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ABSTRACT

Recent years have witnessed the widespread success of stochastic gradient descent
(SGD)-type algorithms across various problem domains, including those involving
covariate shift tasks. However, the underlying mechanisms that enable SGD to
generalize effectively in covariate shift settings, as well as the specific types of
covariate shift problems where SGD demonstrates provable efficiency, remain
insufficiently understood. This paper investigates SGD in the context of linear
regression under a canonical covariate shift problem. Our analysis is two-fold:
First, we derive an upper bound for the target excess risk of SGD, incorporating two
critical practical techniques—momentum acceleration and step decay scheduling.
Second, we analyze SGD’s performance by framing it as a preconditioned estimator,
enabling us to identify conditions under which SGD achieves statistical optimality.
We demonstrate that SGD attains optimal performance in several commonly studied
settings. Additionally, we demonstrate that there exist separations between several
commonly used methods.

1 INTRODUCTION

Out-of-distribution generalization ability is necessitated by the ubiquitous distributional shift in
modern machine learning tasks. Covariate shift, as a critical form of distribution shift, arises when
the input distribution diverges across source and target domains, while the conditional distribution of
the target given the input remains invariant (Sugiyama and Kawanabe, 2012). This phenomenon is
ubiquitous in modern learning tasks. It can be exemplified by clinical tasks’ heterogeneity stemming
from inter-hospital variations in equipment and treatment (Guan and Liu}, [2021)), as well as biases
in basic financial problems of loan applications where training covariate distributions are skewed
toward approved applicants (Marshall et al.,[2010). It also has implications for the large language
model training, where curated training data diversifies real-world user prompts (Jin et al.|, [2024;
Wang et al., [2020). A broad range of approaches has been revisited and proposed for covariate shift,
spanning importance-weighting, distributionally robust optimization, and classical estimators such as
maximum likelihood and ridge regression.

In contrast, the prevailing practice remains a straightforward, computationally efficient, source-only
method: models are trained with SGD-type algorithms. SGD-type algorithms utilize little knowledge
of the target distribution (Bottou and Bousquet, [2007; [Kingma and Ba, 2015} |Bottou et al., [2018]).
The training trajectory is determined entirely by the source data, while only a few parameters, such
as momentum and step size, remain tunable (Sutskever et al.| 2013 Zhang and Mitliagkas| 2019;
Zhuang et al.}2020; Xie et al., 2024).

The success of SGD-type algorithms rests on the hope that knowledge distilled from the source
distribution can transfer effectively to the target (Shen et al., 2021} Wenzel et al.,|2022). Consequently,
their empirical effectiveness naturally raises a fundamental question:

When and why do source-driven SGD procedures remain effective under distribution shift?

A theoretical characterization of SGD-type algorithms’s generalization over covariate shift is naturally
motivated and crucial to answering this question, yet remains limited.
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Prevailing theoretical analyses of covariate shift use high-dimensional linear regression as a canonical
setup (Ma et al.| 2023)). The focus on linear models is twofold. First, linear models are a cornerstone
of statistical and machine-learning theory, with broad implications—including their correspondence
to infinitely wide neural networks via the neural tangent kernel (Jacot et al.| 2018). Many phenomena
are not model-specific but already emerge in these canonical settings (Du et al., 2020; Lee et al.
2021). Second, linear models accommodate structural assumptions originate from kernel regimes
(Caponnetto and De Vito, |2007)), enabling fine-grained theoretical analyses and thereby yielding
deeper insights (Arora et al.,[2019).

Concretely, we study SGD-type methods for covariate shift in high-dimensional linear regression
through the framework of preconditioned estimator: (1) First, we derive an upper bound on the excess
risk of accelerated SGD (ASGD) with the exponentially decaying stepsize schedule, and translate the
upper bound as the excess risk of a suitably preconditioned estimator (Pathak et al.,|2024)); (2) Second,
from the preconditioned estimator’s viewpoint, we identify minimax optimal regimes for ASGD,
which cover widely examined settings. Furthermore, we demonstrate that there exist separations in
the optimality regions of several methods.

Problem (1) is the technical challenging part, where we derive an upper bound on the target excess risk
for ASGD under an exponentially decaying stepsize schedule in Section 4} Both ASGD and stepsize
schedule are standard in linear regression optimization and crucial for achieving near-statistically
optimal last-iterate excess risk. Practically, momentum and stepwise learning-rate schedules are
defining features of many widely used optimizers (Nesterov, 1983} [Kingma and Ba, |2015; He et al.|
2016} |Loshchilov and Hutter,[2017; Brown et al.,[2020). Theoretically, ASGD accelerates convergence
of the expected iterate, while an exponential step-size decay reduces the variance. Though both are
standard, the excess risk under our framework remains chanllenging and underexplored, even in the
in-distribution low-dimensional setting. Furthermore, equipped with the excess risk upper bound, we
formulate ASGD as a parallel preconditioning estimator in Section[4.1] thereby clarifying our bound
and facilitating the subsequent minimax analyses.

For problem (2), we provide a general condition where ASGD achieves minimax optimal rates in
Section[5] The condition is shown to hold across a broad range of commonly-studied problem class.
In addition, we demonstrate separations in the optimality region between several commonly used
methods. First, under a construction where the target prioritizes the large eigenspace of the source
covariance, ASGD achieves the optimal O (1/+/n) rate whereas ridge regression attains a suboptimal

O (1/n). Second, despite momentum can increases the noise, it can still broaden the optimality
regime of SGD when the initial bias is large.

2 RELATED WORK

Optimality in Covariate Shift. There is a vast theoretical literature on the covariate shift problem
(e.g., Ben-David et al.| (2010); |Germain et al.| (2013); |Cortes et al.|(2010; 2019) and the review in
Sugiyama and Kawanabe| (2012)); Kouw and Loog|(2019)). Confining to the context of optimality,
pioneering work includes|Shimodaira) (2000), which studies the weighted maximum likelihood method
in the asymptotic setting, Kpotufe and Martinet (2021), which delves into a local nonparametric setup
and considers the minimax optimality of a nearest-neighbor-based method. More recently, a thread
of research considers the optimality of the covariate shift problem under linear/kernel regression.
This includes minimax optimality under general distribution shifts, which lead to suboptimal or
inapplicable results under the covariate shift problem (Zhang et al., 2022; [Mousavi Kalan et al., [2020).
As for the specific covariate shift problem in linear/kernel regression, seminal works |Lei et al.| (2021);
Pathak et al.| (2024) consider the preconditioned linear estimator in the linear/kernel regression setup,
and establish their instance-wise minimax optimality framework. In parallel, research has examined
the optimality of specific algorithms. Principal component regression has been analyzed in (Cai and
Hall, [2006; Tang et al., [2025) under setups like single-point prediction. (Ma et al., [2023;; |Pathak et al.}
2022) consider the optimality region of kernel ridge regression under function classes defined by
bounded likelihood discrepancy. |Ge et al.|(2024) demonstrates that maximum likelihood estimation
achieves optimality in low-dimensional settings. Our results delve into the prevalent SGD-type
algorithm and establish a general optimality framework covering broad problem settings. And we
also demonstrate that there exists a separation between the optimality region of ASGD, vanilla SGD,
and ridge regression, despite their seemingly parallel optimality under standard setups.
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Stochastic Gradient Methods in Linear Regression. Recent theoretical analyses of SGD for
linear regression have tightened the link between practice and theory. In particular, exponentially
decaying step-size schedules—ubiquitous in implementations—now carry minimax-optimal risk
guarantees (Ge et al.,2019; |Pan et al.| [2022)), a result that lay beyond conventional black-box analyses.
Acceleration likewise remains effective under substantial gradient noise for appropriate noise models,
as demonstrated by Jain et al.[ (2018); |Varre and Flammarion| (2022). The important subsequent
work establishes provable generalization for stochastic-gradient methods (Zou et al.; 2021} Wu et al.}
20224} |Li et al.| 2024} Zhang et al., |2024) under the over overparameterized problems. In the specific
covariate shift problem, [Wu et al.|(2022b) establishes instance target excess risk upper bounds in
linear for vanilla SGD under covariate shift. Back to our setup, the combination of ASGD and stepsize
schedules in linear regression analysis is technical-challenging and unprecedented, even in the in-
distribution and low-dimensional setting due to complex noise-propagation of fourth momentum
and non-commutable matrices. Besides, a related line of work studies SGD-type algorithms for
nonparametric regression. [Dieuleveut and Bach| (2016) analyze stochastic gradient methods in
reproducing kernel Hilbert spaces and further establish their optimality. These studies, however, do
not concern out-of-distribution or acceleration techniques such as momentum and step-size schedules.

3 PROBLEM FORMULATION AND PRELIMINARIES

Notations. We denote the spectral norm, Frobenius norm, and nuclear norm of a matrix A by
|A], Al g, and || A||,, respectively. Define the elliptical norm of vector x under positive definite

matrix M as ||x||3; = x "Mx. We use O to denote the matrix with all entries equal to zero. For
positive integer n, let [n] = {1,2,...,n}. The diagonal matrix with sequence {ai}?zl as its diagonal
entries is denoted by diag {ai}?zl. For a vector x € R, denote xj,.;, € RY as the vector where

only k1 + 1-th to ko-th entries are kept and others are set to zero. For a matrix A € R4, Jet
Ak iy € R?*4 denote the matrix obtained by retaining only the submatrix from the (k1 4+ 1)-thto
the ko-th rows and columns, with all other entries set to zero.

3.1 LINEAR REGRESSION UNDER COVARIATE SHIFT

The regression problem using covariate x € R to predict the response 3 € R. In the covariate shift
problem, there are two distinct data domains on the covariate and the response: a source domain S
and a target domain 7. Let Py, denote the joint distribution of (x, y) over domain S and Qxx,
denote the joint distribution of (x,y) over domain 7.

We assume access to n i.i.d. samples {(x;,y;)}._, drawn from Py, while the predictor’s perfor-
mance is evaluated under the generalization risk on the target distribution Q)x x,. Covariate shift refers
to the problems where the marginal distribution Pyx may differ from the marginal distribution Qx,
while the conditional distribution y|x remains unchanged in both domains. Denote the covariance
of the source and target distributions as S = Ep,_ [XXT] and T = Eg, [XXT}. The eigenvalue
decomposition of S and T are given by

S = Udiag {\1,..., A} UT, T =Vdiag{p,...,pua} V', 1)
where A; > - -+ > )\, are eigenvalues of S in non-increasing order and { ui}le are eigenvalues of T
in non-increasing order. For simplicity, we assume that U is the standard orthonormal basis in R.

For any estimator w € R?, the source risk £s (w) and target risk £7 (w) are defined as:

£ (W) = 3Ep,., (v~ (W), Er(w) = JEa,., (v — (w,x)°. @

We impose the following assumption on the response model in both the source and target distributions.

Assumption 1. For both source and target domains, the response v is generated by y = (w*) ' x + ¢,
where w* € R denotes the ground truth. The noise € satisfies E[e|x] = 0 and E[¢*|x] < 0.

The performance of estimator w is evaluated by the excess risk on the target distribution Qxx:
1

1
Ry (w) =3 (gT (w) — min &7 (w)) = S lw—wllz.. 3)
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3.2 ASSUMPTIONS

We adopt several assumptions widely used in kernel linear regression. We focus on the minimax
optimality under the elliptical constraint framework proposed by |Pathak et al.|(2024).

Assumption 2. We assume that the ground truth w* lies in the elliptical constraint set: Wy =
{W* e R?: ||w* ”12\/[ < 1} , where M € R4 js a given positive definite matrix.

Remark 1. We introduce M to involve the interpolation space in the reproducing kernel Hilbert
space (RKHS) framework. When M = 1, the set Wy simplifies to the standard Euclidean unit

ball {w* s lw* Hg < 1}, which also corresponds precisely to the unit ball in the RKHS induced
by the linear kernel k(x,y) = x'y. When M = S'=%, the set Wg1- aligns with the unit ball
in the interpolation space [Hp_|° associated with the RKHS generated by the linear kernel under

distributions Px. Such conditions are standard and often referred to as source conditions in the
RKHS framework (Caponnetto and De Vito| |2007).

T

As formalized in the following assumption, we assume that the Ly p_-norm of (w*) ' x is finite.

Assumption 3. We assume that there exists ¢ > 0 such that |w* Hé <ec

Remark 2. This assumption is mild and implies that for any ground truth parameter w* € W, the
excess risk of wo = 0 under the source distribution Py is finite. In other words, the Lo p_-norm of

(w*) "x is bounded by c. Furthermore, this assumption leads to the bound Hl\/Ifl/2SI\/I*1/2 H <ec

To derive the target excess risk upper bound for ASGD, we require the following assumption that the
fourth moment of the source covariates is bounded.

Assumption 4. There exists a constant 1 > 1, such that for every PSD matrix A, we have
Ep, [xx"Axx"] < ¢tr(SA)S. 4)

Remark 3. The assumptionHis standard in the SGD excess risk analysis (Jain et al.} 2017, 2018; [Zou
et al.l[2021; \Wu et al.| | 20224lib). It holds for distributions with bounded kurtosis for the projection of x
onto any z € RY. Specifically, if there exists a constant ¢ > 0 such that for any z € R?, the following
inequality holds: Ep_(z,x)* < ¢ (z,Sz)>. For instance, if S~ 2x follows a Gaussian distribution, it
holds with 1) = 3. Indeed, we impose this condition to handle the case where |w*||, = oco. If |[w*||,

is finite, all of our conclusions hold under a weaker assumption Ep, [HXH2 XXT] < yYS.

3.3 MINIMAX OPTIMALITY

Statistical minimax optimality identifies the estimator that achieves the smallest worst-case excess
risk across certain problem class. In this section, we present the minimax optimal estimator and its
corresponding excess risk. The considered problem class P(Wyg, S, T) is defined as below.
Definition 1 (Problem Class). The problem class P(Wy, S, T) consists of all independent distribu-
tions P x Q) satisfy (1) S = Ep, [XXT], T =Eq, [XXT} 1 (2) Assumptions H hold.

The minimax lower bound over P (W, S, T') shown by Pathak et al.[(2024), is presented in Theorem

Theorem 5 (Theorem 2 in |Pathak et al. (2024)). Given positive semi-definite matrices S, T, M and
probability P € P(Wnr, S, T), samples {(x;,y:)}1_, are drawn from the source distribution of P.
For any random estimator w = A ({(x;,v:)}.—1 ,S, T, &), where A : R2°+n(@+1)+1 _y R j5 g
arbitrary measurable mapping, and £ encodes the algorithm’s randomness, then we have

inf sup Eponyp, |w — w*||?r > sup <T’, (F71 + ’IlS//O'Q)_1> , 5
W peP(Wi,S,T) F-O, |F| <1/=*

where 8’ = M~28M Y2 and TV = M~ /?>TM /2,

Theorem [3] provides the algorithm-independent, worst-case lower bound over problem class
P(Wh, S, T) for any instance of S, T and M, while not yielding an explicit convergence rate.
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Algorithm 1 Accelerated Stochastic Gradient Descent (ASGD) with exponentially decaying step size

Require: Initial weight wg = vy, initial step size J, 7y, momentum ¢, 3, total sample size n, i = 1.
for{=1,2,..., loando
Sy < do/4 1, e Yo/471
fort=1,2,. "’log —do
Sample a fresh data (x;, y;)
w1 —aw;_1+ (1 —a)v;_;
g; < (X;—uiq - yi) X
Wi < U1 — 08,
Vi< B+ (1= B)vicr — v 8;
11+ 1
end for
end for

3.3.1 LINEAR PRECONDITIONED ESTIMATOR

The linear preconditioned estimator w o defined in the following can be viewed as a linear transfor-
mation of a generalized form of the ordinary least squares (OLS) estimator %S_l o Xy

n
WA = I v-12ant2g—t > xii, (6)

n :
=1

where A € R?¥9 is a preconditioner. The preconditioned estimator W AOPL achieves the minimax
S, T

lower bound by minimizing the excess risk within its class. The 0pt1mal preconditioning matrix
AI?/IPS - is given in|Lei et al|(2021)); |Pathak et al.|(2024) as

!
Agsp=argmin  [|[I-A)TTIT-A)| + o+ |s] <
AcRdxd n

T A(S) AT @

The supremum Bias of W A over P(Wnm,S,T) Variance of W A

It is worth noting that both the minimax lower bound (5)) and the optimal preconditioner (7)) require
prior knowledge of the covariance matrices S, T, and the constraint matrix M.

4 ASGD TARGET EXCESS RISK UPPER BOUND

The empirical success of SGD-type algorithms has made direct application of them the prevalent
method for solving large-scale covariate-shift problems. In this section, we establish an upper bound
on the target excess risk for SGD-type algorithms within a unified framework.

As presented in Algorithmm we analyze the ASGD algorithm (Jain et al.,[2018; [Li et al., [2024), the
standard acceleration method for linear regression, and adopts practical but analytically challenging
geometrically decaying step sizes (Ge et al., 2019; [Wu et al.| 2022a)). In Algorithm[I] g; denotes
the stochastic gradient evaluated at u;_;. The parameters « and (5 are the momentum parameters,
while d¢) and ~y(,) represent step sizes initial from ¢ and +.T hese step sizes are piecewise constant
within each stage 1 < ¢ < [log, n], and are divided by 4 after each stage. Besides, when v = 4,
Algorithm|[I]reduces to the vanilla SGD method with geometrically decaying step size. To align with
the subsequent minimax optimality analysis, Theorem [6| establishes a target bound on the excess
risk for the class P(Wn, S, T). The class in Theorem [6[ assumes M and S commute, which is a
mild requirement since it encompasses the standard source condition in the associated RKHS. For a
general risk bound, Appendix [A.4]provides an instance-wise upper bound valid for any given w..

Parameter Choice. The parameters in Algorithm [I]are selected according to the following scheme:
(Inn)?k 1 1 } 0 1

0y ————— =—a=—— (8
cany oz c2lnn tr(S)} A { Teslnn YA C4R'ylnn’a 1+’ ®)
Rtr(S) csn

for & < Kgup, where Kgyp = supz {Z-> - < M n)? } determines the maximal admissible momen-
i>kR 7T

o€

tum and step size. cq,. .., c5 are constants; specific values are provided in Appendix
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Theorem 6 (Upper Bound of ASGD). Let S, T, and M be positive semi-definite matrix such that
M commutes with S. Suppose we get samples {(x;,y:)}1_, drawn from the source distribution of
P € P(Wm, S, T). Whenn > 16, we choose the initial step size 6, vy and the momentum «, 3

according to the parameter choice. Denote the output of Algorithmas wSCD  the target excess risk

of WGP over problem class P(Wn, S, T) can be uniformly bounded from the above by
2 - (Inn)%t; d
sup Epen |[WitP — w1 < o? [Z 7)\“ +n(y+0)° Z Aitii | + HTk*:d‘ ) )
P =1 i=k*+1
Effective Bias

Effective Variance

where k* = max{k PAR > (732—5-(;)%

2020; Zou et al} 2021), Tp,. = M~Y?To.M~Y? and T)..y = MV 2Ty M~ V2 ¢t
denotes the i-th diagonal entry of T, and {)‘i}?:l are eigenvalues of S.

}, often referred to as the effective dimension (Bartlett et al.|

Theorem [6] provides the uniform target excess risk upper bound for ASGD over problem class
P(Wwm, S, T). The upper bound (9) decomposes into effective bias and effective variance. The
effective bias corresponds to the risk of simply performing a deterministic Algorithm [I| without
gradient noise, and thus depends on the deviation wy — w* between the initialization and ground
truth. The effective variance quantifies the additional randomness introduced by both the noise term ¢
and x;x; within the stochastic gradient, as well as its complex evolution across the iterations.

Theorem 6] reveals that ASGD proceeds greedily along the eigendirections of S, and exhibits distinct
behaviors in two subspaces Si.;« and Sg«.4 separated by the effective dimension k*. Specifically,
there exists a phase transition in ASGD’s excess risk: (1) In the directions corresponding to large
eigenvalues (indexed by k < k*), ASGD accurately approaches w* with negligible bias, whereas
the variance term ¢ /(nAg) dominates the risk. (2) Along the directions associated with small
eigenvalues (k > k*), the bias remains at the same scale as in initialization, leading to a worst-

/7
Tk*:d

dimension k*, as a function of the sample size n, the initial step size v 4 J, and the spectral structure
of S, encapsulates ASGD’s bias-reduction capacity.

. The residual variance scales as n (7 + ¢ )2 Aitir. Therefore, the effective

case bias of ‘

Remark 4 (Impact of Momentum). As shown in @29), increasing the momentum (3 allows for a
larger admissible step size -y, which in turn leads to a larger effective dimension k* and improves
ASGD’s ability to reduce bias. However, if the momentum is set too large, the variance induced by
x;x; may diverge. 29) also specifies the maximal admissible momentum and step size Y™ and
dmax = 1/(v trS) that ensures convergence of the target excess risk, thereby characterizing the
maximal admissible effective dimension k™™ = max {k : A, > 32(Inn)?/((y™* + §™*)n) In 2}
and the upper limit of ASGD’s bias reduction capacity.

To bound the target excess risk of ASGD, we use an entrywise analysis of the covariance matrix
along the iteration, which presents greater challenges than the eigendirection-wise approach in the
in-distribution case. There are two primary challenges in this analysis: (1) Controlling the fourth-
moment variance introduced by x;x, along the complicated propagation; (2) Precisely characterizing
the bias contraction rate of the expected dynamics. These challenges arise from the use of momentum
combined with decaying step sizes, which render the iteration operators (A, in defined in (18) in
Appendix) piecewise non-commutative and lacking monotonic contraction properties.

When bounding the fourth-moment variance, we show that at each iteration, the covariance matrix of
the stochastic update can be controlled by that of its expected counterpart. This allows us to reduce
the analysis to the expected gradient descent dynamics, ignoring the fourth-moment variance. We
characterize the bias contraction rate along each eigendirection. For directions with large eigenvalues
(k > k*), we show that the norm of the product of the (piecewise constant) iteration operators is
dominated by the first phase, resulting in exponential decay. For directions with small eigenvalues
(k < k*), we prove that under a suitable projection matrix P with |P| < 2, the norm of the operator
product is bounded by one, leading to a bias of the same order as the initialization.
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4.1 ASGD AS A PRECONDITIONER

In this section, we introduce a novel perspective by showing that the behavior of ASGD over the
problem class P(Wy, S, T) can be effectively approximated by that of a linearly preconditioned
estimator wa . with Ay- = diag {Ig+, Og+.q}, where k* denotes the effective dimension. This
perspective allows us to explicitly identify the problem class for which ASGD generalizes effectively.

Theorem 7. Under the conditions of Theoreml6] and for given step sizes ~y and 0, the uniform target
excess risk of ASGD over problem class P(Ww, S, T) can be bounded by R, s:

SGD

2
*
wp Bpe WS w3

PeP(Wwm,S,T)

R R ) S R N )

Bias of Wa, .. over P(Wn,S,T) Variance of WA .

1O (0] O (0]
rat+op (0[O0 ]6)[3 12,]) = rows

Residual Variance

<

(10)
where k* = max {k : A > (24 T = MTVPTMT Y2 and 8' = MT2SMC 2
Theorem [7| shows that the uniform target excess risk of ASGD can be bounded by that of Wa, .
and a residual variance arising from eigendirections outside the top-k* eigenspace of S. The bound
highlights how the trade-off between bias and variance is governed by the effective dimension k*.
Remark 5 (Bias and Variance Behavior of R.,;5). We refer B, s to the bias of Wa,. over
P(Wwm, S, T) and B, 15 to the sum of the variance of Wa,. and the residual variance. Thus,
R 15 = Byts + Vyis. For a given problem class P(Ww, S, T) and total sample size n, when the
initial step size vy + 0 increases, V., 5 increases steadily, while B~ s remains flat until the effective
dimension k* increases, at which point it drops sharply.
Remark 6 (Best Choice of Step Size over Problem Class P(Wn, S, T)). The best choice of initial
step size for a given problem can be determined by minimizing R s. Let iy, > Ay > -+ > A,
denote the distinct eigenvalues of {)\i}le, arranged in decreasing order. For i € [m), the index k;
denotes the largest index j such that \; = \y,. Fori € [m], define v* = 32(Inn)?/(n\y, In2),
and let 6% = min {y*1,1/(¢ trS)}. Let R(k;) = R.x, sv:. Then, the best choice of y and § is
given by ¥ and 6*r, where kpey; = min {sz, k‘max}, and k' = argminy, {R(k;)} denotes the
bias—variance intersection of problem class P(Wn, S, T). Moreover, the choice of step size can be

practically approximated via widely used hyperparameter tuning in deep learning (Sutskever et al.|
2013} Zhang and Mitliagkas| 2019} |Zhuang et al.| 2020; (Xie et al.| | 2024).

ASGD is efficient when the bias—variance intersection k' is less than the maximal effective dimension
k™a*_ This corresponds to problem classes where T is concentrated within the top-£™?* eigenspace

of S, and leaves little mass outside it such as HT;ﬁmaxz dH and tr <T;€ma,(: d) are small.

5 OPTIMALITY ANALYSIS

We begin the analyses with the following sufficient condition for optimality of ASGD.
Theorem 8. Recall that the maximal admissible effective dimension k™ defined in Remark | and

the target excess risk bound { R(kpey) } .-, defined in Remark@ ASGD can reach optimality over
P(Wwm, S, T), if there exists k; < k™ such that

1 —1
N = ’ ’ / 1 ,
R(k;) Ag{qﬁ}fkl}; <T , (SA) > + ;;18 <T , (F + nSle:d) > . (an
2iea nlxi <1 [IF],. <1

Under the condition in (TT), ASGD with step sizes v*: and §* defined in Remark E] can reach
optimality. The first term on the right-hand side corresponds to the necessary variance incurred
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when accurately estimating the ground truth within eigenspace S1.,. The second term captures
the unavoidable bias in the tail eigenspace Si,.q. This aligns with the fact that ASGD proceeds
greedily along the eigendirections of S and achieves the best performance over the problem class
P(Wn, S, T) when the best step size is properly chosen to strike the bias—variance trade-off.

As the corollaries of Theorem[8] ASGD achieves optimality across a broad common scenarios. We
first demonstrate the optimality of ASGD under the case of under-parameterized setup in (Ge et al.,
2024])), where sample size n is sufficiently large. SGD can attain an optimal target excess risk of order
@ (tr (TS“) / n) even in the absence of target data information.

Corollary 9. For any positive semi-definite matrix S, T, and M, we get samples {(x;,y;) }_, drawn
from the source distribution of P € P(Wwm,S,T). When 53— > max {)\;17 ’ M-:TM: },

2 n

SGD with § = v = ©(1) can reach optimal rate O (tr (TS™1) /n).

Theorem 8] also implies that SGD can achieve optimality under the B-bounded density ratio class,
a widely-adopted problem class in the covariate shift literature (Cortes et al., |2010; Ma et al.|
2023; [Feng et al., [2023). The class Pp 1 includes all problems such that EQxxx‘ = T and
dQy/dPEF < B. We need two conditions in this setting: (1) The eigenvalues {ui}le of T
satisfy the standard regularity condition (Yang et al., 2017; Ma et al., 2023 [Feng et al.,[2023)): for
any § > 0, define d(6) = min {j > 1|u; < 6%}, and assume that Z?:d(&)-}-l w; < Cd(8)6* for
some universal constant C' > 0. (2) The bias—variance intersection point is admissible: Denote
dy = max; {ui > %} and k3 = max; {\Z > 5L}, then kj; < k™mox.

Corollary 10 (B-Bounded). Under the above conditions and M = T, SGD withy =~ (Inn)?/(nAs, )
and § ~ min {~,1/(tr SInn)} can achieve the optimal rate O (inf§>0 {62 + % })

5.1 SEPARATIONS

We then establish separations between methods. First, we compare (A)SGD with the standard offline
algorithm, ridge regression; second, we demonstrate the effectiveness of momentum by comparing
ASGD to SGD. Specifically, we exemplify the learning problems that create the separations.

The separation between the (A)SGD and ridge can be understood through the preconditioning lens:
they each correspond to a distinct diagonal precondition strategy. (A)SGD applies a sharp truncation
via the precondition matrix diag {Iy«, O~.q4} stated in Section eliminating bias in the top-£*
eigenspace of S. By contrast, ridge regression with regularizer A corresponds to the smoother
preconditioner Ky = ﬁ, which leaves residual bias in the top eigenspace. While reducing A
decreases bias, it simultaneously inflates variance, creating an unavoidable trade-off. The following
example quantifies this separation (the ridge regression lower bound is from Tang et al.| (2025)).

Theorem 11. When S = diag {T, =T, 11 5O} T = Lo w* = [Li, O] T, b =
O(1), M = diag {%Ik, ooIk._H:d}, the excess risk of ridge regression for any \ > 0 is lower bounded
by O(1/y/n) , while (A)SGD with §kvest = yFvest = W*n gy chieves the optimal rate O(1/n).

We demonstrate the separation of ASGD and vanilla SGD through single point prediction, one most
standard covariate shift setting (Donohol |1994; Box et al.| 2015). We adopt the polynomially decaying
spectral structure as considered in the seminal work |Cai and Hall| (2006).

Corollary 12 (Single Point Prediction). Consider \; ~ i~% M = S'™% and T = ww " where
w € R and w; = i~ 72 We assume (r + s)a > 1 so that || M™Y/2TM ™2 || is bounded. For

a

region s > 1, vanilla SGD achieves optimality up to logarithmic factors; for region1 > s > 5%+,

ASGD achieves optimality up to logarithmic factors. The optimal rate is

@1n, r>1/a;
Epen [[whP — w* |,2r§{ i / (12)

o ((1/n)% , r<1/a.

N—
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Figure 1: Experimental results: 95% confidence intervals over 100 repeats are shown in the shaded
region. Simulation studies (a-d) verify the results in Section[5] Figures (e,f) demonstrate the separation
of ASGD over ridge regression on the real-world dataset. Experimental details are in Appendix E}

Corollary [T2]indicates adding momentum allows ASGD to achieve optimality over a broader range
of smoothness parameters s. In particular, ASGD attain optimality for smaller s, which correspond to
the less smooth ground truth in the interpolation space [H]*, the problem class with large initial bias.

6 EXPERIMENTS

This section presents both the simulated results and the experiments on real-world dataset UTK-
Face (Zhang et al.|[2017). Dashed lines show the theoretical rate if applicable. The experiment detail
is in Appendix [F

Fig [[(a) validates Corollary 9] under the under-parameterized setting (d = 10) across different
eigenstructures of S. Furthermore, a smaller value of a will yield a larger admissible Ay, as defined
in Remark [4] thus decreasing the excess risk as illustrated in the figure. Fig[I(b) validates the
results of Theorem[I0} where escalating scales of B enlarges the discrepancy between two domains
and degrades the performance of ASGD. Fig|[I|c) illustrates the example in Theorem [TT} when
the target emphasizes larger eigenvalues, ridge regression with an optimally tuned A still exhibits
worse performance across sample sizes n, regardless of the A chosen. In Fig[I(d), we examine
the single-point prediction problem with large initial bias considered in Corollary [[2] with various
parameter choices. v ~ n%-° yields the optimal setting, and the case v ~ 1 reduces to vanilla SGD
since we set & ~ 1. The results show that ASGD achieves a clear separation from SGD under large
initial bias in this setting.

We further evaluate the separation between ASGD and ridge regression on UTKFace dataset (Zhang
et al., 2017) and extract features using ResNet-18 (He et al., [2016) and CLIP-ViT-L/14 (Radford
et al.| 2021). We compare SGD-type algorithms with the ridge regression using the features. We train
on the source domain with n data points and perform a grid search on the hyperparameters for all
algorithms. As shown in Fig[I] (e, f), SGD methods can consistently outperform ridge regression in
this problem, despite the optimally tuned .

7 CONCLUSION

This work theoretically characterizes ASGD’s OOD generalization under covariate shift in linear
regression. We derive excess risk bounds for SGD with momentum and step decay schedule. By
viewing ASGD as a preconditioned estimator, we provide a new perspective to identify problems
where ASGD is provably optimal and illustrate the separation between several methods.
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A PROOFS OF ASGD UPPER BOUND IN SECTION [4] AND SECTION [4.1]

In this section, we provide the analysis of ASGD upper bound. The organization of this section is as
follows:

* In Section[A.T] we present the tools for analyzing ASGD, and provide parameter choice of
ASGD hyperparameters in Section[A.1.3] Bias-variance decomposition is used to decompose
the excess risk into the bias part and variance part. The definition of linear operators on
matrices allows us to write the matrix form of the iteration of bias and variance.

¢ In Section we summarize the proof. We begin by defining C, and By, a different
version of variance C; and bias iteration By, and further bounds the difference. Some proofs
are deferred to Section[A.7land Section[A.8]

* In Section[A.3] we prove Theorem[6] and in Section[A.4] we present an instance-dependent
target excess risk upper bound of ASGD in Theorem [I3]

* In Section[A.5] we show that ASGD algorithm can be viewed as a preconditioned estimator
by proving Theorem[7} We also prove Theorem [IT]to show that ASGD is superior to ridge
regression.

* In Section[A.6] we establish the bounds of the momentum matrix. The bounds are based on
the spectral radius of the momentum matrix.

* Section [A.7] and Section [A.§] provide bounds of semi-stochastic iterations in terms of
algorithmic parameters, and the covariance matrix of source and target distributions.

A.1 PRELIMINARIES
A.1.1 BIAS-VARIANCE DECOMPOSITION

Given a sequence of data {(x;,y;)},_,, ASGD starts from initial weight w = v, and recursively
calculates

w1 < awi_g + (1 — a)ve_q, (13)

Wy < 1 — O (X;rlltfl - yt) Xt (14)

Vi a1+ (L= B)vi1 — 7t (XtTut—l — Yt) Xt (15)

where d; and ~y; are step sizes at iteration . We consider the exponentially decaying step-size schedule
6y =0/4 = /4 LI K(—1) +1 <t < KUY, (16)

where n is the number of observations and K = n/log, n. For theoretical analysis, we define

n, = vl;_,t :VV*], where w* is the ground-truth weight. Let ¢ = a(1 — 5), ¢ = ad + (1 — @), and
. —

gt = ady + (1 — a)y, by eliminating v, in (I3), ASGD iteration can be written in the following
compact form,

N ~ _ T
ny = Aymy_y + ¢y, where Ay = o I— dixex, } ¢y = |:5t€txt

17
—cI (14— gxix) qtetxt] ’ an

where ¢, is defined in Assumption [I]

Following the standard bias-variance decomposition technique (Jain et al., 2017;|Wu et al., [2022a}
bias

Li et al.l 2024), we decompose the iteration 7, into the bias component 77;'** and the variance
component 17;%",
M = A, mg = ng; (18)
m = Am 4G, M =0, (19)
The decomposition of 77, induces the decomposition of excess risk:

" T O
Blw~wlh=(|6 Q] manl])

< (|g o] B[ )2 ([ &) ElmromT]). @

Bias Variance

17
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|

A.1.2 LINEAR OPERATORS
We introduce the following linear operators on matrices to analyze the recursion of [n';‘fas (mbias) T}
and E [ (m)"|.
I-101, B =EA®A. @1
(22)
Let A; = ]EA\t be the deterministic version of Kt, and define
B, =A;®A,. (23)
We decompose Kt into two components:
R T
ot G- [0 o

V= {CI (1+ 0T
(25)

The deterministic version of ét is defined as
Gt == ]Eét

Therefore, jit =V — (A}t and A; =V — Gq.
The following lemma provides properties of the linear operators.
Lemma 1. The above operators have the following properties:

1. B, jBt+E[ét®ét]

2. Suppose Assumptionf|holds. For any PSD matrix M, we have
2
:| ’ > |: 5t S thtS (26)

PR O O
E[Gt®Gt}°Mjw<[O S deqtS CJ?S]

Proof. 1. From the definiton of B;, we have
s 2[(v-6) o (v-6)]
2(V-G)&(V-G)-G oG +E|G oG 27)

:Bt +E |:ét ® éti| 5
where % uses |E [V ® ét} =V ® G; and % uses E {ét ®V} =G;®V.

M MH} we have

My Moy
§fxxT Maoxx "  bpquxx | Mooxx |
T grxx T Magoxx "

Apply the partition of (A}t toM = [
E |:Gt ® Gt:| oM =E |:5tthXTM22XX

|

) }
= |:55t 6tgt OFE [XXTMQQXXT}

tqt 4y | (28)
a 62 6uq O O
Z | 9% tqt
o o3 )]

O O] 62S  8iqiS

jz/’<{o S| >{5tqts @S |

where @ denotes Kronecker product, and % holds for Assumption Q and property of Kro-
necker product, which is, for any PSD matrices A, B X C,wehave A®B < A ©® C.
O

18
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A.1.3 PARAMETER CHOICE

This section provides a specific parameter choice procedure. We first choose appropriate positive

integer &, fix @ = 1/(1 + §8), and choose

64k 1Innlo 1 1 0
klnnlogy,n } e { 5

5 B __ &
Sl Ths. A 218s¢trShn TR S W KSR vy

From the above procedure, we have

nfl—a(-p)

> 16. (29)
logynlnn

Lemma 2. Recall that ¢ = o(1— (), ¢ = ad + (1 — &)y and K = n/logy n. We have the following
properties of the parameter choice.

1. We have 5 5 5 L
g—=0 =30 g—c5 v
l—-¢c 27 1-¢ 2 ° 30)
2. Fori € [d], we have
1
< — < ; < .
5)\1*21881?11171*17 g <1+c 31
Proof. 1. Note that 1 — ¢ = 2(1 — «). Thus, we have
g—0 (A-a)(y=96) -0 qg—c§& q—90 v+90
= = = = 2
1—c 1—c 27 1-c¢ 1—c+6 2 (32)
2. Since \; < tr'S, we have
; 1
S\ < d < < 1. 33
— 2188y InntrS T 2188y Inn — 33)

Note that 1 — o = a8 and 2a¢ = 1 + ¢, we have
g=ad+ (1 —a)y=ad +afy <2ad = (1+c)d. 34)
Therefore, g\; < (1 +¢)oX; < 1+c.

O
A.2 PROOF OUTLINE
: bias bias T var vary T : .
We express the recursions of £ {nt (nt ) } and E {nt (™) } using the operators:
E bias bias) | =B E bias bias \ | E bias bias | — T. 35
0™ (nP™) Lo E (P (nP™) | no™ (mg™) NoMo ; (35)

E[n ()| = B oE [niy (=) | +E (6], E[nimmin)'| = 0. 66

Then we construct two recursions similar to the above update rule:

B, =BoB,_1, By=mnmq, 37)
_ 2 (StQS (575th _
Ct = Bt o Ct-l +0o |:5tQtS qgs s C() = 0. (38)

The following lemma characterizes E [ngias (n?ias)w and E [ngar (ngar)q by B; and C;, respec-
tively.

Lemma3. For0 <t <n, E [r[?i“‘ (nfi’l“)T} = By. Furthermore, under Assumption we have
var var T
E [nir ()] = €.
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Proof. From (33)), the recursion of B is identical to the recursion of E [nlgias (n't’ias)T} . This proves
the first part of the lemma. For the second part, from @, we know the conclusion holds for ¢ = 0.

We assume that E {n‘t’ajl (nf‘jl)T} =< C;_1, then
E var (,var\ | | __ var var \ | T
["h (™) ] =BoE [m_l (7775—1> ] +E [CtCt }

<BoCy1 +E [¢(] |

828 5.q:S %9)
4 2| 0% tqt
SBoCiito [ms q?S}
:Ct7
where % holds because Assumptionimplies E [efxtx; ] < 028, and
T _ 5§e?xtxtT 5tqte?xtxtT _ 53 Oeqt 9 T
A R Rl | B R BRI @)

a2 4 2S  8.¢:S

< | % tqt 2g _ ;2| % tqt

_|:5t(It QE]QU 7 0¢q:S q?S ’

where © denotes Kronecker product, and % holds because for any PSD matrices A, B < C, we have
AOGB=<A®GC. O

With Lemma we have E [ (113) | = B, and B [ (1) < ©,. Thus,

Bias < <T,Bn> ,  Variance < <'i‘7 Cn> , 41

- T O
where T = [O O]'
The main technical challenge to directly bound B,, and C,, originates from the effect of the fourth
moment (i.e. B # B), which prevents us from analyzing B, in each eigenspace of S. Our proof

defines the semi-stochasitc iteration 770 and 7, following Dieuleveut and Bach|(2016). We analyzes

two new recursions B; and C; induced by 7" and #%}*". For the variance component, we establish

a uniform bound on C, to show that the effect of the fourth moment is actually “self-governed".
Specifically, the fourth moment amplifies the excess risk up to a constant. For the bias component, B

is decomposed into B, and a new term Bgl) which resembles C;. The bound of Bgl) is established
by applying the bound of C;.

A.2.1 VARIANCE UPPER BOUND
We start with the construction of 77, by replacing Kt by A;:
0 =AM + ¢ Myt =0. (42)
From this definition, we have E {ff]{f" (ﬁg’“)T} =0 and
var [~ = . var \ T
E [ @) | = BooE [a, ()] +E [/
(43)
R ~ var ~var \ | 2 638 6tqts
=B ok [nt_l (7715—1) } i |:5tQtS QES ’
Therefore, we define C~3t as

C,=B,oCyy + 0 [538 (5tth} ¢

Cy=0. 44
s S| @
By induction, we have E [ﬁf“ (f;f“)q < C..

The following lemma characterizes <'i‘, Cn> which is the first step of our proof.
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Lemma 4. We have

. Mooty 128 [(q—c0\? &
<T,Cn>§02 [Z2KA1+BK<1—C> Z )\itu‘]. (45)

i=1 i=k*+1

The second step is to understand the effect of the fourth moment on the variance component. We first
construct an auxiliary recursion Cgl) as

cV =p,ocC +E [ét ® ét} oGy, cV=o. (46)
The following lemma bounds C; from above.
Lemma 5. For 0 <t <n, we have C; < Ct + ci”.

Proof. We prove the conclusion by induction. By definition, we have Cy = Cy = c§1) = 0.
Therefore, the conclusion holds for ¢ = 0. We assume C;_1 < Ct—l + Cgl_)l. Note that

(5?8 5tth
5:4:S ¢S

) 678 6:q4S
=<B; o (Ct71 + C§1_)1) + o’ [5,52,58 étgts :|

5t25 6tQtS:|

Ct :Bt OCt_l +O'2 l:

=B, Oct,1 + B 001(517)1 + o2 |:

5:qtS ¢S (47)
a ~ ~ -~ ~ (1) 2 5?8 5,5th
jBt [¢] Ct—l =+ E |:Gt ® Gt:| o Ct—l + Bt (¢] thl + 0o |:5tqts thS
5 = 28  6.q:S 1 =~ S =
=B,0C;_1 +0? |:5ti]ts ;gts ] + B; o CE_)1 +E [Gt ® Gt:| 0Cy_q
=C, + Cftlf)lv
where % uses B; < Bt +E {@t ® ét} in Lemma O
The following lemma characterizes the noise term E [ét ® (A}t] o Ct,l.
Lemma 6. Suppose Assumption[dholds. Then for 1 <t < n we have
Ao A ~ 1 ,[02S 648
E [Gt ® Gt} °0Ci1 %50 L&qts s | (48)

Lemma EI shows that the noise term in the recursion of C,El) is uniformly less than that of C,,
Therefore, we can show that Cgl) < %Ct for 0 <t < n, which is the following lemma.
Lemma 7. Suppose Assumption | holds. Then for 1 <t < n we have

1
cV < ;G (49)

Proof. We proceed by induction. For ¢ = 0, the conclusion holds by the initial value of C; and Cgl).
We assume that Cgl_)l =< %Ct,l. By Lemma@ we have

iV =BoCY +E |G @G0 Ciy

2
<Bo Cgl,)l + 102 { 0;8 5tqts]

2 0tqtS QtQS
50)
1 1,828 6,48 (
xBo <20t_1> t30 [&qts ¢S
_1 2 (SES 5tth o 1
=3 (Ct—l +o [5tth ¢2S = §Ct.
This completes the proof. O
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Finally, we show that C; is “self-governed" and obtain the upper bound of variance.
Lemma 8. Suppose Assumptionsand hold. Then we have C,, < 2C,, and

Motu o 256 —es\? &
Variance < o2 [Z Kl;\, +1—5K (qlc> Z )\itu‘];

i=1 i=k*+1

Proof. We apply Lemma[5|and Lemma(7} For 0 < ¢ < n,
~ ~ 1
C; 2Ci+ Cgl) =G+ §Ct~
Therefore, C,, < 2C,,. By Lemma taking the inner product with T yields
Variance < <T, Cn> <2 <’i‘, Cn>
k* 2 d
tii 256 q— co
—K /\ﬂf“ .
> () 3

i=k*+1

<o'2

i=

A.2.2 BIAS UPPER BOUND

We follow the similar approach to construct 772

ﬁ?ias — At'f]?iaf7 ,Flgias = n,.
Then we define ]~3t = Bt o f}t,l. Therefore,

Bt = Bt o Bt—h Bo = nong,

The first step is to characterize B;. The following lemma bound <T, Bn> from above.

Lemma 9. With B, defined in (53), we have

- w5 )
Tan> < —_COok* 4 Yy ,
< - wesr(rx}v&t}iw*) 8n2(logy n)4 +alwllr,.

D

(52)

(53)

(54)

(55)

(56)

where k* = max{k AR > M} and S(wo — w*) = {w € R? : |w;| < |[(wo — w*);| }.

(g—cd) K

The second step is to bound B, by B,. Define a new recursion Bgl) as follows:

B =B, 0B, +E [ét ® ét} oB,;, B{"=o0.

The following lemma bounds B, from above.

Lemma 10. For 0 <t <n, we have B; < f’:t + Bgl).

(57)

Proof. We prove the conclusion by induction. By definition, we have By = By = 1oMg and
B,gl) = O. Therefore, the conclusion holds for t = 0. We assume B;_1 < Bt,l + B§1_>1. Note that

B, =B,oB;_1 2 B;o (th + Bil,)l)
<B,oB;_ ; +E {ét ® ét} 0By 1 +B;o B,El,)l
=B, + B\,

where % uses that B; < Bt +E [ét ® (A}t} in Lemma

22
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The following step parallels Appendix if we replace C; with Bgl). We include detailed proofs
for completeness.

Lemma 11. Suppose Assumptionsand hold. With Bgl) defined in (57), we have

< ) M ooty 512 [q—cd\? &
<T,B ><||w0—w 12 - Zm + ok (T2) Y Al (59)
=1

i=k*+1

Finally, we bound <'i‘, Bn> and obtain the upper bound of bias.
Lemma 12. Suppose Assumptionsdand[I|hold. Then we have

k* 2 d
_ . 2% 512 —
Bias < |[wo — w* |5 - [E oy + K(ql _Cc> E )\itii‘|

=1 i=k*+1

(60)
||W||T0:k*

* wES(wacJ))iw*) 8n2(log, n)*

2
+4fwlr,.

where k* = max{k AR > %} and S(wo — w*) = {w € R? : |w;| < |(wo — w*);| }.

Proof. From Lemma we have B,, < B,, + BS). Taking the inner product with T, we get
Bias < <T,Bn> < <T,Bn> n <T,B§}>>. 61)
Recall the definition of Bn and [;’t, we have

n n T
BanOBn_10”'OBlOB0<HAt [xg: :|> (H |::;Nvg: :|> . (62)

t=1
We apply Lemma|[TT]and Lemma[J]to obtain

Bias < <T Bn> + <T B§}>>

k* 2 4
2t;; 512 q—co
= -wil- - K Aitii
< flwo — | [ oo 2R (0) » ] .
=1 i=k*+1
2
—+ max M‘F‘LHW”Z
weS(wo—w*) 8n2(10g2 n)4 Tr*. 00

This completes the proof. O

A.3 PROOF OF THEOREM [6]

Proof of Theorem 6] Following the bias-variance decomposition, (20) shows that
E||w, — w*||% < 2- Bias + 2 - Variance. (64)

Lemma@] provides the following upper bound on the bias term:
k* 2 d
. w2 2t“ 512 q— co
Bias < [[wo — w3 - [Z ot ( o) 2 M

S
weS(wo—w+) 8n2(logy n)4

(65)

2
+ +4fwlg,.

where S(wo — w*) = {w € R?: |w;| < [(wo — w*);|}. Recall that we set wo = 0. Since M and
S commute, so S(wo — w*) C W. Therefore, we have

max
weS(wo—w*)

2 2 _ 124
IWHTU:k* < WH*IS}V{VHW*HTO:,C* = IHEEiX HM

_ !
TB = HTW (66)
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Similarly, we have maXyes(wo—w*) ”W”i“k*-oo < || T} o] and [[wo — w*||3 < ||S'||. Further-
more, we apply Lemmal[8} '

k* 2 d
2t 512 —co
E [lwn = w3 < (02 + 2[|]) - ZK/\-+15K(q1—Cc> 2, At
i=1 ¢

i=k*+1 ] (67)

T} -
+ W Touell_ + 4[| The o] -

8n2(log, n)*
% . 16(1—c)Inn
where k* = max{k : )\k- > W}
We bound the first term of the bias by the first term of variance. Note that
8n2(log, n)4 ~ 8n2(logyn)*  8n2(logy n)* —m
1 L oY A Lt
— (23 A X2 < 2 l 68
8n2(logy n)* 2:: K\, m; — (%%X 16n(log, n)5mi) ; m; (6%)

s ﬁ: ii
16n (log, n)® m;’
Therefore, we have

. s’ oty 512 [g—c6\? o
E”WnW|'21‘§<02+2||S/||+16nybg|2|n)5>'[ m+15K<1—C) Z Aitii
i=1 v

1=k*+1

+4||T}-
This completes the proof. O

OOH N

A.4 INSTANCE UPPER BOUND

In this section, we provide an instance-dependent ASGD target excess risk upper bound.

Theorem 13. Let S, T be positive semi-definite matrices. Suppose we get samples {(x;, ;) },
drawn from the source distribution of Pe P(Ww, S, T). When n > 16, we choose the initial step
size d, ’y and the momentum «, 3 according to the parameter choice. Denote the output of Algorithml[l]
as WGP, the target excess risk of WGP can be bounded from the above by

k* d
1 2 . 2ti; 128 5
< (02 +2wo — wrI3) - l TR (v+0)* > )\itii]

7E1’5®n HWSGD R
i=1 1=k*+1

n w

2

Effective Variance
Wl
weS(wo—w) 8n?(log, n)*
2
where S(wo — w*) = {W e R jw;| < |(wo _W*)i|}’ k* = max{k Ak > (»ygi(é)%}’
T0 = M71/2T k M71/2, and Tﬁg* = Mfl/QTk*:delm. ti; denotes the i-th diagonal
entry of T, and {\; } _, are eigenvalues of S.

+ + 4wz,

Proof. Following the bias-variance decomposition, shows that
E||w, — w*||% < 2- Bias + 2 - Variance. (69)
Lemma [[2] provides the following upper bound on the bias term:

K 2 d
. w2 Qtii 512 q— co
Bias < wo — w3 - [Z o P KT ) 2
i=1 ¢ T =kl

) (70)
1wl

et ) En¥llogy i T IVl

+
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Lemma [§] provides the following upper bound on the variance term:

k* 2 d
. tii 256 q — co
< o? —+ —K E itii 1
Variance < o [ n + 15 ( - ) ' AthZ] , (71)
i=1 i=k*+1
We complete the proof by combining the above two results. O

A.5 PROOFS OF SGD AS A SPECIAL PRECONDITIONER IN SECTION [4.1]

In this section, we provide proofs in Section 4.1}

Proof of Theorem[/] Theorem[7]is a direct implication of Theorem 6] by noting that

IO:k* (0] / IO:k* 0] _ !
R
1 Ipp- O Ioi- O G
! 0:k* 'N—1 |Lo:k* _ big
n<T’[0 O}(S) {o OD_Z;M/ (73)
d
o/ O O 10 O . 2 L
n(y +9) <T ’ {O | P () O I/ n(y+9) 4_;1 At 7
O
Proof of Theorem[I1] By Theorem|[6] we have k* = k, and
k 4 Lvn]
o112 (Inn)? In 1 ,
supEpon [|[wh — w*|[ 1 S +— == + [T
P " T ; n n 1:1; Vn (75)
< O(1/n),
where % uses ||T;€*:dH = 0 since M = diag {%Ik, ooI;H_l:d}. O
A.6 PROPERTIES OF MOMENTUM MATRIX
A.6.1 BOUND OF SPECTRAL RADIUS
Recall that the definition of A; is
R N O I-06;S
Ay =EA, = |:—CI (1+o)I- th} : (76)

Note that S is diagonal and A, is block-diagonal in the eigenspace of S. Let A, ; denotes the i-th
block corresponding to \;, the i-th largest eigenvalue. Therefore,
Ati:[o 1— 8\ ] a7

)

—c l4c—q\

For convenience, we also define /-th stage version

o I-4604nS 0 1 =46

- () - Ol 78
O [—CI (14+¢I-— S|’ (6)3 —c l4+c—qui (78)

Note that only the product of step size and eigenvalue appears in A; ;, we further define

10 1—-0A
AN = {—c 1+c— q/\} ’ (79)
Recall the exponential decaying step size schedule (16)), we have
Ai .
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The eigenvalues of A (\) are

Cremgp e a) —de(l-oy

1
31 5 5 ; 81)
1 — g\ 14c¢—q\)? —4c(1— 6\
L _tre-a P —de(i-on) ©
2 2
Solving (1 + ¢ — gA\)* — 4¢ (1 — 6)) < 0 yields
1-¢)’ 1—-¢)°
(1-c ;<A< 1= - (83)
(Va=es+vela—0)) (Va=es - ela—9))
AT Af
We define three intervals
L=[0,\T], L=(L\), Iy=[\ +o0). (84)

Note that the spectral radius p(A(\)) = |z2|. We adopt Lemma E.2 from [Li et al.| (2024), which
characterizes x1 and xs.

Lemma 13. Let A > 0.

e If A € I, then x1 and x5 are real, and

—co
$1§$2§1—q ¢

A (85)

e If A\ € Iy, then x1 and x5 are complex, and
|z1] = |z2| = Ve (1 —0N); (86)

o If X\ € I3, then x1 and x5 are real, and

0
21 < g < % (87)

A.6.2 BOUND OF PRODUCT OF MOMENTUM MATRIX

In this section, we provide bounds of Ak(/\). The following lemma provides upper bound of
a4

Lemma 14. Given A()) that are defined in (19), we have

HA’“(A)H <| A’f(A)HF < Bk [p(AN))F. (88)
Proof. Define
ok — a2k
ap = 2—-1L, (89)
To — X1
we have a; € R and
Ak(/\) _ |:—C (1 :C(if\) ak—1 (1 — (5)\) ak:| ) (90)
k K41
Note that for any A > 0, we have |z;| < |z, and
k k k—1
Lo — I3 i k—1—i
a = = 1T
‘ k| Ty — 21 ZZ::O 142
(2]

o k—1 . b k—1
< Z ‘x1|z|x2‘k7171 < Z |x2|k71
=0 1=0

:k‘lxg‘k_l,
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a b
where < uses the triangular inequality for complex number, and < uses |z1| < |z2|. Direct calculation

2
yields 7125 = ¢ (1 — dA), 50 |c (1 — dA) | < |x2]?. We bound HAk()\)HF by

[A¥ O = e = N aual® 10— 63 + (—ean)? +
<(k — 1)% |22 + ko PFD + k2 [ao) 2R 4 (k + 1)%|ao|?
<[k =1)? + K2+ B2 + (k +1)%] |ap 23D ©2)
= (4k? + 2) |zo 27D,
§6k‘2|x2|2(k_1).

Therefore,

AR < [AFO]|, < VR = VR (A 0

For k < K, the following lemma bounds HAk()\) H from above uniformly.

Lemma 15. For A < A\, we have

Ak < Vo, 93)

Proof. For k = 0, the conclusion is obvious. If k > 1, for A < \;, we have p(A()\) < 1. Thus, by
Lemma[4]

|AF)|| < VBE oA (94)
O

The following lemma bounds || A ()) H from above.

(1—c)Inn

Lemma 16. For \ > 4(q765)K and n > 16, we have

|axo] < n%@n <1 95)

Proof. We bound HAK()\)H for A € Iy, I, Is, respectively.

1. If X € I, by Lemma|[3|and assumption,

p(AN) =lzs s 1- L= g1 20 96)
Thus, by Lemmal[T4}
A% )| <VBK (A < VBK (1 - 4lnn) !
=V6K exp (K —1)In (1 — 41nn))
SVBK exp [4<K_K1)m”] < VBK exp (=31nn) o7
V6

n?logyn’

b
where%useslnmSx—l,VxeR,andgholdsforn216 — K>4 — %2

Y

2. If A € I, by Lemma@and assumption,

P(A(N)) = |z2| = V/e(1 = 0)) < Ve (98)
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Thus, by Lemma|[T4]

AR <VBK (A < VBK (V)T

=V6K exp [_([(—21)111@}

VK exp [_W} Y VoK exp [_8(1(—](1)11171] (99)

<V6K exp (—61lnn) = VG < V6

nblogon —

n?logyn’

a b
where < uses Inz < z — 1,Vz € R, and < holds for K(1 — ¢) > 161nn in (29) and
K-1~ 3

K Z 1

. If X € I, by Lemma|T3]and assumption,

c
P(A(N)) = 22| < e (100)
Thus, by Lemma|[[4]

| A% VB (A < VBReR

=V6K exp[—(K —1)In¢]

SVBK exp [—(K —1)(1 - ¢)] < VBK exp _16(K —1)lnn

(101)
K

<V6K exp (—12Inn) = V6 V6

nlllogon —

n?logyn’
2 b K-1 < 3
where <uses Inz < x — 1,Vz € R, and < holds for = > 7.

For k € N, we have a uniform bound of (Ak(A) {ﬂ )
2
Lemma 17. For A < \; and k € N, we have

5
(0[] |-

(103)
We bound |ay11 — cag| < 2 for A € Iy, I, I5, respectively.

, which is tighter than Lemma

1, Ael,ls;
< .
= {2, Ne L. (102)

Proof. From (90), we have

1. If X € I;, by Lemma(T3] and § < ¢, we have a;, > 0, and

—h
:clgngl—qlchg1—5A.

Since z12z2 = ¢(1 — d)A), we have ¢ < x1 < xq. Therefore,

(104)
k
Ap4+1 — CA 2Aky1 — T10f = Ty > 0,
k k—1
< _ i, k—1 i, k—1—1
Akp+1 — CAp XAk41 — T1T20 = T1To — T1T2 T1To
=0 =0

k k
= g zhak=t — g zhah
i=0 i=1

(105)

k
h 4+ (1 — ) inzg_i
i=1

§x§ + k(1 - xg)xg“ = x]; 14 k(1 —xz2)] % 1,
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For A <

where % applies Lemma

. If X € I, by Lemmal(l3| z; and x5 are complex and conjugate. Let x; o = r(cos #+isin @),

wehaver = y/c(1 —0X) < 1land0 < 0 < 7/2 where 2r cos = x1+x9 = 14+c—qA >0
from Lemmal[2l Thus

¥ sin ((k + ne) r*~1sin (k6)

ak+1 — Caf —

sin 0 sin 0
a 0
Zpk—1 (7“ cos kf + TV = € in k@)
sin ¢ (106)
1—cosf
rcos k6 + sin kO — w sin k6
no sin 0
0
bk 1<rcosk9—|— Hcsinkg—rtanzsinlw),
where = is from sin ((k 4 1)8) = sin k6 cos § + cos k6 sin 6, and 2 is from
1—cosf 2 sin? % 0
= = tan —. 107
sin 6 2sin 4 cos & My (107m
By triangular inequality, g| <1
k1 sin k0
|aks+1 — cag| <r r|coskl| + |r — c| |— +rk tan |sin k0|
sin 0
S k(=) = (1 (= 1) =) 4k (109

b
§27

Where%holdsforr2 <c<1l = |r—¢ <max{|r—r?,[r—1]} =1—rand

, b
|sinkf| <k in Lemma , < is from Lemmaand 0<r<I1.

sin 6

. If A e I3, by Lemma and § < ¢, we have ay > 0, and

c
1 <r2 < — <ec (109)
q
Therefore,
k
Qg1 — Cap >aja1 — A = Zx’lmg i lelxg 1=
i=0

i, k—1—i
—xl— (1 —x9) E T1Ts

(110)
>z — k(1 — xg) k !
> — b7 (1+ (k- 1)a%) % -1,
g1 — car, <agi1 — Toap = ah < 1,
where § holds for Lemma
O
(1 °) , we define P, which diagonalizes V:
1 -1 T N |
P—[l _C], P —1_0[_1 J. (111)

The following lemma provides bound of P~ A (\)P
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Lemma 18. Let P and P! defined in (IT1). Suppose A < A=9 oo have

q—co ’
[PTTANP|| < 1. (112)
Proof. Let
I C[1—ex eex
M=P 'A\P = [ Coh eten] (113)

we will show that I — M ' M is a PSD matrix. Let £ = ql__cf andn = ‘{;_i, s0 £EA < 1 — c. Direct
calculation shows that
TN (1= €N + 12N A(E—n— (&€ +1%)N)
M M= [c)\ (E=n—(E+n*) )  AEN+A1+9N)? |7 (114

Furthermore,

(I — 1\/[T1\/I)11 =1- [(1 — f)\)Q + 772)\2} = 26\ — €202 — p2)\2

526\ — 26202 = 26A(1 — £))
2o,

det (T— MTM) =X [2(1 = )¢ — (€2 + 1 + 2¢3n)A] )
SN 21— ) - 21+ AN
d
>\ [2(1 - )¢ - 2(1 + ) (1 - e)¢]
=[20-¢) 20+ -] €

=2¢(1 —c)* A >0

a c b d
where > and > uses n < &, > and > auses £\ < 1 — ¢ < 1. Therefore, by Sylvester’s criterion,
I — M M is a PSD matrix. From the definition of M, we have

M T™MM
[P~'A(\P|| = [[M] = sup IMx] o X MMx (116)
x|l x  X'x
O
The following lemma provides upper bound of the product of momentum matrices.
Lemma 19. For u1, pa, ..., pp < ((11:2;2, we have
k
TTA®w) L (117)
, T 1—-e¢
=1
Proof. Note that
k k
[TA®w)| =P (H P‘lAw)P) P!
i=1 i=1
i (118)
<IPITTIP~" APl [P~
i=1
a 2 4
<2-1- = ,
l1-¢c 1-c
where % applies [|[P|| < [|[P|z <2, P_lH < HP_lHF < % and Lemma O

The following lemma provides an upper bound of the product of momentum matrices applied to noise
T
vector [0 ¢ .
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(1

Lemma 20. For pq, po, ..., pui < - 06 , we have
k
2v/2(q — ¢d
[TAw) H < 2= ) (119)
Pl q 1—c¢
Proof. Note that
k k 5]
" q
i=1 i
k q—cd
=P (HPlA(M)P> 1=
i=1 1—c (120)
k q—cd |
-1 -
<IPITTIP APl || =5
i=1 1—c |
2y.q. V20a=cd) _ 2\/5(61—05)’
1—c 1—c
where % applies |P|| < 2, =2 < O

The following lemma provides an upper bound of the product of momentum matrices applied to bias
T
vector [1 1] .

< (-

Lemma 21. For pq, po, ..., i < = we have

5 >

k

[Taw 1]

=1

=||P (iljlp—lA(Mi)P> P! H
=P (i[lp—lA(M)P> H

<2. (121)

Proof. Note that
k

TTA®w)

i=1

(122)
k
e s ]
£92.1.1=2,
where % applies | P|| < 2 and Lemma O

A.7 VARIANCE UPPER BOUND

This section analyzes C, which defined in (44)). We first provide a characterization of the stationary
state, and then prove Lemma 4] and [6]

A.7.1 ANALYSIS OF STATIONARY STATE

We introduce the stationary state matrix at /-th stage:

_ i B 5(/)5 00 10S] (123)
o) d)S q(z)s

k=1
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A(g) &® A([) and

exists and finite. Note that since B; =
is also block-diagonal. Thus Q(/) is

50)4(0)S

Lemma F.4 in|Li et al.| (2024} shows Q
Ay is block-diagonal, each B, o 5([)8
© ’ 7 banS  aiyS
block-diagonal, and we denote the ¢-th block as Q( )i € R2*2, Furthermore, we define
Bii=Ai®Ari, By =Aw:®Auw, (124)
Then Q ¢),: can be represented as
- > 52, O ae) i
_N" R ) (O4(&) } 125
Q(@)ﬂ ]; (#),i °© |:5(Z)Q(£)>\i (2@))\ (125)
Define an operator 7oy =Z — By)) + Gy @ Gy =L - VeV + VR Gy + Gy @V, and
52 S ) 0 q p)S
Ui = T=10 | %0 o ] 126
©= o LW)CJ(@)S a(nS (0
The same argument holds for U ,) to be block-diagonal, and i-th block of U, is denoted as
U(y),; € R**2. The following lemma characterize Q(Z) using Uy ;.
Lemma 22. Ler Q ) defined in (123). Then we have
Q 1 U (127)
(©),i (€),i-
L= (Ugy,i) 5 A
Proof. Note that
Bly =(z- B(z)) = (Tiy = G @ Gy
3 -1
=T o (T-75' 0 (G © G))]
] (128)
= (I T o (G ® G(e))) o T,
k —1
—Z ( o °(Gu® G(f))) 0 -
We introduce Ty ; =Z — V; @ V; + V; @ Gy ; + Gp); @ V;, which operates on R?*? matrix
Therefore, we can calculate the ¢-th block of Q) as follows
~ - k SpAi  dwawhi
=Y (T30 (G, ©G o) [ ( ]
Qi 1;) ( (0),i © ( (O8 © )) (0),i 5(5)(1(@))\ q(Qg)Ai
= (T( 10 (G ® G(f),i)) o Uy,
k=0
e k
Ui+ (T(Zf,i ° (Gr),i ® G )) o U,
k=1 (129)
> k
—1
Ui+ Y (T30 (G © Gyi)) 0Tk (G ® Gray) 0 Ugeys
k=0
(TW ° (G, ® G(f)n‘)) o U,

Uiryi + (U),i) g0 A
k=0

1o + (U0),i) 59 )\iQ(Z)J‘,
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a
where = uses

—1 —1 T
Ty © (G0),i ® Geyi) © Ugeyi =Ty, 0 (G(K)JU(Z)JG(@)J)

2N S qN
_ 1‘0(U“ )\Z[ 0N (z)()zD
(0 (U0.i) doamNi  qpAi (130)
X SwaN
( (0, )22 ©),i ° [6(@61(@))\1‘ q(ze))‘i
= (U().1) 95 AiU(o).i-
Solving the recursion (129) yields the desired result. =

The following lemma characterizes U y) ; and Qy) ;-
Lemma 23. With U ;) ; defined in (126), we have

1. By Equation (F.9) of \Li et al.|(2024), we have
_do (I+ o)) —dw)

Uy : 131
(Ui) 22 2 2(1 =4 cXi(qu) + b)) b

2. We have S 1
Un) <%, 132
( (é),z)zz =9 + 87529k \; Inn (13

3. By Equation (44) of Jain et al.| (2018)), we have (U(g)7i)11 = (1 -20p i) (U(Z)vi)22 +
82, N,
()i

4. We have (U(Z)’i)ll < (U(g)’i) and U(g)}i <2 (U(é),i)QQ L

22’

5. U@, 2 Qui 230w

6. By Equation (56), (61) and (63) of Jain et al.|(2018), we have

(14 ¢ —cdiXi)(quey — cdeey) — 200y Nilqeey — coey) + 25(20)\1-
2(1 — 2 + chilqe) + o)) ’

(14 ¢ — Xi(qee) + cb(ey)) (aey — b)) + Sy Mi(aee) + o))
2(1 — 2 + chilqe) + o)) ’

(14 ¢ —edihi)(qeey — o)) + 2cq(0) 00y Mi

2(1 = 2 + chi(quy + o)) ’

(Uw.,i)y, =

(133)

(U)o =

(U),i)g0 =

7. We have Uy ; < 16U 141y ;.

8. We have Q(E),'L j 20Q(£+1),i'
Proof. For Item 2, following the proof of Lemma E.5 in|Li et al.[(2024)), we have

o P
(U)o < 5+ 355

Recall that § = m by the parameter choice in Appendix , we have

) 1
U/ < — oPEe AN 1.
(U)o <5+ 875207\, Inn

(134)

(135)

For Item 4, from Item 1, we know (U(g),i)22 > /2. And from Item 3,
2

(U,i)11 = (U0),1) 55 = 200)Ai (U),i) 5 + 6y A

S

), 2

22
(136)

)
< (Uw.)

i)oy = 20(0)Ni - + 5(25))\1‘ = (U),i)y, -

22
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Thus, we have
U(g)’i =< (tr U(g)’i) I1<2 (U(f)’i)Qz 1. (137)

For Item 5, since parameter choice procedure implies that (U( 5)77;) 99 A < i, we have
4
1< — < 3 (138)

Plugging this into (127]) completes the proof.

For Item 7, from Item 6, we split the numerator of U y) ; into two parts, based on whether the term
contains \;,

num (U i), = (1+¢)(qeey — cdgey) + {*651‘((1(4) —b(r)) — 20(0)(q(e) — cO(ey) + 25(212))\1'] Ais

M, N,

num (Uge) ) 1, = (1+ ¢)(aw) = dey) + [~(aw) + o)) (ae) — b)) + 8oy (aey + cdey)] N,
M, N2

num (Ug) i), = (1+¢)(qe) — ¢d(e)) + [—cdi(qee) — cbey) + 2¢qd(p)| As,
Moo Noa

(139)
where num represents the numerator. Note that M = (1 + ¢)(q(s) — cd(s)) E ﬂ = O. Therefore,

U M/4 + N/16
D2 791 = + el /4 + by /4))
M/16 + N/16 1y
21—+ chila) + b)) 16 O

(140)

Thus, Uy s = 16U g 41 -

For Item 8, parameter choice procedure implies that (U( 0, ) 99 A < i. Thus, from Lemma|22|and
Item 7, we have

~ 1
Q=77 Uw.
1- (U(Z),i)zz Ai
16 16(1 = (U (141),1) 9y i)
S Vd = (U( L. >§2 Qe41),i (141)
- ( (f),i)22 i - ( (f)ai)zz @
16(1 — (U(g),i) o Ai/4)
=< 222 Q . 220Q ;
o (+1),5s = (6+1),4>
1— (U(€)7i)22 Ai
where we uses that Uy ; is PSD matrix and (U(£+1),i)22 > (U([)7i)22 /4. O]

A.7.2 PROOF OF LEMMA[4]

Proof of Lemmald] We aim to bound <’i‘, Cn> from above. By unrolling recursive definition of
C;_ in (@), we obtain

~ 5 = 2SS 6,¢.S
— 2 n n4n
Cn _Bn o Cn—l + o |:5nqns q?ls :|

. 528 6,4sS (142)
AY BuooBo S 8]
S:l SHs s
Therefore, taking the inner product with T and using that Bs’i =A;; ®A,; weget
d n
< P 5 02N 8eqsh
<T,Cn> AN <5n,i o+ 0Byy1i0 [ st Osds D : (143)
; ; 65QsAi qs/\i 11
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where t;; denotes the i-th diagonal element of T. In the following, we will bound each term of the

sum Z?zl separately.

Let k* = max{k D AR > M} For each i, define ¢ = max {é: M > M}

(g—co)K
Note that ¢ < k* implies £; > 1.

11

Ifi < k*, webound 3", = 3254 + > u_ k410 Tespectively.

~ ~ (53)\1 5sqs)‘i
Z n,io...oBerl,iO [53qs/\i qfx\i :|>11

2 2 ] ] K —s 62m )\Z
B0 Br(grny41i © Bl 41y 0 0 Blynyi 0 D Bia% o [5(m()q()m))\i

“
2 2 3 3K 3K
<o Z_l (B"Z -0 BK(Z;.*+1)+171‘ © B(Z;‘+1),i 0--0 B(7n+1),i © Q(m),i)ll
b “ 8
SO'Q <Bn72 0--+0 BK(Z;‘-&-I)—&-IJ o B{;}‘-ﬁ-l),i 0.-+0 B{fn+1),i o |:3 (U(m)7i)22 I:|)
m=1 11
8 (Unyi),, <2
< ( (3) )22 [An,i-~-AK(e;H)H,iAg,i"'Affnm,i
m=1
T T
K K T T
(A(nz+1),i> T (A(Z—l),i> AK(Z;+1)+1,¢ T An,’i:| v

8(Uny,),, =2 2 ? ’
g((?)))” Z | Ani- - Ager )il HA@)J "'HA{’(”“)J
m=1
Lemmal[T9] Lemmal[ld Lemmal[I6]
8 (U4 1
< ( (1)7)22. 6 s 5 logyn
3 (1-0c)? ni(logyn)
< Uiy
= 256n2

(g—co)K

5(7n)q(7n) )\7.
2 .
Q(m)/\z

(144)

a b c
where < uses the definition of Q(m),i, < uses Lemma and < uses n > 16. For the second term,

we have \; /4% < 16(511_’6%))1;” < (;:2;2. Thus, we apply Lemrna

~ (g > 82N Ouqshi
Z (Bn,i °re BS+17i ° [55(15 7 qg)‘z :|>22

s=K;+1
n (5 2 n qs — 66 2

< Z i An,i T AS+1,i [q:] < 80 Z Ai ( Sl —c S)

s=KO+1 s=Ker 41

Lemma2Q]

12802 4+1) — CO(er ?

_ 8 MK qex+1) — CO(er41)
15 1-c

12802 (K q—cd () — Oz +1)
15 4% 1—-c I-c
212802 16Inn 819202 Inn
< T -4 (U(z;+1),z‘)22 < 15K ( (1)=i)22’

35

(145)
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a *
where < uses \; /4% <

od=clnn ,04 from Lemma ,

(g—cO)K
(U ) :(5(52‘4»1) (1 + C)(q(Z:‘Fl) — 6(41*“"1))
(£;+1),i) 99 2 2(1 =+ eXilquer+n) + brgr)))
Servry (L4 0)(qer4+1) = der+1))
T2 2(1-c+ K+ )
Serny | (L4 0) (g1 = S+
2 — 24 c(1=c)?(g+cd)
2(1 c (o) ) (146)
>5(Z:+1) (1 tc )(Q(€*+1) - 5((*4_1))
2 _ 2 4 c0=0(atea) c>2 q+cq)
2 (1 ¢ (g—cq) )
,5(€I+1) der+1) — 5(e;+1)
2 21+ c)(1—c)
>6(£;f+1) qeer+1) — Oer+1) Q) — e8(e: 41)
-4 A1-¢) Al-o
If 7 > k*, we have
~ (1 2N Ssqshi
B OBs+1z |: 573 525 Z:|>
; ( 55Qs)\i qs)\i 29
= 2
a ; 2
SZ s+1z|:q8:| < 8¢ Z)\ ( . > 147

Lemmal20]

12 —
:78&[( qg—cd
15 1-c¢c

Finally, we have

)2

(1.0.)- Qm( e

Li=1 KA

R

Li=1

a
where < uses ), =

have ZJ 1 (O

A.7.3 PROOF OF LEMMA[G]

] 1
(1),3 )22 Aj < 1094Inn "

<0_2 Z 54715“ Inn (U(l),z)

a ti 128
< 2 53 7K
=7 Z2K)\ T <

d 2
81921Inn 128 q—cd
5 (U ) @Z KT (1—c)
128 q—cd
N+ —K

2%t 15 (1—0)
( 547t lnn> i
B i=1 =

—cd
ql—c) Z /\itiz"|7

k*41

Aitii]
i=k*+1

128  [(q—c5\? &
)R (D) X A

i=k*+1

i=k*+1
(148)

Ty < DTy ;¥j if 2, y; > 0, and from the parameter choice procedure, we

O

We bound the noise of C; of two consecutive stages.
Lemma24. Let ¢ > 2. [f K({ —1)+1 <t < K({+ 1), we have

t

Z Bt—l,i o

s=K({—1)+1

0B o
stl |:65q8)\i qg)\z

82N 0sqshi
: g }520Q<4+1>,i. (149)
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Proof. For K(¢—1)+1 <t < K¢+ 1, we have ¢ belongs to the £ — 1-th stage. From the definition
of Q(z), we have

t

~ ~ 2N 0sqsh
Z Bi_1,50-0Bsy1,0 L;qu qg)\, }
s=K(£—1)+1 sHsT AsTH

t
= Y Byle {569; 6533&}
4 . )
S K (=1)+1 sqsAi qs i

[e.¢]
stoK(e—1) | 02N 0sqshil| a
: K(g:l) 1B(K)M OLSSCIS)W qf)\i _Q(Z—l),z‘
s=K(l=1)+

(150)

b
220Qp).i;

b
where < uses the definition of Q¢ and = uses Lemma

For K¢+ 1 <t < K({+ 1), we prove by induction. The case where ¢t = K (¢ + 1) has been proven.
We suppose (149) holds. Note that by the definition of Q) ;, we have

5(25))\1' S0y qeeyNi

5(25)& 5(13)(1(4))\1'] .
0aoN AN

= (Z—Bipy )"
Q)i = (Z-By,) 0[5 ©dON Gy

] = B,ioQqp,; = Q(Z),i[é

(151)
Therefore, for ¢t + 1, we have
t+1 B B 2y )
S BuooBaiso [5%&- 523351]
S=K (I—1)+1 sqsAq s\
t
5 5 5 02N Osqs 02N 0sqsh
=By, o Z Btio"'oBs-‘rlio[ SR X 1]4‘[ MR N
) ’ ’ Osqs i A 05qs Ai
S K (—1)+1 q s 4 e (152)
5 5§>\z 55(]:")\1'
jB(@),i © (20Q(l)’2) + |:(Ssqs)\i Q§Az :|
63)\1 5sqs)\i
By induction, the lemma holds. O
Now, we are ready for the proof.
Proof of Lemma(6] Our goal is to show that for 1 < ¢ < n, we have
v o fd 1 2 (538 (5tth
E [Gt ® Gt} 0Ci1 < 50 Lﬁqts s | (153)
~ =~ = O O ~ 5,528 5tth
Note that by Lemma |1} we have E {Gt ® Gt} 0Ci1 =9 < [0 S] ,Ct_1> [5tqts q?S .
Therefore, we only have to show that forall 1 <1 < d,
O 0O - 1 4
¢<[0 S] ;Ct1> < 30 (154)
From the recursive definition of C;_; in (@), we have:
~ 5 ~ 52 .S 0t—1Gi—1S
C, 1 =B_ C,_ 2 t—1 t—1qt—1
-1 t-10Ct-2+ 0 [&—1%—15 Qt2—1s
(155)

t—1
s 5 528 05qsS
2022Bt_1o...055+1o[55258 qgs}'

37



Under review as a conference paper at ICLR 2026

Therefore, taking the inner product with {8 (S)} and using that [;’SJ- =A,; ®A;,; weget

d t—1
O O = ) 5 5 63)\1 65Qs>\i
<{O S} 7Ct_l> -7 ZA%Z (Bt_MO.HOBSH’iO [55(15)‘1' Y }>22. (150

Suppose ¢ — 1 belongs to the ¢-th stage, namely, K (¢ — 1) + 1 < t — 1 < K/. For each i, define

o :max{é: i > %}

If ¢ < £f + 1, we bound 22;11 = Zﬁi(fil) + Zg K(0—1)+1° respectively. For the first term, we
have

K(t-1) ~ ~ 532N\ & gshi
Z <Bt—1,i O--- OBs_t,-l,i © |:(5 Sq )Z\ 223{|>
sYs\g 57 22
52

Ai () A(m) Ni
_ Bio1-KWe-D)  pK .o BK BK s [ (m) (m)4(m) Z]
Z < (£),i (=1), (m+1),1 Z 5(m)Q(m)>‘ q(2m)>\l "

@ t—1—K({—1 5
52(%) Vo Bl )0 ’OB("L+1)J°Q(m),i>22

m=1
_Zz_l gt—l—K(é—l) BK B 8 U I
—Z (£),i ©P(r-1),i ’ (m+1),i © g( (m)»i)22 -
m=1
<8(U(1),i)22 = ALLK(E-D £ K AK AK T AK T ALK (1) T
=" 3 Z (0),i (L—1),8 """ (m+1),i( (m,—i—l),i) ( (2—1),1') ( (0),i ) 0
m=1
1) O\~ (1),1) 22 At 1— Kf 1 AK 2 AK 2
ZH o Ao A
Lemmal[[3l Lemmallq Lemmal[Iq
8(U.i) 6
<A TAPVE22 g2 T ]
- 3 n*(log, n)? 0827
<3 (Uni)y
— 2N2 Y

(157)
a b
where =< uses the definition of Q,,,) ;, =< uses Q) ; < U, 28 (U(m),i), I from Lemma ,

and % uses n > 16. For the second term, we apply Lemma|24]

t—1
. . BN Osgsh
Z (Bt_l,i 0---0Bsy1i0 {55(]5)\@' Y })22

s=K({—1)+1 (158)
< (20Q<Z>’i)22 <3 (U i) < ? (Ua),i)as
Thus, we have
0 O] - onn( 3 .80 1,
<{0 s} ,Ct1> <o ; <2N2 + 3) (Uay.i)ps Xi < 507 (159)
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If ¢ > ¢ + 1, we have \;/4~! € I;. We bound 22;11 = ZKel + Z KZ*+1’ respectively. The
bound of the first term parallels (T44):

~ ~ 53)\1 65(]s>\i
t—l,io"'OBS"‘Li o LSSC]s/\i q?)xi })22

> > 52 )‘ d m)qd(m >\1
10 0 Breer i1y © B )0 0 Bl ZB {&m(;&)m)x (q% (%) D
m 22

|
Q
[V
3
Il
MR
PN —~ ? —
Q

s=1
a Z:
=<0? t—1,i 0+ O Br(er+1)41,i © B(Izj-&-l),i 00 B{fnﬂ),i © Q(m)ﬂ') 99
m=1
b b
=0? Z -1, 0 0 Br(er+1)+1,i © Bler 1) OB{;‘““ { (U(m) ) ID
2 22

80’2 U 1).% !

S(;)’)” Z [AH,Z----AK(5;+1>+MA5§,-' A(m+1)
m=1
T T
T T
(Affn+1),z> <A5—1)7i> AK(e+1)+1i° "At—l»i]
22

80’2 (U 1) ) ?

S% Z | A1 Ak 1) +12H HA(é*), HA(m+1
Lemma([T9] Lemmal[ld LemmalL€]

802 (U4 16

< (Uq, )22 ) . -logyn
3 (1—¢)? n*(logyn)?

27 (Uwi)p
= 256n2

(160)
a b
where < uses the definition of Q(m),i, < uses Lemma and % uses n > 16. For the second term,

we have \; /4% < 16(5;1—7;5))11?71 < (;:252. Thus, we apply Lemma

t—1
~ ~ 52)\ 6 )\
2 o..-0B ; 57 ey
o E : (Bt—lal © ©Pst1,i 0 [53(13)‘1’ qz)‘i ]>22

s:KZ;.‘—&-l

t—1 5 o — 8.\ 2
2 s s = s
SO’ Z /\Z _’“.AS+1’i|:q:| <80’ Z )\ ( 1_c )

s:KZ;.*+1 s= K@*Jrl

Lemma2Q] , (161)
_1280° 12807 o qeez+1) — CO(er41)

15 1—-c
_1280% (KX q—c8\ (du;+1) — Dzt
15 4% 1—c¢ 1—c
a 12802 819202 1Inn
S5 16n 4 (Ugina)y, € =5 (Ui y
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where % uses \;/ 4t < % and from Lemma ,

(Ui ny)., =240 (1 + ) (g 1) — Fes41)
(Lr+1),i 22 2 2 (1 — 2 —+ C/\i(Q(g:Jrl) + 35(€:+1)))

Oer 14+ e)(qpriqy — O
> (x+1) I ( )(q(li+1) (gi_H))

T2 2(1-c+ K+ )
S(er+1) (1+ C)(Q(£*+1 — 5(@*_,_1))
> + o
2 9 (1 _ 02 c(1— c) q+c6))
(a=cb) (162)
>5(Z:+1) (1 +c )(Q(f*—&-l) - 5((*4_1))
Z + -
2 9 (1 — 24 c(1— 0) (Q+Pq))
(g—cq)
Oy | der+y) — Oy
2 2(1+c)(1—c)
5(Z:+1) q(ff«‘»l) B 5(£:+1) _ q(€:+1) - C5(g;«+1)
-4 A1—¢) Al-o

Thus, we have

d
O O] -~ 9 1 8192Inn
<[O S] ’Ct1> <o Z (256N2 + 15 (U(l),i)zz Ai
=1

d
<5470%Inn Y (Ug),),,Xi <
i=1

(163)
Ly

A.8 BIASs UPPER BOUND
A.8.1 PROOF OF LEMMA[9]
Proof of Lemma[9} Recall the definition of B,, and B,, we have
n n T
B, = B, oBy o -oB 0B = (HAt o D <H [ D a6y
t=1 t=1
Note that A, is block-diagonal, we have

(ﬁ [38: Dz (Woi =W HA“H. (165)

For i < k*, we have \; € I;. Let /* = max {(: 4311 > %}, and note that for ¢ > ¢*,
N\i/471 < (1 P) . Therefore, we have

1

1

(T} -

K 2 ?
ol )

Lemmal[Td

I A

t=K0*+1

Lemmal[T9
16 6

“(1—¢)? ni(logyn)?
-
8n?(logy n)*

(166)

A=
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where % uses K (1 —¢) > 161nn. Fori > k*, from Lemmawe have

(Lo ) < L ]

1

<4. (167)

Consider the following decomposition:
Ta, [ -w] = f& 168
] = ] 1) s
where £, € R*" and &, € R4*". Then (T66) and (T66) implies that

([8]), < s ([E]), tm - a0

Note that T < 2T ..+ + 2Tg+.00. Then we have

<T, Bn> <2 <T0:k*,]§n> +2 <szo, En>

2 2

(0]
2|[8]1,,.. =[]
o Ty & T (170)
HWHTO ot 2
—— Ok 4
7w€S(on—w*) 8n2(logy n)* +alwllr,..
This completes the proof. O
A.8.2 PROOF OF LEMMA [I1]
O O] 5
We first analyze <[O S] ,Bt>.
Lemma 25. Fort < K, we have
d
O O] 5 "
<{o s} ,Bt> < 42& (wi)?. (171)
Fort > K, we have
0 o 36 - d
,Bt> <— N w44 Ai (W52, (172)
<{0 S} n? (logy n) ; i:kZ*Jrl

Proof. Note that f’)t is block-diagonal, we have

2
O O] 3 1
<[0 s] > ZA (H A, H) : (173)
1
Fort < K, s < t implies s belongs to the first stage. Thus, A, ; = A(y); = A(\;). By Lemma

<92 (174)

Therefore,

(175)
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For t > K, suppose t belongs to the ¢-th stage, we have ¢ > 2. Since ¢ > k* implies that \; € I;.

Let £ = max {E : 42\11 > %}. If ¢ < £7, by applying Lemma and Lemma we have

t
1 t—K(£—1) K
e S e e AN
s=1
Lemma[[3l LemmalT6] ( 176)
2(¢—1)
<6K? - QL <
n?logy n 2 (logy n)

If £ > £, by applying Lemma[I9)and Lemma([I6] we have

2
t 2 n
1 K 2
(1 [l]) <] T1 o [t s
s= 1

il

t=Ker 41
Lemmal[Id
lgﬁmma ; (177)
“(1—¢)* n*(logyn)?
e 1
~8n2(logyn)*’

We apply the above bound of Zle, and use Lemmato bound Z;}: ket

(s 5=

—Z)\ <HA“H>2+ zd: A (wi)? (ﬁA H)j (178)

1 i=k*+1 s=1
d
Ai ( 43 N(wh
o, 5 (]
IOgZ” i=1 i=k*+1
This completes the proof. O

Proof of Lemmal(Il] From the recursive definition of ]~3E1) in (57) and Lemma , we have:
Y =B o B§1_)1 +E {é\"t b2y ét} 0B, 4

51528 5tth
5:9:S ¢S

(179)
<B, 0B, + 4w I3 - [

This form is identical to the recursion of C; if we replace 4 ||w* ||§ by 2. Therefore, we apply
LemmaM]to obtain

k™ 2 d
< . o, 512 [q—cf
(T,BY) < [lwo — w13 - [ et K <q1 — C) S /\itii] . (180)
i=1 '

i=k*+1

O

A.9 AUXILIARY LEMMAS

Lemma 26. Fork > 0and 0 < x < 1, we have
21+ k01 -2)] <1 (181)

Proof. Let f(z) = z¥ [1 + k(1 — )] and its derivative f'(x) = k(k + 1)z*~(1 — z) > 0. Thus,
flz) < f(1)=1 O
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Lemma 27. For k € N and sin 0 # 0, we have
sin k6 ‘

<k.

sin 6

Proof. By induction, for k = 0, the conclusion is trivial. Assume
sin(k — 1)6

<k-1.
sin 6 -

Then we have

sinkf| |[sin(k —1)f cosf 4 cos(k — 1)0sin O
sinf | sin 0
i —1
<|cos b M + |cos(k —1)0| < k.
sin 6

B PROOFS OF OPTIMALITY ANALYSIS IN SECTION
This section provides the proofs of Section[3}

B.1 PROOF OF THEOREM[§]

Proof of Theorem[§] By the lower bound in Theorem 5} we have

R(k;) > sup <T/, (F71 + nS/)_1> .
F-O, ||F|| . <1/x?
Therefore, we only have to show that

R(k;) < sup <T’, (F '+ ns’)‘1>.
F>O, ||F||,<1/x?

Recall that

—1 -1
) : ’ ’ . ’ _1 ’
R(k;) Ag{r{laxkl}: <T , (SA) > + 1;5;8 <T , (F + nSle:d) > .

.....

Sien nk <1 IF[, <1
(a)

Let

k
1, ! ) .
F, = diag { nlEA } € Rf*ki - By = argmin(a),
i ) =1 F>-O,
' IFT. <1

and Fo = diag{F,Fy}/(27?). Since ||F||. < 1/7%,F = O, we have

Rk)= (T, (Fg +n8) )< s (T, (F4n8) ).

FrO, |F|,<1/x?

This completes the proof.

B.2 PROOF OF COROLLARY[9]

(182)

(183)

(184)

(185)

(186)

(187)

(188)

Proof of Corollary[9, We choose 6 = v = m. From the lower bound of n, we have k* = d

by Theorem [I3] Thus,

L
tii Iwli3

Epon [WiOP —wr|n <Y 2 ax Wl

pen Hwn w ||T ~ — K\ + weSI(I\}vo}iw*) n?(logy n)*’

1 w3 o
_n (TS) + max W&, 1o,

n i n2(loggn)?’

alnn

IM~Y2u,TUM /2|

ST tr (Tsil) + maX
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where U; = diag{#+1,+1,...,+£1},1 < < 2% % follows from ||w*||ar < 1. Therefore, we have

—1/277. A—1/2
~ sap .2 <lnn . IM~Y2u,TUM 2|
Epsen Hwn w ||T S tr (TS ) + max 72 (log, 1)1 (189)
=0 (tr(TS™")/n)
O

B.3 PROOF OF COROLLARY [T0l

The proof of the corollary [I0]is divided into two parts. We first show a different lower and upper
bound (up to logarithmic factors), namely

2Bd
g% (190)
n
Then, we show that
’Bd 2Bd(§
roa 1nf{52+0()}. (191)
n 6>0 n
Lemma 28 (Upper bound). Under the conditions in Corollary[I10} we have
~ (o*Bd
supEpsn [wiP —w||; < O (" - 1) : (192)
P

Proof. From Theorem[6] we have

sup Epen [P = [
P
9 In*n = )
50’ T <T0:k}§a SO:k};> + n(FY‘i’ 5) <Tk*B:ooa Sk}*goo> + ||Tkgoo||

In? - -
<20? [nnn <T0:k’§7 (So:ky, + Ak 1) 1> +n(y +6)° <Tk]*3:<>07 A (koo + Ay I) 1>} + Hdy +1

a ~ 2 _
<0 ("n (T, (S+xD) ") + udlﬂ)

<O (O: <T7 (T/B + ,udll/B)_1> + Mdﬁ-l)

(2B & 14
=0 : + g )
( Byt
(193)
where < uses A = %. From the eigenvalue regularity condition, we have
d i d d i
Z " Z P + Z "
i—1 i + fd, =1 Wi + [hdy i=dy+1 i + Hdy (194)
di  Cdipq
<— 4+ —"7L < 0O(dy).
=5 + g, (d1)
Combining the above results and j1q, +1 < "zf 4 yields the desired result. O

Lemma 29 (Lower bound). Under the conditions in Corollary for T = BS, we have the
following lower bound:

2
g Bdl) . (195)

inf  sup Epen,p [W- w7 =0 (
n

W PeP(Wwm,S,T)
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Proof. From Theorem 5] we have

inf sup Epenxp, Iw — w*||2T > sup <T, (F'+ nS/02)71> . (196)
W PeP(Wm,S,T) FrO, |F|| <1/7°
Let ) )
B B
Fua =diagd = ..., —~ 2 0,...,0%, (197)
mnp T2nfid,
sotrF < 1/72, and we have
nf s Epenp [W - w R > <T, (F '+ nT/(a2B))_1>
W PeP(Wwm,S,T)
& ops o\
>S4 i i 198
_;u (028 +UQB> (198)
o O'QBdl
(1 +72)n
O

By Lemma[39] we have
o (F ) VD i Lo AT A (T A () AT
s (T(F D))= i S0 A)T T )T (T A(S) T AT)
P, <1/
The following lemma provides an explicit form of the lower bound when S, T and M commute.

Lemma 30. Let T = diag {t;}?_, and M = diag {m;}"_,, we have

. 1
mim —
AcRdxd 72

T o? ’ nN—1 T\ _ . 72 O'Qti
l@—a)T'a-a)|+ % (T.A(S) " A >Nrgg7r2+i§ o 199)

where K, = {k; Dt/ > 7'2}.

Proof. A key observation is that when T’ is diagonal, the minimum of the LHS of (T99) is attained
when A is diagonal. Note that the LHS of (T99) is a convex optimization. Let A denote a minimizer.
Consider 2¢ reflection matrices U; = diag {£1,41,...,+1}, then for all i € [2”@ , U;ApU; s
also a minimizer. From the convexity, we have that
2d
A" = 2% > UAU; (200)
i=1
is also a minimizer, and A* is diagonal. Thus, we can restrict A to be diagonal when minimizing the
LHS of (I99). Therefore, let A = diag {ai}le and note that T' = diag {t;/ mi}le, then the LHS
of (I99) is equivalent to

d
. (1 — ag)?ty o2a?t;
E G 201
Htlzlin géé%c)ﬁ 7r2mk + 1 TL)\Z‘ ( )

We can write out the following equivalent form:

T2 02afti
afr,lruzloﬁ +z; n\;
1=
1—a;)*
s.t. Vi € [d], A=a)t 72

m; -

(202)

We first minimize the above program with respect to a; to get

e 2.
0 = {0, ti/m; < 1% (203)

1 —T\/mi/ti, ti/mi > 7'2.
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Plugging the value of a; into left hand side of (T99), we obtain the first equality in (T99):

>0 T

2 2 2
: t
min — + (1—T 7:“) ‘:Mf. (204)
ieK v v

Let 7* > 0 denote the minimizer of (204)), we have

T* 2+ Z 1 « [Ty 20'2ti ; T* 2+ Z 1 « [Ty 20'2t1'
— -7 — — —7% ] —
™ Ko t; nXx; O\ ) t; n\;
*\ 2 2 2 2
2T o°t; C 1 .7 o°t;
< s ) + Z An); Z 0 0 72 + , n\;’

1€Ko, * i€k

(205)

a b c
where > is from Ko+ C K.+, > uses that 1 — 7%, / T’ > % for all i € Ko+, and > replaces 27* by
7 and minimizes with respect to 7. This completes the proof of the inequality in (T99).

Let A = diag{1,cx, }¢_,, we have

72 a’t; 1 -1
B T T = AT A TTAE) T AT) e

Minimizing two sides yields

1 T/ ’ nN—L1 AT
min 7 + Z > i, 20— ) T8+ T (TLA(S) A7) e
O
Lemma 31. We have
_ 2Bd(§
sup <T, (F~'+nT/(c?B)) 1> = inf {52 + 0()} . (208)
F-O, |F|.<1/x? 0>0 n
Proof. Apply Lemma[30] we have
_ 2 2B KT
sup <T7 (F_1 + TLT/(O’QB)) 1> ~ min T2 4+ — K- |
F-O, ||F||, <1/ T20m n
2B !
~inf pg + o Bd (209)
P7 n
e 2 a?Bd(6)
§>0 n ’
whereKT:{k:tk/mk >7'2}. O
Proof of Corollary [I0] From Lemmas[28]and[29] we have
- ~ ’Bd
sup <T, (F~!' +nT/(c’B)) 1> ~©O <” 1) : (210)
F-O, |F| <1/x* "
Then, by Lemma , we know SGD achieves optimal rate © (inf 550 {62 + @ }) O

B.4 PROOF OF COROLLARY [14]

We begin by showing that if Dkp,(Qx || PXY) < C, we have T < B - S, where B only depends on C.

Lemma 32. Suppose PXY) and Q. are Gaussian distributions, and Dx1,(Qx || PXY) < C, then we
have T =X B - S, where B only depends on C.
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. Let S and T denote the source and target covariance matrix. Since

1
Dir(Q|| PXL) = 3 (tr(S_l/QTS_l/Q) —d— 1ndet(s—1/2Ts—1/2)) (211)
Let p; denote the eigenvalues of S™Y/2181/2 we have
1
KLy _ 1 _
Diu(QxllPX) = 5> pi = 1-Inp; < C. 212)

i=1

Since z — 1 — Inz > 0 for any « > 0, we have p; — 1 — Inp; < e forall i € [d]. By solving the
inequality, we obtain that p; are bounded by a constant B depending on C'. O

Proof of Corollary[I4] The proof parallels the proof of Corollary [T0} Similar to Lemma 28] we
~ 2

have upper bound O (inf5>o {(52 + %d(‘s) }) For the lower bound, note that Q, = PXT implies

T = S. Therefore, similar to Lemma , we have lower bound (2 (inf5>0 {52 + @ }) Ignore

7

the constant B, we get the matching bound © (inf5>0 {52 + il(a) }) O

B.5 PROOF OF COROLLARY [12]

We first show the upper bound in the Corollary
Lemma 33. Under the conditions in Corollmy for the region 1 > s > 5%, we set

R:®<n<(al:15>):a) , 0=06(1/lnn), 7:9<n%/lnn) . (213)
Then we have _
O(1/n) r>1/a;
SGD |2 ) '
. — << . rts)a—
Epon [[Wn Wollo {(9 ((l/n)( o 1) . r<1/a. @14)
Proof. Since we have
K (1—2a)s+a
" —® (a—Ds 215

and s > 2@“—_1, the parameter choice is feasible. From Theorem@ we have k* = © (n%) and

kg d
supE s ||W7slGD _ W*| 2T <O (Z v oy +6)? Z i—(24ma 4 (k*)—(r+s)a+l>
P = " i=k*+1
O(1/n), r>1/a;
<< ~ (rts)a—1
o ((1/n) ) , r<1/a.
(216)
O
Lemma 34. Under the conditions in Corollary[I2] for the region s > 1, we set
F=0(1), 5:7:@(n$/1nn>. 217)
Then we have ~
O(1/n) r>1/q;
SGD |2 ) '
Epon [[wn® = w||p < {0 (a/m=22). r<1/a (21%)
Proof. Since we have 3
R
e =0(1/n), (219)
nY ik A
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the parameter choice is feasible. From Theorem@ we have k* = © (ni ) , and

E* . ra d
L M ] LR S T e
P -1 " i—k 41
~(1/71) r>1/a;
S (T+b)a 1
o ((/n) ), r<ifa
(220)
O
The lower bound follows from Lemma[39] as shown in the following lemma.
Lemma 35. Under the conditions in Corollary[12] we have the following lower bound
A(1/n), r>1/a;
T s)a— 221
{ a((/m)=%=2), r<ija. (220
Proof. By Lemma[39] we have the following lower bound:
min H TM 120w T M 1/2 H + T <M_1/2WWTM_1/2, A (S/)—l AT>
AERdXd 71'
(222)
Letu=(I—A)TM 2w
o2 2
min —||u||2 7 H(M’l/Qw - u)H . (223)
uecRkd n (st
Solving the optimization problem, we get the lower bound:
2 2
i(s/)flM—1/2 +i HM—l/QwH2
n (%(S/)—l-s-w%)_l n (8"~
a (ojlsa (1=s)a/2 .f<1+r>a/2>2 , d
DT T
i=1 T+ # [
(224)
nsa d 1 d
Nﬁzz_(, s)a - Z Z—'ra_i_gzl—'ra
i=1 =n i 41 i=1
Q(1/n), r>1/a;
> (7‘+s)a 1
((1/ ) ) r<1/a.
O
Proof of Corollary[I2] Combine Lemmas [33] [34] and [35]to complete the proof. O

C PROOFS OF MINIMAX OPTIMALITY IN SECTION [3.3]

For completeness, we present the proofs of theorems in Section [3.3] The proofs use a different prior
distribution compared to [Pathak et al.|(2024), which does not require explicit truncation.

C.1 PROOF OF THEOREM[3]

This section provides the proof of the lower bound. For any w € W, we construct the probability
distribution Py, of (x,y) such that

x~N(0,8), y=x"w+e, (225)
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where € ~ AN(0,0%) and € and x are independent. P, satisfies Assumptions |4 and Let
G(W,S,T) = {Py : w € W} denotes the Gaussian problem class, then we have G(W,S, T) C
P(W,S,T).

The first step is to reduce the minimax risk to Bayesian risk and show that the randomness of the

estimator w does not help to achieve better performance. We denote an estimator which only depends

on samples {(x;, y;)}7_, as w9, We have the following lemma.

Lemma 36. Suppose m is any probability distribution supported on W, We have

inf  sup  Epen,p, [W— w7 > inf EyennBEpen W — w7 (226)
WY Bep(W,S,T) wet w*

Proof. From Yao’s minimax principle (Yao,|1977), we have

inf  sup  Epen,p, |w — w*||5% > inf sup Epenyp, W — w* ||
W PeP(W,S,T) W Py+€G(W,8,T) w

. ~ 2
> inf vy B pos s p, [ — w7

, (227)
>infinf By« Epon [[W(-,§) — W1
det 2
> inf EysrBpon [[WS —w"|| .
‘A’vdet w* T
O

We prove a multivariate generalization of Bayesian Cramer-Rao inequality.
Lemma 37. We denote the density function of P$™ as fw. Given data X = {(x;,y;)}i—y ~ P&",

let wi°' = WdEt(X ) be an estimator of w. The Fisher information matrix of PS™ be defined as

I(w) = /X (Ve In fur (2)) (Vw1 fuo (2)) T fuo ()2 (228)

Consider a prior probability measure 7 with density function w(w) that is supported on a compact
set W C RY and w(w) = 0 on the boundary of W. We define the information matrix of  as

I(r) = /R (Vinm(w)) (Vinm(w))" 7(w)dw. (229)

Then we have

EvrB . pon (W= W) (W = W) = (BwrZ(W) + Z(m)) " (230)

Proof. We begin by defining two random variables as
£ =wIX)—w, 1n=Vyh(fw(X)r(w)). (231)

We denote Ey,E pen by E for simplicity. For any vector u,v € R?, by Cauchy-Schwarz
inequality, we have

E (quﬁTu) E (VTnnTv) > []E (uTﬁ) (v—'—'r;)]2 . (232)

We will show that
Enn' =EZ(w) +Z(r), Eén' =1 (233)
Note that once we have established (233]), we have

[UTE (\fvdet - w) (Wdet - w)—r u} v (EZ(0) + Z(\))v] > (uTV)2 . (234)
Letv = (EZ(6) + Z(\)) ™ " u, we get

u'E (vi/dEt - w) (de - W)T u>u' (EZ(8) +Z(\) 'u (235)

49



Under review as a conference paper at ICLR 2026

Since u is arbitrary, we get the desired result.
Now, we prove by direct calculation. Consider the ij-th entry of Epn ", which is
By, =522 00D D1n (X))
i J
_E (81nfw(X) N 81n7r(w)> <8lnfw(X) n 8ln7r(w))
ow; ow; ow ow;
81nfw( ) 0ln fw(X) n E@lnw(w) Olnm(w)
ow; ow; ow; ow
6111 Jfw(X) Olnm(w) n E(?ln fw(X) Olnw(w)
ow; ow; ow ow;
Oln fw(X) dlnm(w) n IE8111 fw(X) 0lnm(w)

8wi 8w]— c’)w]— 8w2

(236)

éEIij (W) + Iij (7'(') + E

)

where £ uses the definition of Z(w) and Z (7). We need to show that
81n Jw(X)Oln7(w) ]Ealn fw(X) Olnm(w)

6wl 6Wj 6Wj 6W1

=0. (237)

For simplicity, let X = (Rd X R)n be the range of X, then we have
81nfw( ) Olnm(w) _/ Oln fw(z) Olnm(w)
X xR

ow; ow ow; ow

fw(@)m(w)dazdw

Ofw(x) Om(w)
= ——dzdw
/XXRd awl aW (238)

= f (o [ pwtoe) it

:0’

where = exchanges [, and 8\(?\/ , and £ uses J fw(x)dz = 1 and the derivative of a constant is 0.
Thus, Enn'" = EZ(w) + Z(x).
Consider the ij-th entry of E€n T, which is

E£ ,r'] _E( det(X) _ Wz) dln (fW(X)T((W))

:/XW (Wi @) - )aliv(v;gfwj W) 1. (@) (w)dadw

:/XW( i )dedw

2l (Wd“ 0 awj) famn] .
_/XXRda(W?e;ti Wy)fw( Jr(w)dadw

L (@ = w) fulam(] 2 e T v - m 2

k#j J
C
:51]7

. . b . . .
where = uses integration by parts, = integrates with respect to w;, and < is from the fact that W/
is compact, so A(w) = 0 when w is sufficiently large, and §;; denotes the kronecker delta, which

equals to the 7j-th entry of identity matrix I. Therefore, Enn ' = I. This completes the proof of
233). O
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The above lemma provides a Bayesian Cramer-Rao inequality, which enables us to derive the lower
bound in Theorem

Proof of Theorem[)] We apply Lemma In our case, let data X = {(x;,;)}i—, ~ P, By
direct calculation, we have
nS

o2

I(w*) = (240)

Thus, given any prior distribution 7 with support included in W = {w* €RY: ||w* Hi/[ < 1}, by
Lemma 36 we have

-1
R * nS
inf  sup  Epen,p [W—wp > (T, (I(w) + 2) : (241)
W pPep(W,8,T) g

The rest of the proof is to construct the prior distribution. To build intuition, we first consider the case
M = 1. We construct the prior distribution 7 as follows. Given any orthogonal matrix U and vector
g with ||g|| < 1, we define the prior density 7(w; U, g), whose support is included in unit ball, as
follows:

Tw)i

d
(U
m(w;U,g) = HCOS2 ( ( s ) ]1|(U7w)i|§|gi\’ (242)
i=1 i

where 1 is the indicator function. Note that 7(w; U, g) has support is included in unit ball. Direct
calculation shows that the information of 7 is

1 1 1
I(n(U,g :W2Udiag{,,...,}UT. (243)
(m( ) 2 &

For a general positive definite matrix M, we define a prior as follows:
m(w: U, g, M) = (det M1/2> (MY2w; U; g). (244)

Geometrically speaking, w(w; U, g, M) is obtained by scaling 7(w; U, g) along the eigenvector of
M, such that unit circle is transformed into the ellipse x " Mx = 1, and then normalize it by the factor

det M'/2. Note that the support of (w; U, g, M) is included in W = {w* eR?: [|w|3, < 1}.
Then, we calculate the information matrix of 7(w; U, g, M). Let s(w) = VInn(w; U; g), we have
Vin7(w; U, g, M) = M'/2s(M"?w). Therefore,

I(m(; U, g,M))
:/ (Ml/Qs(M1/2w)) (MI/ZS(Ml/zw))T (det M1/2> (M ?w: Us g)dw
Rd

245
=M/? [/ S(V)S(V)TW(V;U;g)dv} M'/? (v = Ml/Qw) (245)
Rd
1 1 1
iw2M1/2Udiag{2,2,...,2}UTM1/2,
g1 83 g4

where < uses the result of the information matrix of 7(w; U;g) in (243). Therefore, all the in-
formation matrices constitute the set {Ml/zF_lMl/2 F eSS |F|, < 1/772}. By applying
Lemmal[37] we have

g\ !
inf  sup  Bpea,p [W—wz> sup (T, <M1/2F‘1M1/2 + n2)
W PeP(W,S,T) F~O o

||, <1/
(246)
ns\ '
= sup <T’, (Fl + 2) > .
F>-O g
IF|l, <1/7°
This completes the proof. O
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C.2 PROOF OF LINEAR PRECONDITIONED ESTIMATOR IN SECTION[3.3.1]

Lemma 38 (Upper Bound). Suppose we get samples {(x;, y;) }1'_, drawn from the source distribution

of P. The excess risk of the optimal estimator W a defined in (6)) on the target distribution of P can
be bounded from above by:

sup  Epen [Wa — W[

PeP(W,S,T) (247)
202 + 2 ||8’ _
< min [|[I-A)TT(I-A)|+ 28+ 2 |S) <T’,A (s~ AT> ,
AcRdxd n
where S’ = M~ Y2SM Y2 and T' = M~ Y/>TM /2,
Proof. Letw = %S_l > i1 X;y;. Then we have wa = Aw. We first show that
202 + 2 *(|12
Ew = w*, covw < 2074 2 Wil g1 (248)
n

Denote ¢; = y; —x, w* as the response noise. Since w* is an optimal parameter, we have Ee;x; = 0.

Recall that S = Exx ", and {(x;, ;) },—, are i.i.d, we have
1 n
Ew = —S~! ZE [xi (XTW* + 61)] = S_lpr [XXT} w'=w". (249)

%
i=1

3

Furthermore,

COVW %ls_lprXy [yQ'XXT] S~ = %S_lprXy [(XTW* + 6)2XXT} s—!

st (pr [(XTW*>2XXT} +Ep

XXy

[EQXXTD st
(250)
s! (1/) w28 + 028) s—!

2002w g
n
where < applies covw < [WWT} and w is the average of n independent random variable, % uses
the inequality (a + b)? < 2a? + 2b?, and = uses Assumption@and Assumption
Since wp = M71/2AM1/2W, we have

Ewa = M~ 2AMY?w*, (251)

2 %12
covWa < 20° +2¢ ||lw*||g (M—1/2AM1/2) g1 (M—1/2AM1/2>
n

.
. (252)

Apply the bias-variance decomposition to E ||Ww s — w* ||2T, we obtain
E|Wwa — w* |3 = [[EWwa — w*[|7% + (T, covwa) . (253)

Recall that S’ = M~ /2SM /2 and T' = M~ */2TM~"/2. For the bias term, we have
2

2
||E\A7VA — W*”QT _ H (I o M*I/QAMl/Q) w* . _ HM71/2 (I o A) M1/2W* .

, (254)

- H(I ~A)MY 2wt
T

For the variance term, we have
2 ® (|2 1
(T, covwa) S% <M1/2TM1/2,A (M*WSM*V2> AT>
n
2 (255)
s’ <T'7A (s’)‘lAT>.

202 + %) HMl/ZW*
<

n
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Take the supremum with respect to w* € W = {W* eRe: ||w*||i/I < 1}, and note that

sup H(I —AMY?w

* i =|@-A)TTAX-A)|, sup HM1/2W
w*eW !

wr*eW

= HS'H (256)
Thus, we obtain

sup  Ellwa — w5 < |@-A)TT/(I-A)| +

202 4 2 HS/H <
PeP(W,S,T) n

T, A(S) T AT).

(257)
Minimizing the RHS with respect to A completes the proof. O

C.3 MATCHING BOUNDS

Lemma 39 (Matching Bounds). For any positive definite matrix S, M and positive semi-definite
matrix T, the following equation holds:

sup < <F +nS) 1>: min —HI—A)TT H+f<T A(S) 1AT>,

FEO AcRdxd 7'('
IF||, <1/x
where ' = M~ 2SM ™2 and T = M~ />TM /2,

The proof of Lemmais divided into two parts. First, we assume T is invertible, and solves the
optimization problem in Theorem to derive the result. For the second part, we replace T' by T' + €I,
which is invertible, and take ¢ — 0 to complete the proof.

Proof. For simplicity, let

—1
L(S', T)= sup <T/, (F +nS> >, (258)
F-O
IFIL<1/7
N L T g AT
U(S,T)—Aéﬁgxdﬂ |1—A)TTI-A)+2 <T AS)TAT). 259)

For the first part of the proof, we assume T’ is invertible. We solve the optimization problem in
A -1
Theorem Note that the objective function <T' , (F_1 + %) > is concave with respect to

F and the feasible set {F € SR, <1/ w2} is a convex set. Therefore, we can introduce a
Lagrange multiplier A € SdXd and obtain

N —1
LS, )= sp it (T (P4 n <s’ ()" a(T) s, B - F>
Fegdxd AcSdxd o2
B>O
IBI, <1/7?

£ inf  sup

nS ! —-1/2 1/2
R <T (F +) ><S’(T’) A(T) 8 F >

+ s (S'(T)a(T) S, B)
B>0
IB|, <1/

<T’ (F— + ’;SQ/) _1> —(s' (1) a(T) 8 F)

(@)

inf  sup
AgSdxd FeSdxd

1
=

)

g/ (T/)*l/2 A (T/)*l/2 g/

(260)
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-1
where = follows from the concavity of <T’, (F_1 + %) > with respect to F and the convexity

of feasible set {F € SR, <1/ 72}, and = % follows from the fact that the dual norm of nuclear

norm || - ||, is 2-norm H |I. To solve (a), let the derivative of (a) with respect to F be equal to O, we
get
F FS’ -1 B 3
<1+”S ) T/ (1+” f) —-s'(T)?Aa () Vs = 0. (261)
g

N1
Note that if A is not a PSD matrix, then (a) = +oo. Thus, A = O. Let (I + "f—f) (T/)l/2 =

s"(T) ~1/2 A2, Solve the equation yields

F=— %2 [(S,)—l (T,)1/2 AL/2 (T/)I/Q (S/)fl B (S')il] 7 262)

which meets the requirement that F' is a PSD matrix. Plugging the solution into (a), we have
2
(@) =2 [{8',(T) 2 A (1)) — 200 A 0T (8)
n

:%2 <T’, [(T’)*m Al/2 (T/)ﬂ/z s I} (s [S’ (T,)fl/z AL/ (T,)ﬂ/z B I} >

LetA=1-— (T’)fl/2 Al/? (T’)fl/2 S’, we obtain

LS, T)=  inf

-A)TTI 2 (T A(S) AT, 263
S/(IfA)GSiXd ) || + < ( ) > ( )

L

Note that the definition of U(S', T’) in (239) imposes no constraint A. Now we show that the
constraint S'(I — A) € ST*¢ in @83) can be relaxed to A € R4 Forany A € R¥*?, we denote

the polar decomposition of (T") 12 (I-A) (S’) (T") 12,
UZ = (T2 (1-A)(8)” (T’)l/2 (264)

where U is an orthogonal matrix and Z is a PSD matrix. Substitute (Z64) into the objective function
of U(S’, T') shown in (263)), we have

2
T AE) T AT) - A) T A (265)
2
é% <T’, (I — (1) oz (1)’ s’) ()" (I —s' (1) ?zTuT (T’)_1/2)>

:% [tr (UZ ()" (1) zTUT) iy (UZ n ZTUT) o (T’ (S’)*l)}

—1/2 —1/2

+ % s’ (1) /"z'uTuz(T) 7Y
2
(s ()P (r) )~ (Uz+ 27U ) (T (8) )] (266)
i % g/ (T/)*l/2 72 (T/)*l/2 g/

where = uses A = I — (T/)fl/2 UZ (T')fl/2 S’, and L uses UUT = Iand Z is a PSD matrix.
We first minimize (266) with respect to U. By Lemma —tr (UZ + ZTUT> is minimized when

U = I, which implies $'(I — A) = 8/ (T') " /* UZ (T') "/* 8’ € $%*. Therefore, we have
inf = inf inf = inf , 267
nf | @63) 2B R Z68) I 253) (267)
uu'=I
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We complete the first part by noting that U (S’, T') = inf 5 cgax« (263)) by definition and L(S', T') =
infg, yesdxd (263)) which is shown in (263).

For the second part of the proof, we consider the case where T is any PSD matrix, i.e. T' is possibly
singular. Let € > 0 be arbitrary. Since L(S’, T") is linear in T', we have

LS, T) < L(S", T + eI) < L(S', T') + eL(S', 1) (268)
Note that
nS\ 1
sup I, (F + ) < sup wF< . (269)
F~0 F~0 m
¥, <1/x> 17, <1/7>
Therefore, we have
L(S",T') = lim L(S',T' + ). (270)
e—0t
Similarly, we have
inf 7”1_ TT( |\+—<T A(S)'AT)
AE]RdXd 7'('
< inf L I- AT (T + DI A + o <T’ +eLA(S) AT
AcRexs 2 " @271)

2
L a—a)TTa- Ay + % <T'7A0 (s A§>
1 T o? N=1 T
e |5 |- A0)Ta- A+t (Ao () A )|

where A is a minimizer of % [|[(I— A)TT'(I— A)|| + = <T' (s") ! AT>. Thus, we have

U(S,T') = lim U(S, T + €I). (272)

e—0t

Finally, combine (270), and the first part of the proof, we obtain

L(S',T) = lim L(S,T' +€l) = lim U(S, T +¢I)=U(S',T). (273)
e—0Tt e—0Tt
This completes the proof for any PSD matrix T’. O

Lemma 40. Let Z be a PSD matrix and U be a orthogonal matrix. Then tr(UZ) < trZ.

Proof. Without loss of generality, we assume Z = diag{z1,22...,2q4}. Let u;; denote the ij-th
entry of U. Note that U is orthogonal implies |u;;| < 1, so
d d
= Z iz < Z 2 =trZ, (274)
i=1 i=1
where = holds when U = 1. O

D WHEN IS EMERGENCE POSSIBLE?

When scaling up the training of large language models, models may suddenly perform much better
on downstream tasks after hitting a critical sample size—an amazing phenomenon often referred
to as emergence (Wei et al) [2022). Under the covariate shift setting, emergence can arise when
downstream tasks demand high-quality estimation in localized source spectral regions, despite
the source excess risk decreasing smoothly. Specifically, when the downstream task emphasizes
directions corresponding to a certain eigensubspace Sg,.x,, the phase transition in ASGD’s bias-
reduction capability indicates that the target excess risk remains flat until the effective dimension
k* surpasses ko. Consequently, the target excess risk of ASGD exhibits a sharp transition—from a
plateau to rapid decline, when the sample size reaches n = (( + §) A, ) "1, while the source excess
risk continues its gradual decrease. The following provides an illustrative example of this mechanism.
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Example 1. We suppose S = diag{i=?}¢_, and Ml = L Let dy € [d], we consider target covariance

. T (14r)a . —(1+47)a d . *
matrix T = diag < d;, (max{i,do}) , where —1 < r < 1/a. There exists w* € Wr,
i=1

such that the source and target excess risk of SGD with § = v = €} (n_ﬂflrl) satisfy:

* 2 ~ a
Epon ||[WhP —w*|| . = © ((1/n)+1) (275)
o6(1) n < dith
- SGD _ . * 2 _ - ’ e ~ Y0 )
Epon |[|W), w |T ~ {@ ((d8+1/n) (tr) ) Cnz dg“. (276)

This example demonstrates that even when SGD achieves optimality, the emergent phenomenon can
still occur. This illustrates that emergence is an inherent consequence of downstream tasks placing
disproportionate emphasis on specific regions of the source representation.

E MORE OPTIMAL FUNCTION CLASS

The following corollary of Theorem 8] further show that SGD can achieve optimality over a Gaussian
distribution class with bounded KL divergence.

Corollary 14 (Gaussian Dykj, Bounded Class). Let constant C > 0 and M = 1. The
Dxq,-bounded class Péq#r includes problem instances such that Py and Qx are Gaussian,

Eq.xx' = T and DxL(Qx||PXY) < C. Under the regularity condition, and assume ki, =
maxy { A" > pa, } < k™, where dy = max; {p; > 0%i/n}. SGD withy ~ (Inn)?/(nXg:, )

and § =~ min {~,1/(tr SInn)} can achieve the optimal rate O(inf s {52 24O })

n

F EXPERIMENT DETAILS

F.1 EXPERIMENT DETAILS OF SECTION

All experiments are conducted 100 times, and we calculate 95% confidence intervals. We introduce
covariate shift by assigning each image of age y to the source domain with probability p(y) =
1/ (1 + exp (— y;(;lo )) and to the target otherwise. We perform a grid search on the hyperparameters

of both ridge and ASGD based on the validation loss.

F.2 SIMULATIONS

This section presents the details on the simulation results. We repeat each simulation 100 times and
report the average result and 95% confidence interval. Dashed lines show the theoretical rate. Unless
specified, we choose dimension d = 50000, source covariate x ~ A(0,S), S = diag{i~2}¢_, and
M=1

* Figure 2] (a) Comparison of SGD and Ridge in the setting of Theorem [II, We set
d = 5000, SGD learning rate vy = 100n~!; S and T are set according to Theorem |1 1} Ridge
only achieves sub-optimal rate 1/+/n, while SGD achieves minimax rate 1/n.

* Figure 2] (b) Asymptotic convergence rate of SGD in the setting of Corollary[9} We
set d = 10, SGD learning rate v = 0.1, A\; = ¢~%, and target covariance matrix T =
U diag{i—*}&,U", where U is a random orthogonal matrix.

+ Figure[2|(c) Simulation of Corollary[10} Let \; = i >, we set the source distribution as
follows: with probability 1/B, the i-th coordinate x; ~ {—+/A;, v/A;} independently; with
probability 1 — 1/B, x = 0. In the target domain, the i-th coordinate x; ~ {—v/A;, VA }
independently. We set B = n° and SGD learning rate v = 0.01p = a1,

* Figure 2| (d) Simulation of Corollary[14} We set S = T to simulate the hard instance in
the Dxr, bounded class, which is constructed in the proof of Corollary[I4] SGD learning

. __1
rate is set to v = 0.1n~ o+1.
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* Figure [2| () Convergence rate of Rank-1 case in the setting of Corollary We set

SGD learning rate vy = 0.1n%, a=15M=1and T = ww' where w € R? and

w; = ,L'f(1+r)a/2.

» Figure 2] (f) Comparison of the convergence rate of different learning rates in the
setting of Corollary For ASGD, we set 6 = 0.1. v = 0.1 - n is the theoretical
optimal learning rate, and achieves minimax rate ©(n~%8). Choosing other learning rates
(v =0.1-n° c=0,—-0.4) leads to sub-optimal convergence rates.

* Figure 2| (g2 Emergent behavior of different target domains in the setting of Ex-
ample (1| with dy, = 7 fixed. We set SGD learning rate = 0.In"e+1, T =
A d
diag {dél+r>a (max{i, do})_(1+7)“} according to Example |1} Target excess risk ex-
i=1

hibits different rates for different r, while they start to decay at nearly the same sample size
n ~ 1000.

e Figure [2[ (h) Emergent behavior of different target domains in the setting of Ex-

ample [1| with » = 0.1 fixed. We set SGD learning rate v = 0.1n*%+1, T =
d

diag {dél+r>a (max{4, do})_(1+r)“} according to Example|1| Target excess risk starts
i=1

to decay at different sample sizes for different d, while they exhibit almost the same
convergence rate.

We conduct numerical simulations in the setting of Figure [2[f) to compare different learning rate
schedulers.

* Exp decay: Algorithm [I]in this paper.
* Poly decay: v+ = o /t, and &; = dp/t.

¢ Cosine decay (Loshchilov and Hutter, 2017): v = ~min + (Ymax — Ymin)[1 +
cos(m(t mod T')/T)]/2, and § = dmin + (Omax — Omin)[1 + cos(m(t mod T')/T')]/2, where
2

we set T = 1n/4, Ymin = Ymax/7> and Smin = Omax /7

* SHB: PyTorch implementation of momentum, J is the momentum parameter.

We repeat each simulation 100 times, and plot the average target excess risk in Figure[3] The shaded
area indicates 95% confidence interval.

G UsSEOFLLM

We use LLM to polish our paper writing.
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Figure 2: Simulation results. We set the source covariance matrix S = {i~*}%_,, and other parameters

are specified in the corresponding settings.
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Figure 3: Comparison of the taget excess risk for different learning rate schedulers.
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