problem settings. And we
also demonstrate that there exists a separation between the optimality region of ASGD, vanilla SGD,
and ridge regression, despite their seemingly parallel optimality under standard setups.
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Stochastic Gradient Methods in Linear Regression. Recent theoretical analyses of SGD for
linear regression have tightened the link between practice and theory. In particular, exponentially
decaying step-size schedules—ubiquitous in implementations—now carry minimax-optimal risk
guarantees (Ge et al., 2019; Pan et al., 2022), a result that lay beyond conventional black-box analyses.
Acceleration likewise remains effective under substantial gradient noise for appropriate noise models,
as demonstrated by Jain et al. (2018); Varre and Flammarion (2022). The important subsequent
work establishes provable generalization for stochastic-gradient methods (Zou et al., 2021; Wu et al.,
2022a; Li et al., 2024; Zhang et al., 2024) under the over overparameterized problems. In the specific
covariate shift problem, Wu et al. (2022b) establishes instance target excess risk upper bounds in
linear for vanilla SGD under covariate shift. Back to our setup, the combination of ASGD and stepsize
schedules in linear regression analysis is technical-challenging and unprecedented, even in the in-
distribution and low-dimensional setting due to complex noise-propagation of fourth momentum
and non-commutable matrices. Besides, a related line of work studies SGD-type algorithms for
nonparametric regression. Dieuleveut and Bach (2016) analyze stochastic gradient methods in
reproducing kernel Hilbert spaces and further establish their optimality. These studies, however, do
not concern out-of-distribution or acceleration techniques such as momentum and step-size schedules.

3 PROBLEM FORMULATION AND PRELIMINARIES

Notations. We denote the spectral norm, Frobenius norm, and nuclear norm of a matrix A by
∥A∥, ∥A∥F , and ∥A∥∗, respectively. Define the elliptical norm of vector x under positive definite
matrix M as ∥x∥2M = x⊤Mx. We use O to denote the matrix with all entries equal to zero. For
positive integer n, let [n] = {1, 2, . . . , n}. The diagonal matrix with sequence {ai}di=1 as its diagonal
entries is denoted by diag {ai}di=1. For a vector x ∈ Rd, denote xk1:k2 ∈ Rd as the vector where
only k1 + 1-th to k2-th entries are kept and others are set to zero. For a matrix A ∈ Rd×d, let
Ak1:k2 ∈ Rd×d denote the matrix obtained by retaining only the submatrix from the (k1 + 1)-th to
the k2-th rows and columns, with all other entries set to zero.

3.1 LINEAR REGRESSION UNDER COVARIATE SHIFT

The regression problem using covariate x ∈ Rd to predict the response y ∈ R. In the covariate shift
problem, there are two distinct data domains on the covariate and the response: a source domain S
and a target domain T . Let Px×y denote the joint distribution of (x, y) over domain S and Qx×y
denote the joint distribution of (x, y) over domain T .

We assume access to n i.i.d. samples {(xi, yi)}ni=1 drawn from Px×y, while the predictor’s perfor-
mance is evaluated under the generalization risk on the target distributionQx×y . Covariate shift refers
to the problems where the marginal distribution Px may differ from the marginal distribution Qx,
while the conditional distribution y|x remains unchanged in both domains. Denote the covariance
of the source and target distributions as S = EPx

[
xx⊤] and T = EQx

[
xx⊤]. The eigenvalue

decomposition of S and T are given by

S = Udiag {λ1, . . . , λd}U⊤, T = Vdiag {µ1, . . . , µd}V⊤, (1)

where λ1 ≥ · · · ≥ λd are eigenvalues of S in non-increasing order and {µi}di=1 are eigenvalues of T
in non-increasing order. For simplicity, we assume that U is the standard orthonormal basis in Rd.

For any estimator w ∈ Rd, the source risk ES (w) and target risk ET (w) are defined as:

ES (w) =
1

2
EPx×y (y − ⟨w,x⟩)

2
, ET (w) =

1

2
EQx×y (y − ⟨w,x⟩)

2
. (2)

We impose the following assumption on the response model in both the source and target distributions.
Assumption 1. For both source and target domains, the response y is generated by y = (w∗)⊤x+ ϵ,
where w∗ ∈ Rd denotes the ground truth. The noise ϵ satisfies E[ϵ|x] = 0 and E[ϵ2|x] ≤ σ2.

The performance of estimator w is evaluated by the excess risk on the target distribution Qx×y:

RT (w) =
1

2

(
ET (w)−min

w
ET (w)

)
=

1

2
∥w −w∗∥2T . (3)

3
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3.2 ASSUMPTIONS

We adopt several assumptions widely used in kernel linear regression. We focus on the minimax
optimality under the elliptical constraint framework proposed by Pathak et al. (2024).

Assumption 2. We assume that the ground truth w∗ lies in the elliptical constraint set: WM ={
w∗ ∈ Rd : ∥w∗∥2M ≤ 1

}
, where M ∈ Rd×d is a given positive definite matrix.

Remark 1. We introduce M to involve the interpolation space in the reproducing kernel Hilbert
space (RKHS) framework. When M = I, the set WI simplifies to the standard Euclidean unit
ball

{
w∗ : ∥w∗∥22 ≤ 1

}
, which also corresponds precisely to the unit ball in the RKHS induced

by the linear kernel k(x,y) = x⊤y. When M = S1−s, the set WS1−s aligns with the unit ball
in the interpolation space [HPx ]

s associated with the RKHS generated by the linear kernel under
distributions Px. Such conditions are standard and often referred to as source conditions in the
RKHS framework (Caponnetto and De Vito, 2007).

As formalized in the following assumption, we assume that the L2,Px -norm of (w∗)⊤x is finite.

Assumption 3. We assume that there exists c > 0 such that ∥w∗∥2S ≤ c.
Remark 2. This assumption is mild and implies that for any ground truth parameter w∗ ∈W , the
excess risk of w0 = 0 under the source distribution Px×y is finite. In other words, the L2,Px -norm of

(w∗)⊤x is bounded by c. Furthermore, this assumption leads to the bound
∥∥∥M−1/2SM−1/2

∥∥∥ ≤ c.
To derive the target excess risk upper bound for ASGD, we require the following assumption that the
fourth moment of the source covariates is bounded.

Assumption 4. There exists a constant ψ ≥ 1, such that for every PSD matrix A, we have

EPx

[
xx⊤Axx⊤] ≤ ψ tr (SA)S. (4)

Remark 3. The assumption 4 is standard in the SGD excess risk analysis (Jain et al., 2017; 2018; Zou
et al., 2021; Wu et al., 2022a;b). It holds for distributions with bounded kurtosis for the projection of x
onto any z ∈ Rd. Specifically, if there exists a constant c > 0 such that for any z ∈ Rd, the following
inequality holds: EPx ⟨z,x⟩

4 ≤ c ⟨z,Sz⟩2. For instance, if S− 1
2x follows a Gaussian distribution, it

holds with ψ = 3. Indeed, we impose this condition to handle the case where ∥w∗∥2 =∞. If ∥w∗∥2
is finite, all of our conclusions hold under a weaker assumption EPx

[
∥x∥2 xx⊤

]
≤ ψS.

3.3 MINIMAX OPTIMALITY

Statistical minimax optimality identifies the estimator that achieves the smallest worst-case excess
risk across certain problem class. In this section, we present the minimax optimal estimator and its
corresponding excess risk. The considered problem class P(WM,S,T) is defined as below.

Definition 1 (Problem Class). The problem class P(WM,S,T) consists of all independent distribu-
tions P ×Q satisfy (1) S = EPx

[
xx⊤], T = EQx

[
xx⊤]; (2) Assumptions 1, 2, 3, 4 hold.

The minimax lower bound over P(W,S,T) shown by Pathak et al. (2024), is presented in Theorem 5.

Theorem 5 (Theorem 2 in Pathak et al. (2024)). Given positive semi-definite matrices S, T, M and
probability P̃ ∈ P(WM,S,T), samples {(xi, yi)}ni=1 are drawn from the source distribution of P̃ .
For any random estimator ŵ = A ({(xi, yi)}ni=1 ,S,T, ξ), where A : R2d2+n(d+1)+1 → Rd is an
arbitrary measurable mapping, and ξ encodes the algorithm’s randomness, then we have

inf
ŵ

sup
P̃∈P(WM,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥ sup

F⪰O, ∥F∥∗≤1/π2

〈
T′,
(
F−1 + nS′/σ2

)−1
〉
, (5)

where S′ = M−1/2SM−1/2 and T′ = M−1/2TM−1/2.

Theorem 5 provides the algorithm-independent, worst-case lower bound over problem class
P(WM,S,T) for any instance of S, T and M, while not yielding an explicit convergence rate.

4
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Algorithm 1 Accelerated Stochastic Gradient Descent (ASGD) with exponentially decaying step size

Require: Initial weight w0 = v0, initial step size δ, γ, momentum α, β, total sample size n, i = 1.
for ℓ = 1, 2, . . . , log2 n do

δ(ℓ) ← δ0/4
ℓ−1, γ(ℓ) ← γ0/4

ℓ−1

for t = 1, 2, . . . , n
log2 n

do
Sample a fresh data (xi, yi)
ui−1 ← αwi−1 + (1− α)vi−1

gi ←
(
x⊤
i ui−1 − yi

)
xi

wi ← ui−1 − δ(ℓ)gi
vi ← βui−1 + (1− β)vi−1 − γ(ℓ)gi
i← i+ 1

end for
end for

3.3.1 LINEAR PRECONDITIONED ESTIMATOR

The linear preconditioned estimator ŵA defined in the following can be viewed as a linear transfor-
mation of a generalized form of the ordinary least squares (OLS) estimator 1

nS
−1∑n

i=1 xiyi:

ŵA =
1

n
M−1/2AM1/2S−1

n∑
i=1

xiyi, (6)

where A ∈ Rd×d is a preconditioner. The preconditioned estimator ŵAOpt
M,S,T

achieves the minimax
lower bound by minimizing the excess risk within its class. The optimal preconditioning matrix
AOpt

M,S,T is given in Lei et al. (2021); Pathak et al. (2024) as

AOpt
M,S,T = argmin

A∈Rd×d

∥∥(I−A)⊤T′(I−A)
∥∥︸ ︷︷ ︸

The supremum Bias of ŵA over P(WM,S,T)

+
σ2 + ψ

∥∥S′∥∥
n

〈
T′,A

(
S′)−1

A⊤
〉

︸ ︷︷ ︸
Variance of ŵA

. (7)

It is worth noting that both the minimax lower bound (5) and the optimal preconditioner (7) require
prior knowledge of the covariance matrices S, T, and the constraint matrix M.

4 ASGD TARGET EXCESS RISK UPPER BOUND

The empirical success of SGD-type algorithms has made direct application of them the prevalent
method for solving large-scale covariate-shift problems. In this section, we establish an upper bound
on the target excess risk for SGD-type algorithms within a unified framework.

As presented in Algorithm 1, we analyze the ASGD algorithm (Jain et al., 2018; Li et al., 2024), the
standard acceleration method for linear regression, and adopts practical but analytically challenging
geometrically decaying step sizes (Ge et al., 2019; Wu et al., 2022a). In Algorithm 1, gi denotes
the stochastic gradient evaluated at ui−1. The parameters α and β are the momentum parameters,
while δ(ℓ) and γ(ℓ) represent step sizes initial from δ and γ.T hese step sizes are piecewise constant
within each stage 1 ≤ ℓ ≤ ⌊log2 n⌋, and are divided by 4 after each stage. Besides, when γ = δ,
Algorithm 1 reduces to the vanilla SGD method with geometrically decaying step size. To align with
the subsequent minimax optimality analysis, Theorem 6 establishes a target bound on the excess
risk for the class P(WM,S,T). The class in Theorem 6 assumes M and S commute, which is a
mild requirement since it encompasses the standard source condition in the associated RKHS. For a
general risk bound, Appendix A.4 provides an instance-wise upper bound valid for any given w∗.

Parameter Choice. The parameters in Algorithm 1 are selected according to the following scheme:

δ ∈
[

(lnn)2κ̃

c1n
∑
i>κ̃ λi

,
1

c2 lnn tr(S)

]
, γ ∈

[
δ,

1

c3 lnn
∑
i>κ̃ λi

]
, β =

δ

c4κ̃γ lnn
, α =

1

1 + β
, (8)

for κ̃ ≤ κ̃sup, where κ̃sup = supκ̃

{
κ̃ tr(S)∑
i>κ̃ λi

≤ c5n
(lnn)3

}
determines the maximal admissible momen-

tum and step size. c1, . . . , c5 are constants; specific values are provided in Appendix A.1.3.
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Theorem 6 (Upper Bound of ASGD). Let S, T, and M be positive semi-definite matrix such that
M commutes with S. Suppose we get samples {(xi, yi)}ni=1 drawn from the source distribution of
P̃ ∈ P(WM,S,T). When n ≥ 16, we choose the initial step size δ, γ and the momentum α, β
according to the parameter choice. Denote the output of Algorithm 1 as wSGD

n , the target excess risk
of wSGD

n over problem class P(WM,S,T) can be uniformly bounded from the above by

sup
P̃

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≲ σ2

[
k∗∑
i=1

(lnn)2tii
nλi

+ n (γ + δ)
2

d∑
i=k∗+1

λitii

]
︸ ︷︷ ︸

Effective Variance

+
∥∥∥T′

k∗:d

∥∥∥
2︸ ︷︷ ︸

Effective Bias

, (9)

where k∗ = max
{
k : λk >

32(lnn)2

(γ+δ)n ln 2

}
, often referred to as the effective dimension (Bartlett et al.,

2020; Zou et al., 2021), T′
0:k∗ = M−1/2T0:k∗M

−1/2 and T′
k∗:d = M−1/2Tk∗:dM

−1/2. tii
denotes the i-th diagonal entry of T, and {λi}di=1 are eigenvalues of S.

Theorem 6 provides the uniform target excess risk upper bound for ASGD over problem class
P(WM,S,T). The upper bound (9) decomposes into effective bias and effective variance. The
effective bias corresponds to the risk of simply performing a deterministic Algorithm 1 without
gradient noise, and thus depends on the deviation w0 −w∗ between the initialization and ground
truth. The effective variance quantifies the additional randomness introduced by both the noise term ϵ
and xtx

⊤
t within the stochastic gradient, as well as its complex evolution across the iterations.

Theorem 6 reveals that ASGD proceeds greedily along the eigendirections of S, and exhibits distinct
behaviors in two subspaces S1:k∗ and Sk∗:d separated by the effective dimension k∗. Specifically,
there exists a phase transition in ASGD’s excess risk: (1) In the directions corresponding to large
eigenvalues (indexed by k ≤ k∗), ASGD accurately approaches w∗ with negligible bias, whereas
the variance term tkk/(nλk) dominates the risk. (2) Along the directions associated with small
eigenvalues (k > k∗), the bias remains at the same scale as in initialization, leading to a worst-
case bias of

∥∥∥T′

k∗:d

∥∥∥
2
. The residual variance scales as n (γ + δ)

2
λktkk. Therefore, the effective

dimension k∗, as a function of the sample size n, the initial step size γ + δ, and the spectral structure
of S, encapsulates ASGD’s bias-reduction capacity.

Remark 4 (Impact of Momentum). As shown in (29), increasing the momentum β allows for a
larger admissible step size γ, which in turn leads to a larger effective dimension k∗ and improves
ASGD’s ability to reduce bias. However, if the momentum is set too large, the variance induced by
xtx

⊤
t may diverge. (29) also specifies the maximal admissible momentum and step size γmax and

δmax = 1/(ψ trS) that ensures convergence of the target excess risk, thereby characterizing the
maximal admissible effective dimension kmax = max

{
k : λk > 32(lnn)2/((γmax + δmax)n) ln 2

}
and the upper limit of ASGD’s bias reduction capacity.

To bound the target excess risk of ASGD, we use an entrywise analysis of the covariance matrix
along the iteration, which presents greater challenges than the eigendirection-wise approach in the
in-distribution case. There are two primary challenges in this analysis: (1) Controlling the fourth-
moment variance introduced by xtx

⊤
t along the complicated propagation; (2) Precisely characterizing

the bias contraction rate of the expected dynamics. These challenges arise from the use of momentum
combined with decaying step sizes, which render the iteration operators (Ât in defined in (18) in
Appendix) piecewise non-commutative and lacking monotonic contraction properties.

When bounding the fourth-moment variance, we show that at each iteration, the covariance matrix of
the stochastic update can be controlled by that of its expected counterpart. This allows us to reduce
the analysis to the expected gradient descent dynamics, ignoring the fourth-moment variance. We
characterize the bias contraction rate along each eigendirection. For directions with large eigenvalues
(k ≥ k∗), we show that the norm of the product of the (piecewise constant) iteration operators is
dominated by the first phase, resulting in exponential decay. For directions with small eigenvalues
(k < k∗), we prove that under a suitable projection matrix P with |P| ≤ 2, the norm of the operator
product is bounded by one, leading to a bias of the same order as the initialization.
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4.1 ASGD AS A PRECONDITIONER

In this section, we introduce a novel perspective by showing that the behavior of ASGD over the
problem class P(WM,S,T) can be effectively approximated by that of a linearly preconditioned
estimator ŵAk∗ with Ak∗ = diag {Ik∗ ,Ok∗:d}, where k∗ denotes the effective dimension. This
perspective allows us to explicitly identify the problem class for which ASGD generalizes effectively.
Theorem 7. Under the conditions of Theorem 6, and for given step sizes γ and δ, the uniform target
excess risk of ASGD over problem class P(WM,S,T) can be bounded by Rγ+δ:

sup
P̃∈P(WM,S,T)

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T

≲

∥∥∥∥(I− [I0:k∗ O
O O

])
T

′
(
I−

[
I0:k∗ O
O O

])∥∥∥∥︸ ︷︷ ︸
Bias of ŵAk∗ over P(WM,S,T)

+
1

n

〈
T

′
,

[
I0:k∗ O
O O

]
(S

′
)−1

[
I0:k∗ O
O O

]〉
︸ ︷︷ ︸

Variance of ŵAk∗

+ n(γ + δ)2
〈
T

′
,

[
O O
O Ik∗:d

]
(S

′
)

[
O O
O Ik∗:d

]〉
︸ ︷︷ ︸

Residual Variance

≡ Rγ+δ,

(10)
where k∗ = max

{
k : λk >

32(lnn)2

(γ+δ)n ln 2

}
, T′ = M−1/2TM−1/2 and S′ = M−1/2SM−1/2.

Theorem 7 shows that the uniform target excess risk of ASGD can be bounded by that of ŵAk∗

and a residual variance arising from eigendirections outside the top-k∗ eigenspace of S. The bound
highlights how the trade-off between bias and variance is governed by the effective dimension k∗.
Remark 5 (Bias and Variance Behavior of Rγ+δ). We refer Bγ+δ to the bias of ŵAk∗ over
P(WM,S,T) and Bγ+δ to the sum of the variance of ŵAk∗ and the residual variance. Thus,
Rγ+δ = Bγ+δ + Vγ+δ . For a given problem class P(WM,S,T) and total sample size n, when the
initial step size γ + δ increases, Vγ+δ increases steadily, while Bγ+δ remains flat until the effective
dimension k∗ increases, at which point it drops sharply.
Remark 6 (Best Choice of Step Size over Problem Class P(WM,S,T)). The best choice of initial
step size for a given problem can be determined by minimizing Rγ+δ. Let λk1 > λk2 > · · · > λkm
denote the distinct eigenvalues of {λi}di=1, arranged in decreasing order. For i ∈ [m], the index ki
denotes the largest index j such that λj = λki . For i ∈ [m], define γki = 32(lnn)2/(nλki ln 2),
and let δki = min

{
γki , 1/(ψ trS)

}
. Let R(ki) = Rγki+δki . Then, the best choice of γ and δ is

given by γkbest and δkbest , where kbest = min
{
k†, kmax

}
, and k† = argminki {R(ki)} denotes the

bias–variance intersection of problem class P(WM,S,T). Moreover, the choice of step size can be
practically approximated via widely used hyperparameter tuning in deep learning (Sutskever et al.,
2013; Zhang and Mitliagkas, 2019; Zhuang et al., 2020; Xie et al., 2024).

ASGD is efficient when the bias–variance intersection k† is less than the maximal effective dimension
kmax. This corresponds to problem classes where T

′
is concentrated within the top-kmax eigenspace

of S, and leaves little mass outside it such as
∥∥∥T′

kmax:d

∥∥∥ and tr
(
T

′

kmax:d

)
are small.

5 OPTIMALITY ANALYSIS

We begin the analyses with the following sufficient condition for optimality of ASGD.
Theorem 8. Recall that the maximal admissible effective dimension kmax defined in Remark 4 and
the target excess risk bound {R(kbest)}mi=1 defined in Remark 6. ASGD can reach optimality over
P(WM,S,T), if there exists ki ≤ kmax such that

R(ki) ≂ max
A⊆{1,...,k1}:∑

i∈A
1

nλi
≤1

〈
T

′
,
(
S

′

A

)−1
〉
+ sup

F⪰O,
∥F∥∗≤1

〈
T

′
,
(
F−1 + nS

′

k1+1:d

)−1
〉
. (11)

Under the condition in (11), ASGD with step sizes γki and δki defined in Remark 6 can reach
optimality. The first term on the right-hand side corresponds to the necessary variance incurred

7
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when accurately estimating the ground truth within eigenspace S1:k1 . The second term captures
the unavoidable bias in the tail eigenspace Sk1:d. This aligns with the fact that ASGD proceeds
greedily along the eigendirections of S and achieves the best performance over the problem class
P(WM,S,T) when the best step size is properly chosen to strike the bias–variance trade-off.

As the corollaries of Theorem 8, ASGD achieves optimality across a broad common scenarios. We
first demonstrate the optimality of ASGD under the case of under-parameterized setup in (Ge et al.,
2024), where sample size n is sufficiently large. SGD can attain an optimal target excess risk of order
Õ
(
tr
(
TS−1

)
/n
)

even in the absence of target data information.

Corollary 9. For any positive semi-definite matrix S, T, and M, we get samples {(xi, yi)}ni=1 drawn

from the source distribution of P̃ ∈ P(WM,S,T). When n
ln2 n

> max
{
λ−1
d ,
∥∥∥M− 1

2TM− 1
2

∥∥∥},

SGD with δ = γ = Θ̃(1) can reach optimal rate Õ
(
tr
(
TS−1

)
/n
)
.

Theorem 8 also implies that SGD can achieve optimality under the B-bounded density ratio class,
a widely-adopted problem class in the covariate shift literature (Cortes et al., 2010; Ma et al.,
2023; Feng et al., 2023). The class PB,T includes all problems such that EQxxx

⊤ = T and
dQx/dP

B
x ≤ B. We need two conditions in this setting: (1) The eigenvalues {µi}di=1 of T

satisfy the standard regularity condition (Yang et al., 2017; Ma et al., 2023; Feng et al., 2023): for
any δ > 0, define d(δ) = min

{
j ≥ 1|µj ≤ δ2

}
, and assume that

∑d
j=d(δ)+1 µj ≤ Cd(δ)δ2 for

some universal constant C > 0. (2) The bias–variance intersection point is admissible: Denote
d1 = maxi

{
µi ≥ σ2Bi

n

}
and k∗B = maxk

{
λBk ≥

µd1

B

}
, then k∗B ≤ kmax.

Corollary 10 (B-Bounded). Under the above conditions and M = I, SGD with γ ≂ (lnn)2/(nλk∗B )

and δ ≂ min {γ, 1/(trS lnn)} can achieve the optimal rate Õ
(
infδ>0

{
δ2 + σ2Bd(δ)

n

})
.

5.1 SEPARATIONS

We then establish separations between methods. First, we compare (A)SGD with the standard offline
algorithm, ridge regression; second, we demonstrate the effectiveness of momentum by comparing
ASGD to SGD. Specifically, we exemplify the learning problems that create the separations.

The separation between the (A)SGD and ridge can be understood through the preconditioning lens:
they each correspond to a distinct diagonal precondition strategy. (A)SGD applies a sharp truncation
via the precondition matrix diag {Ik∗ ,Ok∗:d} stated in Section 4.1, eliminating bias in the top-k∗
eigenspace of S. By contrast, ridge regression with regularizer λ corresponds to the smoother
preconditioner Kλ = S

S+λI , which leaves residual bias in the top eigenspace. While reducing λ
decreases bias, it simultaneously inflates variance, creating an unavoidable trade-off. The following
example quantifies this separation (the ridge regression lower bound is from Tang et al. (2025)).

Theorem 11. When S = diag
{
Ik,

1√
n
Ik+1:⌊√n⌋,O⌊√n⌋:d

}
, T = Id, w∗ = [1k,0k+1:d]

⊤, k =

O(1), M = diag
{

1
k Ik,∞Ik+1:d

}
, the excess risk of ridge regression for any λ ≥ 0 is lower bounded

by O(1/
√
n) , while (A)SGD with δkbest = γkbest = ln2 n

n achieves the optimal rate O(1/n).

We demonstrate the separation of ASGD and vanilla SGD through single point prediction, one most
standard covariate shift setting (Donoho, 1994; Box et al., 2015). We adopt the polynomially decaying
spectral structure as considered in the seminal work Cai and Hall (2006).

Corollary 12 (Single Point Prediction). Consider λi ≂ i−a, M = S1−s and T = ww⊤ where
w ∈ Rd and wi ≂ i−(1+r)a/2. We assume (r+ s)a ≥ 1 so that

∥∥∥M−1/2TM−1/2
∥∥∥ is bounded. For

region s ≥ 1, vanilla SGD achieves optimality up to logarithmic factors; for region 1 > s > a
2a−1 ,

ASGD achieves optimality up to logarithmic factors. The optimal rate is

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤

{
Õ(1/n), r ≥ 1/a;

Õ
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(12)
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(a) Asymptotic Case (b) B-bounded Density Ratio (c) ASGD vs Ridge

(d) ASGD vs SGD (e) ASGD vs Ridge, ResNet-18 (f) ASGD vs Ridge, CLIP

Figure 1: Experimental results: 95% confidence intervals over 100 repeats are shown in the shaded
region. Simulation studies (a-d) verify the results in Section 5. Figures (e,f) demonstrate the separation
of ASGD over ridge regression on the real-world dataset. Experimental details are in Appendix F.

Corollary 12 indicates adding momentum allows ASGD to achieve optimality over a broader range
of smoothness parameters s. In particular, ASGD attain optimality for smaller s, which correspond to
the less smooth ground truth in the interpolation space [H]s, the problem class with large initial bias.

6 EXPERIMENTS

This section presents both the simulated results and the experiments on real-world dataset UTK-
Face (Zhang et al., 2017). Dashed lines show the theoretical rate if applicable. The experiment detail
is in Appendix F.

Fig 1(a) validates Corollary 9 under the under-parameterized setting (d = 10) across different
eigenstructures of S. Furthermore, a smaller value of a will yield a larger admissible λk, as defined
in Remark 4, thus decreasing the excess risk as illustrated in the figure. Fig 1(b) validates the
results of Theorem 10, where escalating scales of B enlarges the discrepancy between two domains
and degrades the performance of ASGD. Fig 1(c) illustrates the example in Theorem 11: when
the target emphasizes larger eigenvalues, ridge regression with an optimally tuned λ still exhibits
worse performance across sample sizes n, regardless of the λ chosen. In Fig 1(d), we examine
the single-point prediction problem with large initial bias considered in Corollary 12 with various
parameter choices. γ ≂ n0.5 yields the optimal setting, and the case γ ≂ 1 reduces to vanilla SGD
since we set δ ≂ 1. The results show that ASGD achieves a clear separation from SGD under large
initial bias in this setting.

We further evaluate the separation between ASGD and ridge regression on UTKFace dataset (Zhang
et al., 2017) and extract features using ResNet-18 (He et al., 2016) and CLIP-ViT-L/14 (Radford
et al., 2021). We compare SGD-type algorithms with the ridge regression using the features. We train
on the source domain with n data points and perform a grid search on the hyperparameters for all
algorithms. As shown in Fig 1 (e, f), SGD methods can consistently outperform ridge regression in
this problem, despite the optimally tuned λ.

7 CONCLUSION

This work theoretically characterizes ASGD’s OOD generalization under covariate shift in linear
regression. We derive excess risk bounds for SGD with momentum and step decay schedule. By
viewing ASGD as a preconditioned estimator, we provide a new perspective to identify problems
where ASGD is provably optimal and illustrate the separation between several methods.
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A PROOFS OF ASGD UPPER BOUND IN SECTION 4 AND SECTION 4.1

In this section, we provide the analysis of ASGD upper bound. The organization of this section is as
follows:

• In Section A.1, we present the tools for analyzing ASGD, and provide parameter choice of
ASGD hyperparameters in Section A.1.3. Bias-variance decomposition is used to decompose
the excess risk into the bias part and variance part. The definition of linear operators on
matrices allows us to write the matrix form of the iteration of bias and variance.

• In Section A.2, we summarize the proof. We begin by defining C̃t and B̃t, a different
version of variance Ct and bias iteration Bt, and further bounds the difference. Some proofs
are deferred to Section A.7 and Section A.8.

• In Section A.3, we prove Theorem 6, and in Section A.4, we present an instance-dependent
target excess risk upper bound of ASGD in Theorem 13.

• In Section A.5, we show that ASGD algorithm can be viewed as a preconditioned estimator
by proving Theorem 7. We also prove Theorem 11 to show that ASGD is superior to ridge
regression.

• In Section A.6, we establish the bounds of the momentum matrix. The bounds are based on
the spectral radius of the momentum matrix.

• Section A.7 and Section A.8 provide bounds of semi-stochastic iterations in terms of
algorithmic parameters, and the covariance matrix of source and target distributions.

A.1 PRELIMINARIES

A.1.1 BIAS-VARIANCE DECOMPOSITION

Given a sequence of data {(xi, yi)}ni=1, ASGD starts from initial weight w0 = v0 and recursively
calculates

ut−1 ← αwt−1 + (1− α)vt−1, (13)
wt ← ut−1 − δt

(
x⊤
t ut−1 − yt

)
xt, (14)

vt ← βut−1 + (1− β)vt−1 − γt
(
x⊤
t ut−1 − yt

)
xt, (15)

where δt and γt are step sizes at iteration t. We consider the exponentially decaying step-size schedule

δt = δ/4ℓ−1, γt = γ/4ℓ−1, if K(ℓ− 1) + 1 ≤ t ≤ Kℓ, (16)

where n is the number of observations and K = n/ log2 n. For theoretical analysis, we define

ηt =

[
wt −w∗

ut −w∗

]
, where w∗ is the ground-truth weight. Let c = α(1− β), q = αδ + (1− α)γ, and

qt = αδt + (1 − α)γt, by eliminating vt in (15), ASGD iteration can be written in the following
compact form,

ηt = Âtηt−1 + ζt, where Ât =

[
O I− δtxtx⊤

t

−cI (1 + c)I− qtxtx⊤
t

]
, ζt =

[
δtϵtxt
qtϵtxt

]
, (17)

where ϵt is defined in Assumption 1.

Following the standard bias-variance decomposition technique (Jain et al., 2017; Wu et al., 2022a;
Li et al., 2024), we decompose the iteration ηt into the bias component ηbias

t and the variance
component ηvar

t ,
ηbias
t = Âtη

bias
t−1 , ηbias

0 = η0; (18)

ηvar
t = Âtη

var
t−1 + ζt, ηvar

0 = 0. (19)
The decomposition of ηt induces the decomposition of excess risk:

E ∥wn −w∗∥2T =

〈[
T O
O O

]
,E
[
ηnη

⊤
n

]〉
≤2 ·

〈[
T O
O O

]
,E
[
ηbias
n

(
ηbias
n

)⊤]〉
︸ ︷︷ ︸

Bias

+2 ·
〈[

T O
O O

]
,E
[
ηvar
n (ηvar

n )
⊤
]〉

︸ ︷︷ ︸
Variance

.
(20)
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A.1.2 LINEAR OPERATORS

We introduce the following linear operators on matrices to analyze the recursion of E
[
ηbias
n

(
ηbias
n

)⊤]
and E

[
ηvar
n (ηvar

n )
⊤
]
.

I = I⊗ I, Bt = E
[
Ât ⊗ Ât

]
. (21)

(22)

Let At = EÂt be the deterministic version of Ât, and define

B̃t = At ⊗At. (23)

We decompose Ât into two components:

V =

[
O I
−cI (1 + c)I

]
, Ĝt =

[
O δtxtx

⊤
t

O qtxtx
⊤
t

]
. (24)

The deterministic version of Ĝt is defined as

Gt = EĜt. (25)

Therefore, Ât = V − Ĝt and At = V −Gt.

The following lemma provides properties of the linear operators.
Lemma 1. The above operators have the following properties:

1. Bt ⪯ B̃t + E
[
Ĝt ⊗ Ĝt

]
.

2. Suppose Assumption 4 holds. For any PSD matrix M, we have

E
[
Ĝt ⊗ Ĝt

]
◦M ⪯ ψ

〈[
O O
O S

]
,M

〉[
δ2tS δtqtS
δtqtS q2tS

]
. (26)

Proof. 1. From the definiton of Bt, we have

Bt =E
[(

V − Ĝt

)
⊗
(
V − Ĝt

)]
a
⪯ (V −Gt)⊗ (V −Gt)−Gt ⊗Gt + E

[
Ĝt ⊗ Ĝt

]
=B̃t + E

[
Ĝt ⊗ Ĝt

]
,

(27)

where
a
⪯ uses E

[
V ⊗ Ĝt

]
= V ⊗Gt and

a
⪯ uses E

[
Ĝt ⊗V

]
= Gt ⊗V.

2. Apply the partition of Ĝt to M =

[
M11 M12

M21 M22

]
, we have

E
[
Ĝt ⊗ Ĝt

]
◦M =E

[
δ2t xx

⊤M22xx
⊤ δtqtxx

⊤M22xx
⊤

δtqtxx
⊤M22xx

⊤ q2t xx
⊤M22xx

⊤

]
=

[
δ2t δtqt
δtqt q2t

]
⊙ E

[
xx⊤M22xx

⊤]
a
⪯
[
δ2t δtqt
δtqt q2t

]
⊙
[
ψ

〈[
O O
O S

]
,M

〉
S

]
⪯ψ

〈[
O O
O S

]
,M

〉[
δ2tS δtqtS
δtqtS q2tS

]
,

(28)

where ⊙ denotes Kronecker product, and
a
⪯ holds for Assumption 4 and property of Kro-

necker product, which is, for any PSD matrices A, B ⪯ C, we have A⊙B ⪯ A⊙C.
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A.1.3 PARAMETER CHOICE

This section provides a specific parameter choice procedure. We first choose appropriate positive
integer κ̃, fix α = 1/(1 + β), and choose

δ ∈
[
64κ̃ lnn log2 n

n
∑
i>κ̃ λi

,
1

2188ψ trS lnn

]
, γ ∈

[
δ,

1

2188ψ
∑
i>κ̃ λi

]
, β =

δ

4376ψκ̃γ lnn
.

From the above procedure, we have

n [1− α(1− β)]
log2 n lnn

≥ 16. (29)

Lemma 2. Recall that c = α(1−β), q = αδ+(1−α)γ and K = n/ log2 n. We have the following
properties of the parameter choice.

1. We have
q − δ
1− c

=
γ − δ
2

,
q − cδ
1− c

=
γ + δ

2
. (30)

2. For i ∈ [d], we have

δλi ≤
1

2188ψ lnn
≤ 1, qλi ≤ 1 + c. (31)

Proof. 1. Note that 1− c = 2(1− α). Thus, we have

q − δ
1− c

=
(1− α)(γ − δ)

1− c
=
γ − δ
2

,
q − cδ
1− c

=
q − δ
1− c

+ δ =
γ + δ

2
. (32)

2. Since λi ≤ trS, we have

δλi ≤
λi

2188ψ lnn trS
≤ 1

2188ψ lnn
≤ 1. (33)

Note that 1− α = αβ and 2α = 1 + c , we have

q = αδ + (1− α)γ = αδ + αβγ ≤ 2αδ = (1 + c)δ. (34)

Therefore, qλi ≤ (1 + c)δλi ≤ 1 + c.

A.2 PROOF OUTLINE

We express the recursions of E
[
ηbias
t

(
ηbias
t

)⊤]
and E

[
ηvar
t (ηvar

t )
⊤
]

using the operators:

E
[
ηbias
t

(
ηbias
t

)⊤]
= Bt ◦ E

[
ηbias
t−1

(
ηbias
t−1

)⊤]
, E

[
ηbias
0

(
ηbias
0

)⊤]
= η0η

⊤
0 ; (35)

E
[
ηvar
t (ηvar

t )
⊤
]
= Bt ◦ E

[
ηvar
t−1

(
ηvar
t−1

)⊤]
+ E

[
ζtζ

⊤
t

]
, E

[
ηvar
0 (ηvar

0 )
⊤
]
= O. (36)

Then we construct two recursions similar to the above update rule:

Bt = B ◦Bt−1, B0 = η0η
⊤
0 , (37)

Ct = Bt ◦Ct−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
, C0 = O. (38)

The following lemma characterizes E
[
ηbias
t

(
ηbias
t

)⊤]
and E

[
ηvar
t (ηvar

t )
⊤
]

by Bt and Ct, respec-
tively.

Lemma 3. For 0 ≤ t ≤ n, E
[
ηbias
t

(
ηbias
t

)⊤]
= Bt. Furthermore, under Assumption 1, we have

E
[
ηvar
t (ηvar

t )
⊤
]
⪯ Ct.
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Proof. From (35), the recursion of Bt is identical to the recursion of E
[
ηbias
t

(
ηbias
t

)⊤]
. This proves

the first part of the lemma. For the second part, from (36), we know the conclusion holds for t = 0.
We assume that E

[
ηvar
t−1

(
ηvar
t−1

)⊤] ⪯ Ct−1, then

E
[
ηvar
t (ηvar

t )
⊤
]
=B ◦ E

[
ηvar
t−1

(
ηvar
t−1

)⊤]
+ E

[
ζtζ

⊤
t

]
⪯B ◦Ct−1 + E

[
ζtζ

⊤
t

]
a
⪯B ◦Ct−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
=Ct,

(39)

where
a
⪯ holds because Assumption 1 implies E

[
ϵ2txtx

⊤
t

]
⪯ σ2S, and

E
[
ζtζ

⊤
t

]
=E

[[
δ2t ϵ

2
txtx

⊤
t δtqtϵ

2
txtx

⊤
t

δtqtϵ
2
txtx

⊤
t q2t ϵ

2
txtx

⊤
t

]]
=

[
δ2t δtqt
δtqt q2t

]
⊙ E

[
ϵ2txtx

⊤
t

]
a
⪯
[
δ2t δtqt
δtqt q2t

]
⊙ σ2S = σ2

[
δ2tS δtqtS
δtqtS q2tS

]
,

(40)

where ⊙ denotes Kronecker product, and
a
⪯ holds because for any PSD matrices A, B ⪯ C, we have

A⊙B ⪯ A⊙C.

With Lemma 3, we have E
[
ηbias
n

(
ηbias
n

)⊤]
= Bn and E

[
ηvar
n (ηvar

n )
⊤
]
⪯ Cn. Thus,

Bias ≤
〈
T̃,Bn

〉
, Variance ≤

〈
T̃,Cn

〉
, (41)

where T̃ =

[
T O
O O

]
.

The main technical challenge to directly bound Bn and Cn originates from the effect of the fourth
moment (i.e. B ̸= B̃), which prevents us from analyzing Bt in each eigenspace of S. Our proof
defines the semi-stochasitc iteration η̃bias

t and η̃var
t following Dieuleveut and Bach (2016). We analyzes

two new recursions B̃t and C̃t induced by η̃bias
t and η̃var

t . For the variance component, we establish
a uniform bound on C̃t to show that the effect of the fourth moment is actually “self-governed".
Specifically, the fourth moment amplifies the excess risk up to a constant. For the bias component, Bt

is decomposed into B̃t and a new term B
(1)
t which resembles Ct. The bound of B(1)

t is established
by applying the bound of Ct.

A.2.1 VARIANCE UPPER BOUND

We start with the construction of η̃t by replacing Ât by At:

η̃var
t = Atη̃

var
t−1 + ζt, η̃var

0 = 0. (42)

From this definition, we have E
[
η̃var
0 (η̃var

0 )
⊤
]
= O and

E
[
η̃var
t (η̃var

t )
⊤
]
= B̃t ◦ E

[
η̃var
t−1

(
η̃var
t−1

)⊤]
+ E

[
ζtζ

⊤
t

]
⪯ B̃t ◦ E

[
η̃var
t−1

(
η̃var
t−1

)⊤]
+ σ2

[
δ2tS δtqtS
δtqtS q2tS

]
.

(43)

Therefore, we define C̃t as

C̃t = B̃t ◦ C̃t−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
, C̃0 = O. (44)

By induction, we have E
[
η̃var
t (η̃var

t )
⊤
]
⪯ C̃t.

The following lemma characterizes
〈
T̃, C̃n

〉
, which is the first step of our proof.
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Lemma 4. We have〈
T̃, C̃n

〉
≤ σ2

[
k∗∑
i=1

tii
2Kλi

+
128

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
. (45)

The second step is to understand the effect of the fourth moment on the variance component. We first
construct an auxiliary recursion C

(1)
t as

C
(1)
t = Bt ◦C(1)

t−1 + E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1, C

(1)
0 = O. (46)

The following lemma bounds Ct from above.

Lemma 5. For 0 ≤ t ≤ n, we have Ct ⪯ C̃t +C
(1)
t .

Proof. We prove the conclusion by induction. By definition, we have C0 = C̃0 = C
(1)
t = O.

Therefore, the conclusion holds for t = 0. We assume Ct−1 ⪯ C̃t−1 +C
(1)
t−1. Note that

Ct =Bt ◦Ct−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
⪯Bt ◦

(
C̃t−1 +C

(1)
t−1

)
+ σ2

[
δ2tS δtqtS
δtqtS q2tS

]
=Bt ◦ C̃t−1 + Bt ◦C(1)

t−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
a
⪯B̃t ◦ C̃t−1 + E

[
Ĝt ⊗ Ĝt

]
◦ C̃t−1 + Bt ◦C(1)

t−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
=B̃t ◦ C̃t−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

]
+ Bt ◦C(1)

t−1 + E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1

=C̃t +C
(1)
t−1,

(47)

where
a
⪯ uses Bt ⪯ B̃t + E

[
Ĝt ⊗ Ĝt

]
in Lemma 1.

The following lemma characterizes the noise term E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1.

Lemma 6. Suppose Assumption 4 holds. Then for 1 ≤ t ≤ n we have

E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1 ⪯

1

2
σ2

[
δ2tS δtqtS
δtqtS q2tS

]
. (48)

Lemma 6 shows that the noise term in the recursion of C
(1)
t is uniformly less than that of Ct,

Therefore, we can show that C(1)
t ⪯ 1

2Ct for 0 ≤ t ≤ n, which is the following lemma.
Lemma 7. Suppose Assumption 4 holds. Then for 1 ≤ t ≤ n we have

C
(1)
t ⪯

1

2
Ct. (49)

Proof. We proceed by induction. For t = 0, the conclusion holds by the initial value of Ct and C
(1)
t .

We assume that C(1)
t−1 ⪯ 1

2Ct−1. By Lemma 6, we have

C
(1)
t =B ◦C(1)

t−1 + E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1

⪯B ◦C(1)
t−1 +

1

2
σ2

[
δ2tS δtqtS
δtqtS q2tS

]
⪯B ◦

(
1

2
Ct−1

)
+

1

2
σ2

[
δ2tS δtqtS
δtqtS q2tS

]
=
1

2

(
Ct−1 + σ2

[
δ2tS δtqtS
δtqtS q2tS

])
=

1

2
Ct.

(50)

This completes the proof.
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Finally, we show that Ct is “self-governed" and obtain the upper bound of variance.

Lemma 8. Suppose Assumptions 4 and 1 hold. Then we have Cn ⪯ 2C̃n and

Variance ≤ σ2

[
k∗∑
i=1

tii
Kλi

+
256

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
, (51)

where k∗ = max
{
k : λk >

16(1−c) lnn
(q−cδ)K

}
.

Proof. We apply Lemma 5 and Lemma 7. For 0 ≤ t ≤ n,

Ct ⪯ C̃t +C
(1)
t ⪯ C̃t +

1

2
Ct. (52)

Therefore, Cn ⪯ 2C̃n. By Lemma 4, taking the inner product with T̃ yields

Variance ≤
〈
T̃,Cn

〉
≤ 2

〈
T̃, C̃n

〉
≤σ2

[
k∗∑
i=1

tii
Kλi

+
256

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
.

(53)

A.2.2 BIAS UPPER BOUND

We follow the similar approach to construct η̃bias
t :

η̃bias
t = Atη̃

bias
t−1 , η̃bias

0 = η0. (54)

Then we define B̃t = B̃t ◦ B̃t−1. Therefore,

B̃t = B̃t ◦ B̃t−1, B̃0 = η0η
⊤
0 , (55)

The first step is to characterize B̃t. The following lemma bound
〈
T̃, B̃n

〉
from above.

Lemma 9. With B̃t defined in (55), we have〈
T̃, B̃n

〉
≤ max

w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4 ∥w∥2Tk∗:∞

, (56)

where k∗ = max
{
k : λk >

16(1−c) lnn
(q−cδ)K

}
and S(w0 −w∗) =

{
w ∈ Rd : |wi| ≤ |(w0 −w∗)i|

}
.

The second step is to bound Bt by B̃t. Define a new recursion B
(1)
t as follows:

B
(1)
t = Bt ◦B(1)

t−1 + E
[
Ĝt ⊗ Ĝt

]
◦ B̃t−1, B

(1)
0 = O. (57)

The following lemma bounds Bt from above.

Lemma 10. For 0 ≤ t ≤ n, we have Bt ⪯ B̃t +B
(1)
t .

Proof. We prove the conclusion by induction. By definition, we have B0 = B̃0 = η0η
⊤
0 and

B
(1)
t = O. Therefore, the conclusion holds for t = 0. We assume Bt−1 ⪯ B̃t−1 +B

(1)
t−1. Note that

Bt =Bt ◦Bt−1 ⪯ Bt ◦
(
B̃t−1 +B

(1)
t−1

)
a
⪯B̃t ◦ B̃t−1 + E

[
Ĝt ⊗ Ĝt

]
◦ B̃t−1 + Bt ◦B(1)

t−1

=B̃t +B
(1)
t ,

(58)

where
a
⪯ uses that Bt ⪯ B̃t + E

[
Ĝt ⊗ Ĝt

]
in Lemma 1.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The following step parallels Appendix A.2.2, if we replace Ct with B
(1)
t . We include detailed proofs

for completeness.

Lemma 11. Suppose Assumptions 4 and 1 hold. With B
(1)
t defined in (57), we have〈

T̃,B(1)
n

〉
≤ ∥w0 −w∗∥2S ·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
. (59)

Finally, we bound
〈
T̃,Bn

〉
and obtain the upper bound of bias.

Lemma 12. Suppose Assumptions 4 and 1 hold. Then we have

Bias ≤∥w0 −w∗∥2S ·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]

+ max
w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4 ∥w∥2Tk∗:∞

,

(60)

where k∗ = max
{
k : λk >

16(1−c) lnn
(q−cδ)K

}
and S(w0 −w∗) =

{
w ∈ Rd : |wi| ≤ |(w0 −w∗)i|

}
.

Proof. From Lemma 10, we have Bn ⪯ B̃n +B(1)
n . Taking the inner product with T̃, we get

Bias ≤
〈
T̃,Bn

〉
≤
〈
T̃, B̃n

〉
+
〈
T̃,B(1)

n

〉
. (61)

Recall the definition of B̃n and B̃t, we have

B̃n = B̃n ◦ B̃n−1 ◦ · · · ◦ B̃1 ◦B0 =

(
n∏
t=1

At

[
w0 −w∗

w0 −w∗

])( n∏
t=1

At

[
w0 −w∗

w0 −w∗

])⊤

. (62)

We apply Lemma 11 and Lemma 9 to obtain

Bias ≤
〈
T̃, B̃n

〉
+
〈
T̃,B(1)

n

〉
≤∥w0 −w∗∥ ·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]

+ max
w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4 ∥w∥2Tk∗:∞

.

(63)

This completes the proof.

A.3 PROOF OF THEOREM 6

Proof of Theorem 6. Following the bias-variance decomposition, (20) shows that

E ∥wn −w∗∥2T ≤ 2 · Bias + 2 ·Variance. (64)

Lemma 12 provides the following upper bound on the bias term:

Bias ≤∥w0 −w∗∥2S ·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]

+ max
w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4 ∥w∥2Tk∗:∞

,

(65)

where S(w0 −w∗) =
{
w ∈ Rd : |wi| ≤ |(w0 −w∗)i|

}
. Recall that we set w0 = 0. Since M and

S commute, so S(w0 −w∗) ⊂W . Therefore, we have

max
w∈S(w0−w∗)

∥w∥2T0:k∗ ≤ max
w∗∈W

∥w∗∥2T0:k∗ = max
w∗∈W

∥∥∥M1/2w∗
∥∥∥2
T′

0:k∗
=
∥∥T′

0:k∗

∥∥ , (66)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Similarly, we have maxw∈S(w0−w∗) ∥w∥
2
Tk∗:∞

≤
∥∥T′

k∗:∞
∥∥ and ∥w0 −w∗∥2S ≤

∥∥S′∥∥. Further-
more, we apply Lemma 8,

E ∥wn −w∗∥2T ≤
(
σ2 + 2

∥∥S′∥∥) · [ k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]

+

∥∥T′
0:k∗

∥∥
8n2(log2 n)

4
+ 4

∥∥T′
k∗:∞

∥∥ .
(67)

where k∗ = max
{
k : λk >

16(1−c) lnn
(q−cδ)K

}
.

We bound the first term of the bias by the first term of variance. Note that∥∥T′
0:k∗

∥∥
8n2(log2 n)

4
≤

tr
(
T′

0:k∗
)

8n2(log2 n)
4
=

1

8n2(log2 n)
4

k∗∑
i=1

tii
mi

=
1

8n2(log2 n)
4

k∗∑
i=1

tii
Kλi

· Kλi
mi
≤
(
max
i≤k∗

λi
16n(log2 n)

5mi

) k∗∑
i=1

tii
mi

≤
∥∥S′∥∥

16n(log2 n)
5

k∗∑
i=1

tii
mi

.

(68)

Therefore, we have

E ∥wn −w∗∥2T ≤

(
σ2 + 2

∥∥S′∥∥+ ∥∥S′∥∥
16n(log2 n)

5

)
·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
+ 4

∥∥T′
k∗:∞

∥∥ .
This completes the proof.

A.4 INSTANCE UPPER BOUND

In this section, we provide an instance-dependent ASGD target excess risk upper bound.
Theorem 13. Let S, T be positive semi-definite matrices. Suppose we get samples {(xi, yi)}ni=1

drawn from the source distribution of P̃ ∈ P(WM,S,T). When n ≥ 16, we choose the initial step
size δ, γ and the momentum α, β according to the parameter choice. Denote the output of Algorithm 1
as wSGD

n , the target excess risk of wSGD
n can be bounded from the above by

1

2
EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤
(
σ2 + 2∥w0 −w∗∥2S

)
·

[
k∗∑
i=1

2tii
Kλi

+
128

15
K (γ + δ)

2
d∑

i=k∗+1

λitii

]
︸ ︷︷ ︸

Effective Variance

+ max
w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4∥w∥2Tk∗:∞

,

where S(w0 − w∗) =
{
w ∈ Rd : |wi| ≤ |(w0 −w∗)i|

}
, k∗ = max

{
k : λk >

32(lnn)2

(γ+δ)n ln 2

}
,

T′
0:k∗ = M−1/2T0:k∗M

−1/2, and T′
k∗:d = M−1/2Tk∗:dM

−1/2. tii denotes the i-th diagonal
entry of T, and {λi}di=1 are eigenvalues of S.

Proof. Following the bias-variance decomposition, (20) shows that

E ∥wn −w∗∥2T ≤ 2 · Bias + 2 ·Variance. (69)
Lemma 12 provides the following upper bound on the bias term:

Bias ≤∥w0 −w∗∥2S ·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]

+ max
w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4 ∥w∥2Tk∗:∞

,

(70)
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Lemma 8 provides the following upper bound on the variance term:

Variance ≤ σ2

[
k∗∑
i=1

tii
Kλi

+
256

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
, (71)

We complete the proof by combining the above two results.

A.5 PROOFS OF SGD AS A SPECIAL PRECONDITIONER IN SECTION 4.1

In this section, we provide proofs in Section 4.1.

Proof of Theorem 7. Theorem 7 is a direct implication of Theorem 6 by noting that∥∥∥∥(I− [I0:k∗ O
O O

])
T

′
(
I−

[
I0:k∗ O
O O

])∥∥∥∥ =
∥∥∥T′

k∗:d

∥∥∥ , (72)

1

n

〈
T

′
,

[
I0:k∗ O
O O

]
(S

′
)−1

[
I0:k∗ O
O O

]〉
=

k∗∑
i=1

tii
nλi

, (73)

n(γ + δ)2
〈
T

′
,

[
O O
O Ik∗:d

]
(S

′
)

[
O O
O Ik∗:d

]〉
= n (γ + δ)

2
d∑

i=k∗+1

λitii. (74)

Proof of Theorem 11. By Theorem 6, we have k∗ = k, and

sup
P̃

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≲

k∑
i=1

(lnn)2

n
+

ln4

n

⌊
√
n⌋∑

i=k+1

1√
n
+
∥∥T′

k∗:d

∥∥
a
≤ Õ(1/n),

(75)

where
a
≤ uses

∥∥T′
k∗:d

∥∥ = 0 since M = diag
{

1
k Ik,∞Ik+1:d

}
.

A.6 PROPERTIES OF MOMENTUM MATRIX

A.6.1 BOUND OF SPECTRAL RADIUS

Recall that the definition of At is

At = EÂt =

[
O I− δtS
−cI (1 + c)I− qtS

]
. (76)

Note that S is diagonal and At is block-diagonal in the eigenspace of S. Let At,i denotes the i-th
block corresponding to λi, the i-th largest eigenvalue. Therefore,

At,i =

[
0 1− δtλi
−c 1 + c− qtλi

]
. (77)

For convenience, we also define ℓ-th stage version

A(ℓ) =

[
O I− δ(ℓ)S
−cI (1 + c)I− q(ℓ)S

]
, A(ℓ),i =

[
0 1− δ(ℓ)λi
−c 1 + c− q(ℓ)λi

]
. (78)

Note that only the product of step size and eigenvalue appears in At,i, we further define

A(λ) =

[
0 1− δλ
−c 1 + c− qλ

]
. (79)

Recall the exponential decaying step size schedule (16), we have

At,i = A(ℓ),i = A

(
λi
4ℓ−1

)
, if K(ℓ− 1) + 1 ≤ t ≤ Kℓ. (80)
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The eigenvalues of A(λ) are

x1 =
1 + c− qλ

2
−

√
(1 + c− qλ)2 − 4c (1− δλ)

2
, (81)

x2 =
1 + c− qλ

2
+

√
(1 + c− qλ)2 − 4c (1− δλ)

2
. (82)

Solving (1 + c− qλ)2 − 4c (1− δλ) ≤ 0 yields

(1− c)2(√
q − cδ +

√
c (q − δ)

)2
︸ ︷︷ ︸

λ†

< λ <
(1− c)2(√

q − cδ −
√
c (q − δ)

)2
︸ ︷︷ ︸

λ‡

. (83)

We define three intervals

I1 =
[
0, λ†

]
, I2 =

(
λ†, λ‡

)
, I3 =

[
λ‡,+∞

)
. (84)

Note that the spectral radius ρ(A(λ)) = |x2|. We adopt Lemma E.2 from Li et al. (2024), which
characterizes x1 and x2.
Lemma 13. Let λ ≥ 0.

• If λ ∈ I1, then x1 and x2 are real, and

x1 ≤ x2 ≤ 1− q − cδ
1− c

λ; (85)

• If λ ∈ I2, then x1 and x2 are complex, and

|x1| = |x2| =
√
c (1− δλ); (86)

• If λ ∈ I3, then x1 and x2 are real, and

x1 ≤ x2 ≤
cδ

q
. (87)

A.6.2 BOUND OF PRODUCT OF MOMENTUM MATRIX

In this section, we provide bounds of Ak(λ). The following lemma provides upper bound of∥∥∥Ak(λ)
∥∥∥.

Lemma 14. Given A(λ) that are defined in (79), we have∥∥∥Ak(λ)
∥∥∥ ≤ ∥∥∥Ak(λ)

∥∥∥
F
≤
√
6k [ρ(A(λ))]

k−1
. (88)

Proof. Define

ak =
xk2 − xk1
x2 − x1

, (89)

we have ak ∈ R and

Ak(λ) =

[
−c (1− δλ) ak−1 (1− δλ) ak

−cak ak+1

]
. (90)

Note that for any λ ≥ 0, we have |x1| ≤ |x2|, and

|ak| =
∣∣∣∣xk2 − xk1x2 − x1

∣∣∣∣ =
∣∣∣∣∣
k−1∑
i=0

xi1x
k−1−i
2

∣∣∣∣∣
a
≤
k−1∑
i=0

|x1|i|x2|k−1−i b
≤
k−1∑
i=0

|x2|k−1

=k|x2|k−1,

(91)
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where
a
≤ uses the triangular inequality for complex number, and

b
≤ uses |x1| ≤ |x2|. Direct calculation

yields x1x2 = c (1− δλ), so |c (1− δλ) | ≤ |x2|2. We bound
∥∥∥Ak(λ)

∥∥∥2
F

by∥∥∥Ak(λ)
∥∥∥2
F
= [−c (1− δλ) ak−1]

2
+ [(1− δλ) ak]2 + (−cak)2 + a2k+1

≤(k − 1)2|x2|2k + k2|x2|2(k−1) + k2|x2|2(k−1) + (k + 1)2|x2|2k

≤
[
(k − 1)2 + k2 + k2 + (k + 1)2

]
|x2|2(k−1)

=
(
4k2 + 2

)
|x2|2(k−1).

≤6k2|x2|2(k−1).

(92)

Therefore,
∥∥∥Ak(λ)

∥∥∥ ≤ ∥∥∥Ak(λ)
∥∥∥
F
≤
√
6k|x2|2(k−1) =

√
6k [ρ(A(λ))]

k−1.

For k ≤ K, the following lemma bounds
∥∥∥Ak(λ)

∥∥∥ from above uniformly.

Lemma 15. For λ ≤ λ1, we have ∥∥∥Ak(λ)
∥∥∥ ≤ √6K. (93)

Proof. For k = 0, the conclusion is obvious. If k ≥ 1, for λ ≤ λ1, we have ρ(A(λ) ≤ 1. Thus, by
Lemma 14, ∥∥∥Ak(λ)

∥∥∥ ≤ √6K [ρ(A(λ)]
k−1

. (94)

The following lemma bounds
∥∥∥AK(λ)

∥∥∥ from above.

Lemma 16. For λ ≥ 4(1−c) lnn
(q−cδ)K and n ≥ 16, we have∥∥∥AK(λ)

∥∥∥ ≤ √
6

n2 log2 n
≤ 1. (95)

Proof. We bound
∥∥∥AK(λ)

∥∥∥ for λ ∈ I1, I2, I3, respectively.

1. If λ ∈ I1, by Lemma 13 and assumption,

ρ(A(λ)) = |x2| ≤ 1− q − cδ
1− c

λ ≤ 1− 4 lnn

4K
. (96)

Thus, by Lemma 14,∥∥∥AK(λ)
∥∥∥ ≤√6K [ρ(A(λ))]

K−1 ≤
√
6K (1− 4 lnn)

K−1

=
√
6K exp [(K − 1) ln (1− 4 lnn)]

a
≤
√
6K exp

[
−4(K − 1) lnn

K

]
b
≤
√
6K exp (−3 lnn)

=

√
6

n2 log2 n
,

(97)

where
a
≤ uses lnx ≤ x− 1,∀x ∈ R, and

b
≤ holds for n ≥ 16 =⇒ K ≥ 4 =⇒ K−1

K ≥ 3
4 .

2. If λ ∈ I2, by Lemma 13 and assumption,

ρ(A(λ)) = |x2| =
√
c(1− δλ) ≤

√
c. (98)
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Thus, by Lemma 14,∥∥∥AK(λ)
∥∥∥ ≤√6K [ρ(A(λ))]

K−1 ≤
√
6K

(√
c
)K−1

=
√
6K exp

[
− (K − 1) ln c

2

]
a
≤
√
6K exp

[
− (K − 1)(1− c)

2

]
b
≤
√
6K exp

[
−8(K − 1) lnn

K

]
≤
√
6K exp (−6 lnn) =

√
6

n5 log2 n
≤

√
6

n2 log2 n
,

(99)

where
a
≤ uses lnx ≤ x − 1, ∀x ∈ R, and

b
≤ holds for K(1 − c) ≥ 16 lnn in (29) and

K−1
K ≥ 3

4 .

3. If λ ∈ I2, by Lemma 13 and assumption,

ρ(A(λ)) = |x2| ≤
cδ

q
≤ c. (100)

Thus, by Lemma 14,∥∥∥AK(λ)
∥∥∥ ≤√6K [ρ(A(λ))]

K−1 ≤
√
6KcK−1

=
√
6K exp [−(K − 1) ln c]

a
≤
√
6K exp [−(K − 1)(1− c)]

b
≤
√
6K exp

[
−16(K − 1) lnn

K

]
≤
√
6K exp (−12 lnn) =

√
6

n11 log2 n
≤

√
6

n2 log2 n
,

(101)

where
a
≤ uses lnx ≤ x− 1,∀x ∈ R, and

b
≤ holds for K−1

K ≥ 3
4 .

For k ∈ N, we have a uniform bound of
∣∣∣∣(Ak(λ)

[
1
1

])
2

∣∣∣∣, which is tighter than Lemma 15.

Lemma 17. For λ ≤ λ1 and k ∈ N, we have∣∣∣∣(Ak(λ)

[
1
1

])
2

∣∣∣∣ ≤ {1, λ ∈ I1, I3;
2, λ ∈ I2.

. (102)

Proof. From (90), we have ∣∣∣∣(Ak(λ)

[
1
1

])
2

∣∣∣∣ = |ak+1 − cak| . (103)

We bound |ak+1 − cak| ≤ 2 for λ ∈ I1, I2, I3, respectively.

1. If λ ∈ I1, by Lemma 13, and δ ≤ q, we have ak ≥ 0, and

x1 ≤ x2 ≤ 1− q − cδ
1− c

λ ≤ 1− δλ. (104)

Since x1x2 = c(1− δλ), we have c ≤ x1 ≤ x2. Therefore,

ak+1 − cak ≥ak+1 − x1ak = xk2 > 0,

ak+1 − cak ≤ak+1 − x1x2ak =

k∑
i=0

xi1x
k−i
2 − x1x2

k−1∑
i=0

xi1x
k−1−i
2

=

k∑
i=0

xi1x
k−i
2 − x2

k∑
i=1

xi1x
k−i
2 = xk2 + (1− x2)

k∑
i=1

xi1x
k−i
2

≤xk2 + k(1− x2)xk2 = xk2 [1 + k(1− x2)]
a
≤ 1,

(105)
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where
a
≤ applies Lemma 26.

2. If λ ∈ I2, by Lemma 13, x1 and x2 are complex and conjugate. Let x1,2 = r(cos θ± i sin θ),
we have r =

√
c(1− δλ) ≤ 1 and 0 ≤ θ ≤ π/2 where 2r cos θ = x1+x2 = 1+c−qλ ≥ 0

from Lemma 2. Thus

ak+1 − cak =
rk sin ((k + 1)θ)

sin θ
− rk−1 sin (kθ)

sin θ

a
=rk−1

(
r cos kθ +

r cos θ − c
sin θ

sin kθ

)
=rk−1

(
r cos kθ +

r − c
sin θ

sin kθ − r(1− cos θ)

sin θ
sin kθ

)
b
=rk−1

(
r cos kθ +

r − c
sin θ

sin kθ − r tan θ
2
sin kθ

)
,

(106)

where a
= is from sin ((k + 1)θ) = sin kθ cos θ + cos kθ sin θ, and b

= is from

1− cos θ

sin θ
=

2 sin2 θ2
2 sin θ

2 cos
θ
2

= tan
θ

2
. (107)

By triangular inequality, and |sin kθ| ≤ 1, |cos kθ| ≤ 1,
∣∣tan θ

2

∣∣ ≤ 1

|ak+1 − cak| ≤rk−1

(
r |cos kθ|+ |r − c|

∣∣∣∣ sin kθsin θ

∣∣∣∣)+ rk
∣∣∣∣tan θ2

∣∣∣∣ |sin kθ|
a
≤rk−1 (r + k(1− r)) + rk = rk−1 (1 + (k − 1)(1− r)) + rk

b
≤2,

(108)

where
a
≤ holds for r2 ≤ c ≤ 1 =⇒ |r − c| ≤ max

{∣∣r − r2∣∣ , |r − 1|
}
= 1 − r and∣∣ sin kθ

sin θ

∣∣ ≤ k in Lemma 27,
b
≤ is from Lemma 26 and 0 ≤ r ≤ 1.

3. If λ ∈ I3, by Lemma 13, and δ ≤ q, we have ak ≥ 0, and

x1 ≤ x2 ≤
cδ

q
≤ c. (109)

Therefore,

ak+1 − cak ≥ak+1 − ak =

k∑
i=0

xi1x
k−i
2 −

k−1∑
i=0

xi1x
k−1−i
2

=xk1 − (1− x2)
k−1∑
i=0

xi1x
k−1−i
2

≥xk1 − k(1− x2)xk−1
2

≥− xk−1
2

(
1 + (k − 1)xk2

) a
≥ −1,

ak+1 − cak ≤ak+1 − x2ak = xk1 ≤ 1,

(110)

where
a
≥ holds for Lemma 26.

For λ ≤ (1−c)2
q−cδ , we define P, which diagonalizes V:

P =

[
1 −1
1 −c

]
, P−1 =

1

1− c

[
−c 1
−1 1

]
. (111)

The following lemma provides bound of P−1A(λ)P.
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Lemma 18. Let P and P−1 defined in (111). Suppose λ ≤ (1−c)2
q−cδ , we have∥∥P−1A(λ)P

∥∥ ≤ 1. (112)

Proof. Let

M = P−1A(λ)P =

[
1− ξλ cξλ
−ηλ c+ cηλ

]
, (113)

we will show that I−M⊤M is a PSD matrix. Let ξ = q−cδ
1−c and η = q−δ

1−c , so ξλ < 1− c. Direct
calculation shows that

M⊤M =

[
(1− ξλ)2 + η2λ2 cλ

(
ξ − η −

(
ξ2 + η2

)
λ
)

cλ
(
ξ − η −

(
ξ2 + η2

)
λ
)

c2ξ2λ2 + c2(1 + ηλ)2

]
. (114)

Furthermore, (
I−M⊤M

)
11

=1−
[
(1− ξλ)2 + η2λ2

]
= 2ξλ− ξ2λ2 − η2λ2

a
≥2ξλ− 2ξ2λ2 = 2ξλ(1− ξλ)
b
≥0,

det
(
I−M⊤M

)
=λ
[
2(1− c2)ξ − (ξ2 + η2 + 2c2ξη)λ

]
c
≥λ
[
2(1− c2)ξ − 2(1 + c2)ξ2λ

]
d
≥λ
[
2(1− c2)ξ − 2(1 + c2)(1− c)ξ

]
=
[
2(1− c2)− 2(1 + c2)(1− c)

]
ξλ

=2c(1− c)2ξλ ≥ 0

(115)

where
a
≥ and

c
≥ uses η ≤ ξ,

b
≥ and

d
≥ a uses ξλ ≤ 1 − c ≤ 1. Therefore, by Sylvester’s criterion,

I−M⊤M is a PSD matrix. From the definition of M, we have∥∥P−1A(λ)P
∥∥ = ∥M∥ = sup

x

∥Mx∥
∥x∥

= sup
x

x⊤MMx

x⊤x
≤ 1. (116)

The following lemma provides upper bound of the product of momentum matrices.

Lemma 19. For µ1, µ2, . . . , µk ≤ (1−c)2
q−cδ , we have∥∥∥∥∥

k∏
i=1

A(µi)

∥∥∥∥∥ ≤ 4

1− c
. (117)

Proof. Note that ∥∥∥∥∥
k∏
i=1

A(µi)

∥∥∥∥∥ =

∥∥∥∥∥P
(

k∏
i=1

P−1A(µi)P

)
P−1

∥∥∥∥∥
≤∥P∥

k∏
i=1

∥∥P−1A(µi)P
∥∥∥∥P−1

∥∥
a
≤2 · 1 · 2

1− c
=

4

1− c
,

(118)

where
a
≤ applies ∥P∥ ≤ ∥P∥F ≤ 2,

∥∥P−1
∥∥ ≤ ∥∥P−1

∥∥
F
≤ 2

1−c and Lemma 18.

The following lemma provides an upper bound of the product of momentum matrices applied to noise
vector [δ q]

⊤.
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Lemma 20. For µ1, µ2, . . . , µk ≤ (1−c)2
q−cδ , we have∥∥∥∥∥

k∏
i=1

A(µi)

[
δ
q

]∥∥∥∥∥ ≤ 2
√
2(q − cδ)
1− c

. (119)

Proof. Note that ∥∥∥∥∥
k∏
i=1

A(µi)

∥∥∥∥∥ =

∥∥∥∥∥P
(

k∏
i=1

P−1A(µi)P

)
P−1

[
δ
q

]∥∥∥∥∥
=

∥∥∥∥∥P
(

k∏
i=1

P−1A(µi)P

)[
q−cδ
1−c
q−δ
1−c

]∥∥∥∥∥
≤∥P∥

k∏
i=1

∥∥P−1A(µi)P
∥∥∥∥∥∥∥
[
q−cδ
1−c
q−δ
1−c

]∥∥∥∥∥
a
≤2 · 1 ·

√
2(q − cδ)
1− c

=
2
√
2(q − cδ)
1− c

,

(120)

where
a
≤ applies ∥P∥ ≤ 2, q−δ1−c ≤

q−cδ
1−c and Lemma 18.

The following lemma provides an upper bound of the product of momentum matrices applied to bias
vector [1 1]

⊤.

Lemma 21. For µ1, µ2, . . . , µk ≤ (1−c)2
q−cδ , we have∥∥∥∥∥

k∏
i=1

A(µi)

[
1
1

]∥∥∥∥∥ ≤ 2. (121)

Proof. Note that ∥∥∥∥∥
k∏
i=1

A(µi)

∥∥∥∥∥ =

∥∥∥∥∥P
(

k∏
i=1

P−1A(µi)P

)
P−1

[
1
1

]∥∥∥∥∥
=

∥∥∥∥∥P
(

k∏
i=1

P−1A(µi)P

)[
1
0

]∥∥∥∥∥
≤∥P∥

k∏
i=1

∥∥P−1A(µi)P
∥∥∥∥∥∥[10

]∥∥∥∥
a
≤2 · 1 · 1 = 2,

(122)

where
a
≤ applies ∥P∥ ≤ 2 and Lemma 18.

A.7 VARIANCE UPPER BOUND

This section analyzes C̃t which defined in (44). We first provide a characterization of the stationary
state, and then prove Lemma 4 and 6.

A.7.1 ANALYSIS OF STATIONARY STATE

We introduce the stationary state matrix at ℓ-th stage:

Q̃(ℓ) =

∞∑
k=1

B̃k(ℓ) ◦
[
δ2(ℓ)S δ(ℓ)q(ℓ)S

δ(ℓ)q(ℓ)S q2(ℓ)S

]
. (123)
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Lemma F.4 in Li et al. (2024) shows Q̃(ℓ) exists and finite. Note that since B̃t = A(ℓ) ⊗A(ℓ) and

A(ℓ) is block-diagonal, each B̃k(ℓ) ◦
[
δ2(ℓ)S δ(ℓ)q(ℓ)S

δ(ℓ)q(ℓ)S q2(ℓ)S

]
is also block-diagonal. Thus, Q̃(ℓ) is

block-diagonal, and we denote the i-th block as Q̃(ℓ),i ∈ R2×2. Furthermore, we define

B̃t,i = At,i ⊗At,i, B̃(ℓ),i = A(ℓ),i ⊗A(ℓ),i, (124)

Then Q̃(ℓ),i can be represented as

Q̃(ℓ),i =

∞∑
k=1

B̃k(ℓ),i ◦
[
δ2(ℓ)λi δ(ℓ)q(ℓ)λi

δ(ℓ)q(ℓ)λi q2(ℓ)λi

]
. (125)

Define an operator T(ℓ) = I − B̃(ℓ) +G(ℓ) ⊗G(ℓ) = I −V ⊗V +V ⊗G(ℓ) +G(ℓ) ⊗V, and

U(ℓ) = T −1
(ℓ) ◦

[
δ2(ℓ)S δ(ℓ)q(ℓ)S

δ(ℓ)q(ℓ)S q2(ℓ)S

]
. (126)

The same argument holds for U(ℓ) to be block-diagonal, and i-th block of U(ℓ) is denoted as
U(ℓ),i ∈ R2×2. The following lemma characterize Q̃(ℓ) using U(ℓ),i.

Lemma 22. Let Q̃(ℓ) defined in (123). Then we have

Q̃(ℓ),i =
1

1−
(
U(ℓ),i

)
22
λi

U(ℓ),i. (127)

Proof. Note that
∞∑
k=0

B̃k(ℓ) =
(
I − B̃(ℓ)

)−1

=
(
T(ℓ) −G(ℓ) ⊗G(ℓ)

)−1

=
[
T(ℓ) ◦

(
I − T −1

(ℓ) ◦
(
G(ℓ) ⊗G(ℓ)

))]−1

=
(
I − T −1

(ℓ) ◦
(
G(ℓ) ⊗G(ℓ)

))−1

◦ T −1
(ℓ)

=

∞∑
k=0

(
T −1
(ℓ) ◦

(
G(ℓ) ⊗G(ℓ)

))k
◦ T −1

(ℓ) .

(128)

We introduce T(ℓ),i = I −Vi ⊗Vi +Vi ⊗G(ℓ),i +G(ℓ),i ⊗Vi, which operates on R2×2 matrix.
Therefore, we can calculate the i-th block of Q̃(ℓ) as follows:

Q̃(ℓ),i =

∞∑
k=0

(
T −1
(ℓ),i ◦

(
G(ℓ),i ⊗G(ℓ),i

))k
◦ T −1

(ℓ),i ◦
[
δ2(ℓ)λi δ(ℓ)q(ℓ)λi

δ(ℓ)q(ℓ)λi q2(ℓ)λi

]

=

∞∑
k=0

(
T −1
(ℓ),i ◦

(
G(ℓ),i ⊗G(ℓ),i

))k
◦U(ℓ),i

=U(ℓ),i +

∞∑
k=1

(
T −1
(ℓ),i ◦

(
G(ℓ),i ⊗G(ℓ),i

))k
◦U(ℓ),i

=U(ℓ),i +

∞∑
k=0

(
T −1
(ℓ),i ◦

(
G(ℓ),i ⊗G(ℓ),i

))k
◦ T −1

(ℓ),i ◦
(
G(ℓ),i ⊗G(ℓ),i

)
◦U(ℓ),i

a
=U(ℓ),i +

(
U(ℓ),i

)
22
λi

∞∑
k=0

(
T −1
(ℓ),i ◦

(
G(ℓ),i ⊗G(ℓ),i

))k
◦U(ℓ),i

=U(ℓ),i +
(
U(ℓ),i

)
22
λiQ̃(ℓ),i,

(129)
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where a
= uses

T −1
(ℓ),i ◦

(
G(ℓ),i ⊗G(ℓ),i

)
◦U(ℓ),i =T −1

(ℓ),i ◦
(
G(ℓ),iU(ℓ),iG

⊤
(ℓ),i

)
=T −1

(ℓ),i ◦
((

U(ℓ),i

)
22
λi

[
δ2(ℓ)λi δ(ℓ)q(ℓ)λi

δ(ℓ)q(ℓ)λi q2(ℓ)λi

])
=
(
U(ℓ),i

)
22
λi · T −1

(ℓ),i ◦
[
δ2(ℓ)λi δ(ℓ)q(ℓ)λi

δ(ℓ)q(ℓ)λi q2(ℓ)λi

]
=
(
U(ℓ),i

)
22
λiU(ℓ),i.

(130)

Solving the recursion (129) yields the desired result.

The following lemma characterizes U(ℓ),i and Q(ℓ),i.

Lemma 23. With U(ℓ),i defined in (126), we have

1. By Equation (F.9) of Li et al. (2024), we have(
U(ℓ),i

)
22

=
δ(ℓ)

2
+

(1 + c)(q(ℓ) − δ(ℓ))
2
(
1− c2 + cλi(q(ℓ) + cδ(ℓ))

) ; (131)

2. We have (
U(ℓ),i

)
22
≤ δ

2
+

1

8752ψκ̃λi lnn
. (132)

3. By Equation (44) of Jain et al. (2018), we have
(
U(ℓ),i

)
11

= (1 − 2δ(ℓ)λi)
(
U(ℓ),i

)
22

+

δ2(ℓ)λi;

4. We have
(
U(ℓ),i

)
11
≤
(
U(ℓ),i

)
22

, and U(ℓ),i ⪯ 2
(
U(ℓ),i

)
22

I.

5. U(ℓ),i ⪯ Q(ℓ),i ⪯ 4
3U(ℓ),i

6. By Equation (56), (61) and (63) of Jain et al. (2018), we have(
U(ℓ),i

)
11

=
(1 + c− cδiλi)(q(ℓ) − cδ(ℓ))− 2δ(ℓ)λi(q(ℓ) − cδ(ℓ)) + 2δ2(ℓ)λi

2(1− c2 + cλi(q(ℓ) + cδ(ℓ)))
,

(
U(ℓ),i

)
12

=

(
1 + c− λi(q(ℓ) + cδ(ℓ))

)
(q(ℓ) − cδ(ℓ)) + δ(ℓ)λi(q(ℓ) + cδ(ℓ))

2(1− c2 + cλi(q(ℓ) + cδ(ℓ)))
,

(
U(ℓ),i

)
22

=
(1 + c− cδiλi)(q(ℓ) − cδ(ℓ)) + 2cq(ℓ)δ(ℓ)λi

2(1− c2 + cλi(q(ℓ) + cδ(ℓ)))
.

(133)

7. We have U(ℓ),i ⪯ 16U(ℓ+1),i.

8. We have Q(ℓ),i ⪯ 20Q(ℓ+1),i.

Proof. For Item 2, following the proof of Lemma F.5 in Li et al. (2024), we have(
U(ℓ),i

)
22
≤ δ

2
+

γβ

2δλi
. (134)

Recall that β = δ
4376ψκ̃γ lnn by the parameter choice in Appendix A.1.3, we have(

U(ℓ),i

)
22
≤ δ

2
+

1

8752ψκ̃λi lnn
. (135)

For Item 4, from Item 1, we know
(
U(ℓ),i

)
22
≥ δ/2. And from Item 3,(

U(ℓ),i

)
11

=
(
U(ℓ),i

)
22
− 2δ(ℓ)λi

(
U(ℓ),i

)
22

+ δ2(ℓ)λi

≤
(
U(ℓ),i

)
22
− 2δ(ℓ)λi ·

δ(ℓ)

2
+ δ2(ℓ)λi =

(
U(ℓ),i

)
22
.

(136)
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Thus, we have
U(ℓ),i ⪯

(
trU(ℓ),i

)
I ≤ 2

(
U(ℓ),i

)
22

I. (137)

For Item 5, since parameter choice procedure implies that
(
U(ℓ),i

)
22
λi ≤ 1

4 , we have

1 ≤ 1

1−
(
U(ℓ),i

)
22
λi
≤ 4

3
. (138)

Plugging this into (127) completes the proof.

For Item 7, from Item 6, we split the numerator of U(ℓ),i into two parts, based on whether the term
contains λi,

num
(
U(ℓ),i

)
11

=(1 + c)(q(ℓ) − cδ(ℓ))︸ ︷︷ ︸
M11

+
[
−cδi(q(ℓ) − cδ(ℓ))− 2δ(ℓ)(q(ℓ) − cδ(ℓ)) + 2δ2(ℓ)λi

]
λi︸ ︷︷ ︸

N11

,

num
(
U(ℓ),i

)
12

=(1 + c)(q(ℓ) − cδ(ℓ))︸ ︷︷ ︸
M12

+
[
−(q(ℓ) + cδ(ℓ))(q(ℓ) − cδ(ℓ)) + δ(ℓ)(q(ℓ) + cδ(ℓ))

]
λi︸ ︷︷ ︸

N12

,

num
(
U(ℓ),i

)
22

=(1 + c)(q(ℓ) − cδ(ℓ))︸ ︷︷ ︸
M22

+
[
−cδi(q(ℓ) − cδ(ℓ)) + 2cqδ(ℓ)

]
λi︸ ︷︷ ︸

N22

,

(139)

where num represents the numerator. Note that M = (1 + c)(q(ℓ) − cδ(ℓ))
[
1 1
1 1

]
⪰ O. Therefore,

U(ℓ+1),i =
M/4 +N/16

2(1− c2 + cλi(q(ℓ)/4 + cδ(ℓ)/4))

⪰ M/16 +N/16

2(1− c2 + cλi(q(ℓ) + cδ(ℓ)))
=

1

16
U(ℓ),i.

(140)

Thus, U(ℓ),i ⪯ 16U(ℓ+1),i.

For Item 8, parameter choice procedure implies that
(
U(ℓ),i

)
22
λi ≤ 1

4 . Thus, from Lemma 22 and
Item 7, we have

Q̃(ℓ),i =
1

1−
(
U(ℓ),i

)
22
λi

U(ℓ),i

⪯ 16

1−
(
U(ℓ),i

)
22
λi

U(ℓ),i =
16(1−

(
U(ℓ+1),i

)
22
λi)

1−
(
U(ℓ),i

)
22
λi

Q(ℓ+1),i

⪯
16(1−

(
U(ℓ),i

)
22
λi/4)

1−
(
U(ℓ),i

)
22
λi

Q(ℓ+1),i ⪯ 20Q(ℓ+1),i,

(141)

where we uses that U(ℓ),i is PSD matrix and
(
U(ℓ+1),i

)
22
≥
(
U(ℓ),i

)
22
/4.

A.7.2 PROOF OF LEMMA 4

Proof of Lemma 4. We aim to bound
〈
T̃, C̃n

〉
from above. By unrolling recursive definition of

C̃t−1 in (44), we obtain

C̃n =B̃n ◦ C̃n−1 + σ2

[
δ2nS δnqnS
δnqnS q2nS

]
=σ2

n∑
s=1

B̃n ◦ · · · ◦ B̃s+1 ◦
[
δ2sS δsqsS
δsqsS q2sS

]
.

(142)

Therefore, taking the inner product with T̃ and using that B̃s,i = As,i ⊗As,i, we get〈
T̃, C̃n

〉
= σ2

d∑
i=1

tii

n∑
s=1

(
B̃n,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
11

, (143)
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where tii denotes the i-th diagonal element of T. In the following, we will bound each term of the
sum

∑d
i=1 separately.

Let k∗ = max
{
k : λk >

16(1−c) lnn
(q−cδ)K

}
. For each i, define ℓ∗i = max

{
ℓ : λi

4ℓ−1 >
16(1−c) lnn
(q−cδ)K

}
.

Note that i ≤ k∗ implies ℓ∗i ≥ 1.

If i ≤ k∗, we bound
∑n
s=1 =

∑Kℓ∗i
s=1 +

∑n
s=Kℓ∗i +1, respectively.

Kℓ∗i∑
s=1

(
B̃n,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
11

=

ℓ∗i∑
m=1

(
B̃n,i ◦ · · · ◦ B̃K(ℓ∗i +1)+1,i ◦ B̃K(ℓ∗i +1),i ◦ · · · ◦ B̃

K
(m+1),i ◦

K∑
s=1

B̃K−s
(m),i ◦

[
δ2(m)λi δ(m)q(m)λi

δ(m)q(m)λi q2(m)λi

])
11

a
≤σ2

ℓ∗i∑
m=1

(
B̃n,i ◦ · · · ◦ B̃K(ℓ∗i +1)+1,i ◦ B̃K(ℓ∗i +1),i ◦ · · · ◦ B̃

K
(m+1),i ◦Q(m),i

)
11

b
≤σ2

ℓ∗i∑
m=1

(
B̃n,i ◦ · · · ◦ B̃K(ℓ∗i +1)+1,i ◦ B̃K(ℓ∗i +1),i ◦ · · · ◦ B̃

K
(m+1),i ◦

[
8

3

(
U(m),i

)
22

I

])
11

≤
8
(
U(1),i

)
22

3

ℓ−1∑
m=1

[
An,i · · ·AK(ℓ∗i +1)+1,iA

K
ℓ∗i ,i
· · ·AK

(m+1),i(
AK

(m+1),i

)⊤
· · ·
(
AK

(ℓ−1),i

)⊤
A⊤
K(ℓ∗i +1)+1,i · · ·A

⊤
n,i

]
22

≤
8
(
U(1),i

)
22

3

ℓ−1∑
m=1

∥∥An,i · · ·AK(ℓ∗i +1)+1,i

∥∥2︸ ︷︷ ︸
Lemma 19

∥∥∥AK
(ℓ∗i ),i

∥∥∥2︸ ︷︷ ︸
Lemma 16

· · ·
∥∥∥AK

(m+1),i

∥∥∥2︸ ︷︷ ︸
Lemma 16

≤
8
(
U(1),i

)
22

3
· 16

(1− c)2
· 6

n4(log2 n)
2
· log2 n

c
≤
(
U(1),i

)
22

256n2
,

(144)

where
a
≤ uses the definition of Q(m),i,

b
≤ uses Lemma 23, and

c
≤ uses n ≥ 16. For the second term,

we have λi/4ℓ
∗
i ≤ 16(1−c) lnn

(q−cδ)K ≤ (1−c)2
q−cδ . Thus, we apply Lemma 20:

n∑
s=Kℓ∗i +1

(
B̃n,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

≤
n∑

s=Kℓ∗i +1

λi

∥∥∥∥An,i · · ·As+1,i

[
δs
qs

]∥∥∥∥2︸ ︷︷ ︸
Lemma 20

≤ 8σ2
n∑

s=Kℓ∗i +1

λi

(
qs − cδs
1− c

)2

=
128σ2

15
λiK

(
q(ℓ∗i +1) − cδ(ℓ∗i +1)

1− c

)2

=
128σ2

15

(
Kλi
4ℓ

∗
i
· q − cδ
1− c

)(
q(ℓ∗i +1) − cδ(ℓ∗i +1)

1− c

)
a
≤128σ2

15
· 16 lnn

K
· 4
(
U(ℓ∗i +1),i

)
22
≤ 8192σ2 lnn

15K

(
U(1),i

)
22
,

(145)
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where
a
≤ uses λi/4ℓ

∗
i ≤ 16(1−c) lnn

(q−cδ)K and from Lemma 23,(
U(ℓ∗i +1),i

)
22

=
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + cλi(q(ℓ∗i +1) + cδ(ℓ∗i +1))

)
≥
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + cλi

4ℓ
∗
i
(q + cδ)

)
≥
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + c(1−c)2(q+cδ)

(q−cδ)

)
≥
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + c(1−c)2(q+cq)

(q−cq)

)
=
δ(ℓ∗i +1)

2
+
q(ℓ∗i +1) − δ(ℓ∗i +1)

2(1 + c)(1− c)

≥
δ(ℓ∗i +1)

4
+
q(ℓ∗i +1) − δ(ℓ∗i +1)

4(1− c)
=
q(ℓ∗i +1) − cδ(ℓ∗i +1)

4(1− c)
.

(146)

If i > k∗, we have
n∑
s=1

(
B̃n,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

a
≤

n∑
s=1

λi

∥∥∥∥An,i · · ·As+1,i

[
δs
qs

]∥∥∥∥2︸ ︷︷ ︸
Lemma 20

≤ 8σ2
n∑
s=1

λi

(
qs − cδs
1− c

)2

=
128

15
λiK

(
q − cδ
1− c

)2

.

(147)

Finally, we have〈
T̃, C̃n

〉
=σ2

k∗∑
i=1

tii

((
U(1),i

)
22

256N2
+

8192 lnn

15K

(
U(1),i

)
22

)
+ σ2

d∑
i=k∗+1

tii ·
128

15
λiK

(
q − cδ
1− c

)2

≤σ2

[
k∗∑
i=1

547tii lnn

Kλi

(
U(1),i

)
22
λi +

128

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]

≤σ2

( k∗∑
i=1

547tii lnn

Kλi

) k∗∑
j=1

(
U(1),j

)
22
λj

+
128

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii


a
≤σ2

[
k∗∑
i=1

tii
2Kλi

+
128

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
,

(148)

where
a
≤ uses

∑
i xiyi ≤

∑
xi
∑
j yj if xi, yi ≥ 0, and from the parameter choice procedure, we

have
∑k∗

j=1

(
U(1),j

)
22
λj ≤ 1

1094 lnn .

A.7.3 PROOF OF LEMMA 6

We bound the noise of C̃t of two consecutive stages.
Lemma 24. Let ℓ ≥ 2. If K(ℓ− 1) + 1 ≤ t ≤ K(ℓ+ 1), we have

t∑
s=K(ℓ−1)+1

B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦
[
δ2sλi δsqsλi
δsqsλi q2sλi

]
⪯ 20Q(ℓ+1),i. (149)
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Proof. For K(ℓ− 1)+ 1 ≤ t ≤ Kℓ+1, we have t belongs to the ℓ− 1-th stage. From the definition
of Q(ℓ), we have

t∑
s=K(ℓ−1)+1

B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦
[
δ2sλi δsqsλi
δsqsλi q2sλi

]

=

t∑
s=K(ℓ−1)+1

B̃t−K(ℓ−1)
(ℓ)),i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

]

⪯
∞∑

s=K(ℓ−1)+1

B̃t−K(ℓ−1)
(ℓ)),i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

]
a
= Q(ℓ−1),i

b
⪯20Q(ℓ),i,

(150)

where a
= uses the definition of Q(ℓ) and

b
⪯ uses Lemma 23.

For Kℓ+ 1 ≤ t ≤ K(ℓ+ 1), we prove by induction. The case where t = K(ℓ+ 1) has been proven.
We suppose (149) holds. Note that by the definition of Q(ℓ),i, we have

Q(ℓ),i = (I−B̃(ℓ),i)−1◦
[
δ2(ℓ)λi δ(ℓ)q(ℓ)λi

δ(ℓ)q(ℓ)λi q2(ℓ)λi

]
=⇒ B̃(ℓ),i◦Q(ℓ),i = Q(ℓ),i−

[
δ2(ℓ)λi δ(ℓ)q(ℓ)λi

δ(ℓ)q(ℓ)λi q2(ℓ)λi

]
.

(151)
Therefore, for t+ 1, we have

t+1∑
s=K(ℓ−1)+1

B̃t,i ◦ · · · ◦ B̃s+1,i ◦
[
δ2sλi δsqsλi
δsqsλi q2sλi

]

=B̃(ℓ),i ◦
t∑

s=K(ℓ−1)+1

B̃t,i ◦ · · · ◦ B̃s+1,i ◦
[
δ2sλi δsqsλi
δsqsλi q2sλi

]
+

[
δ2sλi δsqsλi
δsqsλi q2sλi

]
a
⪯B̃(ℓ),i ◦

(
20Q(ℓ),i

)
+

[
δ2sλi δsqsλi
δsqsλi q2sλi

]
=20Q(ℓ),i − 19

[
δ2sλi δsqsλi
δsqsλi q2sλi

]
⪯ 20Q(ℓ),i.

(152)

By induction, the lemma holds.

Now, we are ready for the proof.

Proof of Lemma 6. Our goal is to show that for 1 ≤ t ≤ n, we have

E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1 ⪯

1

2
σ2

[
δ2tS δtqtS
δtqtS q2tS

]
. (153)

Note that by Lemma 1, we have E
[
Ĝt ⊗ Ĝt

]
◦ C̃t−1 ⪯ ψ

〈[
O O
O S

]
, C̃t−1

〉[
δ2tS δtqtS
δtqtS q2tS

]
.

Therefore, we only have to show that for all 1 ≤ i ≤ d,

ψ

〈[
O O
O S

]
, C̃t−1

〉
≤ 1

2
σ2. (154)

From the recursive definition of C̃t−1 in (44), we have:

C̃t−1 =B̃t−1 ◦ C̃t−2 + σ2

[
δ2t−1S δt−1qt−1S

δt−1qt−1S q2t−1S

]
=σ2

t−1∑
s=1

B̃t−1 ◦ · · · ◦ B̃s+1 ◦
[
δ2sS δsqsS
δsqsS q2sS

]
.

(155)
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Therefore, taking the inner product with
[
O O
O S

]
and using that B̃s,i = As,i ⊗As,i, we get

〈[
O O
O S

]
, C̃t−1

〉
= σ2

d∑
i=1

λi

t−1∑
s=1

(
B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

. (156)

Suppose t − 1 belongs to the ℓ-th stage, namely, K(ℓ − 1) + 1 ≤ t − 1 ≤ Kℓ. For each i, define
ℓ∗i = max

{
ℓ : λi

4ℓ−1 >
16(1−c) lnn
(q−cδ)K

}
.

If ℓ ≤ ℓ∗i + 1, we bound
∑t−1
s=1 =

∑K(ℓ−1)
s=1 +

∑t−1
s=K(ℓ−1)+1, respectively. For the first term, we

have

K(ℓ−1)∑
s=1

(
B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

=

ℓ−1∑
m=1

(
B̃t−1−K(ℓ−1)
(ℓ),i ◦ B̃K(ℓ−1),i ◦ · · · ◦ B̃

K
(m+1),i ◦

K∑
s=1

B̃K−s
(m),i ◦

[
δ2(m)λi δ(m)q(m)λi

δ(m)q(m)λi q2(m)λi

])
22

a
⪯

ℓ−1∑
m=1

(
B̃t−1−K(ℓ−1)
(ℓ),i ◦ B̃K(ℓ−1),i ◦ · · · ◦ B̃(m+1),i ◦Q(m),i

)
22

b
⪯

ℓ−1∑
m=1

(
B̃t−1−K(ℓ−1)
(ℓ),i ◦ B̃K(ℓ−1),i ◦ · · · ◦ B̃(m+1),i ◦

[
8

3

(
U(m),i

)
22

I

])
22

≤
8
(
U(1),i

)
22

3

ℓ−1∑
m=1

(
A
t−1−K(ℓ−1)
(ℓ),i AK

(ℓ−1),i · · ·A
K
(m+1),i

(
AK

(m+1),i

)⊤
· · ·
(
AK

(ℓ−1),i

)⊤ (
A
t−1−K(ℓ−1)
(ℓ),i

)⊤)
22

≤
8
(
U(1),i

)
22

3

ℓ−1∑
m=1

∥∥∥At−1−K(ℓ−1)
(ℓ),i

∥∥∥2︸ ︷︷ ︸
Lemma 15

∥∥∥AK
(ℓ−1),i

∥∥∥2︸ ︷︷ ︸
Lemma 16

· · ·
∥∥∥AK

(m+1),i

∥∥∥2︸ ︷︷ ︸
Lemma 16

≤
8
(
U(1),i

)
22

3
· 6K2 · 6

n4(log2 n)
2
· log2 n

c
≤
3
(
U(1),i

)
22

2N2
,

(157)

where
a
⪯ uses the definition of Q(m),i,

b
⪯ uses Q(m),i ⪯ 4

3U(m),i ⪯ 8
3

(
U(m),i

)
22

I from Lemma 23,

and
c
≤ uses n ≥ 16. For the second term, we apply Lemma 24,

t−1∑
s=K(ℓ−1)+1

(
B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

≤
(
20Q(ℓ),i

)
22
≤ 80

3

(
U(ℓ),i

)
22
≤ 80

3

(
U(1),i

)
22
.

(158)

Thus, we have

〈[
O O
O S

]
, C̃t−1

〉
≤ σ2

d∑
i=1

(
3

2N2
+

80

3

)(
U(1),i

)
22
λi ≤

1

2
σ2. (159)
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If ℓ > ℓ∗i + 1, we have λi/4ℓ−1 ∈ I1. We bound
∑t−1
s=1 =

∑Kℓ∗i
s=1 +

∑t−1
s=Kℓ∗i +1, respectively. The

bound of the first term parallels (144):

σ2

Kℓ∗i∑
s=1

(
B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

=σ2

ℓ∗i∑
m=1

(
B̃t−1,i ◦ · · · ◦ B̃K(ℓ∗i +1)+1,i ◦ B̃K(ℓ∗i +1),i ◦ · · · ◦ B̃

K
(m+1),i ◦

K∑
s=1

B̃K−s
(m),i ◦

[
δ2(m)λi δ(m)q(m)λi

δ(m)q(m)λi q2(m)λi

])
22

a
⪯σ2

ℓ∗i∑
m=1

(
B̃t−1,i ◦ · · · ◦ B̃K(ℓ∗i +1)+1,i ◦ B̃K(ℓ∗i +1),i ◦ · · · ◦ B̃

K
(m+1),i ◦Q(m),i

)
22

b
⪯σ2

ℓ∗i∑
m=1

(
B̃t−1,i ◦ · · · ◦ B̃K(ℓ∗i +1)+1,i ◦ B̃K(ℓ∗i +1),i ◦ · · · ◦ B̃

K
(m+1),i ◦

[
8

3

(
U(m),i

)
22

I

])
22

≤
8σ2

(
U(1),i

)
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3

ℓ−1∑
m=1

[
At−1,i · · ·AK(ℓ∗i +1)+1,iA

K
ℓ∗i ,i
· · ·AK

(m+1),i(
AK
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· · ·
(
AK
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)⊤
A⊤
K(ℓ∗i +1)+1,i · · ·A

⊤
t−1,i

]
22

≤
8σ2

(
U(1),i

)
22

3

ℓ−1∑
m=1

∥∥At−1,i · · ·AK(ℓ∗i +1)+1,i

∥∥2︸ ︷︷ ︸
Lemma 19

∥∥∥AK
(ℓ∗i ),i

∥∥∥2︸ ︷︷ ︸
Lemma 16

· · ·
∥∥∥AK

(m+1),i

∥∥∥2︸ ︷︷ ︸
Lemma 16

≤
8σ2

(
U(1),i

)
22

3
· 16

(1− c)2
· 6

n4(log2 n)
2
· log2 n

c
≤
σ2
(
U(1),i

)
22

256n2
,

(160)

where
a
⪯ uses the definition of Q(m),i,

b
⪯ uses Lemma 23, and

c
≤ uses n ≥ 16. For the second term,

we have λi/4ℓ
∗
i ≤ 16(1−c) lnn

(q−cδ)K ≤ (1−c)2
q−cδ . Thus, we apply Lemma 20:

σ2
t−1∑

s=Kℓ∗i +1

(
B̃t−1,i ◦ · · · ◦ B̃s+1,i ◦

[
δ2sλi δsqsλi
δsqsλi q2sλi

])
22

≤σ2
t−1∑

s=Kℓ∗i +1

λi

∥∥∥∥At−1,i · · ·As+1,i

[
δs
qs

]∥∥∥∥2︸ ︷︷ ︸
Lemma 20

≤ 8σ2
t−1∑

s=Kℓ∗i +1

λi

(
qs − cδs
1− c

)2

=
128σ2

15
λiK

(
q(ℓ∗i +1) − cδ(ℓ∗i +1)

1− c

)2

=
128σ2

15

(
Kλi
4ℓ

∗
i
· q − cδ
1− c

)(
q(ℓ∗i +1) − cδ(ℓ∗i +1)

1− c

)
a
≤128σ2

15
· 16 lnn · 4

(
U(ℓ∗i +1),i

)
22
≤ 8192σ2 lnn

15

(
U(1),i

)
22
,

(161)
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where
a
≤ uses λi/4ℓ

∗
i ≤ 16(1−c) lnn

(q−cδ)K and from Lemma 23,

(
U(ℓ∗i +1),i

)
22

=
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + cλi(q(ℓ∗i +1) + cδ(ℓ∗i +1))

)
≥
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + cλi

4ℓ
∗
i
(q + cδ)

)
≥
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + c(1−c)2(q+cδ)

(q−cδ)

)
≥
δ(ℓ∗i +1)

2
+

(1 + c)(q(ℓ∗i +1) − δ(ℓ∗i +1))

2
(
1− c2 + c(1−c)2(q+cq)

(q−cq)

)
=
δ(ℓ∗i +1)

2
+
q(ℓ∗i +1) − δ(ℓ∗i +1)

2(1 + c)(1− c)

≥
δ(ℓ∗i +1)

4
+
q(ℓ∗i +1) − δ(ℓ∗i +1)

4(1− c)
=
q(ℓ∗i +1) − cδ(ℓ∗i +1)

4(1− c)
.

(162)

Thus, we have 〈[
O O
O S

]
, C̃t−1

〉
≤σ2

d∑
i=1

(
1

256N2
+

8192 lnn

15

)(
U(1),i

)
22
λi

≤547σ2 lnn

d∑
i=1

(
U(1),i

)
22
λi ≤

1

2
σ2.

(163)

A.8 BIAS UPPER BOUND

A.8.1 PROOF OF LEMMA 9

Proof of Lemma 9. Recall the definition of B̃n and B̃t, we have

B̃n = B̃n ◦ B̃n−1 ◦ · · · ◦ B̃1 ◦B0 =

(
n∏
t=1

At

[
w0 −w∗

w0 −w∗

])( n∏
t=1

At

[
w0 −w∗

w0 −w∗

])⊤

. (164)

Note that At is block-diagonal, we have(
n∏
t=1

At

[
w0 −w∗

w0 −w∗

])
i

= (w0,i −w∗
i )

n∏
t=1

At,i

[
1
1

]
. (165)

For i ≤ k∗, we have λi ∈ I1. Let ℓ∗ = max
{
ℓ : λi

4ℓ−1 >
16(1−c) lnn
(q−cδ)K

}
, and note that for ℓ ≥ ℓ∗,

λi/4
ℓ−1 ≤ (1−c)2

q−cδ . Therefore, we have(
n∏
t=1

At,i

[
1
1

])2

1

≤

∥∥∥∥∥
n∏

t=Kℓ∗+1

At

∥∥∥∥∥
2

︸ ︷︷ ︸
Lemma 19

∥∥∥AK
(ℓ−1)

∥∥∥2 · · · ∥∥∥AK
(1)

∥∥∥2︸ ︷︷ ︸
Lemma 16

∥∥∥∥[11
]∥∥∥∥2

≤ 16

(1− c)2
· 6

n4(log2 n)
2
· 2

a
≤ 1

8n2(log2 n)
4
.

(166)
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where
a
≤ uses K(1− c) ≥ 16 lnn. For i > k∗, from Lemma 21 we have(

n∏
t=1

At,i

[
1
1

])2

1

≤

∥∥∥∥∥
n∏
t=1

At,i

[
1
1

]∥∥∥∥∥
2

≤ 4. (167)

Consider the following decomposition:
n∏
t=1

At

[
w0 −w∗

w0 −w∗

]
=

[
ξ1
O

]
+

[
O
ξ2

]
, (168)

where ξ1 ∈ Rk∗ and ξ2 ∈ Rd−k∗ . Then (166) and (166) implies that([
ξ1
O

])2

i

≤ (w0 −w∗)2i
8n2(log2 n)

4
,

([
O
ξ2

])2

i

≤ 4(w0 −w∗)2i . (169)

Note that T ⪯ 2T0:k∗ + 2Tk∗:∞. Then we have〈
T̃, B̃n

〉
≤2
〈
T0:k∗ , B̃n

〉
+ 2

〈
Tk∗:∞, B̃n

〉
=2

∥∥∥∥[ξ1O
]∥∥∥∥2

T0:k∗

+ 2

∥∥∥∥[Oξ2
]∥∥∥∥2

Tk∗:∞

≤ max
w∈S(w0−w∗)

∥w∥2T0:k∗

8n2(log2 n)
4
+ 4 ∥w∥2Tk∗:∞

.

(170)

This completes the proof.

A.8.2 PROOF OF LEMMA 11

We first analyze
〈[

O O
O S

]
, B̃t

〉
.

Lemma 25. For t ≤ K, we have〈[
O O
O S

]
, B̃t

〉
≤ 4

d∑
i=1

λi (w
∗
i )

2
. (171)

For t > K, we have〈[
O O
O S

]
, B̃t

〉
≤ 36

n2 (log2 n)
4

k∗∑
i=1

λi (w
∗
i )

2
+ 4

d∑
i=k∗+1

λi (w
∗
i )

2
. (172)

Proof. Note that B̃t is block-diagonal, we have〈[
O O
O S

]
, B̃t

〉
=

d∑
i=1

λi (w
∗
i )

2

(
t∏

s=1

As,i

[
1
1

])2

1

. (173)

For t ≤ K, s ≤ t implies s belongs to the first stage. Thus, As,i = A(ℓ).i = A(λi). By Lemma 17,∣∣∣∣∣
(

t∏
s=1

As,i

[
1
1

])
1

∣∣∣∣∣ =
∣∣∣∣(At(λi)

[
1
1

])
2

∣∣∣∣ ≤ 2. (174)

Therefore, 〈[
O O
O S

]
, B̃t

〉
=

d∑
i=1

λi (w
∗
i )

2

(
t∏

s=1

As,i

[
1
1

])2

1

≤4
d∑
i=1

λi (w
∗
i )

2

(175)
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For t > K, suppose t belongs to the ℓ-th stage, we have ℓ ≥ 2. Since i > k∗ implies that λi ∈ I1.
Let ℓ∗i = max

{
ℓ : λi

4ℓ−1 >
16(1−c) lnn
(q−cδ)K

}
. If ℓ < ℓ∗i , by applying Lemma 15 and Lemma 16, we have(

t∏
s=1

As,i

[
1
1

])2

1

≤
∥∥∥At−K(ℓ−1)

(ℓ)

∥∥∥2︸ ︷︷ ︸
Lemma 15

∥∥∥AK
(ℓ−1)

∥∥∥2 · · · ∥∥∥AK
(1)

∥∥∥2︸ ︷︷ ︸
Lemma 16

∥∥∥∥[11
]∥∥∥∥2

≤6K2 ·

( √
6

n2 log2 n

)2(ℓ−1)

≤ 36

n2 (log2 n)
4 .

(176)

If ℓ ≥ ℓ∗i , by applying Lemma 19 and Lemma 16, we have(
t∏

s=1

As,i

[
1
1

])2

1

≤

∥∥∥∥∥∥
n∏

t=Kℓ∗i +1

At

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Lemma 19

∥∥∥AK
(ℓ∗i −1)

∥∥∥2 · · · ∥∥∥AK
(1)

∥∥∥2︸ ︷︷ ︸
Lemma 16

∥∥∥∥[11
]∥∥∥∥2

≤ 16

(1− c)2
· 6

n4(log2 n)
2
· 2

a
≤ 1

8n2(log2 n)
4
.

(177)

We apply the above bound of
∑k∗

i=1, and use Lemma 21 to bound
∑d
i=k∗+1:〈[

O O
O S

]
, B̃t

〉

=

k∗∑
i=1

λi (w
∗
i )

2

(
t∏

s=1

As,i

[
1
1

])2

1

+

d∑
i=k∗+1

λi (w
∗
i )

2

(
t∏

s=1

As,i

[
1
1

])2

1

≤ 36

n2 (log2 n)
4

k∗∑
i=1

λi (w
∗
i )

2
+ 4

d∑
i=k∗+1

λi (w
∗
i )

2
.

(178)

This completes the proof.

Proof of Lemma 11. From the recursive definition of B̃
(1)

t in (57) and Lemma 25, we have:

B
(1)
t =Bt ◦B(1)

t−1 + E
[
Ĝt ⊗ Ĝt

]
◦ B̃t−1

⪯Bt ◦B(1)
t−1 + 4 ∥w∗∥2S ·

[
δ2tS δtqtS
δtqtS q2tS

]
.

(179)

This form is identical to the recursion of C̃t if we replace 4 ∥w∗∥2S by σ2. Therefore, we apply
Lemma 4 to obtain〈

T̃,B(1)
n

〉
≤ ∥w0 −w∗∥2S ·

[
k∗∑
i=1

2tii
Kλi

+
512

15
K

(
q − cδ
1− c

)2 d∑
i=k∗+1

λitii

]
. (180)

A.9 AUXILIARY LEMMAS

Lemma 26. For k ≥ 0 and 0 ≤ x ≤ 1, we have

xk [1 + k(1− x)] ≤ 1. (181)

Proof. Let f(x) = xk [1 + k(1− x)] and its derivative f ′(x) = k(k + 1)xk−1(1 − x) ≥ 0. Thus,
f(x) ≤ f(1) = 1.
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Lemma 27. For k ∈ N and sin θ ̸= 0, we have∣∣∣∣ sin kθsin θ

∣∣∣∣ ≤ k. (182)

Proof. By induction, for k = 0, the conclusion is trivial. Assume∣∣∣∣ sin(k − 1)θ

sin θ

∣∣∣∣ ≤ k − 1. (183)

Then we have ∣∣∣∣ sin kθsin θ

∣∣∣∣ = ∣∣∣∣ sin(k − 1)θ cos θ + cos(k − 1)θ sin θ

sin θ

∣∣∣∣
≤ |cos θ|

∣∣∣∣ sin(k − 1)θ

sin θ

∣∣∣∣+ |cos(k − 1)θ| ≤ k.
(184)

B PROOFS OF OPTIMALITY ANALYSIS IN SECTION 5

This section provides the proofs of Section 5.

B.1 PROOF OF THEOREM 8

Proof of Theorem 8. By the lower bound in Theorem 5, we have

R(ki) ≥ sup
F⪰O, ∥F∥∗≤1/π2

〈
T′,
(
F−1 + nS′)−1

〉
. (185)

Therefore, we only have to show that

R(ki) ≲ sup
F⪰O, ∥F∥∗≤1/π2

〈
T′,
(
F−1 + nS′)−1

〉
. (186)

Recall that

R(ki) ≂ max
A⊆{1,...,k1}:∑

i∈A
1

nλi
≤1

〈
T

′
,
(
S

′

A

)−1
〉
+ sup

F⪰O,
∥F∥∗≤1

〈
T

′
,
(
F−1 + nS

′

k1+1:d

)−1
〉

︸ ︷︷ ︸
(a)

.

Let

F1 = diag

{
1i∈A

nλi

}k1
i=1

∈ Rk1×k1 , F2 = argmin
F⪰O,

∥F∥∗≤1

(a), (187)

and F0 = diag{F1,F2}/(2π2). Since ∥F∥∗ ≤ 1/π2,F ⪰ O, we have

R(ki) ≂
〈
T′,
(
F−1

0 + nS′)−1
〉
≤ sup

F⪰O, ∥F∥∗≤1/π2

〈
T′,
(
F−1 + nS′)−1

〉
. (188)

This completes the proof.

B.2 PROOF OF COROLLARY 9

Proof of Corollary 9. We choose δ = γ = 1
2188 trS lnn . From the lower bound of n, we have k∗ = d

by Theorem 13. Thus,

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≲

k∗∑
i=1

tii
Kλi

+ max
w∈S(w0−w∗)

∥w∥2T
n2(log2 n)

4
,

≤ lnn

n
tr
(
TS−1

)
+max

i

∥w∥2UiTUi

n2(log2 n)
4
,

a
≤ lnn

n
tr
(
TS−1

)
+max

i

∥M−1/2UiTUiM
−1/2∥

n2(log2 n)
4

,
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where Ui = diag{±1,±1, . . . ,±1}, 1 ≤ i ≤ 2d.
a
≤ follows from ∥w∗∥M ≤ 1. Therefore, we have

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≲
lnn

n
tr
(
TS−1

)
+max

i

∥M−1/2UiTUiM
−1/2∥

n2(log2 n)
4

=Õ
(
tr(TS−1)/n

) (189)

B.3 PROOF OF COROLLARY 10

The proof of the corollary 10 is divided into two parts. We first show a different lower and upper
bound (up to logarithmic factors), namely

σ2Bd1
n

. (190)

Then, we show that
σ2Bd1
n

≂ inf
δ>0

{
δ2 +

σ2Bd(δ)

n

}
. (191)

Lemma 28 (Upper bound). Under the conditions in Corollary 10, we have

sup
P̃

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤ Õ

(
σ2Bd1
n

)
. (192)

Proof. From Theorem 6, we have

sup
P̃

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T

≲σ2

[
ln2 n

n

〈
T0:k∗B

,S−1
0:k∗B

〉
+ n(γ + δ)2

〈
Tk∗B :∞,Sk∗B :∞

〉]
+
∥∥Tk∗B :∞

∥∥
≤2σ2

[
ln2 n

n

〈
T0:k∗B

,
(
S0:k∗B

+ λk∗BI
)−1
〉
+ n(γ + δ)2

〈
Tk∗B :∞, λ

2
k∗B

(
Sk∗B :∞ + λk∗BI

)−1
〉]

+ µd1+1

a
≤Õ

(
σ2

n

〈
T,
(
S+ λk∗BI

)−1
〉
+ µd1+1

)
≤Õ

(
σ2

n

〈
T, (T/B + µd1I/B)

−1
〉
+ µd1+1

)
=Õ

(
σ2B

n

d∑
i=1

µi
µi + µd1

+ µd1+1

)
,

(193)

where
a
≤ uses λk∗B = 32 lnn log2 n

n(γ+δ) . From the eigenvalue regularity condition, we have

d∑
i=1

µi
µi + µd1

=

d1∑
i=1

µi
µi + µd1

+

d∑
i=d1+1

µi
µi + µd1

≤d1
2

+
Cd1µd1
2µd1

≤ O(d1).

(194)

Combining the above results and µd1+1 ≤ σ2Bd1
n yields the desired result.

Lemma 29 (Lower bound). Under the conditions in Corollary 10, for T = BS, we have the
following lower bound:

inf
ŵ

sup
P̃∈P(WM,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥ Ω

(
σ2Bd1
n

)
. (195)
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Proof. From Theorem 5, we have

inf
ŵ

sup
P̃∈P(WM,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥ sup

F⪰O, ∥F∥∗≤1/π2

〈
T,
(
F−1 + nS/σ2

)−1
〉
. (196)

Let

Fd1d1 = diag

{
σ2B

π2nµ1
, . . . ,

σ2B

π2nµd1
, 0, . . . , 0

}
, (197)

so trF ≤ 1/π2, and we have

inf
ŵ

sup
P̃∈P(WM,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥

〈
T,
(
F−1 + nT/(σ2B)

)−1
〉

≥
d1∑
i=1

µi ·
(
π2nµi
σ2B

+
nµi
σ2B

)−1

=
σ2Bd1

(1 + π2)n
.

(198)

By Lemma 39, we have

sup
F⪰O

∥F∥∗≤1/π2

〈
T′,

(
F−1 +

nS′

σ2

)−1
〉

= min
A∈Rd×d

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+σ2

n

〈
T′,A

(
S′)−1

A⊤
〉

The following lemma provides an explicit form of the lower bound when S, T and M commute.

Lemma 30. Let T = diag {ti}di=1 and M = diag {mi}di=1, we have

min
A∈Rd×d

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉
≂ min

τ≥0

τ2

π2
+
∑
i∈Kτ

σ2ti
nλi

, (199)

where Kτ =
{
k : tk/mk > τ2

}
.

Proof. A key observation is that when T′ is diagonal, the minimum of the LHS of (199) is attained
when A is diagonal. Note that the LHS of (199) is a convex optimization. Let A0 denote a minimizer.
Consider 2d reflection matrices Ui = diag {±1,±1, . . . ,±1}, then for all i ∈

[
2d
]
, UiA0Ui is

also a minimizer. From the convexity, we have that

A∗ =
1

2d

2d∑
i=1

UiA0Ui (200)

is also a minimizer, and A∗ is diagonal. Thus, we can restrict A to be diagonal when minimizing the
LHS of (199). Therefore, let A = diag {ai}di=1 and note that T′ = diag {ti/mi}di=1, then the LHS
of (199) is equivalent to

min
ai

max
k∈[d]

(1− ak)2tk
π2mk

+

d∑
i=1

σ2a2i ti
nλi

. (201)

We can write out the following equivalent form:

min
ai,τ≥0

τ2

π2
+

d∑
i=1

σ2a2i ti
nλi

,

s.t. ∀i ∈ [d],
(1− ai)2ti

mi
≤ τ2.

(202)

We first minimize the above program with respect to ai to get

ai =

{
0, ti/mi < τ2;

1− τ
√
mi/ti, ti/mi ≥ τ2.

(203)
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Plugging the value of ai into left hand side of (199), we obtain the first equality in (199):

min
τ≥0

τ2

π2
+
∑
i∈Kτ

(
1− τ

√
mi

ti

)2
σ2ti
nλi

. (204)

Let τ∗ ≥ 0 denote the minimizer of (204), we have(
τ∗

π

)2

+
∑
i∈Kτ∗

(
1− τ∗

√
mi

ti

)2
σ2ti
nλi

a
≥
(
τ∗

π

)2

+
∑

i∈K2τ∗

(
1− τ∗

√
mi

ti

)2
σ2ti
nλi

b
≥1

4

(
2τ∗

π

)2

+
∑

i∈K2τ∗

σ2ti
4nλi

c
≥ 1

4
min
τ≥0

τ2

π2
+
∑
i∈Kτ

σ2ti
nλi

,

(205)

where
a
≥ is from K2τ∗ ⊂ Kτ∗ ,

b
≥ uses that 1− τ∗

√
mi

ti
≥ 1

2 for all i ∈ K2τ∗ , and
c
≥ replaces 2τ∗ by

τ and minimizes with respect to τ . This completes the proof of the inequality in (199).

Let A = diag{1i∈Kτ
}di=1, we have

τ2

π2
+
∑
i∈Kτ

σ2ti
nλi

=
1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉
. (206)

Minimizing two sides yields

min
τ≥0

τ2

π2
+
∑
i∈Kτ

σ2ti
nλi

≥ min
A∈Rd×d

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉

(207)

Lemma 31. We have

sup
F⪰O, ∥F∥∗≤1/π2

〈
T,
(
F−1 + nT/(σ2B)

)−1
〉
≂ inf
δ>0

{
δ2 +

σ2Bd(δ)

n

}
. (208)

Proof. Apply Lemma 30, we have

sup
F⪰O, ∥F∥∗≤1/π2

〈
T,
(
F−1 + nT/(σ2B)

)−1
〉
≂min
τ≥0

τ2

π2
+
σ2B|Kτ |

n

≂ inf
d′
µd′ +

σ2Bd′

n

= inf
δ>0

{
δ2 +

σ2Bd(δ)

n

}
.

(209)

where Kτ =
{
k : tk/mk > τ2

}
.

Proof of Corollary 10. From Lemmas 28 and 29, we have

sup
F⪰O, ∥F∥∗≤1/π2

〈
T,
(
F−1 + nT/(σ2B)

)−1
〉
≂ Θ̃

(
σ2Bd1
n

)
. (210)

Then, by Lemma 31, we know SGD achieves optimal rate Θ̃
(
infδ>0

{
δ2 + σ2Bd(δ)

n

})
.

B.4 PROOF OF COROLLARY 14

We begin by showing that if DKL(Qx∥PKL
x ) ≤ C, we have T ⪯ B · S, where B only depends on C.

Lemma 32. Suppose PKL
x ) and Qx are Gaussian distributions, and DKL(Qx∥PKL

x ) ≤ C, then we
have T ⪯ B · S, where B only depends on C.
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. Let S and T denote the source and target covariance matrix. Since

DKL(Qx∥PKL
x ) =

1

2

(
tr(S−1/2TS−1/2)− d− ln det(S−1/2TS−1/2)

)
(211)

Let ρi denote the eigenvalues of S−1/2TS−1/2, we have

DKL(Qx∥PKL
x ) =

1

2

d∑
i=1

ρi − 1− ln ρi < C. (212)

Since x − 1 − lnx ≥ 0 for any x > 0, we have ρi − 1 − ln ρi < ϵ for all i ∈ [d]. By solving the
inequality, we obtain that ρi are bounded by a constant B depending on C.

Proof of Corollary 14. The proof parallels the proof of Corollary 10. Similar to Lemma 28, we
have upper bound Õ

(
infδ>0

{
δ2 + σ2Bd(δ)

n

})
. For the lower bound, note that Qx = PKL

x implies

T = S. Therefore, similar to Lemma 29, we have lower bound Ω
(
infδ>0

{
δ2 + σ2d(δ)

n

})
. Ignore

the constant B, we get the matching bound Θ̃
(
infδ>0

{
δ2 + σ2d(δ)

n

})
B.5 PROOF OF COROLLARY 12

We first show the upper bound in the Corollary 12.

Lemma 33. Under the conditions in Corollary 12, for the region 1 > s > a
2a−1 , we set

κ̃ = Θ
(
n

(1−s)a
(a−1)sa

)
, δ = Θ(1/ lnn), γ = Θ

(
n

1−s
s / lnn

)
. (213)

Then we have

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤

{
Õ(1/n), r ≥ 1/a;

Õ
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(214)

Proof. Since we have
κ̃

n
∑
i>κ̃ λi

= Θ
(
n

(1−2a)s+a
(a−1)s

)
, (215)

and s > a
2a−1 , the parameter choice is feasible. From Theorem 6, we have k∗ = Θ̃

(
n

1
sa

)
, and

sup
P̃

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤Õ

(
k∗∑
i=1

i−ra

n
+ n(γ + δ)2

d∑
i=k∗+1

i−(2+r)a + (k∗)−(r+s)a+1

)

≤

{
Õ(1/n), r ≥ 1/a;

Õ
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(216)

Lemma 34. Under the conditions in Corollary 12, for the region s ≥ 1, we set

κ̃ = Θ(1) , δ = γ = Θ
(
n

1−s
s / lnn

)
. (217)

Then we have

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤

{
Õ(1/n), r ≥ 1/a;

Õ
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(218)

Proof. Since we have
κ̃

n
∑
i>κ̃ λi

= Θ(1/n) , (219)
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the parameter choice is feasible. From Theorem 6, we have k∗ = Θ̃
(
n

1
sa

)
, and

sup
P̃

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≤Õ

(
k∗∑
i=1

i−ra

n
+ n(γ + δ)2

d∑
i=k∗+1

i−(2+r)a + (k∗)−(1+r)a+1

)

≤

{
Õ(1/n), r ≥ 1/a;

Õ
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(220)

The lower bound follows from Lemma 39, as shown in the following lemma.
Lemma 35. Under the conditions in Corollary 12, we have the following lower bound{

Ω̃(1/n), r ≥ 1/a;

Ω̃
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(221)

Proof. By Lemma 39, we have the following lower bound:

min
A∈Rd×d

1

π2

∥∥∥(I−A)⊤M−1/2ww⊤M−1/2(I−A)
∥∥∥+ σ2

n

〈
M−1/2ww⊤M−1/2,A

(
S′)−1

A⊤
〉

(222)
Let u = (I−A)⊤M−1/2w,

min
u∈Rd

1

π2
∥u∥2 + σ2

n

∥∥∥(M−1/2w − u)
∥∥∥2
(S′)−1

. (223)

Solving the optimization problem, we get the lower bound:∥∥∥∥σ2

n
(S′)−1M−1/2w

∥∥∥∥2(
σ2

n (S′)−1+ I
π2

)−1
+
σ2

n

∥∥∥M−1/2w
∥∥∥2
(S′)−1

≂
d∑
i=1

(
σ2

n i
sa · i(1−s)a/2 · i−(1+r)a/2

)2
σ2

n i
sa + 1

π2

+
σ2

n

d∑
i=1

i−ra

≂
1

n2

n
1
sa∑
i=1

i−(r−s)a +
1

n

d∑
i=n

1
sa +1

i−ra +
1

n

d∑
i=1

i−ra

≥

{
Ω̃(1/n), r ≥ 1/a;

Ω̃
(
(1/n)

(r+s)a−1
sa

)
, r < 1/a.

(224)

Proof of Corollary 12. Combine Lemmas 33, 34 and 35 to complete the proof.

C PROOFS OF MINIMAX OPTIMALITY IN SECTION 3.3

For completeness, we present the proofs of theorems in Section 3.3. The proofs use a different prior
distribution compared to Pathak et al. (2024), which does not require explicit truncation.

C.1 PROOF OF THEOREM 5

This section provides the proof of the lower bound. For any w ∈ W , we construct the probability
distribution Pw of (x, y) such that

x ∼ N (0,S), y = x⊤w + ϵ, (225)
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where ϵ ∼ N (0, σ2) and ϵ and x are independent. Pw satisfies Assumptions 4 and 1. Let
G(W,S,T) = {Pw : w ∈ W} denotes the Gaussian problem class, then we have G(W,S,T) ⊆
P(W,S,T).

The first step is to reduce the minimax risk to Bayesian risk and show that the randomness of the
estimator ŵ does not help to achieve better performance. We denote an estimator which only depends
on samples {(xi, yi)}ni=1 as ŵdet. We have the following lemma.
Lemma 36. Suppose π is any probability distribution supported on W , We have

inf
ŵ

sup
P̃∈P(W,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥ inf

ŵdet
Ew∗∼πEP⊗n

w∗
∥ŵ −w∗∥2T . (226)

Proof. From Yao’s minimax principle (Yao, 1977), we have

inf
ŵ

sup
P̃∈P(W,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥ inf

ŵ
sup

Pw∗∈G(W,S,T)

EP⊗n
w∗ ×Pξ

∥ŵ −w∗∥2T

≥ inf
ŵ

Ew∗∼πEP⊗n
w∗ ×Pξ

∥ŵ −w∗∥2T

≥ inf
ξ
inf
ŵ

Ew∗∼πEP⊗n
w∗
∥ŵ(·, ξ)−w∗∥2T

≥ inf
ŵdet

Ew∗∼πEP⊗n
w∗

∥∥∥ŵdet −w∗
∥∥∥2
T
.

(227)

We prove a multivariate generalization of Bayesian Cramer-Rao inequality.
Lemma 37. We denote the density function of P⊗n

w as fw. Given data X = {(xi, yi)}ni=1 ∼ P⊗n
w ,

let ŵdet = ŵdet(X) be an estimator of w. The Fisher information matrix of P⊗n
w be defined as

I(w) =

∫
X
(∇w ln fw(x)) (∇w ln fw(x))

⊤
fw(x)dx. (228)

Consider a prior probability measure π with density function π(w) that is supported on a compact
set W ⊆ Rd and π(w) = 0 on the boundary of W . We define the information matrix of π as

I(π) =
∫
Rd

(∇ lnπ(w)) (∇ lnπ(w))
⊤
π(w)dw. (229)

Then we have

Ew∼πEX∼P⊗n
w

(ŵ −w) (ŵ −w)
⊤ ⪰ (Ew∼πI(w) + I(π))−1

. (230)

Proof. We begin by defining two random variables as

ξ = ŵdet(X)−w, η = ∇w ln (fw(X)π(w)) . (231)

We denote Ew∼πEX∼P⊗n
w

by E for simplicity. For any vector u,v ∈ Rd, by Cauchy-Schwarz
inequality, we have

E
(
u⊤ξξ⊤u

)
E
(
v⊤ηη⊤v

)
≥
[
E
(
u⊤ξ

) (
v⊤η

)]2
. (232)

We will show that
Eηη⊤ = EI(w) + I(π), Eξη⊤ = I. (233)

Note that once we have established (233), we have[
u⊤E

(
ŵdet −w

)(
ŵdet −w

)⊤
u

] [
v⊤ (EI(θ) + I(λ))v

]
≥
(
u⊤v

)2
. (234)

Let v = (EI(θ) + I(λ))−1
u, we get

u⊤E
(
ŵdet −w

)(
ŵdet −w

)⊤
u ≥ u⊤ (EI(θ) + I(λ))−1

u. (235)
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Since u is arbitrary, we get the desired result.

Now, we prove (233) by direct calculation. Consider the ij-th entry of Eηη⊤, which is

Eηiηj =E
∂ ln (fw(X)π(w))

∂wi

∂ ln (fw(X)π(w))

∂wj

=E
(
∂ ln fw(X)

∂wi
+
∂ lnπ(w)

∂wi

)(
∂ ln fw(X)

∂wj
+
∂ lnπ(w)

∂wj

)
=E

∂ ln fw(X)

∂wi

∂ ln fw(X)

∂wj
+ E

∂ lnπ(w)

∂wi

∂ lnπ(w)

∂wj

+ E
∂ ln fw(X)

∂wi

∂ lnπ(w)

∂wj
+ E

∂ ln fw(X)

∂wj

∂ lnπ(w)

∂wi

a
=EIij(w) + Iij(π) + E

∂ ln fw(X)

∂wi

∂ lnπ(w)

∂wj
+ E

∂ ln fw(X)

∂wj

∂ lnπ(w)

∂wi
,

(236)

where a
= uses the definition of I(w) and I(π). We need to show that

E
∂ ln fw(X)

∂wi

∂ lnπ(w)

∂wj
= E

∂ ln fw(X)

∂wj

∂ lnπ(w)

∂wi
= 0. (237)

For simplicity, let X =
(
Rd × R

)n
be the range of X , then we have

E
∂ ln fw(X)

∂wi

∂ lnπ(w)

∂wj
=

∫
X×Rd

∂ ln fw(x)

∂wi

∂ lnπ(w)

∂wj
fw(x)π(w)dxdw

=

∫
X×Rd

∂fw(x)

∂wi

∂π(w)

∂wj
dxdw

a
=

∫
Rd

(
∂

∂wi

∫
X
fw(x)dx

)
∂π(w)

∂wj
dw

b
=0,

(238)

where a
= exchanges

∫
X and ∂

∂wi
, and b

= uses
∫
X fw(x)dx ≡ 1 and the derivative of a constant is 0.

Thus, Eηη⊤ = EI(w) + I(π).
Consider the ij-th entry of Eξη⊤, which is

Eξiηj =E
(
ŵdet
i (X)−wi

) ∂ ln (fw(X)π(w))

∂wj

=

∫
X×Rd

(
ŵdet
i (x)−wi

) ∂ ln (fw(x)π(w))

∂wj
fw(x)π(w)dxdw

=

∫
X×Rd

(
ŵdet
i (x)−wi

) ∂ (fw(x)π(w))

∂wj
dxdw

a
=

∫
X×Rd

∂
[(

ŵdet
i (x)−wi

)
fw(x)π(w)

]
∂wj

dxdw

−
∫
X×Rd

∂
(
ŵdet
i (x)−wi

)
∂wj

fw(x)π(w)dxdw

b
=

∫
X×Rd−1

[(
ŵdet
i (x)−wi

)
fw(x)π(w)

]∣∣wj=+∞
wj=−∞dx

∏
k ̸=j

dwk − E
∂ (−wi)

∂wj

c
=δij ,

(239)

where a
= uses integration by parts, b

= integrates with respect to wj , and c
= is from the fact that W

is compact, so λ(w) = 0 when wj is sufficiently large, and δij denotes the kronecker delta, which
equals to the ij-th entry of identity matrix I. Therefore, Eηη⊤ = I. This completes the proof of
(233).

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

The above lemma provides a Bayesian Cramer-Rao inequality, which enables us to derive the lower
bound in Theorem 5.

Proof of Theorem 5. We apply Lemma 37. In our case, let data X = {(xi, yi)}ni=1 ∼ P⊗n
w∗ . By

direct calculation, we have

I(w∗) =
nS

σ2
. (240)

Thus, given any prior distribution π with support included in W =
{
w∗ ∈ Rd : ∥w∗∥2M ≤ 1

}
, by

Lemma 36 we have

inf
ŵ

sup
P̃∈P(W,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥

〈
T,

(
I(π) + nS

σ2

)−1
〉
. (241)

The rest of the proof is to construct the prior distribution. To build intuition, we first consider the case
M = I. We construct the prior distribution π as follows. Given any orthogonal matrix U and vector
g with ∥g∥ ≤ 1, we define the prior density π(w;U,g), whose support is included in unit ball, as
follows:

π(w;U,g) =

d∏
i=1

cos2

(
π(U⊤w)i

2gi

)
1|(U⊤w)i|≤|gi|

, (242)

where 1 is the indicator function. Note that π(w;U,g) has support is included in unit ball. Direct
calculation shows that the information of π is

I(π(·;U,g)) = π2U diag

{
1

g2
1

,
1

g2
2

, . . . ,
1

g2
d

}
U⊤. (243)

For a general positive definite matrix M, we define a prior as follows:

π(w;U,g,M) =
(
detM1/2

)
π(M1/2w;U;g). (244)

Geometrically speaking, π(w;U,g,M) is obtained by scaling π(w;U,g) along the eigenvector of
M, such that unit circle is transformed into the ellipse x⊤Mx = 1, and then normalize it by the factor
detM1/2. Note that the support of π(w;U,g,M) is included in W =

{
w∗ ∈ Rd : ∥w∗∥2M ≤ 1

}
.

Then, we calculate the information matrix of π(w;U,g,M). Let s(w) = ∇ lnπ(w;U;g), we have
∇ lnπ(w;U,g,M) = M1/2s(M1/2w). Therefore,

I(π(·;U,g,M))

=

∫
Rd

(
M1/2s(M1/2w)

)(
M1/2s(M1/2w)

)⊤ (
detM1/2

)
π(M1/2w;U;g)dw

=M1/2

[∫
Rd

s(v)s(v)⊤π(v;U;g)dv

]
M1/2

(
v = M1/2w

)
a
=π2M1/2U diag

{
1

g2
1

,
1

g2
2

, . . . ,
1

g2
d

}
U⊤M1/2,

(245)

where a
= uses the result of the information matrix of π(w;U;g) in (243). Therefore, all the in-

formation matrices constitute the set
{
M1/2F−1M1/2 : F ∈ Sd×d++ , ∥F∥∗ ≤ 1/π2

}
. By applying

Lemma 37, we have

inf
ŵ

sup
P̃∈P(W,S,T)

EP̃⊗n×Pξ
∥ŵ −w∗∥2T ≥ sup

F⪰O
∥F∥∗≤1/π2

〈
T,

(
M1/2F−1M1/2 +

nS

σ2

)−1
〉

= sup
F⪰O

∥F∥∗≤1/π2

〈
T′,

(
F−1 +

nS′

σ2

)−1
〉
.

(246)

This completes the proof.
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C.2 PROOF OF LINEAR PRECONDITIONED ESTIMATOR IN SECTION 3.3.1

Lemma 38 (Upper Bound). Suppose we get samples {(xi, yi)}ni=1 drawn from the source distribution
of P̃ . The excess risk of the optimal estimator ŵA defined in (6) on the target distribution of P̃ can
be bounded from above by:

sup
P̃∈P(W,S,T)

EP̃⊗n ∥ŵA −w∗∥2T

≤ min
A∈Rd×d

∥∥(I−A)⊤T′(I−A)
∥∥+ 2σ2 + 2ψ

∥∥S′∥∥
n

〈
T′,A

(
S′)−1

A⊤
〉
,

(247)

where S′ = M−1/2SM−1/2 and T′ = M−1/2TM−1/2.

Proof. Let ŵ = 1
nS

−1∑n
i=1 xiyi. Then we have ŵA = Aŵ. We first show that

Eŵ = w∗, cov ŵ ⪯
2σ2 + 2ψ ∥w∗∥2S

n
S−1. (248)

Denote ϵi = yi−x⊤
i w

∗ as the response noise. Since w∗ is an optimal parameter, we have Eϵixi = 0.
Recall that S = Exx⊤, and {(xi, yi)}ni=1 are i.i.d, we have

Eŵ =
1

n
S−1

n∑
i=1

E
[
xi
(
x⊤
i w

∗ + ϵi
)]

= S−1EPx

[
xx⊤]w∗ = w∗. (249)

Furthermore,

cov ŵ
a
⪯ 1

n
S−1EPx×y

[
y2xx⊤]S−1 =

1

n
S−1EPx×y

[(
x⊤w∗ + ϵ

)2
xx⊤

]
S−1

b
⪯ 2

n
S−1

(
EPx

[(
x⊤w∗)2 xx⊤

]
+ EPx×y

[
ϵ2xx⊤])S−1

c
⪯ 2

n
S−1

(
ψ ∥w∗∥2S S+ σ2S

)
S−1

=
2σ2 + 2ψ ∥w∗∥2S

n
S−1,

(250)

where a
= applies cov ŵ ⪯ E

[
ŵŵ⊤

]
and ŵ is the average of n independent random variable,

b
⪯ uses

the inequality (a+ b)2 ≤ 2a2 + 2b2, and
c
⪯ uses Assumption 4 and Assumption 1.

Since ŵA = M−1/2AM1/2ŵ, we have

EŵA = M−1/2AM1/2w∗, (251)

cov ŵA ⪯
2σ2 + 2ψ ∥w∗∥2S

n

(
M−1/2AM1/2

)
S−1

(
M−1/2AM1/2

)⊤
. (252)

Apply the bias-variance decomposition to E ∥ŵA −w∗∥2T, we obtain

E ∥ŵA −w∗∥2T = ∥EŵA −w∗∥2T + ⟨T, cov ŵA⟩ . (253)

Recall that S′ = M−1/2SM−1/2 and T′ = M−1/2TM−1/2. For the bias term, we have

∥EŵA −w∗∥2T =
∥∥∥(I−M−1/2AM1/2

)
w∗
∥∥∥2
T
=
∥∥∥M−1/2 (I−A)M1/2w∗

∥∥∥2
T

=
∥∥∥(I−A)M1/2w∗

∥∥∥2
T′
.

(254)

For the variance term, we have

⟨T, cov ŵA⟩ ≤
2σ2 + 2ψ ∥w∗∥2S

n

〈
M−1/2TM−1/2,A

(
M−1/2SM−1/2

)−1

A⊤
〉

≤
2σ2 + 2ψ

∥∥∥M1/2w∗
∥∥∥2
S′

n

〈
T′,A

(
S′)−1

A⊤
〉
.

(255)
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Take the supremum with respect to w∗ ∈W =
{
w∗ ∈ Rd : ∥w∗∥2M ≤ 1

}
, and note that

sup
w∗∈W

∥∥∥(I−A)M1/2w∗
∥∥∥2
T′

=
∥∥(I−A)⊤T′(I−A)

∥∥ , sup
w∗∈W

∥∥∥M1/2w∗
∥∥∥2
S′

=
∥∥S′∥∥ . (256)

Thus, we obtain

sup
P̃∈P(W,S,T)

E ∥ŵA −w∗∥2T ≤
∥∥(I−A)⊤T′(I−A)

∥∥+ 2σ2 + 2ψ
∥∥S′∥∥

n

〈
T′,A

(
S′)−1

A⊤
〉
.

(257)
Minimizing the RHS with respect to A completes the proof.

C.3 MATCHING BOUNDS

Lemma 39 (Matching Bounds). For any positive definite matrix S, M and positive semi-definite
matrix T, the following equation holds:

sup
F⪰O

∥F∥∗≤1/π2

〈
T′,

(
F−1 +

nS′

σ2

)−1
〉

= min
A∈Rd×d

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+σ2

n

〈
T′,A

(
S′)−1

A⊤
〉
,

where S′ = M−1/2SM−1/2 and T′ = M−1/2TM−1/2.

The proof of Lemma 39 is divided into two parts. First, we assume T′ is invertible, and solves the
optimization problem in Theorem 5 to derive the result. For the second part, we replace T′ by T′+ϵI,
which is invertible, and take ϵ→ 0 to complete the proof.

Proof. For simplicity, let

L(S′,T′) = sup
F⪰O

∥F∥∗≤1/π2

〈
T′,

(
F−1 +

nS′

σ2

)−1
〉
, (258)

U(S′,T′) = inf
A∈Rd×d

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉
. (259)

For the first part of the proof, we assume T′ is invertible. We solve the optimization problem in

Theorem 5. Note that the objective function
〈
T′,
(
F−1 + nS′

σ2

)−1
〉

is concave with respect to

F and the feasible set
{
F ∈ Sd×d++ : ∥F∥∗ ≤ 1/π2

}
is a convex set. Therefore, we can introduce a

Lagrange multiplier ∆ ∈ Sd×d and obtain

L(S′,T′) = sup
F∈Sd×d

B⪰O
∥B∥∗≤1/π2

inf
∆∈Sd×d

〈
T′,

(
F−1 +

nS′

σ2

)−1
〉

+
〈
S′ (T′)−1/2

∆
(
T′)−1/2

S′,B− F
〉

a
= inf

∆∈Sd×d
sup

F∈Sd×d

[〈
T′,

(
F−1 +

nS′

σ2

)−1
〉
−
〈
S′ (T′)−1/2

∆
(
T′)−1/2

S′,F
〉]

+ sup
B⪰O

∥B∥∗≤1/π2

〈
S′ (T′)−1/2

∆
(
T′)−1/2

S′,B
〉

b
= inf

∆∈Sd×d
sup

F∈Sd×d

[〈
T′,

(
F−1 +

nS′

σ2

)−1
〉
−
〈
S′ (T′)−1/2

∆
(
T′)−1/2

S′,F
〉]

︸ ︷︷ ︸
(a)

+
1

π2

∥∥∥S′ (T′)−1/2
∆
(
T′)−1/2

S′
∥∥∥ ,

(260)
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where a
= follows from the concavity of

〈
T′,
(
F−1 + nS′

σ2

)−1
〉

with respect to F and the convexity

of feasible set
{
F ∈ Sd×d++ : ∥F∥∗ ≤ 1/π2

}
, and b

= follows from the fact that the dual norm of nuclear
norm ∥ · ∥∗ is 2-norm ∥ · ∥. To solve (a), let the derivative of (a) with respect to F be equal to O, we
get (

I+
nS′F

σ2

)−1

T′
(
I+

nFS′

σ2

)−1

− S′ (T′)−1/2
∆
(
T′)−1/2

S′ = O. (261)

Note that if ∆ is not a PSD matrix, then (a) = +∞. Thus, ∆ ⪰ O. Let
(
I+ nS′F

σ2

)−1 (
T′)1/2 =

S′ (T′)−1/2
∆1/2. Solve the equation yields

F =
σ2

n

[(
S′)−1 (

T′)1/2 ∆−1/2
(
T′)1/2 (S′)−1 −

(
S′)−1

]
, (262)

which meets the requirement that F is a PSD matrix. Plugging the solution into (a), we have

(a) =
σ2

n

[〈
S′,
(
T′)−1/2

∆
(
T′)−1/2

〉
− 2 tr∆1/2 + trT′ (S′)−1

]
=
σ2

n

〈
T′,
[(
T′)−1/2

∆1/2
(
T′)−1/2

S′ − I
] (

S′)−1
[
S′ (T′)−1/2

∆1/2
(
T′)−1/2 − I

]〉
.

Let A = I−
(
T′)−1/2

∆1/2
(
T′)−1/2

S′, we obtain

L(S′,T′) = inf
S′(I−A)∈Sd×d

+

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉
. (263)

Note that the definition of U(S′,T′) in (259) imposes no constraint A. Now we show that the
constraint S′(I−A) ∈ Sd×d+ in (263) can be relaxed to A ∈ Rd×d. For any A ∈ Rd×d, we denote

the polar decomposition of
(
T′)1/2 (I−A)

(
S′)−1 (

T′)1/2 as:

UZ =
(
T′)1/2 (I−A)

(
S′)−1 (

T′)1/2 , (264)

where U is an orthogonal matrix and Z is a PSD matrix. Substitute (264) into the objective function
of U(S′,T′) shown in (265), we have

σ2

n

〈
T′,A

(
S′)−1

A⊤
〉
+

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥ (265)

a
=
σ2

n

〈
T′,
(
I−

(
T′)−1/2

UZ
(
T′)−1/2

S′
) (

S′)−1
(
I− S′ (T′)−1/2

Z⊤U⊤ (T′)−1/2
)〉

+
1

π2

∥∥∥S′ (T′)−1/2
Z⊤U⊤UZ

(
T′)−1/2

S′
∥∥∥

=
σ2

n

[
tr
(
UZ

(
T′)−1/2

S′ (T′)−1/2
Z⊤U⊤

)
− tr

(
UZ+ Z⊤U⊤

)
+ tr

(
T′ (S′)−1

)]
+

1

π2

∥∥∥S′ (T′)−1/2
Z⊤U⊤UZ

(
T′)−1/2

S′
∥∥∥

a
=
σ2

n

[〈
S′,
(
T′)−1/2

Z2
(
T′)−1/2

〉
− tr

(
UZ+ Z⊤U⊤

)
+ tr

(
T′ (S′)−1

)]
(266)

+
1

π2

∥∥∥S′ (T′)−1/2
Z2
(
T′)−1/2

S′
∥∥∥ ,

where a
= uses A = I −

(
T′)−1/2

UZ
(
T′)−1/2

S′, and b
= uses UU⊤ = I and Z is a PSD matrix.

We first minimize (266) with respect to U. By Lemma 40, − tr
(
UZ+ Z⊤U⊤

)
is minimized when

U = I, which implies S′(I−A) = S′ (T′)−1/2
UZ

(
T′)−1/2

S′ ∈ Sd×d+ . Therefore, we have

inf
A∈Rd×d

(265) = inf
Z∈Sd×d

+

inf
U∈Rd×d

UU⊤=I

(266) = inf
S′(I−A)∈Sd×d

+

(265), (267)
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We complete the first part by noting that U(S′,T′) = infA∈Rd×d (265) by definition and L(S′,T′) =
infS′(I−A)∈Sd×d

+
(265) which is shown in (263).

For the second part of the proof, we consider the case where T′ is any PSD matrix, i.e. T′ is possibly
singular. Let ϵ > 0 be arbitrary. Since L(S′,T′) is linear in T′, we have

L(S′,T′) ≤ L(S′,T′ + ϵI) ≤ L(S′,T′) + ϵL(S′, I) (268)

Note that

sup
F⪰O

∥F∥∗≤1/π2

〈
I,

(
F−1 +

nS′

σ2

)−1
〉
≤ sup

F⪰O
∥F∥∗≤1/π2

trF ≤ 1

π2
. (269)

Therefore, we have
L(S′,T′) = lim

ϵ→0+
L(S′,T′ + ϵI). (270)

Similarly, we have

inf
A∈Rd×d

1

π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉

≤ inf
A∈Rd×d

1

π2

∥∥(I−A)⊤(T′ + ϵI)(I−A)
∥∥+ σ2

n

〈
T′ + ϵI,A

(
S′)−1

A⊤
〉

≤ 1

π2

∥∥(I−A0)
⊤T′(I−A0)

∥∥+ σ2

n

〈
T′,A0

(
S′)−1

A⊤
0

〉
+ ϵ

[
1

π2

∥∥(I−A0)
⊤(I−A0)

∥∥+ σ2

n
tr
(
A0

(
S′)−1

A⊤
0

)]
,

(271)

where A0 is a minimizer of 1
π2

∥∥(I−A)⊤T′(I−A)
∥∥+ σ2

n

〈
T′,A

(
S′)−1

A⊤
〉

. Thus, we have

U(S′,T′) = lim
ϵ→0+

U(S′,T′ + ϵI). (272)

Finally, combine (270), (272) and the first part of the proof, we obtain

L(S′,T′) = lim
ϵ→0+

L(S′,T′ + ϵI) = lim
ϵ→0+

U(S′,T′ + ϵI) = U(S′,T′). (273)

This completes the proof for any PSD matrix T′.

Lemma 40. Let Z be a PSD matrix and U be a orthogonal matrix. Then tr(UZ) ≤ trZ.

Proof. Without loss of generality, we assume Z = diag{z1, z2 . . . , zd}. Let uij denote the ij-th
entry of U. Note that U is orthogonal implies |uij | ≤ 1, so

tr(UZ) =

d∑
i=1

uiizi ≤
d∑
i=1

zi = trZ, (274)

where = holds when U = I.

D WHEN IS EMERGENCE POSSIBLE?

When scaling up the training of large language models, models may suddenly perform much better
on downstream tasks after hitting a critical sample size—an amazing phenomenon often referred
to as emergence (Wei et al., 2022). Under the covariate shift setting, emergence can arise when
downstream tasks demand high-quality estimation in localized source spectral regions, despite
the source excess risk decreasing smoothly. Specifically, when the downstream task emphasizes
directions corresponding to a certain eigensubspace Sk1:k2 , the phase transition in ASGD’s bias-
reduction capability indicates that the target excess risk remains flat until the effective dimension
k∗ surpasses k2. Consequently, the target excess risk of ASGD exhibits a sharp transition—from a
plateau to rapid decline, when the sample size reaches n = ((γ + δ)λk2)

−1, while the source excess
risk continues its gradual decrease. The following provides an illustrative example of this mechanism.
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Example 1. We suppose S = diag{i−a}di=1 and M = I. Let d0 ∈ [d], we consider target covariance

matrix T = diag
{
d
(1+r)a
0 (max{i, d0})−(1+r)a

}d
i=1

, where −1 < r < 1/a. There exists w∗ ∈WI,

such that the source and target excess risk of SGD with δ = γ = Θ̃
(
n−

1
a+1

)
satisfy:

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≂ Θ̃

(
(1/n)

a
a+1
)

(275)

EP̃⊗n

∥∥wSGD
n −w∗∥∥2

T
≂

{
Θ̃ (1) , n ≲ da+1

0 ;

Θ̃
(
(da+1

0 /n)
(1+r)a
1+a

)
, n ≳ da+1

0 .
(276)

This example demonstrates that even when SGD achieves optimality, the emergent phenomenon can
still occur. This illustrates that emergence is an inherent consequence of downstream tasks placing
disproportionate emphasis on specific regions of the source representation.

E MORE OPTIMAL FUNCTION CLASS

The following corollary of Theorem 8 further show that SGD can achieve optimality over a Gaussian
distribution class with bounded KL divergence.
Corollary 14 (Gaussian DKL Bounded Class). Let constant C > 0 and M = I. The
DKL-bounded class PKL

C,T includes problem instances such that Px and Qx are Gaussian,
EQxxx

⊤ = T and DKL(Qx∥PKL
x ) ≤ C. Under the regularity condition, and assume k∗KL =

maxk
{
λKL
k ≥ µd1

}
≤ kmax, where d1 = maxi

{
µi ≥ σ2i/n

}
. SGD with γ ≂ (lnn)2/(nλk∗KL

)

and δ ≂ min {γ, 1/(trS lnn)} can achieve the optimal rate Õ(infδ>0

{
δ2 + σ2d(δ)

n

}
).

F EXPERIMENT DETAILS

F.1 EXPERIMENT DETAILS OF SECTION 6

All experiments are conducted 100 times, and we calculate 95% confidence intervals. We introduce
covariate shift by assigning each image of age y to the source domain with probability p(y) =
1/
(
1 + exp

(
−y−40

20

))
and to the target otherwise. We perform a grid search on the hyperparameters

of both ridge and ASGD based on the validation loss.

F.2 SIMULATIONS

This section presents the details on the simulation results. We repeat each simulation 100 times and
report the average result and 95% confidence interval. Dashed lines show the theoretical rate. Unless
specified, we choose dimension d = 50000, source covariate x ∼ N (0,S), S = diag{i−a}di=1 and
M = I.

• Figure 2 (a) Comparison of SGD and Ridge in the setting of Theorem 11. We set
d = 5000, SGD learning rate γ = 100n−1; S and T are set according to Theorem 11. Ridge
only achieves sub-optimal rate 1/

√
n, while SGD achieves minimax rate 1/n.

• Figure 2 (b) Asymptotic convergence rate of SGD in the setting of Corollary 9. We
set d = 10, SGD learning rate γ = 0.1, λi = i−a, and target covariance matrix T =
U diag{i−a}di=1U

⊤, where U is a random orthogonal matrix.

• Figure 2 (c) Simulation of Corollary 10. Let λi = i−1.5, we set the source distribution as
follows: with probability 1/B, the i-th coordinate xi ∼ {−

√
λi,
√
λi} independently; with

probability 1− 1/B, x = 0. In the target domain, the i-th coordinate xi ∼ {−
√
λi,
√
λi}

independently. We set B = nc and SGD learning rate γ = 0.01n−c− 1−c
a+1 .

• Figure 2 (d) Simulation of Corollary 14. We set S = T to simulate the hard instance in
the DKL bounded class, which is constructed in the proof of Corollary 14. SGD learning
rate is set to γ = 0.1n− 1

a+1 .
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• Figure 2 (e) Convergence rate of Rank-1 case in the setting of Corollary 12. We set
SGD learning rate γ = 0.1n

1−s
s , a = 1.5, M = I, and T = ww⊤ where w ∈ Rd and

wi ≂ i−(1+r)a/2.
• Figure 2 (f) Comparison of the convergence rate of different learning rates in the

setting of Corollary 12. For ASGD, we set δ = 0.1. γ = 0.1 · n0.5 is the theoretical
optimal learning rate, and achieves minimax rate Θ(n−0.8). Choosing other learning rates
(γ = 0.1 · nc, c = 0,−0.4) leads to sub-optimal convergence rates.

• Figure 2 (g) Emergent behavior of different target domains in the setting of Ex-
ample 1 with d0 = 7 fixed. We set SGD learning rate γ = 0.1n− 1

a+1 , T =

diag
{
d
(1+r)a
0 (max{i, d0})−(1+r)a

}d
i=1

according to Example 1. Target excess risk ex-
hibits different rates for different r, while they start to decay at nearly the same sample size
n ≈ 1000.

• Figure 2 (h) Emergent behavior of different target domains in the setting of Ex-
ample 1 with r = 0.1 fixed. We set SGD learning rate γ = 0.1n−

1
a+1 , T =

diag
{
d
(1+r)a
0 (max{i, d0})−(1+r)a

}d
i=1

according to Example 1. Target excess risk starts
to decay at different sample sizes for different d0, while they exhibit almost the same
convergence rate.

We conduct numerical simulations in the setting of Figure 2(f) to compare different learning rate
schedulers.

• Exp decay: Algorithm 1 in this paper.
• Poly decay: γt = γ0/t, and δt = δ0/t.
• Cosine decay (Loshchilov and Hutter, 2017): γ = γmin + (γmax − γmin)[1 +
cos(π(t mod T )/T )]/2, and δ = δmin + (δmax− δmin)[1 + cos(π(t mod T )/T )]/2, where
we set T = n/4, γmin = γmax/n

2 and δmin = δmax/n
2

• SHB: PyTorch implementation of momentum, β is the momentum parameter.

We repeat each simulation 100 times, and plot the average target excess risk in Figure 3. The shaded
area indicates 95% confidence interval.

G USE OF LLM

We use LLM to polish our paper writing.
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(a) SGD vs Ridge (b) Asymptotic

(c) B bounded, a = 1.5 (d) DKL bounded

(e) Rank-1 SGD, a = 1.5, s = 0 (f) Rank-1 ASGD, a = 3.0, s = 2/3

(g) Emergence, a = 1.5, d0 = 7 (h) Emergence, a = 1.5, r = 0.1

Figure 2: Simulation results. We set the source covariance matrix S = {i−a}di=1, and other parameters
are specified in the corresponding settings.
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Figure 3: Comparison of the taget excess risk for different learning rate schedulers.
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