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ABSTRACT

Physical attacks against object detection have gained significant attention due
to their practical implications. However, conducting physical experiments is
time-consuming and labor-intensive, and controlling physical dynamics and cross-
domain transformations in the real world is challenging, leading to inconsistent
evaluations and hindering the development of robust models. To address these
issues, we explore realistic simulations to rigorously benchmark physical attacks
under controlled conditions. This approach ensures fairness and resolves the prob-
lem of capturing stricly aligned adversarial images, which is challenging in the
real world. Our benchmark includes 23 physical attacks, 48 object detectors, com-
prehensive physical dynamics, and evaluation metrics. We provide end-to-end
pipelines for dataset generation, detection, evaluation, and analysis. The benchmark
is flexible and scalable, allowing easy integration of new objects, attacks, models,
and vision tasks. Based on this benchmark, we generate comprehensive datasets
and perform over 8,000 evaluations, including overall assessments and detailed
ablation studies. These experiments provide detailed analyses from detection and
attack perspectives, highlight limitations of existing algorithms and offer revealing
insights. The code and datasets will be publicly available.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in various fields such as computer
vision (O’Mabhony et al., 2020), natural language processing (Otter et al., 2020), and speech recogni-
tion (Nassif et al., 2019). However, studies (Szegedy et al., 2013; Goodfellow et al., 2014; Brown
et al., 2017; Kurakin et al., 2018; Buckner, 2020) show that DNNs are vulnerable to adversarial
attacks, which can be categorized into digital and physical attacks. Digital attacks add imperceptible
perturbations to input images post-imaging, while physical attacks modify the physical properties of
targets pre-imaging, such as changing textures (Suryanto et al., 2023; Zheng et al., 2024) or adding
stickers (Wei et al., 2022; Li et al., 2019). Physical attacks are more practical and dangerous as
they can be easily implemented in real-world scenarios, raising significant concerns in safety-critical
applications like autonomous driving (Wang et al., 2023b; Cao et al., 2023), security surveillance
(Nguyen et al., 2023; Wang et al., 2019b), and remote sensing (Wang et al., 2024b; Lian et al., 2022).

Object detection is a fundamental and pragmatic task in computer vision, widely deployed in various
intelligent systems (Zou et al., 2023; Zhao et al., 2019). Consequently, many physical attacks aim
to fool object detectors in real-world scenarios, and the physical adversarial robustness of object
detection models has garnered increasing attention in recent years. However, the absence of regulated
and easy-to-follow benchmarks hinders the development of physical attack and physically robust
detection methods. The main reasons for the lack of physical attack benchmarks are concluded as
follows: /) Time-consuming and expensive: Evaluating the performance of physical attacks and
the adversarial robustness of object detection models requires numerous real-world experiments,
which are time-consuming and costly. 2) Physical dynamics alignment: Ensuring comparison
fairness necessitates strictly controlled and consistent physical dynamics, which is unachievable in
real-world scenarios since it is impossible to capture two identical pictures. 3) Cross-domain loss:
Physical attacks often involve creating conspicuous adversarial perturbations that must survive the
transformation from the physical to the digital domain and vice versa, while this cross-domain loss is
uncontrollable. 4) Difficulty in comparison: With the evolution of physical attacks from 2D to 3D
space, it becomes challenging to fairly compare different types of physical attack methods. Due to
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these challenges, it is difficult to effectively verify the efficacy of physical attacks and the adversarial
robustness of object detection models without thorough evaluation and impartial comparisons. As a
result, researchers cannot accurately gauge the progress of physical adversarial attacks and robustness
development, which slows down advancements in the field.

In this paper, we propose utilizing realistic simulations to benchmark physical attacks under controlled
conditions such as weather, viewing angle, and location. These conditions are challenging to align
for impartial comparisons in the real world. Our benchmark includes 23 physical attack methods,
48 object detectors, diverse physical dynamics, evaluation metrics from different perspectives, and
comprehensive pipelines for data generation, attack and detection evaluation, and subsequent analysis.
Moreover, the benchmark is highly flexible and scalable, allowing for easy integration of new physical
attacks, models, and even other vision tasks. Based on the benchmark, we generate comprehensive
and strictly aligned datasets and perform over 8,000 evaluations, including both overall assessments
and detailed ablation studies for controlled physical dynamics. Through these experiments, we
provide detailed analyses from detection and attack perspectives, highlight algorithm limitations, and
convey valuable insights. In summary, our contributions are as follows:

* We propose a robust and equitable benchmark for physical attacks against object detec-
tion models. This benchmark deeply explores the potential of real-world simulators to
consistently evaluate physical attacks under a variety of continuous physical dynamics.

» The benchmark includes 23 physical attacks, 48 object detectors, comprehensive physical
dynamics, and rigorous evaluation metrics. We provide end-to-end pipelines for dataset
generation, detection, evaluation, and analysis, ensuring a thorough evaluation process.

» The benchmark is designed to be highly flexible and scalable, facilitating the easy integration
of new physical attacks, models, and even other vision tasks. This adaptability enhances the
utility of our framework for ongoing research and development in the field.

* Based on our benchmark, we generate comprehensive datasets and perform over 8,000
evaluations, including overall assessments and detailed ablation studies. These experiments
highlight the limitations of existing algorithms and illuminate informative insights.

2 RELATED WORK

2.1 OBIJECT DETECTION

Object detection is a fundamental task in computer vision, aiming to identify and localize objects
within images or videos. It can be formulated as a mapping function f : X — ), where X’ is the input
space and Y is the output space (e.g., bounding boxes and class labels). Deep learning has significantly
advanced object detection. R-CNN (Girshick et al., 2014) and its successors (Girshick, 2015; Ren
et al., 2016; Lu et al., 2019; Pang et al., 2019; Wu et al., 2020a; Zhang et al., 2020a; Sun et al.,
2021) improved detection speed and accuracy with region proposal networks and shared convolution
computations. SSD (Liu et al., 2016) and YOLO series (Redmon et al., 2016; Redmon & Farhadi,
2017; 2018; Bochkovskiy et al., 2020; Jocher et al., 2022; Li et al., 2022a; Wang et al., 2023a; Jocher
et al., 2023; Wang & Liao, 2024; Wang et al., 2024a) further accelerated detection by eliminating
region proposals, enabling real-time applications. Recently, transformer-based architectures like
DETR (Carion et al., 2020), DAB-DETR (Liu et al., 2022), ViTDet (Li et al., 2022b), DINO (Zhang
et al., 2022b), and Co-DETR (Zong et al., 2023) have pushed performance boundaries using attention
mechanisms. Despite these advancements, object detection in adversarial environments remains
challenging, requiring ongoing research.

2.2 PHYSICAL ATTACK

Adversarial attacks typically add imperceptible perturbations § to the clean input @ in the digital do-
main, fooling DNNs into incorrect predictions. This is formulated as: ming £(f(z+40),y) s.t.d €
X, where L is the attack loss and y is the ground-truth. In contrast, physical attacks of-
ten manipulate the physical properties of objects to deceive detection models, formulated as:
ming L(f(x + Tpan(Tp2p(0))),y) s.t.d € X, where Tpap and Tpop are transformations be-
tween digital and physical domains. Kurakin et al. (2018) first showed that machine learning systems
are vulnerable to adversarial examples in physical contexts. They demonstrated this with adversarial
images captured via a cell phone camera, significantly degrading vision system performance. Brown
et al. (2017) introduced adversarial patches, which localize perturbations to specific image regions
without imperceptibility constraints. These patches are practical and effective in the real world, easily
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printed and attached to objects to fool detectors (Song et al., 2018; Thys et al., 2019; Wu et al., 2020b;
Zolfi et al., 2021; Zhu et al., 2021; Wang et al., 2022b; Zhu et al., 2022; Hu et al., 2022; Zhang
et al., 2022c; Shapira et al., 2022; Huang et al., 2023; Guesmi et al., 2024). To avoid suspicion,
natural-style adversarial patches have been proposed (Huang et al., 2020; Hu et al., 2021; Guesmi
et al., 2023). Beyond patches, physical perturbations include light (Hu et al., 2023a; Wu et al., 2024),
viewpoint (Dong et al., 2022), and 3D objects (Liu et al., 2023a). Extending adversarial perturbations
to 3D space (Zhang et al., 2018; Wang et al., 2022a; Suryanto et al., 2022; 2023; Zhou et al., 2024)
has proven more effective and applicable in real-world scenarios. The variety in perturbations and
settings complicates fair comparisons of physical attack methods.

2.3 ROBUSTNESS BENCHMARK

Benchmarking adversarial attacks is crucial for evaluating and improving the robustness of DNN-
based models. Croce et al. (2020) established a standardized benchmark for adversarial robustness,
accurately reflecting model robustness within a reasonable computational budget. Wu et al. (2022)
created a comprehensive benchmark for backdoor attacks in image classification models. Michaelis
etal. (2019) provided a benchmark to assess object detection models under deteriorating image quality,
such as distortions or adverse weather conditions. Zheng et al. (2023) benchmarked adversarial
robustness of image classifiers in black-box settings. Dong et al. (2023) evaluated the robustness
of 3D object detection to common corruptions in LiDAR and camera data. Li et al. (2023) focused
on benchmarking the visual naturalness of physical adversarial perturbations. Hingun et al. (2023)
constructed a large-scale benchmark for evaluating adversarial patches with a traffic sign dataset.
CARLA (Dosovitskiy et al., 2017), a realistic autonomous driving simulator, has been used in physical
adversarial robustness research. Nesti et al. (2022) presented CARLA-GEAR, a dataset generator
for evaluating adversarial robustness of vision models. Zhang et al. (2023b) proposed a pipeline for
instance-level data generation using CARLA, creating the DCI dataset and conducting experiments
with three detectors and three physical attacks. Despite these efforts, a comprehensive and rigorous
benchmark for physical attacks against object detection models is still lacking. This work aims to fill
that gap with easy-to-follow instructions and a codebase.

3 PADETBENCH

The benchmark encompasses four integral facets: datasets generation, physical attacks, object
detection, and comprehensive evaluation & analysis procedures, as shown in Fig. 1. From a technical
standpoint, we have engineered each constituent of the benchmark as modular, end-to-end pipelines
within the codebase, ensuring straightforward adoption and replication.

3.1 DATASETS GENERATION

It is common to use COCO (Lin et al., 2014), PASCAL VOC (Everingham & Winn, 2012), KITTI
(Geiger et al., 2012), etc., as benchmark datasets for object detection. However, these datasets
are ill-suited for assessing physical attacks since they are static and lack the flexibility required
to create manipulated, real-world adversarial scenarios. Physical attacks typically entail altering
the physical attributes of objects before capturing their images. To fairly and accurately evaluate
and compare such attacks, experiments necessitate applying perturbations in real-world conditions
with controlled physical dynamics, which are excessively time-consuming, labor-intensive, and
theoretically infeasible. Simulated environments, like CARLA (Dosovitskiy et al., 2017), present a
viable solution to these obstacles by enabling the straightforward manipulation of physical dynamics
through configurable parameters.

This work contributes an end-to-end pipeline for dataset generation within our codebase, significantly
streamlining the dataset generation process and enhancing research productivity. Our pipeline
prioritizes user-friendliness, enabling researchers to swiftly generate datasets embodying diverse
physical conditions through a concise series of steps. These conditions encompass variations in
weather, viewing angles, and distances, along with the capacity to impose physical perturbations
on objects. Comprehensively, our pipeline supports over 10 distinct environments ranging from
downtowns to small towns and rural landscapes, coupled with a library of more than 40 vehicles
and 40 pedestrian models, all customizable concerning their hues and surface textures. It further
integrates continuous manipulation of physical dynamics such as fluctuating weather patterns, precise
sun positioning, and flexible camera placements concerning both location and orientation (refer to A.2
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Figure 1: Overview of the benchmark, which consists of four main components: dataset generation,
physical attacks, object detection, and evaluation. The end-to-end pipelines for each component are
built into the codebase, making them easy to follow and reproduce. Please zoom in for details.

and A.3 for details). To ensure accessibility, we accompany the pipeline with step-by-step guidelines
for personalizing object perturbations and seamlessly integrating these modifications within CARLA’s
(Dosovitskiy et al., 2017) simulation framework.

Our benchmark comprises three categories of datasets: a clean dataset serving as a control group,
a dataset with random noise perturbations, and several datasets featuring adversarial perturbations
generated through various attack methodologies. To ensure fair comparisons, scene compositions
and camera perspectives are meticulously synchronized and regulated across all datasets, achievable
effortlessly through our provided pipeline.

Moreover, our pipeline facilitates the automatic generation of supplementary annotations, including
2D and 3D bounding boxes, depth maps, and instance segmentation maps. Consequently, our
benchmark extends its utility beyond 2D object detection, also catering to tasks like 3D object
detection, instance segmentation, depth estimation, and more, thereby enhancing the scope of
research and application in computer vision.

3.2 PHYSICAL ATTACKS

Physical attacks are usually tailed for specific object, and the commonly targeted objects are vehicles,
persons, and traffic signs as evidenced by Wei et al. (2024). Consequently, we adopt typical objects
from these categories as examples to illustrate the proposed benchmark. Specifically, we select
23 representative physical attack methods, which can be categoried into three types according to
their target objects: vehicle, person, and traffic sign, as shown in Table 1. The corresponding
physical perturbations of these methods are imported into Unreal Engine 4 for CARLA (CarlaUE4)
(Dosovitskiy et al., 2017), as shown in the physical attacks part of Fig. 1, to generate the physical
adversarial datasets. We adhere to two principles similar to (Wu et al., 2022) when selecting physical
attacks. First, the methods are representative or advanced in the research field, which can serve as
baseline and state-of-the-art (SOTA) methods for comparison, respectively. Second, physical attacks
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are easily conducted and with reproducible performance, which can be conveniently followed and
reproduced by other researchers. Since our benchmark evaluates physical attacks based on their
crafted perturbations, novel physical attack methods can be easily integrated into the benchmark by
following the provided pipeline. We will continue to update the physical attacks in the benchmark to
keep pace with the latest research progress.

Table 1: Categorization of physical attack methods based on their target objects.

Target objects Physical attacks
FCA (Wang et al., 2022a), DTA (Suryanto et al., 2022), ACTIVE (Suryanto et al., 2023),
Vehilcle 3D*Fool (Zheng et al., 2024), POOPatch (Cheng et al., 2022),

RPAU (Liu et al., 2023b), CAMOU (Zhang et al., 2018)

DAP (Guesmi et al., 2024), AdvPattern (Wang et al., 2019b), UPC (Huang et al., 2020),
NatPatch (Hu et al., 2021), MTD (Ding et al., 2021), AdvCaT (Hu et al., 2023b),
AdvTexture (Hu et al., 2022), AdvTshirt(Xu et al., 2020), AdvPatch (Thys et al., 2019),
LAP (Tan et al., 2021), InvisCloak (Wu et al., 2020b), AdvCam (Duan et al., 2020)
Traffic sign AdvCam (Duan et al., 2020), RP, Eykholt et al. (2018), ShapeShifter(Chen et al., 2019b)

Person

3.3 OBIJECT DETECTORS

We choose 48 object detectors in the same principles as choosing physical attack methods, covering
mainstream object detectors, such as YOLO series (Jocher et al., 2022; Li et al., 2022a; Wang et al.,
2023a; Jocher et al., 2023; Ge et al., 2021) (One-stage) and R-CNN series (Girshick et al., 2014;
Girshick, 2015; Ren et al., 2016; Cai & Vasconcelos, 2018; Sun et al., 2021), which are based on
CNN. Except for canonical detectors, we also include transformer-based detectors, such as DETR
(Carion et al., 2020), Conditional DETR (Meng et al., 2021), Deformable DETR (Zhu et al., 2020b),
DAB-DETR (Liu et al., 2022), and DINO (Zhang et al., 2022b). All the selected detectors are listed in
Table 2 according to their characteristics. Our benchmark provides the end-to-end pipeline for object
detection evaluation based on MMDetection (Chen et al., 2019a). Consequently, it is convenient
to integrate new detectors into the benchmark, and the benchmark can also be easily extended to
evaluate other vision tasks, such as 3D object detection, instance segmentation, and depth estimation.

3.4 EVALUATION AND ANALYSIS

Evaluation metrics. To rigorously assess the efficacy of physical attacks on object detection systems,
we furnish baseline datasets: clean datasets (without perturbations) and those infused with randomized
noise (incorporating arbitrary disturbances in ¢,-bounded space). This dual-baseline approach sets
the stage for a thorough and fair examination. Quantifying performance entails employing evaluation
metrics that consider the performance of both object detection and adversarial attack. These metrics
comprise several widely adopted indicators, including mean average precision (mAP), mean average
recall (mAR), and attack successful rate (ASR). mAP and mAR are calculated as the mean value
of average precisions and recalls at n recall and precision levels over C' classes, respectively, i.e.,

mAP = % Zg’;l( L Z? . P;) and mAR =% PO (237" | R;). Precision rate and recall rate are
calculated as P = TP +FP and R = TPLEN +FN, respectively, where TP, FP, and FN denote the true positive,

false positive, and false negative counts of the detector, respectively. On the other hand, ASR quantifies
the effectiveness of the adversarial perturbations, calculated as ASR =1 — Md‘]“‘k where M, ek and

Mcean denote the value of adopted metric on the attack and clean datasets, respectively. ASR provides
a direct measure of the extent to which the attacks undermine the detector’s performance.

Advocation of mAR for physical attacks. Adversarial attacks aim to induce mispredictions, i.e., to
maximize error rate, which is the mathematical expectation of incorrect predictions written as:

Y -y Ny

1
V] ey

err = Eyey [1g,] =

where 15—, is 1 for a correct prediction and 0 otherwise, and Y and Y represent the ground truths
and predlcted results of all objects, respectively. According to the calculation of performance metrics
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Table 2: Categorization of object detection. Note that the categorization is based on the selected
version of the methods, and the category may vary with different versions, such as the backbone of a
detector being either CNN or Transformer. Refer to A.4 for the corresponding config files.

Backbone Category Detectors

ATSS(Zhang et al., 2020b), AutoAssign(Zhu et al., 2020a), GFL(Li et al., 2020),
CenterNet(Zhou et al., 2019), CornerNet(Law & Deng, 2018), PAA(Kim & Lee, 2020),
DDOD(Chen et al., 2021), DyHead(Wu et al., 2020a), EfficientNet(Tan & Le, 2019),
FCOS(Tian et al., 1904), FoveaBox(Kong et al., 2020), FreeAnchor(Zhang et al., 2019),
LD(Zheng et al., 2022), CentripetalNet(Dong et al., 2020), FSAF(Zhu et al., 2019),
RTMDet(Lyu et al., 2022), TOOD(Feng et al., 2021), VarifocalNet(Zhang et al., 2021),
YOLOX(Ge et al., 2021), YOLOv5(Jocher et al., 2022), YOLOv6(Li et al., 2022a),
YOLOv7(Wang et al., 2023a), RetinaNet(Lin et al., 2017), YOLOv8(Jocher et al., 2023)

One-stage

CNN

Faster R-CNN(Ren et al., 2016), Cascade R-CNN(Cai & Vasconcelos, 2019),
Cascade RPN(Vu et al., 2019), Double Heads(Wu et al., 2020a), FPG(Chen et al., 2020),
Libra R-CNN(Pang et al., 2019), PAFPN(Liu et al., 2018), HRNet(Sun et al., 2019),
ResNeSt(Zhang et al., 2022a), Res2Net(Gao et al., 2019), SABL(Wang et al., 2020),
Guided Anchoring(Wang et al., 2019a), Sparse R-CNN(Sun et al., 2021),
RepPoints(Yang et al., 2019), Grid R-CNN(Lu et al., 2019)
DETR(Carion et al., 2020), PVT(Wang et al., 2021), PVTv2(Wang et al., 2021),
Transformer - DDQ(Zhang et al., 2023a), DAB-DETR(Liu et al., 2022), DINO(Zhang et al., 2022b),

Deformable DETR(Zhu et al., 2020b), Conditional DETR(Meng et al., 2021)

Two-stage

for detection, we can rewrite the error rate as:

Y -YNY
= = ]E
] [

Therefore, mAR is a more direct and intuitive metric for evaluating the effectiveness of physical
attacks on object detection models. We use mAR as the primary metric in the main manuscript, while
mAP is also provided for reference.

FN

crr ]
TP + FN

=1 - mAR. 2)

Evaluation perspectives. Specifically, we use mAP50, i.e., the confidence threshold of 0.5, to
evaluate the overall performance of object detection, which is widely adopted in the object detection
community. mARSO0 is adopted to signify the proportion of correctly identified instances relative
to the actual total in the dataset, offering an intuitive gauge of how physical attacks degrade the
detection capability of a given adversarial target. However, mARS50 and mAPS50 cannot fully reflect
the performance of object detection models, especially when the confidence score of a adversarial
object is significantly dropped but still higher than the threshold. To address this issue, we also use
mARS0:95 and mAP50:95, which are calculated as the mean value over the range of 0.5 to 0.95
of the confidence threshold, to provide a more comprehensive evaluation of the object detection
models. In the perspective of physical attacks, we use ASR over the detection metrics mAP50,
mARS0, mAP50:95, and mARS50:95 to evaluate the effectiveness of physical attacks on object
detection models, ensuring a comprehensive and impartial assessment. Moreover, we also visualize
the distribution of evaluation performance using violin plots, which can provide a more intuitive
understanding of the performance of object detection models and physical attacks, respectively.

Analysis tools. Furthermore, we enhance our codebase by incorporating several ready-to-use ex-
plainability visualization tools, facilitating deeper insights into model behavior. These include
Grad-CAM (Selvaraju et al., 2017) for visualizing the regions of input data that contribute most to
the model’s prediction, Shapley value (Lundberg & Lee, 2017) to quantify the individual feature con-
tributions, and t-SNE (van der Maaten & Hinton, 2008) for reducing dimensionality and visualizing
high-dimensional data in a more interpretable manner. These additions empower users to conduct
comprehensive analyses beyond mere performance evaluation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. /) Overall experiments. We generate overall datasets with 3 objects, 10 weather conditions,
2 altitude angles, 8 azimuth angles, 5 radius values, 3 spawn points, and 23 physical perturbations,
i.e., 7200 samples (3 x 10 x 2 x 8 x 5 x 3 = 7200) for each attack method, in which the physical
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Figure 2: Overall results of vehicle detection. Each subplot corresponds to a specific detector,
illustrating its mARS0 (%) under various attack techniques and control group (Clean) via bar graphs,
with + markers denoting the associated ASR (%) values. Zooming in is advised.
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Figure 3: Overall results of person detection by 48 detectors, reported in ASR(%). Each detector is
evaluated against 13 attack methods (marked by different markers and colors, see legend). The violin
plot shows the maximum, minimum, and distribution of ASR, where thickness represents the density
of attack methods with corresponding ASR. ASR is measured by mARSO0.

dynamics are strictly aligned and controlled for impartial comparison (detailed in A.2). Please note
that these parameters are adjustable in the pipeline, and the datasets can be easily generated with
different settings as needed. 2) Ablation Studies. We conduct in-depth examinations to explore the
individual impact of core physical dynamics: weather conditions, venue, camera distance, azimuth
angle, altitude angle within a hemispherical space. Accomplishing this involves generating focused
sub-benchmarks, each consisting of 100 samples.

Physical attacks. We generate 24 datasets for comprehensive evaluation, including 20 physically
noised datasets that correspond to 20 physical attacks, an extra 2 clean datasets and 2 randomly noised
datasets for comparison of vehicle detection and person detection, respectively. To evaluate the attack
transferability, we also adopt perturbations optimized for aerial detection (Lian et al., 2022) and depth
estimation (Zheng et al., 2024; Cheng et al., 2022) in the experiments. Furthermore, we generate 4
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Figure 4: Overall results of vehicle detection by 48 detectors, reported in ASR(%). Each detector is
evaluated against 9 attack methods (marked by different markers and colors, see legend). The violin
plot shows the maximum, minimum, and distribution of ASR, where thickness represents the density
of attack methods with corresponding ASR. ASR is measured by mARS50.
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Figure 5: Results of person detection from 13 attack methods in ASR (%). Each method is
evaluated against 48 detectors (marked by different markers and colors, see legend). The violin plot
shows the maximum, minimum, and distribution of ASR, where thickness represents the density of
detectors with corresponding ASR. ASR is measured by mARS0.

extra datasets concerning traffic sign detection to show the easy extension of the benchmark to other
objects (refer to A.3 for more details). The involved physical attacks are detailed in Table 1.

Object detectors. We evaluate 48 object detectors covering mainstream types, such as one and two-
stage detectors, and transformer-based detectors, as shown in Table 2, by integrating MMDetection
(Chen et al., 2019a) into our evaluation pipeline.

Therefore, we conduct a total of 8256 (24 x 48 x (1 + 6) + 4 x 48) groups of the experiment, which
are conducted with 16 x NVIDIA Geforce 4090.

4.2 OVERALL EXPERIMENTS AND ANALYSIS

We present the comprehensive results of vehicle detection against physical attacks in Fig. 2. Ad-
ditionally, Fig. 3 and Fig. 4 show visualized analyses of the experimental results from detection
perspectives, and Fig. 5 and Fig. 6 present the results from attack perspectives. More experimental
results and corresponding detailed numerical results are listed in B. From these evaluation, several
key observations emerge:

Detection perspective. /) Vehicle detection performance is significantly impacted by physical
attacks, with the average recall rates of detectors decreasing up to 50%, as shown in Fig. 4. However,
pedestrian detection performance is less affected regarding various attacks, with the average recall
rates of detectors decreasing by less than 20%, as shown in Fig. 3. The potential reason is that the
stronger physical perturbations are optimized with consideration of 3D space and accommodate more
complex physical dynamics, while physical attacks aiming to fool person detectors are commonly
performed with optimized 2D patches, which work well in particular physical dynamics, as detailed
in the ablation experiments B.2.2, which empirically demonstrate the pressing need and necessity
of a comprehensive and rigorous benchmark for physical attacks. 2) The performance of different
detectors varies significantly, with some detectors exhibiting superior robustness against physical
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Figure 6: Results of vehicle detection from 9 attack methods in ASR (%). Each method is evaluated
against 48 detectors (marked by different markers and colors, see legend). The violin plot shows the
maximum, minimum, and distribution of ASR, where thickness represents the density of detectors
with corresponding ASR. ASR is measured by mARS50.

attacks, such as EfficientNet, the YOLO series, and RTMDet among one-stage detectors. Additionally,
DDQ demonstrates notable adversarial robustness among transformer-based detectors. While other
detectors show varying lower levels of robustness, state-of-the-art detection performance does not
necessarily correlate with adversarial robustness. Consequently, the benchmark also serves as an
indicator of robustness.

Attack perspective. /) For vehicle detection, different physical attacks exhibit varying levels of
effectiveness, with some attacks achieving ASR values exceeding 70% like ACTIVE, and others
failing to surpass 20%. Most of the physical attacks hard to fool the latest SOTA detectors, such as
EfficientNet, YOLO series, and RTMDet. This phenomenon is caused by the victim models of the
attack method lagging behind the development of the detection method, which also motivates us to fill
this gap. 2) For person detection, the ASR values of physical attacks are generally lower than those
for vehicle detection, with the majority of attacks achieving ASR values below 20%. The relatively
strongest attack method is AdvTexture, which elaborates on a 2D patch but with tricks for 3D space.
This also demonstrates the gap between 2D perturbations and 3D physical space, highlighting the
challenges in effectively transferring adversarial attacks from controlled 2D environments to more
complex 3D scenarios. Moreover, it underscores the necessity for developing more sophisticated
attack strategies that can account for the intricacies of 3D physical dynamics.

4.3 ABLATION EXPERIMENTS AND ANALYSIS

Except for the overall experiments, we also conduct ablation experiments to investigate the impact
of physical world factors. We show the results of 3 physical dynamics, including weather, distance,
and camera viewing angle, in Fig. 5 and Fig. 6, respectively. More experiments on other dynamics
are provided in B.3 and B.5. From these evaluation, several key observations emerge: /) Physical
attack performance can be easily swayed by physical dynamics. This phenomenon is consistent with
existing works (Dong et al., 2022; Zhong et al., 2022) and emphasizes the importance of strictly
aligning physical dynamics when evaluating physical attacks, which are often underestimated by
previous works. 2) We also observe a gap between the ablation attack performance of our benchmark
and the reported performance in the original papers (refer to B.2.1 for more details). Two reasons
may contribute to this gap: the first is the adopted SOTA detectors in our benchmark, which are
more robust than the victim models in the original papers, and the second is that our benchmark
provides more comprehensive and strict evaluation datasets and physical dynamics, which are more
challenging for the attack methods. These observations empirically demonstrate the pressing need
and necessity of a comprehensive and rigorous benchmark for physical attacks. Please refer to B for
more experiments, detailed analysis and discussion.

5 DISCUSSION

5.1 WHERE ARE WE?

Lack of alignment and comprehensiveness in physical dynamics. Existing works are either
limited in comprehensiveness or do not strictly align and control physical dynamics, as illustrated
in A.2. As evidenced by previous works (Zhong et al., 2022; Dong et al., 2022), physical dynamics
can be exploited to fool DNNs, underscoring the necessity of aligning these dynamics. Conse-
quently, researchers cannot accurately gauge the actual progress of this research domain without a
comprehensive and rigorously aligned study, which slows down advancements in the field.
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Discrete and naive physical adaptation. While theoretically, well-studied digital attacks should
benefit physical attacks, the reality often falls short. This discrepancy arises because the theoretical
gains cannot survive cross-domain transformations (7p2p (7p2p(d)) as mentioned in 2.2). Existing
works use discrete and naive augmentations to model physical dynamics, failing to capture the
characteristics of continuous and complex physical scenarios. This explains the gap observed in our
ablation experiments (B.2.1), highlighting the need for a comprehensive and rigorous benchmark.

5.2 WHERE TO GO?

Comprehensive and physically aligned benchmark. A comprehensive and physically aligned
benchmark is essential for evaluating physical attacks on object detection models. It ensures rigorous
and unbiased assessments, highlighting the strengths and weaknesses of various attacks and detectors,
and providing valuable insights for future research. Such a benchmark can drive the development of
more robust and resilient object detection models, ultimately enhancing the security and reliability of
Al systems in real-world applications.

Rigorous and differentiable modeling of cross-domain transformations. Accurate modeling of
cross-domain transformations is essential for both physical attacks and defenses. While existing
works have attempted to use differentiable neural renderers to automatically generate adversarial
examples, they often have limited modeling capabilities and fall short in aligning physical factors
between physical perturbations and clean images. With the advent of large foundation models,
exploring how to model physical dynamics more rigorously and differentiably using large-scale data
and foundation models is a promising direction.

6 CONCLUSION

In conclusion, we develop a comprehensive simulation-based benchmark to rigorously evaluate
physical attacks under controlled conditions. This benchmark includes 23 physical attacks, 48 object
detectors, and detailed physical dynamics, supported by end-to-end pipelines. The benchmark is
flexible and scalable, allowing easy integration of new attacks, models, and vision tasks. Through
extensive evaluations involving over 8,000 tests, we highlight algorithm limitations and provide valu-
able insights. We believe this benchmark will significantly advance research in physical adversarial
attacks, fostering the development of more robust and reliable models.
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A ADDITIONAL CONTENT OF THE BENCHMARK

A.1 MINI-TEST

We kindly invite the reviewers and readers to participate in a mini-test to discriminate the real-world
images and the simulated images as shown in Fig. 7, the answer is revealed in its caption.

(@ (b) (d)

Figure 7: Which are simulated images? Surprisingly, they were all generated by Unreal Engine, a
popular game engine. The visual quality of the simulated images is so high that it is hard to find any
deficiencies. This mini-test demonstrates the potential of the simulated environment in the research
field.

Table 3: The selected detectors and their corresponding config files.

Town Description

Townl A small, simple town with a river and several bridges.

Town2 A small simple town with a mixture of residential and commercial buildings.
Town3 A larger, urban map with a roundabout and large junctions.

Town4 A small town embedded in the mountains with a special "figure of 8" infinite highway.

Squared-grid town with cross junctions and a bridge.

Towns It has multiple lanes per direction. Useful to perform lane changes.

Town6 Long many lane highways with many highway entrances and exits. It also has a Michigan left.
Town7 A rural environment with narrow roads, corn, barns and hardly any traffic lights.
Town$§ Secret "unseen" town used for the Leaderboard challenge.

Town9 Secret "unseen" town used for the Leaderboard challenge.

TownlO A downtown urban environment with skyscrapers, residential buildings and an ocean promenade.

A Large Map that is undecorated.

Townll Serves as a proof of concept for the Large Maps feature.

A Large Map with numerous different regions,

Townl2 including high-rise, residential and rural environments.

Full list of the optional maps, where Town8 and Town9 are unseen for competition. Please refer to CARLA
(Dosovitskiy et al., 2017) documentary for more details.

A.2 PHYSICAL DYNAMICS ALIGNMENT

We provide a detailed illustration of the physical dynamics alignment in Fig. 8 and Fig. 9. Specifically,
it is observed from Fig. 8 that the imaging settings and lighting conditions are not stricly aligned
in the comparison experiments, such as the different view angles and shadows, which have been
demonstrated to have a significant impact on fooling deep neural networks (Zhong et al., 2022;
Dong et al., 2022). To address this issue, we align the physical dynamics in the benchmark, as
shown in Fig. 9, where the physical dynamics are strictly controlled and aligned, ensuring a fair and
impartial comparison. Moreover, we also provide a detailed illustration of the physical dynamics
in Fig. 10, which includes the weather conditions, camera settings, and lighting conditions. The
lighting conditions varying similary to the real-world as shown in Fig. 11, such as the sun positions
of 24 hours, the intensity of the light, and the shadow, which are strictly controlled and aligned in the
benchmark.

A.3 THE ADAPTABILITY OF THE BENCHMARK

We provide a detailed illustration of the scene diversity of the benchmark in Table 3 and Fig. 12,
where the optional maps are listed with their descriptions. In addition, we display the extendable
vehicles, pedestrians, and traffic signs in Fig. 13, Fig. 14, and Fig. 15, respectively, which can be
easily extended to evaluate other objects in the benchmark. The users are also allowed to export any
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Figure 8: Illustration of the physical dynamic discrepancies. It is observed that the imaging settings
and lighting conditions are not stricly aligned in the comparison experiments, such as the different
view angles (red dash-line box) and shadows (blue dash-line box), which have been demonstrated to
have a significant impact on fooling deep neural networks (Zhong et al., 2022; Dong et al., 2022).

Figure 9: Illustration of the aligned physical dynamics. It is observed that the physical dynamics are
strictly controlled and aligned, ensuring a fair and impartial comparison.
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Figure 10: Illustration of the physical dynamics.
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Figure 11: Tllustration of the lighting conditions varying with sun positions similar to real-world laws.

customized scenes and objects to the benchmark as needed, which can be easily integrated into the
benchmark.

Figure 12: Illustration of the extentable scenes of the benchmark.

A.4 CORRESPONDING CONFIG FILES OF THE SELECTED DETECTORS

The corresponding config files of the selected detectors are listed in Table 4. Specifically, 1-25 and
26-40 are CNN-based One-stage and Two-stage object detectors, respectively. 41-48 are Transformer-
based object detectors. The corresponding config files of the detectors are available in our codebase
or MMDetection (Chen et al., 2019a) toolbox.

A.5 EXPLANATION ABOUT THE SELECTED OBJECTS

According to a survey (Wei et al., 2024) published in TPAMI 2024, most physical attacks against
object detection are optimized for specific target categories, such as vehicles, persons, and a few for
traffic signs. In line with this, we have chosen vehicles and pedestrians as the representative target
categories, to evaluate the robustness of object detectors against physical attacks. .
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Figure 13: Illustration of the extentable vehicles of the benchmark.
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Figure 14:

Illustration of the extentable walkers of the benchmark.

25



Under review as a conference paper at ICLR 2025

Table 4: The selected detectors and their corresponding config files

. 1-25 and 26-40 are CNN-based

One-stage and Two-stage object detectors, respectively. 41-48 are Transformer-based object detectors.
The corresponding config files of the detectors are available in our codebase or MMDetection (Chen

et al., 2019a) toolbox.

Number Config Files

Detectors

1 atss_r50_fpn_1x_coco
autoassign_r50-caffe_fpn_1x_coco

3 centernet-update_r50-caffe_fpn_ms-1x_coco

4 centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco

5 cornernet_hourglass104_10xb5-crop511-210e-mstest_coco

6 ddod_r50_fpn_1x_coco

7 atss_r50_fpn_dyhead_1x_coco

8 retinanet_effb3_fpn_8xb4-crop896-1x_coco

9 fcos_x101-64x4d_fpn_gn-head_ms-640-800-2x_coco

ATSS(Zhang et al., 2020b)
AutoAssign(Zhu et al., 2020a)
CenterNet(Zhou et al., 2019)
CentripetalNet(Dong et al., 2020)
CornerNet(Law & Deng, 2018)
DDOD(Chen et al., 2021)
DyHead(Wu et al., 2020a)
EfficientNet(Tan & Le, 2019)
FCOS(Tian et al., 1904)

10 fovea_r50_fpn_4xb4-1x_coco FoveaBox(Kong et al., 2020)

11 freeanchor_r50_fpn_1x_coco FreeAnchor(Zhang et al., 2019)

12 fsaf_r50_fpn_1x_coco FSAF(Zhu et al., 2019)

13 gfl_r50_fpn_1x_coco GFL(Li et al., 2020)

14 1d_r50-gflvl-r101_fpn_1x_coco LD(Zheng et al., 2022)

15 retinanet_r50_nasfpn_crop640-50e_coco NAS-FPN(Ghiasi et al., 2019)

16 paa_r50_fpn_1x_coco PAA(Kim & Lee, 2020)

17 retinanet_r50_fpn_1x_coco RetinaNet(Lin et al., 2017)

18 rtmdet_s_8xb32-300e_coco RTMDet(Lyu et al., 2022)

19 tood_r50_fpn_1x_coco TOOD(Feng et al., 2021)

20 vinet_r50_fpn_1x_coco VarifocalNet(Zhang et al., 2021)
21 yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco YOLOv5(Jocher et al., 2022)

22 yolov6_1_syncbn_fast_8xb32-300e_coco YOLOv6(Li et al., 2022a)

23 yolov7_1_syncbn_fast_8x16b-300e_coco YOLOv7(Wang et al., 2023a)

24 yolov8_1_syncbn_fast_8xb16-500e_coco YOLOvS8(Jocher et al., 2023)

25 yolox_l_fast_8xb8-300e_coco YOLOX(Ge et al., 2021)

26 faster-renn_r50_fpn_1x_coco Faster R-CNN(Ren et al., 2016)
27 cascade-renn_r50_fpn_1x_coco Cascade R-CNN(Cai & Vasconcelos, 2019)
28 cascade-rpn_faster-rcnn_r50-caffe_fpn_1x_coco Cascade RPN(Vu et al., 2019)

29 dh-faster-rcnn_r50_fpn_1x_coco Double Heads(Wu et al., 2020a)
30 faster-renn_r50_fpg_crop640-50e_coco FPG(Chen et al., 2020)

31 grid-renn_r50_fpn_gn-head_2x_coco Grid R-CNN(Lu et al., 2019)

32 ga-faster-rcnn_x101-32x4d_fpn_1x_coco Guided Anchoring(Wang et al., 2019a)
33 faster-rcnn_hrnetv2p-w18-1x_coco HRNet(Sun et al., 2019)

34 libra-retinanet_r50_fpn_1x_coco Libra R-CNN(Pang et al., 2019)
35 faster-renn_r50_pafpn_1x_coco PAFPN(Liu et al., 2018)

36 reppoints-moment_r50_fpn_1x_coco RepPoints(Yang et al., 2019)

37 faster-renn_res2net-101_fpn_2x_coco Res2Net(Gao et al., 2019)

38 faster-renn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco ResNeSt(Zhang et al., 2022a)

39 sabl-faster-rcnn_r50_fpn_1x_coco SABL(Wang et al., 2020)

40 sparse-renn_r50_fpn_1x_coco Sparse R-CNN(Sun et al., 2021)
41 detr_r50_8xb2-150e_coco DETR(Carion et al., 2020)

42 conditional-detr_r50_8xb2-50e_coco Conditional DETR(Meng et al., 2021)
43 ddg-detr-4scale_r50_8xb2-12e_coco DDQ(Zhang et al., 2023a)

44 dab-detr_r50_8xb2-50e_coco DAB-DETR(Liu et al., 2022)

45 deformable-detr_r50_16xb2-50e_coco Deformable DETR(Zhu et al., 2020b)
46 dino-4scale_r50_8xb2-12e_coco DINO(Zhang et al., 2022b)

47 retinanet_pvt-t_fpn_1x_coco PVT(Wang et al., 2021)

48 retinanet_pvtv2-b0_fpn_1x_coco PVTv2(Wang et al., 2021)
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Figure 15: Illustration of the extentable traffic signs of the benchmark.

In order to ensure the validity of our benchmark for different types of objects, we have demonstrated
that our benchmark can be easily extended to other target categories, as shown by the experiments
conducted on traffic sign in Table 19. The benchmark is designed to evaluate the robustness of
object detectors against physical attacks in various aligned scenarios for ensuring fairness. It can be
extended to other target categories with minimal modifications.

We have thoroughly reviewed over forty physical attack methods, and we found that most of these
methods conducted experiments under unaligned conditions and without fair comparisons. This
lack of clarity hinders the accurate assessment of the progress of physical adversarial attacks and
the development of physical adversarial robustness. Therefore, we are motivated to establish a
comprehensive and rigorous benchmark for physical attacks to address these limitations and provide
a solid foundation for future research.

A.6 THE UTILITY OF THE BENCHMARK

In this section, we sumarize our motivation and provide the potential applications of the benchmark.

A.6.1 UTILITIES OF THE BENCHMARK

Standardization and Fair Evaluation. The primary utility of PADetBench lies in its ability to
standardize the evaluation of physical attacks against object detection models. By ensuring that all
evaluations are conducted under the same physical dynamics, PADetBench eliminates inconsistencies
found in real-world experiments, making it a fair and rigorous benchmark.

Comprehensive Coverage: PADetBench includes 23 physical attack methods and evaluates 48
state-of-the-art object detectors, providing a comprehensive coverage that enables researchers to
compare and contrast various models and attack strategies.

A.6.2 POTENTIAL APPLICATIONS OF THE BENCHMARK

Research and Development: Researchers developing robust object detection models or physical
attack strategies need a benchmark to evaluate and compare their approaches.

Security Assessments: Security teams need to assess the robustness of deployed object detection
systems in critical infrastructure.

Regulatory Compliance: Regulatory bodies require evidence of robustness and security for au-
tonomous systems.

Product Testing: Companies developing autonomous vehicles or security systems need to test their
products under various physical attack scenarios.

Educational Purposes: Educators and students need resources to understand the vulnerabilities of
object detection models.
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A.7 LIMITATIONS AND POTENTIAL IMPACTS

Limitations

For now, PADetBench primarily focuses on evaluating the robustness of object detection models
against physical attacks. In the future, we plan to extend the benchmark to include other vision
tasks, such as instance segmentation, 3D object detection, and depth estimation. This expansion will
provide a more comprehensive evaluation framework that covers a broader range of computer vision
applications.

Potential Impacts

1) Positive Impacts: The in-depth understanding gained through PADetBench will contribute signifi-
cantly to the development of more robust object detection models. By identifying vulnerabilities and
limitations, researchers and practitioners can design improved algorithms that are better equipped to
handle physical adversarial attacks. This enhanced robustness is crucial for real-world applications
where reliability and accuracy are paramount.

2) Negative Impacts: While the benchmark provides valuable insights, there is a risk that it could be
misused to conduct physical attacks in real-life scenarios. Such misuse could threaten the security
of critical applications involving intelligent visual perception systems. Therefore, it is essential to
promote responsible use of the benchmark and to emphasize the importance of ethical considerations
in research and development.

B ADDITIONAL CONTENT OF THE EXPERIMENTS

B.1 GENETATED DATA FOR ABLATION STUDIES

We provide the generated data samples for the ablation studies in Fig. 16.

Distance Phi T Weather

Figure 16: The randomly selected samples for the ablation studies of six different dynamics.

B.2 A DETAILED ILLUSTRATION OF THE PERFORMANCE GAP

B.2.1 PERFORMANCE GAP BETWEEN THE BENCHMARK AND THE ORIGINAL PAPERS

In this section, we provide an explanation for the performance gap between the reported attack
performance in the original papers and the results in our benchmark. Our benchmark encompasses
a wide range of physical dynamics, whereas previous validation settings are often limited to a few
specific scenarios. The comprehensive physical dynamics in our benchmark reveal the shortcomings
of existing object detectors and physical attacks and this is the main motivation of our work. Therefore,
our benchmark might not be captured by previous validation settings, leading to the discrepancy
between our results and the reviewer’s individual experiences.
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In comparison, we removed various physical dynamics including weather (rain, snow, fog), lighting
(nighttime), and distance (far positions), and reproduced the results of several attack methods on
YOLOvVT7 as reported in ACTIVE (Suryanto et al., 2023), which are listed in Table 22. It is worth
noting that these reported results are also included in our benchmark with particular evaluation
settings.

Contrary to the simplified settings of these reproduced experiments, more comprehensive physical
dynamics incorporated into our benchmark significantly highlight the ineffectiveness of existing
physical attacks. These aspects may not have been adequately captured by previous validation settings.
As illustrated in Tabel 22, when we exclude various dynamics, the effectiveness of physical attacks
notably increases, thereby reducing the performance of object detectors. Therefore, our benchmark
strive to encompass and align these physical dynamics for comprehensive and equitable comparisons.

B.2.2 PERFORMANCE GAP BETWEEN ATTACKS AGAINST VEHICLE AND PERSON DETECTION

For the gap between attacks against vehicle and person detection, one reason is that these attacks are
optimized to fool object detectors in particular target detection during training process. Consequently,
we follow the attack purpose of the original works in this benchmark to attack specified target
category accordingly for fairness, which partially accounts for the phenomenon that pedestrian
detection performance is less affected regarding various attacks in comparison with car detection.

Another potential reason is that the stronger physical perturbations are optimized with consideration
of 3D space and accommodate more complex physical dynamics, while physical attacks aiming
to fool person detectors are commonly performed with optimized 2D patches, which work well in
particular physical dynamics, as evidenced by the ablation experiments in B.2.1, which empirically
demonstrate the pressing need and necessity of a comprehensive and rigorous benchmark for physical
attacks.

B.3 SUPPLEMENTED EXPERIMENTS ANALYSIS AND DISCUSSION
B.3.1 DETECTION PERSPECTIVE

Vehicle Detection Perspective:

Physical attacks on vehicle detection systems pose a substantial challenge due to the specialized
nature of the perturbations crafted to deceive these models. These attacks can lead to a drastic decline
in average recall rates, reaching as low as 50%. This high level of vulnerability is largely attributed to
the complex dynamics in the 3D environment where vehicles operate. Physical attacks on vehicle
detectors exploit this three-dimensional context, introducing perturbations that consider real-world
factors such as lighting, perspective, occlusion, and motion, making them more effective in disrupting
the model’s performance.

On the other hand, pedestrians, operating in a somewhat simpler 2D plane, seem to be less affected by
similar adversarial attacks, with a decrease in average recall rates of less than 20%. Adversarial exam-
ples targeting pedestrian detection typically involve 2D patches, which might be more straightforward
to apply in specific scenarios but may not account for the full range of real-world complexities.
As a result, there is an urgent demand to establish a comprehensive and stringent benchmark to
systematically evaluate the resilience of these models against physical attacks, facilitating research
and development towards more secure systems.

Pedestrian Detection Perspective:

In contrast to vehicle detection, pedestrian detectors exhibit a certain level of inherent robustness,
potentially due to the simpler constraints imposed on the recognition process. Nevertheless, as
seen across various detectors, the extent of this robustness varies widely. Models like EfficientNet,
YOLO series, RTMDet (one-stage detectors), and DDQ (transformer-based detectors) demonstrate
commendable resistance to physical attacks. The superior performance of DDQ could be linked to
the attention mechanisms inherent to transformer architectures, which are capable of capturing global
spatial dependencies, thus mitigating the impact of adversarial perturbations.

However, it is evident from the benchmark results that not all state-of-the-art (SOTA) detectors
offer comparable adversarial robustness. Many detectors exhibit varying degrees of vulnerability,
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indicating that peak accuracy in standard detection tasks does not automatically guarantee resilience
against adversarial threats. Consequently, this benchmarking framework not only identifies areas
of weakness for refinement but also contributes to a better understanding of the interplay between
detection performance and adversarial robustness in real-world deployments.

In conclusion, understanding and mitigating the effects of physical attacks in both vehicle and
pedestrian detection domains can greatly benefit deep learning and computer vision research. By
developing more robust models resistant to such attacks, we can enhance the safety and reliability
of autonomous systems that rely on accurate object detection, ultimately fostering advancements
in the fields of automotive technology, smart city infrastructure, and robotics. Furthermore, this
benchmark would encourage researchers to explore defensive techniques and novel architectures that
better withstand both digital and physical adversarial threats, pushing the boundaries of deep learning
and computer vision capabilities.

B.3.2 ATTACK PERSPECTIVE

From the attacker’s viewpoint, the effectiveness of physical attacks on deep learning-based vehicle
detection systems is highly variant. Certain methodologies, such as ACTIVE, achieve astonishingly
high success rates in defeating the detectors, with ASR values surpassing 70%. However, the majority
of current attacks struggle to maintain comparable performance, often failing to reach even 20% ASR.
This discrepancy can be partly attributed to the rapid advancements in detection algorithms, with the
latest state-of-the-art models like EfficientNet, YOLO series, and RTMDet demonstrating increased
resilience against known attacks. This disparity in the evolutionary pace between attackers and
defenders underscores the importance of continuous research and innovation in adversarial attacks to
keep pace with the evolving landscape of detection techniques.

Moreover, this evolving dynamic underscores a critical need for a more dynamic and collaborative
ecosystem in deep learning and computer vision research. By closing the gap between attack
methods and detector capabilities, the field will likely see increased robustness and security measures,
ultimately benefiting automotive safety and other real-world applications relying on these systems.

On the other hand, when evaluating person detection, the outcome of physical attacks exhibits
a different pattern, with ASR values typically remaining below 20%, and often even below 0%,
which indicates that the attack method is less effective than random guessing and the eye-catching
perturbation may arouse more attention than the object itself. Additionally, the variable transferability
of these attack methodologies across different detectors leads to a wide disparity in ASR values. In
certain instances, this manifests as negative ASR figures, indicative of a backfiring effect where the
detectors become more adept at identifying targets in the presence of attempted attacks.

The significantly lower effectiveness of these attacks on pedestrian detection models highlights the
comparative advantages of their 2D nature against primarily 2D adversarial perturbations. Neverthe-
less, the AdvTexture method, despite being a 2D approach, manages to incorporate 3D considerations,
achieving higher ASRs compared to other attacks. This underscores the pivotal role of incorporat-
ing 3D awareness into attack strategies to exploit the vulnerabilities of pedestrian detectors more
effectively.

These contrasting observations highlight the need for more sophisticated attack methods in the
domain of pedestrian detection. By advancing the understanding of how 2D techniques can be
adapted or combined with 3D concepts, attackers can create more potent adversarial samples, driving
defender-side innovation to fortify models further. Such advancements will ultimately contribute to
the progression of the field by promoting the design of more secure and reliable computer vision
systems, particularly relevant in surveillance, autonomous navigation, and smart city infrastructures.

In summary, the diverse outcomes of physical attacks on both vehicle and person detection emphasize
the importance of ongoing research and competition between attack and defense approaches. As
the attacks become more intricate and align with the complex nature of real-world scenarios, deep
learning and computer vision models will adapt, increasing their resilience and overall functionality.
This continuous push-and-pull between adversaries and protectors fosters the evolution of robust,
secure, and accurate object-detection technologies essential for numerous applications, including
automotive safety, surveillance, and urban automation.
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Table 5: Overall experimental results of vehicle detection in the metric of mAP50(%).

g
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O % < Q s Y < S @) Y
ATSS 0.477 J031 0,545 0.606 0.502 0.434 10,678 JOI235] 0.532
AutoAssign 0574 037 0559 0.589 0.609 0.415 0.722 0487 0.648
CenterNet 0.558 0.297 0552 057 058 0426 0742 0412 0.521
CentripetalNet 0.685 0.558 [0.725 0.687 0.725 0.527 0.501 0.648
CornerNet 0.586 0.438 0.652 0.593 0.653 0.458 0.429 0.582
DDOD 0.708 0.433 0.695 0.686 0.548 0.694 0.646
DyHead 0.611 0.385 0.566 0.725 0.614 0.574 0.671 0402 0.73
EfficientNet 0711 0506 0.687 0.721 0.638 071 0.665
FCOS 0.676 0.658
FoveaBox 0294 0514 0.645 0.548 0467 0.649 0469 0.618
FreeAnchor 51 0381 0.611 0.563 0.643 0431 0.638 0.336 0.582
FSAF 051 0566 0.559 0.537 0432 0.661 0.364 0.529
GFL 0.509 0456 0.626 0.485 0485 0.63 0.602
LD 0554 0305 0.563 0.658 0.548 0463 0.664 029 0.591
NAS-FPN 0.623 0473 0.662 0.673 0.695 0.5 0382 0.655
PAA 0582 0474 0.621 0.605 0.619 0.501 0.685 0.567 0.64
RetinaNet 0511 0349 0565 0.653 0.568 0.479 0.684 043 0.584
RTMDet 0.625 0.733 0.736 0.676 0.72
TOOD 0353 0.522 0.584 0.557 0462 0.615 037 0.572
VarifocalNet 0424 0.628 0.529 0.419 0.538
YOLOVS
YOLOV6
YOLOV7
YOLOVS
YOLOX

Faster R-CNN
Cascade R-CNN

0.338 0.509 0.46
0.483 10.297 0.488 0.574 0.607

0.369
0.407

0.612 0.268
0.673 0.334

0.438
0.532

Cascade RPN 0.53 0.291 0452 0.588 0.5 0.441 0.662 0452 0.548
Double Heads 0.521 (0295 0.539 0.537 0.621 0.404 0.713 0.445 0.516
FPG 0.678 0.486 0.714 0.671 0.503 047 | 0.65

Grid R-CNN 0.472 0.513 0529 0.65 0399 0.699 0392 0.494
Guided Anchoring 0.723 0.555 0.524 0.738 0.717
HRNet 0.547 1029 0.52 0512 0571 0336 0.738 0.462 0.511
Libra R-CNN 049 0.294 0.527 0.563 0.492 0.486 0.664 0334 0.54
PAFPN 0.497 0463 0562 0.54 0413 0.682 0383 0.457
RepPoints 0.576 0.525 0.547 0.557 0427 0712 0.565 0.523
Res2Net 0.64 0.494 0.698 072 074 0.482 0.601 [0.716
ResNeSt 0.502 0.352 0.535 0.587 0.499 0.538 0.493 0407 0.555
SABL 046 [0.262 0.501 0.563 0.535 0.423 0.648 0359 0.484
Sparse R-CNN 0.398 0.604 0.418 044 0.518 0316 0.532
DETR 0.636 0351 0333 0.339
Conditional DETR 0.554 0408 0.575 0.644 0.617 0.525 0.7 0457 0.671
DDQ 0.55 0.457 0531 0.649 0.676 0.631 0.626 0.453 0.629
DAB-DETR 0.391 0.308 0.616 0.473 0.488 0.576 0.526
Deformable DETR 0.642 0371 0.528 0.641 0.67 046 0.662 0.525 0.626
DINO 0.351 0.322 0.543 0.56 0.423 0.526 0.49
PVT 0.719 0.355 0.648 0.711 0.547 0592 0.52
PVTy2 0.666 0.494 [0.763 0.621 - 0.425 0.704 0.476

B.4 ADDITIONAL OVERALL EXPERIMENTAL RESULTS

Due to space constraints, we provide additional overall experimental results in this part, as shown in
Table 5, 6,7, 8,9, 10, 11, and 12. In addition, the visualized evaluation results are shown in Fig. 17,
18, 19, 20, 21, 22, and 23.
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1674 Table 6: Overall experimental results of vehicle detection in the metric of mAP50:95(%).
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1726 Due to space constraints, we provide additional ablation experimental results in this part, as shown in
1727 Table 13, 14, 15, 16, 17, and 18. In addition, the visualized evaluation results are shown in Fig. 24,
25, and 26.
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Table 7: Overall experimental results of vehicle detection in the metric of mARS0(%).

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF
GFL
LD
NAS-FPN
PAA
RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOV5
YOLOvV6
YOLOv7
YOLOvV8
YOLOX
Faster R-CNN ] ] 0.493 0.417 10.752

Cascade R-CNN L ; 0.591
Cascade RPN b
Double Heads } ! 0.654 0.621
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net 4 !
ResNeSt 4 ! 0.727 0. 0.685
SABL L ] 0.646 0. 0.636 0.488
Sparse R-CNN ! 0.746 0.733
DETR 0.746 0.328
Conditional DETR
DDQ
DAB-DETR
Deformable DETR
DINO
PVT
PVTv2

B.5.2 ABLATION STUDY ON TRAINING DATASET

To further investigate the impact of the training dataset on the physical attacks, we collected ten
physical attacks for fooling person detection, and the results are shown in Table 20, where the Median
ASR represents the median attack success rate across the 48 detectors. It can be observed that physical
attacks trained on the INRIA and COCO datasets achieve comparable performance in general.
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Table 8: Overall experimental results of vehicle detection in the metric of mARS50:95(%).

s &L s &

s § & N & S

S T v & &

g & v 4§ & IF L 8T S
ATSS 0374 0318 [0:2067 0.341 0342 0321 0296 0.371 [02197 0.325
AutoAssign  0.385 0.341 0.293 0.366 0.335 0367 032 039 0345 0374
CenterNet 0396 0365 0.275 0373 0353 0373 0342 0.408 0344 0.361
CentripetalNet  0.378 0.362 0.313 0.386 0.365 0.384 031 0404 0321 0.35
CornerNet  0.387 0.337 0286 0.382 0.343 038 0.292 0401 0.282 0336
DDOD 0.366 0363 0302 0.371 0.347 0379 0357 0383 0.366 0358
DyHead  0.378 0338 0.254 032 035 0338 0.342 0336 0255 0364
EfficientNet ~ 0.387 0397 0377 0.395 0393 0394 0399 0402 0.406 038
FCOS 0401 04 0382 0399 0389 0405 0389 0418 037 0397
FoveaBox 0371 0.337 10246 0327 0.344 0.333 0304 0.353 0.303 0.344
FreeAnchor  0.384 0.332 0.333 0.367 0.345 038 0324 0.365 [0.244  0.357

FSAF 0.37 0.337 0.229 0.362 0.33 0.342 0.271 0.377 0.257 0.325
GFL 0.375 0.337 10.238 0.336 0.354 0.341 0.348 0.373  0.226 0.357
LD 0.372 0.352 1 0.236 0.351 0.367 0.348 0.314 0.367 0.268 0.36
NAS-FPN 0.38 0.367 0.307 0.373 0.378 0.375 0.34 0.384 0.296 0.373
PAA 0.399 0.371 0.337 0.385 0.357 0.39 0.376 0.388 0.383 0.369

RetinaNet 0.392 0.343 0.298 0.371 0.378 0.367 0.34 0.39 0.301 0.364
RTMDet 0.357 0.322 0.293 0.345 0.319 0.351 0.34 0.362 0.304 0.311
TOOD 0.345 0.293 0.261 0.332 0.312 0.329 0.283 0.327 0.236 0.323
VarifocalNet 0.376 0.31 -0.304 0.352 0.329 0.277 0.338 -0.321
YOLOvV5 0.364 0.364 0.366 0.371 0.358 0.378 0.377 0.373 0.354 0.355
YOLOvV6 0.357 0.361 0.343 0.363 0.352 0.37 0.359 0.37 0.351 0.343
YOLOv7 0.366 0.356 0.339 0.36 0.355 0.371 0.358 0.376 0.338 0.352
YOLOv8 0.376 0.358 0.354 0.369 0.357 0.376 0.368 0.385 0.336 0.354
YOLOX 0.362 0.33 0.325 0.345 0.338 0.368 0.367 0.358 0.309 0.332
Faster R-CNN  [0.303 0.228 0.236 0.302
Cascade R-CNN 0.316 m 0.255 0.272 - 0.312 m
Cascade RPN 0.375 0.333 0.276 0.351 0.341 0.358 0.353 0.376 0.307 0.341
Double Heads 0.32 10.239 [0:165" 0.27 0.249 0.299 [ 0.2 0.333 [0:193" 0.238
FPG 0.347 0.31 0.249 0.35 0.302 0.352 0.239 0.379 0.249 0.306
Grid R-CNN 0.326 | 0.23 [0:155] 0.273 0.259 0.312]0.205 0.33 [0.188 0.244
Guided Anchoring  0.38 0.396 0.373 0.39 0.385 0.384 0.35 0.399 0.363 0.379

HRNet 0303 0.239 011597 0.252 0.228 0.264 [0:1677 0.333 [0.188  0.226
LibraR-CNN 0383 0326 0233 0334 0357 0315 0333 0.385 0.223 0.337
PAFPN 0.304 10,226 0.228 0.249 0.254 0.304

RepPoints 0.387 0.356 10.235 0.355 0.349 0.372 0.358 0.393 0.364 0.336
Res2Net 0.341 '0.261 0.302 0.284 0.305 0.338 1 0.237 0.292

ResNeSt 0.341 0.257 0.274 0.261 0.27 0.268 0.302 0.271
SABL 0.318 0.26 0.253 0.257 0.204 0.303 0.226
Sparse R-CNN  0.395 0.367 [0.219 0.324 038 0.32 0.312 0.381 0.249 0.361
DETR 0.334
Conditional DETR 0.387 0.341 0.32 0.404 0.342 0.406 0.367 0.391 0.328 0.374
DDQ 0.393 0.389 0.388 0.394 0.39 0.389 0.403 0.391 0.374 0.389

DAB-DETR 0.404 0.366 0.384 0.406 0.385 0.413 0.404 0376 0.36 0.383
Deformable DETR 0.378 0.352 0.277 0.351 0.333 0372 0.3 0.351 0.339 0.34

DINO 0.388 0.353 0.353 0.39 0.364 0.388 0.372 0.384 0.346 0.37
PVT 0.349 0.371 0.319 0.365 0.37 0.379 0.365 0.382 0.387 0.34
PVTv2 0.372 0.372 0.359 0.386 0.365 0.399 0.354 0.39 0.384 0.343

B.5.3 ABLATION STUDY ON 2D AND 3D PERTURBATIONS

Physical attacks that evaluate 2D adversarial patches from a frontal perspective have a significant
limitation, as they do not account for the effects of multiple viewing angles in a 3D environment.
Our study aims to bridge this gap by developing a comprehensive benchmark for assessing physical
attacks from various angles and incorporating a broader range of physical dynamics. During our
investigation, we noted a substantial drop in performance (detection rate: %”fd) when adversarial

ota

patches were only applied to the frontal view of objects. To ensure a fair comparison and enhance
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Table 9: Overall experimental results of person detection in the metric of mAP50(%).
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ATSS 0.54 0517 0.498 0428 0.419 0473 0522 0468 0495 0458 0385 0.454 0492 0514
AutoAssign 0.491 0.466 0454 0314 036 0423 0456 043 0403 041 0346 0427 0453 0.484
CenterNet 0.524 0.476 0477 0408 0.39 0469 0483 0436 0437 045 0372 043 0474 0.524
CentripetalNet ~ 0.526 0.53 0.524 048 0.349 0.524 0508 0.51 0471 0473 0405 0472 0.515 0.526
CornerNet 0.517 0.51 0.505 0.403 0.295 0.488 0.494 0.449 0444 042 0345 0414 048 0.506

DDOD 0.481 0.48 0448 0.359 0416 0421 047 0445 0453 0433 0329 0409 0442 045
DyHead 0.474 0.483 0.485 0.406 0.402 0.464 0.501 0.454 0.473 0.433 04 0433 0467 0474
EfficientNet 0.457 0.431 0442 0.398 0418 0.406 0.431 0399 0407 0403 0394 0.396 0422 0433
FCOS 045 0438 0429 0364 0.383 041 0433 0407 0404 0407 0356 0.409 0.425 0.448

FoveaBox 0.543 0.53 0.536 0473 0475 0482 0.54 0481 0523 0483 0.374 0.458 0.498 0.533
Free Anchor 0.537 0.522 0.493 0.414 0396 0431 0492 0443 0446 0411 0331 0447 048 0513

FSAF 0.554 0.551 0.529 0.444 0.439 0485 0.538 0.496 0515 0457 0379 0479 0512 0.527
GFL 0.57 0.541 0.532 0.431 0.453 0495 0.509 0478 0495 048 0398 0459 052 0.547
LD 0.57 0.54 0.524 0.401 0.397 0.486 0.517 0.484 0489 0477 0385 0.484 0.519 0.535

NAS-FPN 0.442 0436 0433 0365 0391 04 0451 0399 0394 0398 032 0399 0413 0435
PAA 0.464 0.464 0.457 0402 0389 043 0451 0432 0447 0402 0322 0409 0441 0.463
RetinaNet 0.522 0.543 0.497 0438 0.425 0459 0505 0.483 0478 0454 0384 0475 0489 0.528
RTMDet 0.533 0.482 0515 052 0466 0.46 0495 0437 0472 047 0459 0449 0466 05
TOOD 0.474 0.5 0475 0.384 0376 0.453 0.503 0.453 0486 0441 0371 0435 0457 0475
VarifocalNet 0.492 0.505 0.481 0.387 0.395 0.443 0.504 0.444 0.469 0445 0368 0436 047 0.506
YOLOv5 0.481 0.46 0472 0.448 0403 0453 0484 0454 0485 0418 0.35 0.42 0452 0.459
YOLOv6 0.467 0.445 0.461 0.456 0.435 0438 0444 0446 0459 0437 0423 0432 0444 0.449
YOLOvV7 0.463 0.438 0.48 0446 0343 0401 0438 0.403 0457 0402 0372 0.366 0429 0.437
YOLOVS 0.434 0421 0431 0432 0402 0415 0421 0416 0429 0416 0.405 0409 0415 0417
YOLOX 0.448 0.436 0457 0457 0382 0432 046 0425 046 0433 0393 0412 0426 0437

Faster R-CNN  0.541 0.547 0.497 0.416 0.425 0456 0.532 0.468 0456 0.448 0.341 0432 0.512 0.534
Cascade R-CNN  0.559 0.551 0.539 0.431 0.445 0.488 0.551 0.463 0508 0479 0355 0454 0.523 055
Cascade RPN 0.538 0.537 0.528 0.389 0.407 0.482 0.508 0.472 0.483 0.461 0335 0445 0.508 0.532
Double Heads ~ 0.552 0.526 0.531 0.419 0408 0.46 0.533 0442 0489 0454 0359 044 0496 0.527
FPG 0.462 0.473 0451 0413 0395 0415 0466 0.408 0.424 0405 0317 0409 0444 045

Grid R-CNN 0.512 0.502 0.492 0.397 0.404 0.449 0.517 0.462 0471 043 0363 0.424 0481 0.488

Guided Anchoring 0.497 0.537 0.504 0.427 0.396 0.47 0.525 0479 0.454 0449 0375 0452 0494 0.502

HRNet 0.498 0.489 0.495 0.457 0.404 0453 0489 047 0442 0472 0419 0437 0443 0497
Libra R-CNN 0.535 0.517 0479 0452 0.404 0446 0468 0.433 0447 0431 0374 0421 0442 0494
PAFPN 0.539 0.534 0.529 0.429 0.438 0468 0.522 0477 047 0458 0349 0447 0.516 0.559
RepPoints 0.572 0.559 0.53 0.434 0475 0478 0.535 047 0.504 0455 038 0451 0525 0.56
Res2Net 0.449 0.437 0435 0.403 0301 0.402 0458 0406 0.407 0.386 0.324 0387 0428 0451
ResNeSt 0.443 0.455 0.409 0.396 0396 0.405 0432 0.385 0364 0.374 0.358 0374 0416 0451
SABL 0.563 0.559 0.525 0418 0.471 0.491 0.534 0.503 0.498 0496 0.382 0.484 0.534 0.552
Sparse R-CNN 0492 0.481 0477 038 0347 0434 0484 0386 0.396 0.407 0.352 0.389 0.455 0.493
DETR 0.553 0.497 0.481 0.337 0.318 0.467 049 0.466 0432 0473 0343 0444 0475 0.51
Conditional DETR 0.535 0.497 0.453 0.378 0.351 0.424 0.449 0401 044 0416 0.294 0412 0422 0485
DDQ 0.449 0.454 0452 0377 0383 0.424 0451 0426 0.408 0422 034 0421 0439 0451

DAB-DETR 0.441 0.429 0428 0.344 036 0371 0407 0357 0373 0374 0276 0336 0392 044
Deformable DETR 0.475 0.462 0.475 0.345 0.389 0421 046 0442 0418 0424 | 0286 0416 0471 045

DINO 0.419 0421 0416 0.337 0283 0.385 0.415 0.402 0375 0.391 0316 0.378 0.394 0.423
PVT 0.474 0.465 0.418 0.378 0.368 0.383 0.405 0.359 0.369 0.393 0.381 0391 041 0426
PVTv2 0.51 0431 041 0403 04 0395 0414 0389 041 0384 0347 0382 0392 0436

the efficacy of the attacks, we expanded the application of these patches to cover the entirety of the
object’s surface. Additional experiments were conducted to assess the impact of adversarial patches
on frontal views using several object detection algorithms. The results are summarized in Table 21.
The ’Entire Surface’ column highlights cases where the adversarial patch was applied across the
entire surface of an object. The values in parentheses indicate the relative decrease in performance
compared to full-surface patching.

C USER FEEDBACK

To ensure ease of use, we have addressed potential barriers by user feedback, such as CARLA
deployment and customizing adversarial objects, by providing a comprehensive Docker installation
guide for CARLA and a tutorial on customizing adversarial objects in our documentation. These
resources enable users to install CARLA and customize objects in just a few minutes. We also
conducted usability testing with five researchers from a well-known University and got feedback
from them in the form of a survey questionnaire as shown in Table 24. The users consistently found
the benchmark easy to use and provided positive feedback on its usability.
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Table 10: Overall experimental results of person detection in the metric of mAP50:95(%).

T

§ $ & S
&
s & .8 &
< NS 5

S
&

S J
ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOv5
YOLOv6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN
DETR
Conditional DETR

Deformable DETR
DINO
PVT
PVTv2
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1965
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Table 11: Overall experimental results of person detection in the metric of mARS0(%).

T

§ oy ng
¥ o g RS
S < $ S

< NS <

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOv6
YOLOvV7
YOLOvV8 0.677 0.667 0.686 0.67 0.669 0.676 0.676 0.679
YOLOX 0.685
Faster R-CNN 0.679 0.674 0.653
Cascade R-CNN ! 0.679
Cascade RPN
Double Heads 0.639 0.677 0.678 0.664 0.654 0.679 0.623 0.643 0.676
FPG 0.656 0.659 0.665 0.598 0.598 0.643 0.659 0.636 0.622 0.642 0.588 0.635 0.659 0.661
Grid R-CNN 0.677 0.664 0.67 0.638 0.635 0.666 0.669 0.654 0.655 0.659 0.632 0.644 0.657 0.661
Guided Anchoring
HRNet 0.665 0.669 0.679 0.645 0.644 0.671 0.673 0.661 0.646 0.676 0.65 0.645 0.649 0.678
Libra R-CNN
PAFPN 0,685 0682
RepPoints
Res2Net 0.636 0.63 0.638 0.599 0.543 0.627 0.623 0.614 0.602 0.623 0.578 0.618 0.63 0.634
ResNeSt 0.648 0.651 0.625 0.61 0.61 0.636 0.619 0.614 0.586 0.607 0.593 0.609 0.64 0.654

SABL 0.65  0.66 0.678 0.675 0675 0.688 0.635 0661
Sparse R-CNN 0.67 0.668 0.672 0.65 0.644 0.667 0.649 0.651 0.68
DETR
Conditional DETR
DDQ
DAB-DETR
Deformable DETR 0.666 0.675 0673 0.591
DINO
PvT

PVTv2

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 12: Overall experimental results of person detection in the metric of mARS50:95(%).

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor

0.351 0.344

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOv6
YOLOvV7
YOLOV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN

DETR 042 042 0.391
Conditional DETR
DDQ
DAB-DETR
Deformable DETR

0352 0.399 0.39 0.399 0.351 0.383
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Table 13: Ablation experimental results (weather) of vehicle detection in the metric of mARS0(%).

s
N s

o S N

g g & 8 Q,{; s &
< v R 5 9 &

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOvV6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN -

Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN

DETR 0.537 0.388 0.5

Conditional DETR

0.738

Deformable DETR
DINO
PVT
PVTv2
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Table 14: Ablation experimental results (spot) of vehicle detection in the metric of mARS0(%).

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOvV6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN

DETR 0.677 0.448 0.302 0.74  0.594
Conditional DETR

Deformable DETR
DINO
PVT
PVTv2
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Table 15: Ablation experimental results (distance) of vehicle detection in the metric of mARS0(%).

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOvV6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN

DETR 0.771 0.615 0.604 0.708 0.635 0.625
Conditional DETR

Deformable DETR
DINO
PVT
PVTv2
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Table 16: Ablation experimental results (¢) of vehicle detection in the metric of mARS0(%).

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOv6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN

DETR 0.72 | 0.49

Conditional DETR

Deformable DETR
DINO
PVT
PVTv2
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Table 17: Ablation experimental results (6) of vehicle detection in the metric of mARS50(%).

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvV5
YOLOv6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN

Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN
DETR
Conditional DETR

0.74 0.63

Deformable DETR
DINO
PVT
PVTv2

0.49
Cascade R-CNN 1 0.75 0.64

0.46
0.47

0.76  0.72

0.47 10.73
0.74
0.62

0.49 10.75
0.61
0.52  0.53

0.73 0.53

0.54 0.67 0.67 0.62

0.73 0.66
0.72 0.61
0.66 0.66 0.61

0.71 0.64 0.51

0.65

0.55

0.6

43



Under review as a conference paper at ICLR 2025

Table 18: Ablation experimental results (sphere) of vehicle detection in the metric of mARS0(%).

§
&

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOv6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN
DETR
Conditional DETR

0.72
0.75

0.71

Deformable DETR
DINO
PVT
PVTv2

0.48
0.45 0.66

0.72
0.67

035 047 054 059 049
04 052 058 0.64 0.53

052 0.59 0.54 0.73
0.49 0.74
037 0.52 0.59 0.65

0.54

0.68
0.53
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0.61
0.62

0.71

0.71

0.43

0.74

0.74
0.67

0.56
0.72
0.5

0.6
0.54
0.55 10.73
0.64 0.62
0.46 0.49

038 0.5
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Table 19: Ablation experimental results (distance) of Traffic sign detection in the metric of
mARS50(%).

Clean AdvCam RP, ShapeShifter

ATSS
AutoAssign
CenterNet
CentripetalNet
CornerNet
DDOD
DyHead
EfficientNet
FCOS
FoveaBox
FreeAnchor
FSAF

RetinaNet
RTMDet
TOOD
VarifocalNet
YOLOvVS
YOLOvV6
YOLOvV7
YOLOvV8
YOLOX
Faster R-CNN
Cascade R-CNN
Cascade RPN
Double Heads
FPG
Grid R-CNN
Guided Anchoring
HRNet
Libra R-CNN
PAFPN
RepPoints
Res2Net
ResNeSt
SABL
Sparse R-CNN
DETR
Conditional DETR
DDQ
DAB-DETR
Deformable DETR
DINO
PVT
PVTv2

Table 20: Ablation study on training dataset.

Physical attacks Training datasets Median ASR
AdvCam ImageNet 0
AdvCaT 376 self-collected images 0

MTD - 2
LAP INRIA 2
AdvPattern Market1501 2
AdvTshirt 40 self-collected videos 3
DAP INRIA 5
NaTPatch INRIA 5
InvisCloak COCO 5
AdvTexture INRIA 7
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Figure 17: Overall experimental results of person detection in the metric of mARS0(%), please
zoom in for better view.
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Figure 18: Overall experimental results of vehicle detection in the metric of mAR50:95(%).

Table 21: Ablation study on 2D and 3D perturbations.

Perturbations  Entire surface CornerNet VarifocalNet

Clean - 87 80
Random 87 77
AdvTexture 74 73

AdvTexture 81(7) 77(4)
AdvPatch 82 75

AdvPatch 85(3) 79(4)
NatPatch 78 74

NatPatch 83(5) 77(3)

X AX AX N0
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Figure 19: Overall experimental results of person detection in the metric of mARS50:95(%).
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Figure 20: Overall experimental results of vehicle detection in the metric of mAP50(%).

Table 22: Comparison of reported and reproduced results.

Clean Random CAMOU DTA ACTIVE
Reported 86 67 60 32 23
Reproduced 86 66 62 33 23
Reported 93 86 83 59 42
Reproduced 93 85 83 60 41
Reported 89 78 69 56 52
Reproduced 89 78 69 56 51

YOLOvV3

YOLOvV7

PVT
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Figure 21: Overall experimental results of person detection in the metric of mAP50(%).
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Figure 22: Overall experimental results of vehicle detection in the metric of mAP50:95(%).

Table 23: User feedback survey.

Number Questions

Ql How easy was it to follow the Docker installation guide for CARLA? (Rating 1-5)

Q2 How helpful was the tutorial on customizing adversarial objects in the documentation? (Rating 1-5)

Q3 Were you able to successfully deploy CARLA using the provided resources? (Yes or No)

Q4 Were you able to successfully customize adversarial objects using the provided resources? (Yes or No)

Q5 Overall, how satisfied are you with the ease of CARLA deployment and customizing adversarial objects? (Rating 1-5)
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Figure 23: Overall experimental results of person detection in the metric of mAP50:95(%).
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Figure 24: The ablation experimental results of vehicle detection on Azimuth angle (¢) in the metric
of mARS0(%).

Table 24: User feedback survey.

Questions Userl User2 Userd Userd UserS
Q1 4 5 5 4 5
Q2 5 5 5 5 5
Q3 Yes Yes Yes Yes Yes
Q4 Yes Yes Yes Yes Yes
Q5 4 5 5 4.5 5
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Figure 25: The ablation experimental results of vehicle detection on Altitude angle (6) in the metric
of mAR50(%).
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