PADETBENCH: TOWARDS BENCHMARKING PHYSICAL ATTACKS AGAINST OBJECT DETECTION

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

Paper under double-blind review

Abstract

Physical attacks against object detection have gained significant attention due to their practical implications. However, conducting physical experiments is time-consuming and labor-intensive, and controlling physical dynamics and crossdomain transformations in the real world is challenging, leading to inconsistent evaluations and hindering the development of robust models. To address these issues, we explore realistic simulations to rigorously benchmark physical attacks under controlled conditions. This approach ensures fairness and resolves the problem of capturing stricly aligned adversarial images, which is challenging in the real world. Our benchmark includes 23 physical attacks, 48 object detectors, comprehensive physical dynamics, and evaluation metrics. We provide end-to-end pipelines for dataset generation, detection, evaluation, and analysis. The benchmark is flexible and scalable, allowing easy integration of new objects, attacks, models, and vision tasks. Based on this benchmark, we generate comprehensive datasets and perform over 8,000 evaluations, including overall assessments and detailed ablation studies. These experiments provide detailed analyses from detection and attack perspectives, highlight limitations of existing algorithms and offer revealing insights. The code and datasets will be publicly available.

028 1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in various fields such as computer 031 vision (O'Mahony et al., 2020), natural language processing (Otter et al., 2020), and speech recognition (Nassif et al., 2019). However, studies (Szegedy et al., 2013; Goodfellow et al., 2014; Brown 033 et al., 2017; Kurakin et al., 2018; Buckner, 2020) show that DNNs are vulnerable to adversarial 034 attacks, which can be categorized into digital and physical attacks. Digital attacks add imperceptible perturbations to input images post-imaging, while physical attacks modify the physical properties of targets pre-imaging, such as changing textures (Survanto et al., 2023; Zheng et al., 2024) or adding stickers (Wei et al., 2022; Li et al., 2019). Physical attacks are more practical and dangerous as 037 they can be easily implemented in real-world scenarios, raising significant concerns in safety-critical applications like autonomous driving (Wang et al., 2023b; Cao et al., 2023), security surveillance (Nguyen et al., 2023; Wang et al., 2019b), and remote sensing (Wang et al., 2024b; Lian et al., 2022). 040

Object detection is a fundamental and pragmatic task in computer vision, widely deployed in various 041 intelligent systems (Zou et al., 2023; Zhao et al., 2019). Consequently, many physical attacks aim 042 to fool object detectors in real-world scenarios, and the physical adversarial robustness of object 043 detection models has garnered increasing attention in recent years. However, the absence of regulated 044 and easy-to-follow benchmarks hinders the development of physical attack and physically robust 045 detection methods. The main reasons for the lack of physical attack benchmarks are concluded as 046 follows: 1) Time-consuming and expensive: Evaluating the performance of physical attacks and 047 the adversarial robustness of object detection models requires numerous real-world experiments, 048 which are time-consuming and costly. 2) Physical dynamics alignment: Ensuring comparison fairness necessitates strictly controlled and consistent physical dynamics, which is unachievable in real-world scenarios since it is impossible to capture two identical pictures. 3) Cross-domain loss: 051 Physical attacks often involve creating conspicuous adversarial perturbations that must survive the transformation from the physical to the digital domain and vice versa, while this cross-domain loss is 052 uncontrollable. 4) Difficulty in comparison: With the evolution of physical attacks from 2D to 3D space, it becomes challenging to fairly compare different types of physical attack methods. Due to

these challenges, it is difficult to effectively verify the efficacy of physical attacks and the adversarial robustness of object detection models without thorough evaluation and impartial comparisons. As a result, researchers cannot accurately gauge the progress of physical adversarial attacks and robustness development, which slows down advancements in the field.

In this paper, we propose utilizing realistic simulations to benchmark physical attacks under controlled conditions such as weather, viewing angle, and location. These conditions are challenging to align 060 for impartial comparisons in the real world. Our benchmark includes 23 physical attack methods, 061 48 object detectors, diverse physical dynamics, evaluation metrics from different perspectives, and 062 comprehensive pipelines for data generation, attack and detection evaluation, and subsequent analysis. 063 Moreover, the benchmark is highly flexible and scalable, allowing for easy integration of new physical 064 attacks, models, and even other vision tasks. Based on the benchmark, we generate comprehensive and strictly aligned datasets and perform over 8,000 evaluations, including both overall assessments 065 and detailed ablation studies for controlled physical dynamics. Through these experiments, we 066 provide detailed analyses from detection and attack perspectives, highlight algorithm limitations, and 067 convey valuable insights. In summary, our contributions are as follows: 068

069

071

073

075

076

077

078

079

- We propose a robust and equitable benchmark for physical attacks against object detection models. This benchmark deeply explores the potential of real-world simulators to consistently evaluate physical attacks under a variety of continuous physical dynamics.
- The benchmark includes 23 physical attacks, 48 object detectors, comprehensive physical dynamics, and rigorous evaluation metrics. We provide end-to-end pipelines for dataset generation, detection, evaluation, and analysis, ensuring a thorough evaluation process.
 - The benchmark is designed to be highly flexible and scalable, facilitating the easy integration of new physical attacks, models, and even other vision tasks. This adaptability enhances the utility of our framework for ongoing research and development in the field.
 - Based on our benchmark, we generate comprehensive datasets and perform over 8,000 evaluations, including overall assessments and detailed ablation studies. These experiments highlight the limitations of existing algorithms and illuminate informative insights.
- 080 081 082

2 RELATED WORK

083 2.1 Object detection

084 Object detection is a fundamental task in computer vision, aiming to identify and localize objects 085 within images or videos. It can be formulated as a mapping function $f: \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space (e.g., bounding boxes and class labels). Deep learning has significantly advanced object detection. R-CNN (Girshick et al., 2014) and its successors (Girshick, 2015; Ren 087 et al., 2016; Lu et al., 2019; Pang et al., 2019; Wu et al., 2020a; Zhang et al., 2020a; Sun et al., 880 2021) improved detection speed and accuracy with region proposal networks and shared convolution 089 computations. SSD (Liu et al., 2016) and YOLO series (Redmon et al., 2016; Redmon & Farhadi, 090 2017; 2018; Bochkovskiy et al., 2020; Jocher et al., 2022; Li et al., 2022a; Wang et al., 2023a; Jocher 091 et al., 2023; Wang & Liao, 2024; Wang et al., 2024a) further accelerated detection by eliminating 092 region proposals, enabling real-time applications. Recently, transformer-based architectures like DETR (Carion et al., 2020), DAB-DETR (Liu et al., 2022), ViTDet (Li et al., 2022b), DINO (Zhang 094 et al., 2022b), and Co-DETR (Zong et al., 2023) have pushed performance boundaries using attention 095 mechanisms. Despite these advancements, object detection in adversarial environments remains 096 challenging, requiring ongoing research.

098 2.2 Physical Attack

099 Adversarial attacks typically add imperceptible perturbations δ to the clean input x in the digital do-100 main, fooling DNNs into incorrect predictions. This is formulated as: $\min_{\delta} \mathcal{L}(f(\boldsymbol{x}+\boldsymbol{\delta}), \boldsymbol{y})$ s.t. $\boldsymbol{\delta} \in$ 101 \mathcal{X} , where \mathcal{L} is the attack loss and y is the ground-truth. In contrast, physical attacks of-102 ten manipulate the physical properties of objects to deceive detection models, formulated as: 103 $\min_{\delta} \mathcal{L}(f(\boldsymbol{x} + \mathcal{T}_{P2D}(\mathcal{T}_{D2P}(\boldsymbol{\delta}))), \boldsymbol{y})$ s.t. $\boldsymbol{\delta} \in \mathcal{X}$, where \mathcal{T}_{D2P} and \mathcal{T}_{P2D} are transformations be-104 tween digital and physical domains. Kurakin et al. (2018) first showed that machine learning systems 105 are vulnerable to adversarial examples in physical contexts. They demonstrated this with adversarial images captured via a cell phone camera, significantly degrading vision system performance. Brown 106 et al. (2017) introduced adversarial patches, which localize perturbations to specific image regions 107 without imperceptibility constraints. These patches are practical and effective in the real world, easily

108 printed and attached to objects to fool detectors (Song et al., 2018; Thys et al., 2019; Wu et al., 2020b; 109 Zolfi et al., 2021; Zhu et al., 2021; Wang et al., 2022b; Zhu et al., 2022; Hu et al., 2022; Zhang 110 et al., 2022c; Shapira et al., 2022; Huang et al., 2023; Guesmi et al., 2024). To avoid suspicion, 111 natural-style adversarial patches have been proposed (Huang et al., 2020; Hu et al., 2021; Guesmi 112 et al., 2023). Beyond patches, physical perturbations include light (Hu et al., 2023a; Wu et al., 2024), viewpoint (Dong et al., 2022), and 3D objects (Liu et al., 2023a). Extending adversarial perturbations 113 to 3D space (Zhang et al., 2018; Wang et al., 2022a; Suryanto et al., 2022; 2023; Zhou et al., 2024) 114 has proven more effective and applicable in real-world scenarios. The variety in perturbations and 115 settings complicates fair comparisons of physical attack methods. 116

117 2.3 ROBUSTNESS BENCHMARK

119 Benchmarking adversarial attacks is crucial for evaluating and improving the robustness of DNN-120 based models. Croce et al. (2020) established a standardized benchmark for adversarial robustness, accurately reflecting model robustness within a reasonable computational budget. Wu et al. (2022) 121 created a comprehensive benchmark for backdoor attacks in image classification models. Michaelis 122 et al. (2019) provided a benchmark to assess object detection models under deteriorating image quality, 123 such as distortions or adverse weather conditions. Zheng et al. (2023) benchmarked adversarial 124 robustness of image classifiers in black-box settings. Dong et al. (2023) evaluated the robustness 125 of 3D object detection to common corruptions in LiDAR and camera data. Li et al. (2023) focused 126 on benchmarking the visual naturalness of physical adversarial perturbations. Hingun et al. (2023) 127 constructed a large-scale benchmark for evaluating adversarial patches with a traffic sign dataset. 128 CARLA (Dosovitskiy et al., 2017), a realistic autonomous driving simulator, has been used in physical 129 adversarial robustness research. Nesti et al. (2022) presented CARLA-GEAR, a dataset generator 130 for evaluating adversarial robustness of vision models. Zhang et al. (2023b) proposed a pipeline for 131 instance-level data generation using CARLA, creating the DCI dataset and conducting experiments with three detectors and three physical attacks. Despite these efforts, a comprehensive and rigorous 132 benchmark for physical attacks against object detection models is still lacking. This work aims to fill 133 that gap with easy-to-follow instructions and a codebase. 134

3 PADETBENCH

The benchmark encompasses four integral facets: datasets generation, physical attacks, object detection, and comprehensive evaluation & analysis procedures, as shown in Fig. 1. From a technical standpoint, we have engineered each constituent of the benchmark as modular, end-to-end pipelines within the codebase, ensuring straightforward adoption and replication.

141 142 3.1 Г

135

136

143

3.1 DATASETS GENERATION

It is common to use COCO (Lin et al., 2014), PASCAL VOC (Everingham & Winn, 2012), KITTI 144 (Geiger et al., 2012), etc., as benchmark datasets for object detection. However, these datasets 145 are ill-suited for assessing physical attacks since they are static and lack the flexibility required 146 to create manipulated, real-world adversarial scenarios. Physical attacks typically entail altering 147 the physical attributes of objects before capturing their images. To fairly and accurately evaluate 148 and compare such attacks, experiments necessitate applying perturbations in real-world conditions 149 with controlled physical dynamics, which are excessively time-consuming, labor-intensive, and 150 theoretically infeasible. Simulated environments, like CARLA (Dosovitskiy et al., 2017), present a 151 viable solution to these obstacles by enabling the straightforward manipulation of physical dynamics 152 through configurable parameters.

153 This work contributes an end-to-end pipeline for dataset generation within our codebase, significantly 154 streamlining the dataset generation process and enhancing research productivity. Our pipeline 155 prioritizes user-friendliness, enabling researchers to swiftly generate datasets embodying diverse 156 physical conditions through a concise series of steps. These conditions encompass variations in 157 weather, viewing angles, and distances, along with the capacity to impose physical perturbations 158 on objects. Comprehensively, our pipeline supports over 10 distinct environments ranging from 159 downtowns to small towns and rural landscapes, coupled with a library of more than 40 vehicles and 40 pedestrian models, all customizable concerning their hues and surface textures. It further 160 integrates continuous manipulation of physical dynamics such as fluctuating weather patterns, precise 161 sun positioning, and flexible camera placements concerning both location and orientation (refer to A.2

Figure 1: Overview of the benchmark, which consists of four main components: dataset generation, physical attacks, object detection, and evaluation. The end-to-end pipelines for each component are built into the codebase, making them easy to follow and reproduce. Please zoom in for details.

and A.3 for details). To ensure accessibility, we accompany the pipeline with step-by-step guidelines
 for personalizing object perturbations and seamlessly integrating these modifications within CARLA's
 (Dosovitskiy et al., 2017) simulation framework.

Our benchmark comprises three categories of datasets: a clean dataset serving as a control group, a dataset with random noise perturbations, and several datasets featuring adversarial perturbations generated through various attack methodologies. To ensure fair comparisons, scene compositions and camera perspectives are meticulously synchronized and regulated across all datasets, achievable effortlessly through our provided pipeline.

Moreover, our pipeline facilitates the automatic generation of supplementary annotations, including
 201 2D and 3D bounding boxes, depth maps, and instance segmentation maps. Consequently, our
 benchmark extends its utility beyond 2D object detection, also catering to tasks like 3D object
 detection, instance segmentation, depth estimation, and more, thereby enhancing the scope of
 research and application in computer vision.

- 205
- 206 3.2 Physical attacks

207 Physical attacks are usually tailed for specific object, and the commonly targeted objects are vehicles, 208 persons, and traffic signs as evidenced by Wei et al. (2024). Consequently, we adopt typical objects 209 from these categories as examples to illustrate the proposed benchmark. Specifically, we select 210 23 representative physical attack methods, which can be categoried into three types according to 211 their target objects: vehicle, person, and traffic sign, as shown in Table 1. The corresponding 212 physical perturbations of these methods are imported into Unreal Engine 4 for CARLA (CarlaUE4) 213 (Dosovitskiy et al., 2017), as shown in the physical attacks part of Fig. 1, to generate the physical adversarial datasets. We adhere to two principles similar to (Wu et al., 2022) when selecting physical 214 attacks. First, the methods are representative or advanced in the research field, which can serve as 215 baseline and state-of-the-art (SOTA) methods for comparison, respectively. Second, physical attacks

216 are easily conducted and with reproducible performance, which can be conveniently followed and 217 reproduced by other researchers. Since our benchmark evaluates physical attacks based on their 218 crafted perturbations, novel physical attack methods can be easily integrated into the benchmark by 219 following the provided pipeline. We will continue to update the physical attacks in the benchmark to 220 keep pace with the latest research progress.

221 222

225 226 227

229 230 231 Table 1: Categorization of physical attack methods based on their target objects.

Target objects	Physical attacks
	FCA (Wang et al., 2022a), DTA (Suryanto et al., 2022), ACTIVE (Suryanto et al., 2023),
Vehilcle	3D ² Fool (Zheng et al., 2024), POOPatch (Cheng et al., 2022),
	RPAU (Liu et al., 2023b), CAMOU (Zhang et al., 2018)
	DAP (Guesmi et al., 2024), AdvPattern (Wang et al., 2019b), UPC (Huang et al., 2020),
Dorson	NatPatch (Hu et al., 2021), MTD (Ding et al., 2021), AdvCaT (Hu et al., 2023b),
reison	AdvTexture (Hu et al., 2022), AdvTshirt(Xu et al., 2020), AdvPatch (Thys et al., 2019),
	LAP (Tan et al., 2021), InvisCloak (Wu et al., 2020b), AdvCam (Duan et al., 2020)
Traffic sign	AdvCam (Duan et al., 2020), RP ₂ Eykholt et al. (2018), ShapeShifter(Chen et al., 2019b)

232 233 234

235

3.3 OBJECT DETECTORS

236 We choose 48 object detectors in the same principles as choosing physical attack methods, covering mainstream object detectors, such as YOLO series (Jocher et al., 2022; Li et al., 2022a; Wang et al., 237 2023a; Jocher et al., 2023; Ge et al., 2021) (One-stage) and R-CNN series (Girshick et al., 2014; 238 Girshick, 2015; Ren et al., 2016; Cai & Vasconcelos, 2018; Sun et al., 2021), which are based on 239 CNN. Except for canonical detectors, we also include transformer-based detectors, such as DETR 240 (Carion et al., 2020), Conditional DETR (Meng et al., 2021), Deformable DETR (Zhu et al., 2020b), 241 DAB-DETR (Liu et al., 2022), and DINO (Zhang et al., 2022b). All the selected detectors are listed in 242 Table 2 according to their characteristics. Our benchmark provides the end-to-end pipeline for object 243 detection evaluation based on MMDetection (Chen et al., 2019a). Consequently, it is convenient 244 to integrate new detectors into the benchmark, and the benchmark can also be easily extended to 245 evaluate other vision tasks, such as 3D object detection, instance segmentation, and depth estimation.

246 247

248

3.4 EVALUATION AND ANALYSIS

249 **Evaluation metrics.** To rigorously assess the efficacy of physical attacks on object detection systems, 250 we furnish baseline datasets: clean datasets (without perturbations) and those infused with randomized noise (incorporating arbitrary disturbances in ℓ_{∞} -bounded space). This dual-baseline approach sets the stage for a thorough and fair examination. Quantifying performance entails employing evaluation metrics that consider the performance of both object detection and adversarial attack. These metrics 253 comprise several widely adopted indicators, including mean average precision (mAP), mean average 254 recall (mAR), and attack successful rate (ASR). mAP and mAR are calculated as the mean value of average precisions and recalls at n recall and precision levels over C classes, respectively, i.e., 256 $mAP = \frac{1}{C} \sum_{c=1}^{C} (\frac{1}{n} \sum_{i=1}^{n} P_i)$ and $mAR = \frac{1}{C} \sum_{c=1}^{C} (\frac{1}{n} \sum_{i=1}^{n} R_i)$. Precision rate and recall rate are calculated as $P = \frac{TP}{TP+FP}$ and $R = \frac{TP}{TP+FN}$, respectively, where TP, FP, and FN denote the true positive, 257 258 false positive, and false negative counts of the detector, respectively. On the other hand, ASR quantifies 259 the effectiveness of the adversarial perturbations, calculated as $ASR = 1 - \frac{M_{attack}}{M_{clean}}$, where M_{attack} and 260 M_{clean} denote the value of adopted metric on the attack and clean datasets, respectively. ASR provides 261 a direct measure of the extent to which the attacks undermine the detector's performance. 262

Advocation of mAR for physical attacks. Adversarial attacks aim to induce mispredictions, i.e., to 264 maximize error rate, which is the mathematical expectation of incorrect predictions written as:

$$\operatorname{rr} = \mathbb{E}_{y \in Y}[1_{\hat{y} \neq y}] = \frac{|Y - Y \cap \hat{Y}|}{|Y|}$$
(1)

266 267 268

265

$$\operatorname{err} = \mathbb{E}_{y \in Y}[1_{\hat{y} \neq y}] = \frac{|Y - Y \cap Y|}{|Y|} \tag{1}$$

where $1_{\hat{u}=y}$ is 1 for a correct prediction and 0 otherwise, and Y and Y represent the ground truths 269 and predicted results of all objects, respectively. According to the calculation of performance metrics

290 291

292 293

294

Table 2: Categorization of object detection. Note that the categorization is based on the selected version of the methods, and the category may vary with different versions, such as the backbone of a detector being either CNN or Transformer. Refer to A.4 for the corresponding config files.

274	Backbone	Category	Detectors
275			ATSS(Zhang et al., 2020b), AutoAssign(Zhu et al., 2020a), GFL(Li et al., 2020),
276			CenterNet(Zhou et al., 2019), CornerNet(Law & Deng, 2018), PAA(Kim & Lee, 2020),
277			DDOD(Chen et al., 2021), DyHead(Wu et al., 2020a), EfficientNet(Tan & Le, 2019),
278		One-stage	FCOS(Tian et al., 1904), FoveaBox(Kong et al., 2020), FreeAnchor(Zhang et al., 2019),
270		one stuge	LD(Zheng et al., 2022), CentripetalNet(Dong et al., 2020), FSAF(Zhu et al., 2019),
219			RTMDet(Lyu et al., 2022), TOOD(Feng et al., 2021), VarifocalNet(Zhang et al., 2021),
280	CNN		YOLOX(Ge et al., 2021), YOLOv5(Jocher et al., 2022), YOLOv6(Li et al., 2022a),
281	CININ		YOLOv7(Wang et al., 2023a), RetinaNet(Lin et al., 2017), YOLOv8(Jocher et al., 2023)
282			Faster R-CNN(Ren et al., 2016), Cascade R-CNN(Cai & Vasconcelos, 2019),
283			Cascade RPN(Vu et al., 2019), Double Heads(Wu et al., 2020a), FPG(Chen et al., 2020),
200		Two store	Libra R-CNN(Pang et al., 2019), PAFPN(Liu et al., 2018), HRNet(Sun et al., 2019),
284		Two-stage	ResNeSt(Zhang et al., 2022a), Res2Net(Gao et al., 2019), SABL(Wang et al., 2020),
285			Guided Anchoring(Wang et al., 2019a), Sparse R-CNN(Sun et al., 2021),
286			RepPoints(Yang et al., 2019), Grid R-CNN(Lu et al., 2019)
287			DETR(Carion et al., 2020), PVT(Wang et al., 2021), PVTv2(Wang et al., 2021),
288	Transforme	r -	DDQ(Zhang et al., 2023a), DAB-DETR(Liu et al., 2022), DINO(Zhang et al., 2022b),
200			Deformable DETR(Zhu et al., 2020b), Conditional DETR(Meng et al., 2021)
603			

for detection, we can rewrite the error rate as:

$$\operatorname{err} = \frac{|Y - Y \cap \hat{Y}|}{|Y|} = \mathbb{E} \left[\frac{\mathrm{FN}}{\mathrm{TP} + \mathrm{FN}} \right] = 1 - \mathrm{mAR}.$$
 (2)

Therefore, mAR is a more direct and intuitive metric for evaluating the effectiveness of physical attacks on object detection models. We use mAR as the primary metric in the main manuscript, while mAP is also provided for reference.

298 Evaluation perspectives. Specifically, we use mAP50, i.e., the confidence threshold of 0.5, to 299 evaluate the overall performance of object detection, which is widely adopted in the object detection 300 community. mAR50 is adopted to signify the proportion of correctly identified instances relative 301 to the actual total in the dataset, offering an intuitive gauge of how physical attacks degrade the 302 detection capability of a given adversarial target. However, mAR50 and mAP50 cannot fully reflect the performance of object detection models, especially when the confidence score of a adversarial 303 object is significantly dropped but still higher than the threshold. To address this issue, we also use 304 mAR50:95 and mAP50:95, which are calculated as the mean value over the range of 0.5 to 0.95 305 of the confidence threshold, to provide a more comprehensive evaluation of the object detection 306 models. In the perspective of physical attacks, we use ASR over the detection metrics mAP50, 307 mAR50, mAP50:95, and mAR50:95 to evaluate the effectiveness of physical attacks on object 308 detection models, ensuring a comprehensive and impartial assessment. Moreover, we also visualize 309 the distribution of evaluation performance using violin plots, which can provide a more intuitive 310 understanding of the performance of object detection models and physical attacks, respectively. 311

Analysis tools. Furthermore, we enhance our codebase by incorporating several ready-to-use explainability visualization tools, facilitating deeper insights into model behavior. These include Grad-CAM (Selvaraju et al., 2017) for visualizing the regions of input data that contribute most to the model's prediction, Shapley value (Lundberg & Lee, 2017) to quantify the individual feature contributions, and t-SNE (van der Maaten & Hinton, 2008) for reducing dimensionality and visualizing high-dimensional data in a more interpretable manner. These additions empower users to conduct comprehensive analyses beyond mere performance evaluation.

319 4 EXPERIMENTS

320 321 4.1 EXPERIMENTAL SETUP

Datasets. 1) **Overall experiments**. We generate overall datasets with 3 objects, 10 weather conditions, 2 altitude angles, 8 azimuth angles, 5 radius values, 3 spawn points, and 23 physical perturbations, i.e., 7200 samples $(3 \times 10 \times 2 \times 8 \times 5 \times 3 = 7200)$ for each attack method, in which the physical

 NBS
 Nexborn
 Cocde CNN
 <t

Figure 2: **Overall** results of **vehicle** detection. Each subplot corresponds to a specific detector, illustrating its mAR50 (%) under various attack techniques and control group (Clean) via bar graphs, with + markers denoting the associated ASR (%) values. Zooming in is advised.

Figure 3: **Overall** results of **person** detection by 48 detectors, reported in **ASR(%)**. Each detector is evaluated against 13 attack methods (marked by different markers and colors, see legend). The violin plot shows the maximum, minimum, and distribution of ASR, where thickness represents the density of attack methods with corresponding ASR. ASR is measured by mAR50.

dynamics are strictly aligned and controlled for impartial comparison (detailed in A.2). Please note
 that these parameters are adjustable in the pipeline, and the datasets can be easily generated with
 different settings as needed. 2) Ablation Studies. We conduct in-depth examinations to explore the
 individual impact of core physical dynamics: weather conditions, venue, camera distance, azimuth
 angle, altitude angle within a hemispherical space. Accomplishing this involves generating focused
 sub-benchmarks, each consisting of 100 samples.

Physical attacks. We generate 24 datasets for comprehensive evaluation, including 20 physically
noised datasets that correspond to 20 physical attacks, an extra 2 clean datasets and 2 randomly noised
datasets for comparison of vehicle detection and person detection, respectively. To evaluate the attack
transferability, we also adopt perturbations optimized for aerial detection (Lian et al., 2022) and depth
estimation (Zheng et al., 2024; Cheng et al., 2022) in the experiments. Furthermore, we generate 4

Figure 4: **Overall** results of **vehicle** detection by 48 detectors, reported in **ASR**(%). Each detector is evaluated against 9 attack methods (marked by different markers and colors, see legend). The violin plot shows the maximum, minimum, and distribution of ASR, where thickness represents the density of attack methods with corresponding ASR. ASR is measured by mAR50.

Figure 5: Results of **person** detection from 13 **attack methods** in **ASR** (%). Each method is evaluated against 48 detectors (marked by different markers and colors, see legend). The violin plot 405 shows the maximum, minimum, and distribution of ASR, where thickness represents the density of 406 detectors with corresponding ASR. ASR is measured by mAR50.

404

392

393

394

397

409 extra datasets concerning traffic sign detection to show the easy extension of the benchmark to other objects (refer to A.3 for more details). The involved physical attacks are detailed in Table 1. 410

411 **Object detectors**. We evaluate 48 object detectors covering mainstream types, such as one and two-412 stage detectors, and transformer-based detectors, as shown in Table 2, by integrating MMD etection 413 (Chen et al., 2019a) into our evaluation pipeline.

- 414 Therefore, we conduct a total of 8256 $(24 \times 48 \times (1+6) + 4 \times 48)$ groups of the experiment, which 415 are conducted with $16 \times$ NVIDIA Geforce 4090. 416
- 417 4.2 **OVERALL EXPERIMENTS AND ANALYSIS**

418 We present the comprehensive results of vehicle detection against physical attacks in Fig. 2. Ad-419 ditionally, Fig. 3 and Fig. 4 show visualized analyses of the experimental results from detection 420 perspectives, and Fig. 5 and Fig. 6 present the results from attack perspectives. More experimental 421 results and corresponding detailed numerical results are listed in **B**. From these evaluation, several 422 key observations emerge:

423 **Detection perspective.** 1) Vehicle detection performance is significantly impacted by physical 424 attacks, with the average recall rates of detectors decreasing up to 50%, as shown in Fig. 4. However, 425 pedestrian detection performance is less affected regarding various attacks, with the average recall 426 rates of detectors decreasing by less than 20%, as shown in Fig. 3. The potential reason is that the 427 stronger physical perturbations are optimized with consideration of 3D space and accommodate more 428 complex physical dynamics, while physical attacks aiming to fool person detectors are commonly performed with optimized 2D patches, which work well in particular physical dynamics, as detailed 429 in the ablation experiments B.2.2, which empirically demonstrate the pressing need and necessity 430 of a comprehensive and rigorous benchmark for physical attacks. 2) The performance of different 431 detectors varies significantly, with some detectors exhibiting superior robustness against physical

Figure 6: Results of **vehicle** detection from 9 **attack methods** in **ASR** (%). Each method is evaluated against 48 detectors (marked by different markers and colors, see legend). The violin plot shows the maximum, minimum, and distribution of ASR, where thickness represents the density of detectors with corresponding ASR. ASR is measured by mAR50.

439

440

441

442

attacks, such as EfficientNet, the YOLO series, and RTMDet among one-stage detectors. Additionally,
 DDQ demonstrates notable adversarial robustness among transformer-based detectors. While other
 detectors show varying lower levels of robustness, state-of-the-art detection performance does not
 necessarily correlate with adversarial robustness. Consequently, the benchmark also serves as an
 indicator of robustness.

450 Attack perspective. 1) For vehicle detection, different physical attacks exhibit varying levels of 451 effectiveness, with some attacks achieving ASR values exceeding 70% like ACTIVE, and others 452 failing to surpass 20%. Most of the physical attacks hard to fool the latest SOTA detectors, such as 453 EfficientNet, YOLO series, and RTMDet. This phenomenon is caused by the victim models of the 454 attack method lagging behind the development of the detection method, which also motivates us to fill 455 this gap. 2) For person detection, the ASR values of physical attacks are generally lower than those for vehicle detection, with the majority of attacks achieving ASR values below 20%. The relatively 456 strongest attack method is AdvTexture, which elaborates on a 2D patch but with tricks for 3D space. 457 This also demonstrates the gap between 2D perturbations and 3D physical space, highlighting the 458 challenges in effectively transferring adversarial attacks from controlled 2D environments to more 459 complex 3D scenarios. Moreover, it underscores the necessity for developing more sophisticated 460 attack strategies that can account for the intricacies of 3D physical dynamics. 461

462 4.3 ABLATION EXPERIMENTS AND ANALYSIS

463 Except for the overall experiments, we also conduct ablation experiments to investigate the impact 464 of physical world factors. We show the results of 3 physical dynamics, including weather, distance, 465 and camera viewing angle, in Fig. 5 and Fig. 6, respectively. More experiments on other dynamics 466 are provided in B.3 and B.5. From these evaluation, several key observations emerge: 1) Physical 467 attack performance can be easily swayed by physical dynamics. This phenomenon is consistent with existing works (Dong et al., 2022; Zhong et al., 2022) and emphasizes the importance of strictly 468 aligning physical dynamics when evaluating physical attacks, which are often underestimated by 469 previous works. 2) We also observe a gap between the ablation attack performance of our benchmark 470 and the reported performance in the original papers (refer to B.2.1 for more details). Two reasons 471 may contribute to this gap: the first is the adopted SOTA detectors in our benchmark, which are 472 more robust than the victim models in the original papers, and the second is that our benchmark 473 provides more comprehensive and strict evaluation datasets and physical dynamics, which are more 474 challenging for the attack methods. These observations empirically demonstrate the pressing need 475 and necessity of a comprehensive and rigorous benchmark for physical attacks. Please refer to B for 476 more experiments, detailed analysis and discussion.

478 5 DISCUSSION

477

479

480 5.1 WHERE ARE WE?

Lack of alignment and comprehensiveness in physical dynamics. Existing works are either
 limited in comprehensiveness or do not strictly align and control physical dynamics, as illustrated
 in A.2. As evidenced by previous works (Zhong et al., 2022; Dong et al., 2022), physical dynamics
 can be exploited to fool DNNs, underscoring the necessity of aligning these dynamics. Conse quently, researchers cannot accurately gauge the actual progress of this research domain without a
 comprehensive and rigorously aligned study, which slows down advancements in the field.

Discrete and naive physical adaptation. While theoretically, well-studied digital attacks should benefit physical attacks, the reality often falls short. This discrepancy arises because the theoretical gains cannot survive cross-domain transformations ($\mathcal{T}_{P2D}(\mathcal{T}_{D2P}(\delta))$) as mentioned in 2.2). Existing works use discrete and naive augmentations to model physical dynamics, failing to capture the characteristics of continuous and complex physical scenarios. This explains the gap observed in our ablation experiments (B.2.1), highlighting the need for a comprehensive and rigorous benchmark.

492 493 5.2 WHERE TO GO?

Comprehensive and physically aligned benchmark. A comprehensive and physically aligned
 benchmark is essential for evaluating physical attacks on object detection models. It ensures rigorous
 and unbiased assessments, highlighting the strengths and weaknesses of various attacks and detectors,
 and providing valuable insights for future research. Such a benchmark can drive the development of
 more robust and resilient object detection models, ultimately enhancing the security and reliability of
 AI systems in real-world applications.

Rigorous and differentiable modeling of cross-domain transformations. Accurate modeling of cross-domain transformations is essential for both physical attacks and defenses. While existing works have attempted to use differentiable neural renderers to automatically generate adversarial examples, they often have limited modeling capabilities and fall short in aligning physical factors between physical perturbations and clean images. With the advent of large foundation models, exploring how to model physical dynamics more rigorously and differentiably using large-scale data and foundation models is a promising direction.

6 CONCLUSION

In conclusion, we develop a comprehensive simulation-based benchmark to rigorously evaluate physical attacks under controlled conditions. This benchmark includes 23 physical attacks, 48 object detectors, and detailed physical dynamics, supported by end-to-end pipelines. The benchmark is flexible and scalable, allowing easy integration of new attacks, models, and vision tasks. Through extensive evaluations involving over 8,000 tests, we highlight algorithm limitations and provide valuable insights. We believe this benchmark will significantly advance research in physical adversarial attacks, fostering the development of more robust and reliable models.

516 517

526

527

528

529

507

508

References

- Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.
- Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch.
 arXiv preprint arXiv:1712.09665, 2017.
- 523
 524 Cameron Buckner. Understanding adversarial examples requires a theory of artefacts for deep learning. *Nature Machine Intelligence*, 2(12):731–736, 2020.
 - Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6154–6162, 2018.
- Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and instance
 segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 43(5):1483–1498, 2019.
- Yulong Cao, S Hrushikesh Bhupathiraju, Pirouz Naghavi, Takeshi Sugawara, Z Morley Mao, and
 Sara Rampazzi. You can't see me: Physical removal attacks on {LiDAR-based} autonomous
 vehicles driving frameworks. In *32nd USENIX Security Symposium (USENIX Security 23)*, pp. 2993–3010, 2023.
- Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 Zagoruyko. End-to-end object detection with transformers. In *European conference on computer vision*, pp. 213–229. Springer, 2020.

540 541	Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
542	Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
543	Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
544	arXiv preprint arXiv:1906.07155, 2019a.
545	Kai Chan, Yuhang Cao, Chan Change Loy, Dahua Lin, and Christoph Feichtenhofer, Feature pyramid
546	grids arXiv preprint arXiv:2004.03580, 2020
547	gnus. <i>urxiv preprint urxiv</i> .2004.05500, 2020.
548	Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Chau. Shapeshifter: Robust
549	physical adversarial attack on faster r-cnn object detector. In Machine Learning and Knowledge
550 551	Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18, pp. 52–68. Springer, 2019b.
552	
553 554	Zehui Chen, Chenhongyi Yang, Qiaofei Li, Feng Zhao, Zheng-Jun Zha, and Feng Wu. Disentangle your dense object detector. In <i>Proceedings of the 29th ACM international conference on multimedia</i> ,
555	pp. 4939–4948, 2021.
556	Zhivuan Cheng James Liang Hongiun Choi, Guanhong Tao, Zhiwen Cao, Dongfang Liu, and
557	Xiangyu Zhang Physical attack on monocular denth estimation with optimal adversarial patches
558	In European conference on computer vision, pp. 514–532. Springer, 2022.
559	
560	Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
561	marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
562	robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.
563	Li Ding Yongwei Wang Kaiwen Yuan Minyang Jiang Ping Wang Hua Huang and 7 Jane
564	Wang, Towards universal physical attacks on single object tracking. In <i>Proceedings of the AAAI</i>
565	Conference on Artificial Intelligence, volume 35, pp. 1236–1245, 2021.
566	
567	Yinpeng Dong, Shouwei Ruan, Hang Su, Caixin Kang, Xingxing Wei, and Jun Zhu. Viewfool:
568 569	Evaluating the robustness of visual recognition to adversarial viewpoints. Advances in Neural Information Processing Systems, 35:36789–36803, 2022.
570	Vinnang Dang Caivin Kang Jinlai Zhang Zijian Zhu Vikai Wang Viao Vang Hang Su Vingving
571	Wei and Jun Zhu Benchmarking robustness of 3d object detection to common corruptions
572	In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
573	1022–1032, 2023.
574	
575	Zhiwei Dong, Guoxuan Li, Yue Liao, Fei Wang, Pengju Ren, and Chen Qian. Centripetalnet: Pursuing
576	nign-quality keypoint pairs for object detection. In <i>Proceedings of the IEEE/CVF conference on</i>
577	computer vision and pattern recognition, pp. 10319–10328, 2020.
578	Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
519	open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.
500	
582	Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey, A Kai Qin, and Yun Yang. Adversarial
583	camounage: Hiding physical-world attacks with natural styles. In <i>Proceedings of the IEEE/CVF</i>
584	conjerence on computer vision and pattern recognition, pp. 1000–1008, 2020.
585	Mark Everingham and John Winn. The pascal visual object classes challenge 2012 (voc2012)
586	development kit. Pattern Anal. Stat. Model. Comput. Learn., Tech. Rep, 2007(1-45):5, 2012.
587	Varia Erikhalt Ivan Eritman Earlange Formander, D. L. Arris Dakareti Chasteri Vice At 1
588	Reviii Eykiioii, Ivan Eviimov, Earience Fernandes, Bo Li, Amir Kanmati, Unaowei Xiao, Atul Prakash Tadayoshi Kohno, and Dawn Song. Pobuet physical world attacks on doop lograming viewel
589	classification In Proceedings of the IFFF conference on computer vision and pattern recognition
590	pp. 1625–1634, 2018.
591	
592	Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned
593	one-stage object detection. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490–3499. IEEE Computer Society, 2021.

594 595 596	Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A new multi-scale backbone architecture. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 43(2):652–662, 2019.
597 598 599	Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.
600 601 602	Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In <i>2012 IEEE conference on computer vision and pattern recognition</i> , pp. 3354–3361. IEEE, 2012.
604 605 606	Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 7036–7045, 2019.
607 608	Ross Girshick. Fast r-cnn. In <i>Proceedings of the IEEE international conference on computer vision</i> , pp. 1440–1448, 2015.
609 610 611 612	Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 580–587, 2014.
613 614 615	Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. <i>arXiv preprint arXiv:1412.6572</i> , 2014.
616 617	Amira Guesmi, Ioan Marius Bilasco, Muhammad Shafique, and Ihsen Alouani. Advart: Adversarial art for camouflaged object detection attacks. <i>arXiv preprint arXiv:2303.01734</i> , 2023.
618 619 620	Amira Guesmi, Ruitian Ding, Muhammad Abdullah Hanif, Ihsen Alouani, and Muhammad Shafique. Dap: A dynamic adversarial patch for evading person detectors. In <i>Proceedings of the IEEE/CVF</i> <i>Conference on Computer Vision and Pattern Recognition</i> , pp. 24595–24604, 2024.
622 623 624	Nabeel Hingun, Chawin Sitawarin, Jerry Li, and David Wagner. Reap: A large-scale realistic adversarial patch benchmark. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 4640–4651, 2023.
625 626 627	Chengyin Hu, Yilong Wang, Kalibinuer Tiliwalidi, and Wen Li. Adversarial laser spot: Robust and covert physical-world attack to dnns. In <i>Asian Conference on Machine Learning</i> , pp. 483–498. PMLR, 2023a.
628 629 630 631	Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, Jun-Cheng Chen, Kai-Lung Hua, and Wen- Huang Cheng. Naturalistic physical adversarial patch for object detectors. In <i>Proceedings of the</i> <i>IEEE/CVF International Conference on Computer Vision</i> , pp. 7848–7857, 2021.
632 633 634	Zhanhao Hu, Siyuan Huang, Xiaopei Zhu, Fuchun Sun, Bo Zhang, and Xiaolin Hu. Adversarial texture for fooling person detectors in the physical world. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 13307–13316, 2022.
635 636 637 638	Zhanhao Hu, Wenda Chu, Xiaopei Zhu, Hui Zhang, Bo Zhang, and Xiaolin Hu. Physically realizable natural-looking clothing textures evade person detectors via 3d modeling. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 16975–16984, 2023b.
639 640 641	Hao Huang, Ziyan Chen, Huanran Chen, Yongtao Wang, and Kevin Zhang. T-sea: Transfer-based self-ensemble attack on object detection. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 20514–20523, 2023.
642 643 644 645	Lifeng Huang, Chengying Gao, Yuyin Zhou, Cihang Xie, Alan L Yuille, Changqing Zou, and Ning Liu. Universal physical camouflage attacks on object detectors. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 720–729, 2020.
646 647	Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, Yonghye Kwon, Kalen Michael, Jiacong Fang, Colin Wong, Zeng Yifu, Diego Montes, et al. ultralytics/yolov5: v6. 2-yolov5 classification models, apple m1, reproducibility, clearml and deci. ai integrations. <i>Zenodo</i> , 2022.

648 649 650	Glenn Joe https://giti	cher, Ayus hub.com/ultral	h Chaurasia, /ytics/ultralytics,	and 2023.	Jing	Qiu.	Ultralytics	yolov8.
651 652 653	Kang Kim an In <i>Comput</i> <i>Proceedin</i>	nd Hee Seok Le ter Vision–EC gs, Part XXV	ee. Probabilistic a CV 2020: 16th E 16, pp. 355–371.	anchor assi <i>European C</i> Springer,	ignment <i>Conferen</i> 2020.	with iou predi ce, Glasgow,	ction for object UK, August 23–	detection. 28, 2020,
654 655 656	Tao Kong, F anchor-ba	uchun Sun, H sed object dete	uaping Liu, Yur ection. <i>IEEE Tra</i>	ning Jiang	, Lei Li, <i>on Imag</i>	and Jianbo S e Processing,	hi. Foveabox: 29:7389–7398,	Beyound , 2020.
657 658	Alexey Kura In Artificio	kin, Ian J Goo al intelligence	odfellow, and Sa safety and secur	my Bengio <i>ity</i> , pp. 99	o. Adver 	rsarial examp hapman and H	les in the physic Hall/CRC, 2018	al world.
659 660 661	Hei Law and European	l Jia Deng. C conference on	ornernet: Detec computer visior	ting objec 1 (ECCV),	ts as pai pp. 734-	red keypoints -750, 2018.	s. In <i>Proceedin</i>	gs of the
662 663 664	Chuyi Li, Lu Li, Meng industrial	ılu Li, Hongli Cheng, Weiqi applications.	ang Jiang, Kaih ang Nie, et al. arXiv preprint an	eng Weng Yolov6: A Xiv:2209.	, Yifei C A single- 02976, 2	Geng, Liang L stage object o 2022a.	i, Zaidan Ke, Q detection frame	Qingyuan work for
665 666 667	Juncheng Li, attack on o PMLR, 20	Frank Schmic leep learning s)19.	lt, and Zico Kolte systems. In <i>Inters</i>	er. Advers national co	arial can onferenc	nera stickers: e on machine	A physical came <i>learning</i> , pp. 38	era-based 96–3904.
668 669 670 671	Simin Li, Sh and Xiang adversaria <i>Recognitio</i>	uning Zhang, Jong Liu. Tov 1 attacks. In <i>P</i> 200, pp. 12324–	Gujun Chen, D wards benchmar roceedings of the 12333, 2023.	Oong Wang king and a e IEEE/CV	g, Pu Fe assessing <i>YF Confe</i>	ng, Jiakai Wa g visual natur rence on Com	ang, Aishan Liu alness of physic aputer Vision an	, Xin Yi, cal world <i>d Pattern</i>
673 674 675	Xiang Li, We eralized fo <i>Advances</i>	enhai Wang, Li ocal loss: Lear <i>in Neural Info</i>	jun Wu, Shuo Cl ning qualified ar rmation Process	hen, Xiaol nd distribu ing Systen	in Hu, Ju ted bour ns, 33:21	n Li, Jinhui T nding boxes fo .002–21012, 2	ang, and Jian Ya or dense object (2020.	ang. Gen- detection.
676 677 678	Yanghao Li, backbones Springer, 2	Hanzi Mao, s for object d 2022b.	Ross Girshick, etection. In <i>Eu</i>	and Kaim ropean Co	ning He. <i>onferenc</i>	Exploring j e on Comput	plain vision tra <i>ter Vision</i> , pp.	nsformer 280–296.
679 680 681	Jiawei Lian, aerial dete	Shaohui Mei, ection. <i>IEEE T</i>	Shun Zhang, and Fransactions on C	l Mingyan Geoscience	g Ma. B e and Re	enchmarking mote Sensing	adversarial patc , 60:1–16, 2022	h against
682 683 684 685	Tsung-Yi Li Dollár, and ECCV 201 Part V 13,	n, Michael M d C Lawrence 2 4: 13th Europ pp. 740–755.	aire, Serge Belo Zitnick. Microso <i>ean Conference,</i> Springer, 2014.	ngie, Jame ft coco: Ce <i>Zurich, Sv</i>	es Hays, ommon o witzerlan	, Pietro Peron objects in cont ad, September	a, Deva Raman text. In <i>Compute</i> 6-12, 2014, Pro	aan, Piotr er Vision– oceedings,
686 687 688	Tsung-Yi Lin detection. 2017.	n, Priya Goyal, In <i>Proceeding</i>	Ross Girshick, Southeast States State	Kaiming H ernational	Ie, and P <i>conferer</i>	iotr Dollár. Fo ace on comput	ocal loss for den <i>er vision</i> , pp. 29	se object 80–2988,
690 691 692	Aishan Liu, J Liu, and D detection.	Jun Guo, Jiaka Dacheng Tao. { In <i>32nd USE</i>	i Wang, Siyuan X-Adv}: Physic NIX Security Syn	Liang, Rer al adversa <i>posium (</i> l	nshuai Ta rial obje USENIX	ao, Wenbo Zh ct attacks agai Security 23),	ou, Cong Liu, X inst x-ray prohib pp. 3781–3798	ianglong bited item , 2023a.
693 694 695	Shilong Liu, Dab-detr: 2022.	, Feng Li, Ha Dynamic anc	o Zhang, Xiao Y hor boxes are bo	Yang, Xia etter queri	nbiao Q es for de	i, Hang Su, J etr. <i>arXiv pre</i>	un Zhu, and Le print arXiv:220	ei Zhang. 01.12329,
696 697 698 699	Shu Liu, Lu segmentat pp. 8759–	Qi, Haifang (ion. In <i>Procee</i> 8768, 2018.	Qin, Jianping Sh dings of the IEE.	ii, and Jiay E conferen	ya Jia. F ace on co	Path aggregati	on network for and pattern rec	instance cognition,
700 701	Taifeng Liu, uavs via p 2023b.	Chao Yang, X hysical advers	Kinjing Liu, Rui arial patches. <i>II</i>	dong Han EEE Trans	, and Jia actions	nfeng Ma. R on Intelligent	pau: Fooling th <i>Transportation</i>	e eyes of Systems,

702 703 704 705	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In <i>Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14</i> , pp. 21–37. Springer, 2016.
708 707 708	Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan. Grid r-cnn. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 7363–7372, 2019.
709 710 711 712 713	Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), <i>Advances in Neural Information Processing Systems</i> , volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.
714 715 716 717	Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou, Yudong Wang, Yanyi Liu, Shilong Zhang, and Kai Chen. Rtmdet: An empirical study of designing real-time object detectors. <i>arXiv preprint arXiv:2212.07784</i> , 2022.
718 719 720	Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang. Conditional detr for fast training convergence. In <i>Proceedings of the IEEE/CVF international conference on computer vision</i> , pp. 3651–3660, 2021.
721 722 723 724	Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexan- der S Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detection: Autonomous driving when winter is coming. <i>arXiv preprint arXiv:1907.07484</i> , 2019.
725 726	Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan. Speech recognition using deep neural networks: A systematic review. <i>IEEE access</i> , 7:19143–19165, 2019.
727 728 729 730	Federico Nesti, Giulio Rossolini, Gianluca D'Amico, Alessandro Biondi, and Giorgio Buttazzo. Carla-gear: a dataset generator for a systematic evaluation of adversarial robustness of vision models. <i>arXiv preprint arXiv:2206.04365</i> , 2022.
731 732 722	Kien Nguyen, Tharindu Fernando, Clinton Fookes, and Sridha Sridharan. Physical adversarial attacks for surveillance: A survey. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2023.
734 735 736	Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages of deep learning for natural language processing. <i>IEEE transactions on neural networks and learning systems</i> , 32(2): 604–624, 2020.
737 738 739 740	Niall O'Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh. Deep learning vs. traditional computer vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1, pp. 128–144. Springer, 2020.
741 742 743 744	Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards balanced learning for object detection. In <i>Proceedings of the IEEE/CVF conference on</i> <i>computer vision and pattern recognition</i> , pp. 821–830, 2019.
745 746	Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 7263–7271, 2017.
748 749	Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. <i>arXiv preprint arXiv:1804.02767</i> , 2018.
750 751 752 753	Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 779–788, 2016.
754 755	Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 39(6):1137–1149, 2016.

- Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-ization. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- Avishag Shapira, Ron Bitton, Dan Avraham, Alon Zolfi, Yuval Elovici, and Asaf Shabtai. Attacking object detector using a universal targeted label-switch patch. *arXiv preprint arXiv:2211.08859*, 2022.
- Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian Tramer,
 Atul Prakash, and Tadayoshi Kohno. Physical adversarial examples for object detectors. In *12th USENIX workshop on offensive technologies (WOOT 18)*, 2018.
- Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for human pose estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5693–5703, 2019.
- Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end object detection with learnable proposals. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14454–14463, 2021.
- Naufal Suryanto, Yongsu Kim, Hyoeun Kang, Harashta Tatimma Larasati, Youngyeo Yun, Thi-Thu-Huong Le, Hunmin Yang, Se-Yoon Oh, and Howon Kim. Dta: Physical camouflage attacks using differentiable transformation network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15305–15314, 2022.
- Naufal Suryanto, Yongsu Kim, Harashta Tatimma Larasati, Hyoeun Kang, Thi-Thu-Huong Le, Yoony-oung Hong, Hunmin Yang, Se-Yoon Oh, and Howon Kim. Active: Towards highly transferable 3d physical camouflage for universal and robust vehicle evasion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4305–4314, 2023.
- Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
- Jia Tan, Nan Ji, Haidong Xie, and Xueshuang Xiang. Legitimate adversarial patches: Evading human
 eyes and detection models in the physical world. In *Proceedings of the 29th ACM international conference on multimedia*, pp. 5307–5315, 2021.
- Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.
- Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance cameras:
 adversarial patches to attack person detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 0–0, 2019.

797

798

- Z Tian, C Shen, H Chen, and T He. Fcos: Fully convolutional one-stage object detection. arXiv 2019. arXiv preprint arXiv:1904.01355, 1904.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579-2605, 2008. URL http://jmlr.org/papers/v9/vandermaaten08a.html.
- Thang Vu, Hyunjun Jang, Trung X Pham, and Chang Yoo. Cascade rpn: Delving into high-quality
 region proposal network with adaptive convolution. *Advances in neural information processing systems*, 32, 2019.
- Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yolov10:
 Real-time end-to-end object detection. *arXiv preprint arXiv:2405.14458*, 2024a.
- 809 Chien-Yao Wang and Hong-Yuan Mark Liao. YOLOv9: Learning what you want to learn using programmable gradient information. *arXiv preprint arXiv:2402.13616*, 2024.

- Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7464–7475, 2023a.
- Donghua Wang, Tingsong Jiang, Jialiang Sun, Weien Zhou, Zhiqiang Gong, Xiaoya Zhang, Wen Yao, and Xiaoqian Chen. Fca: Learning a 3d full-coverage vehicle camouflage for multi-view physical adversarial attack. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 2414–2422, 2022a.
- Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, and Dahua Lin. Region proposal by guided
 anchoring. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 pp. 2965–2974, 2019a.
- Jiaqi Wang, Wenwei Zhang, Yuhang Cao, Kai Chen, Jiangmiao Pang, Tao Gong, Jianping Shi, Chen Change Loy, and Dahua Lin. Side-aware boundary localization for more precise object detection. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August* 23–28, 2020, Proceedings, Part IV 16, pp. 403–419. Springer, 2020.
- Jinghao Wang, Chenling Cui, Xuejun Wen, and Jie Shi. Transpatch: a transformer-based generator for accelerating transferable patch generation in adversarial attacks against object detection models. In *European Conference on Computer Vision*, pp. 317–331. Springer, 2022b.
- Ningfei Wang, Yunpeng Luo, Takami Sato, Kaidi Xu, and Qi Alfred Chen. Does physical adversarial
 example really matter to autonomous driving? towards system-level effect of adversarial object
 evasion attack. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4412–4423, 2023b.
- Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 568–578, 2021.
- Xiaofei Wang, Shaohui Mei, Jiawei Lian, and Yingjie Lu. Fooling aerial detectors by background attack via dual-adversarial-induced error identification. *IEEE Transactions on Geoscience and Remote Sensing*, 2024b.
- Zhibo Wang, Siyan Zheng, Mengkai Song, Qian Wang, Alireza Rahimpour, and Hairong Qi. adv-pattern: Physical-world attacks on deep person re-identification via adversarially transformable
 patterns. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 8341–8350, 2019b.
- Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin'ichi Satoh, Luc
 Van Gool, and Zheng Wang. Physical adversarial attack meets computer vision: A decade survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

849

- Xingxing Wei, Ying Guo, and Jie Yu. Adversarial sticker: A stealthy attack method in the physical world. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):2711–2725, 2022.
- Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
 Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. *Advances in Neural Information Processing Systems*, 35:10546–10559, 2022.
- Hanyu Wu, Ke Yan, Peng Xu, Bei Hui, and Ling Tian. Adversarial cross-laser attack: Effective attack to dnns in the real world. In 2024 12th International Symposium on Digital Forensics and Security (ISDFS), pp. 1–6. IEEE, 2024.
- Yue Wu, Yinpeng Chen, Lu Yuan, Zicheng Liu, Lijuan Wang, Hongzhi Li, and Yun Fu. Rethinking classification and localization for object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10186–10195, 2020a.
- Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Goldstein. Making an invisibility cloak: Real world adversarial attacks on object detectors. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16*, pp. 1–17. Springer, 2020b.

- 864 Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi 865 Wang, and Xue Lin. Adversarial t-shirt! evading person detectors in a physical world. In Computer 866 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, 867 Part V 16, pp. 665-681. Springer, 2020. 868 Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point set representation for object detection. In Proceedings of the IEEE/CVF international conference on computer vision, 870 pp. 9657–9666, 2019. 871 872 Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong 873 He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. In Proceedings of the 874 IEEE/CVF conference on computer vision and pattern recognition, pp. 2736–2746, 2022a. 875 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung 876 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv 877 preprint arXiv:2203.03605, 2022b. 878 Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko Sunderhauf. Varifocalnet: An iou-aware 879 dense object detector. In Proceedings of the IEEE/CVF conference on computer vision and pattern 880 recognition, pp. 8514-8523, 2021. 881 882 Hongkai Zhang, Hong Chang, Bingpeng Ma, Naiyan Wang, and Xilin Chen. Dynamic r-cnn: 883 Towards high quality object detection via dynamic training. In Computer Vision–ECCV 2020: 16th 884 European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, pp. 260–275. 885 Springer, 2020a. Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z Li. Bridging the gap between 887 anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of 888 the IEEE/CVF conference on computer vision and pattern recognition, pp. 9759–9768, 2020b. 889 890 Shilong Zhang, Xinjiang Wang, Jiaqi Wang, Jiangmiao Pang, Chengqi Lyu, Wenwei Zhang, Ping 891 Luo, and Kai Chen. Dense distinct query for end-to-end object detection. In Proceedings of the 892 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 7329–7338, 2023a. 893 Tianyuan Zhang, Yisong Xiao, Xiaoya Zhang, Hao Li, and Lu Wang. Benchmarking the physical-894 world adversarial robustness of vehicle detection. arXiv preprint arXiv:2304.05098, 2023b. 895 896 Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, and Qixiang Ye. Freeanchor: Learning to 897 match anchors for visual object detection. Advances in neural information processing systems, 32, 898 2019. 899 Yang Zhang, Hassan Foroosh, Philip David, and Boqing Gong. Camou: Learning physical vehicle 900 camouflages to adversarially attack detectors in the wild. In International Conference on Learning 901 Representations, 2018. 902 903 Yu Zhang, Zhiqiang Gong, Yichuang Zhang, YongOian Li, Kangcheng Bin, Jiahao Oi, Wei Xue, and
- Ping Zhong. Transferable physical attack against object detection with separable attention. *arXiv preprint arXiv:2205.09592*, 2022c.
- Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep learning: A review. *IEEE transactions on neural networks and learning systems*, 30(11):3212–3232, 2019.
- Junhao Zheng, Chenhao Lin, Jiahao Sun, Zhengyu Zhao, Qian Li, and Chao Shen. Physical 3d adversarial attacks against monocular depth estimation in autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24452–24461, 2024.
- Meixi Zheng, Xuanchen Yan, Zihao Zhu, Hongrui Chen, and Baoyuan Wu. Blackboxbench: A comprehensive benchmark of black-box adversarial attacks. *arXiv preprint arXiv:2312.16979*, 2023.
- 216 Zhaohui Zheng, Rongguang Ye, Ping Wang, Dongwei Ren, Wangmeng Zuo, Qibin Hou, and Ming 217 Ming Cheng. Localization distillation for dense object detection. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pp. 9407–9416, 2022.

950

- Yiqi Zhong, Xianming Liu, Deming Zhai, Junjun Jiang, and Xiangyang Ji. Shadows can be dangerous: Stealthy and effective physical-world adversarial attack by natural phenomenon. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15345–15354, 2022.
- Jiawei Zhou, Linye Lyu, Daojing He, and Yu Li. Rauca: A novel physical adversarial attack on vehicle detectors via robust and accurate camouflage generation. *arXiv preprint arXiv:2402.15853*, 2024.
- Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv preprint arXiv:1904.07850, 2019.
- Benjin Zhu, Jianfeng Wang, Zhengkai Jiang, Fuhang Zong, Songtao Liu, Zeming Li, and Jian
 Sun. Autoassign: Differentiable label assignment for dense object detection. *arXiv preprint arXiv:2007.03496*, 2020a.
- Chenchen Zhu, Yihui He, and Marios Savvides. Feature selective anchor-free module for single-shot
 object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 840–849, 2019.
- Xiaopei Zhu, Xiao Li, Jianmin Li, Zheyao Wang, and Xiaolin Hu. Fooling thermal infrared pedestrian detectors in real world using small bulbs. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 3616–3624, 2021.
- Xiaopei Zhu, Zhanhao Hu, Siyuan Huang, Jianmin Li, and Xiaolin Hu. Infrared invisible clothing:
 Hiding from infrared detectors at multiple angles in real world. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13317–13326, 2022.
- Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020b.
- Alon Zolfi, Moshe Kravchik, Yuval Elovici, and Asaf Shabtai. The translucent patch: A physical and universal attack on object detectors. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15232–15241, 2021.
- ⁹⁴⁸ Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with collaborative hybrid assignments training. In
 ⁹⁴⁹ *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6748–6758, 2023.
- Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A survey. *Proceedings of the IEEE*, 111(3):257–276, 2023.

972	Supplemental material Contents:
973 974	A Additional content of the Benchmark
975	A.1 Mini-test
976	A 2 Physical dynamics alignment
977	A 2 The adoptability of the banchmark
979	A.5 The adaptability of the benchmark
980	A.4 Corresponding config files of the selected detectors
981	A.5 Explanation about the selected objects
982	A.6 The necessity of the benchmark
903 984	A.6.1 Utilities of the benchmark
985	A.6.2 Potential applications of the benchmark
986	A.7 Limitations and potential impacts
988	B Additional content of the Experiments
989	B.1 Generated data for ablation studies
990	\mathbf{B} 2 A detailed illustration of the performance gap
991 992	B 2 1
993	
994	B.5 Supplemented experiments analysis and discussion
995	B.3.1 Detection perspective
990 997	B.3.2 Attack perspective
998	B.4 Additional oversall experimental experiments
999	B.5 Additional ablation experiments
1000	B.5.1 Ablation study on physical dynamics
1001	B 5 2 Ablation study on training dataset
1003	P 5.2 Ablation study on 2D and 2D parturbations
1004	B.S.S Ablation study on 2D and 5D perturbations
1005	C User feedback
1007	
1008	
1009	
1010	
1012	
1013	
1014	
1015	
1017	
1018	
1019	
1020	
1021	
1023	
1024	
1025	

ADDITIONAL CONTENT OF THE BENCHMARK А

A.1 MINI-TEST

We kindly invite the reviewers and readers to participate in a mini-test to discriminate the real-world images and the simulated images as shown in Fig. 7, the answer is revealed in its caption.

Figure 7: Which are simulated images? Surprisingly, they were all generated by Unreal Engine, a popular game engine. The visual quality of the simulated images is so high that it is hard to find any deficiencies. This mini-test demonstrates the potential of the simulated environment in the research field.

Table 3: The selected detectors and their corresponding config files.

Town	Description
Town1	A small, simple town with a river and several bridges.
Town2	A small simple town with a mixture of residential and commercial buildings.
Town3	A larger, urban map with a roundabout and large junctions.
Town4	A small town embedded in the mountains with a special "figure of 8" infinite highway.
Town5	Squared-grid town with cross junctions and a bridge.
TOWID	It has multiple lanes per direction. Useful to perform lane changes.
Town6	Long many lane highways with many highway entrances and exits. It also has a Michigan left.
Town7	A rural environment with narrow roads, corn, barns and hardly any traffic lights.
Town8	Secret "unseen" town used for the Leaderboard challenge.
Town9	Secret "unseen" town used for the Leaderboard challenge.
Town10	A downtown urban environment with skyscrapers, residential buildings and an ocean promenade
Town11	A Large Map that is undecorated.
IOWIIII	Serves as a proof of concept for the Large Maps feature.
Town12	A Large Map with numerous different regions,
IOWII12	including high-rise, residential and rural environments.
E 11 11 4	

Full list of the optional maps, where Town8 and Town9 are unseen for competition. Please refer to CARLA (Dosovitskiy et al., 2017) documentary for more details.

A.2 PHYSICAL DYNAMICS ALIGNMENT

We provide a detailed illustration of the physical dynamics alignment in Fig. 8 and Fig. 9. Specifically, it is observed from Fig. 8 that the imaging settings and lighting conditions are not stricly aligned in the comparison experiments, such as the different view angles and shadows, which have been demonstrated to have a significant impact on fooling deep neural networks (Zhong et al., 2022; Dong et al., 2022). To address this issue, we align the physical dynamics in the benchmark, as shown in Fig. 9, where the physical dynamics are strictly controlled and aligned, ensuring a fair and impartial comparison. Moreover, we also provide a detailed illustration of the physical dynamics in Fig. 10, which includes the weather conditions, camera settings, and lighting conditions. The lighting conditions varying similary to the real-world as shown in Fig. 11, such as the sun positions of 24 hours, the intensity of the light, and the shadow, which are strictly controlled and aligned in the benchmark.

THE ADAPTABILITY OF THE BENCHMARK A.3

We provide a detailed illustration of the scene diversity of the benchmark in Table 3 and Fig. 12, where the optional maps are listed with their descriptions. In addition, we display the extendable vehicles, pedestrians, and traffic signs in Fig. 13, Fig. 14, and Fig. 15, respectively, which can be easily extended to evaluate other objects in the benchmark. The users are also allowed to export any

Figure 9: Illustration of the aligned physical dynamics. It is observed that the physical dynamics arestrictly controlled and aligned, ensuring a fair and impartial comparison.

1186 1187

Figure 10: Illustration of the physical dynamics.

Figure 11: Illustration of the lighting conditions varying with sun positions similar to real-world laws.

customized scenes and objects to the benchmark as needed, which can be easily integrated into the benchmark.

Figure 12: Illustration of the extentable scenes of the benchmark.

A.4 CORRESPONDING CONFIG FILES OF THE SELECTED DETECTORS

The corresponding config files of the selected detectors are listed in Table 4. Specifically, 1-25 and
26-40 are CNN-based One-stage and Two-stage object detectors, respectively. 41-48 are Transformerbased object detectors. The corresponding config files of the detectors are available in our codebase
or MMDetection (Chen et al., 2019a) toolbox.

1237 A.5 EXPLANATION ABOUT THE SELECTED OBJECTS

According to a survey (Wei et al., 2024) published in TPAMI 2024, most physical attacks against object detection are optimized for specific target categories, such as vehicles, persons, and a few for traffic signs. In line with this, we have chosen vehicles and pedestrians as the representative target categories, to evaluate the robustness of object detectors against physical attacks.

Under review as a conference paper at ICLR 2025

Figure 14: Illustration of the extentable walkers of the benchmark.

Table 4: The selected detectors and their corresponding config files. 1-25 and 26-40 are CNN-based
One-stage and Two-stage object detectors, respectively. 41-48 are Transformer-based object detectors. The corresponding config files of the detectors are available in our codebase or MMDetection (Chen et al., 2019a) toolbox.

Number	Config Files	Detectors
1	atss_r50_fpn_1x_coco	ATSS(Zhang et al., 2020b)
2	autoassign_r50-caffe_fpn_1x_coco	AutoAssign(Zhu et al., 2020a)
3	centernet-update_r50-caffe_fpn_ms-1x_coco	CenterNet(Zhou et al., 2019)
4	centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco	CentripetalNet(Dong et al., 2020)
5	cornernet_hourglass104_10xb5-crop511-210e-mstest_coco	CornerNet(Law & Deng, 2018)
6	ddod_r50_fpn_1x_coco	DDOD(Chen et al., 2021)
7	atss_r50_fpn_dyhead_1x_coco	DyHead(Wu et al., 2020a)
8	retinanet_effb3_fpn_8xb4-crop896-1x_coco	EfficientNet(Tan & Le, 2019)
9	fcos_x101-64x4d_fpn_gn-head_ms-640-800-2x_coco	FCOS(Tian et al., 1904)
10	fovea_r50_fpn_4xb4-1x_coco	FoveaBox(Kong et al., 2020)
11	freeanchor_r50_fpn_1x_coco	FreeAnchor(Zhang et al., 2019)
12	fsaf r50 fpn 1x coco	FSAF(Zhu et al., 2019)
13	gfl r50 fpn 1x coco	GFL(Li et al., 2020)
14	ld r50-gfly1-r101 fpn 1x coco	LD(Zheng et al., 2022)
15	retinanet r50 nasfnn cron640-50e coco	NAS-FPN(Ghiasi et al. 2019)
16	naa r50 fnn 1x coco	PAA(Kim & Lee 2020)
17	retinanet r50 fpn 1x coco	RetinaNet(I in et al. 2017)
18	rtmdet s 8xb32-300e coco	RTMDet(I yu et al. 2017)
10	tood r = 50 for $1x coco$	TOOD(Earg et al., 2022)
20	$1001_{150_{150_{151_{155_{155}_{15$	VarifoaelNat(Zhang at al. 2021)
20	villet_IJO_Ipii_IX_COCO	VOL Ov5(Lasher et al., 2022)
21	yolov5_1-po-vo2_syncoli_last_8xb10-500e_coco	VOLOVS(Jocher et al., 2022)
22	yolovo_l_syncon_last_8x052-500e_coco	YOLOVO(L1 et al., 2022a)
23	yolov/_1_syncbn_fast_8x16b-300e_coco	YOLOV/(wang et al., 2023a)
24	yolov8_1_syncbn_fast_8xb16-500e_coco	YOLOv8(Jocher et al., 2023)
25	yolox_1_fast_8xb8-300e_coco	YOLOX(Ge et al., 2021)
26	faster-rcnn_r50_tpn_1x_coco	Faster R-CNN(Ren et al., 2016)
27	cascade-rcnn_r50_tpn_1x_coco	Cascade R-CNN(Cat & Vasconcelos, 2019
28	cascade-rpn_faster-rcnn_r50-caffe_fpn_1x_coco	Cascade RPN(Vu et al., 2019)
29	dh-faster-rcnn_r50_fpn_1x_coco	Double Heads(Wu et al., 2020a)
30	faster-rcnn_r50_fpg_crop640-50e_coco	FPG(Chen et al., 2020)
31	grid-rcnn_r50_fpn_gn-head_2x_coco	Grid R-CNN(Lu et al., 2019)
32	ga-faster-rcnn_x101-32x4d_fpn_1x_coco	Guided Anchoring(Wang et al., 2019a)
33	faster-rcnn_hrnetv2p-w18-1x_coco	HRNet(Sun et al., 2019)
34	libra-retinanet_r50_fpn_1x_coco	Libra R-CNN(Pang et al., 2019)
35	faster-rcnn_r50_pafpn_1x_coco	PAFPN(Liu et al., 2018)
36	reppoints-moment_r50_fpn_1x_coco	RepPoints(Yang et al., 2019)
37	faster-rcnn_res2net-101_fpn_2x_coco	Res2Net(Gao et al., 2019)
38	faster-rcnn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco	ResNeSt(Zhang et al., 2022a)
39	sabl-faster-rcnn r50 fpn 1x coco	SABL(Wang et al., 2020)
40	sparse-rcnn r50 fpn 1x coco	Sparse R-CNN(Sun et al., 2021)
41	detr. r50. 8xb2-150e. coco	DETR(Carion et al 2020)
42	conditional-detr r50 8xb2-50e coco	Conditional DETR(Meng et al. 2021)
43	dda-detr-4scale r50 8xb2-12e coco	DDO(Zhang et al. 2023a)
44	$dab_detr r 50 8xb2-50e coco$	$D\Delta B_{-}DETR(I \text{ in et al} - 2022)$
45	deformable detr. $r50$ 16xb2 50e coco	DAD-DETR(Elu ct al., 2022) Deformable DETP(Zhu et al. 2020 b)
45	dina 4 scala r_{50} 8xb2 12a acce	DINO(Zhang et al. 2022b)
40	$u_{110} - 4scatc_{150} - 6x02 - 12c_{c0c0}$	$\frac{DINO(Zinalig et al., 20220)}{DVT(Wang et al., 2021)}$
4/ 40	retinanet_pvt-t_1pn_1x_coco	$P \vee I (wang et al., 2021)$
48	retinanet_pvtv2-b0_tpn_1x_coco	PVIV2(wang et al., 2021)

1416

1417 1418

Figure 15: Illustration of the extentable traffic signs of the benchmark.

1419 In order to ensure the validity of our benchmark for different types of objects, we have demonstrated 1420 that our benchmark can be easily extended to other target categories, as shown by the experiments 1421 conducted on traffic sign in Table 19. The benchmark is designed to evaluate the robustness of object detectors against physical attacks in various aligned scenarios for ensuring fairness. It can be 1422 extended to other target categories with minimal modifications. 1423

1424 We have thoroughly reviewed over forty physical attack methods, and we found that most of these 1425 methods conducted experiments under unaligned conditions and without fair comparisons. This 1426 lack of clarity hinders the accurate assessment of the progress of physical adversarial attacks and 1427 the development of physical adversarial robustness. Therefore, we are motivated to establish a comprehensive and rigorous benchmark for physical attacks to address these limitations and provide 1428 a solid foundation for future research. 1429

1430

1431 A.6 THE UTILITY OF THE BENCHMARK 1432

1433 In this section, we sumarize our motivation and provide the potential applications of the benchmark. 1434

1435 UTILITIES OF THE BENCHMARK A.6.1 1436

1437 Standardization and Fair Evaluation. The primary utility of PADetBench lies in its ability to 1438 standardize the evaluation of physical attacks against object detection models. By ensuring that all 1439 evaluations are conducted under the same physical dynamics, PADetBench eliminates inconsistencies 1440 found in real-world experiments, making it a fair and rigorous benchmark.

1441 Comprehensive Coverage: PADetBench includes 23 physical attack methods and evaluates 48 1442 state-of-the-art object detectors, providing a comprehensive coverage that enables researchers to 1443 compare and contrast various models and attack strategies.

- 1444 1445
- A.6.2 POTENTIAL APPLICATIONS OF THE BENCHMARK 1446

1447 **Research and Development**: Researchers developing robust object detection models or physical 1448 attack strategies need a benchmark to evaluate and compare their approaches. 1449

Security Assessments: Security teams need to assess the robustness of deployed object detection 1450 systems in critical infrastructure. 1451

1452 Regulatory Compliance: Regulatory bodies require evidence of robustness and security for au-1453 tonomous systems.

1454 **Product Testing**: Companies developing autonomous vehicles or security systems need to test their 1455 products under various physical attack scenarios. 1456

Educational Purposes: Educators and students need resources to understand the vulnerabilities of 1457 object detection models.

A.7 LIMITATIONS AND POTENTIAL IMPACTS

1460 Limitations

For now, PADetBench primarily focuses on evaluating the robustness of object detection models against physical attacks. In the future, we plan to extend the benchmark to include other vision tasks, such as instance segmentation, 3D object detection, and depth estimation. This expansion will provide a more comprehensive evaluation framework that covers a broader range of computer vision applications.

1467 Potential Impacts

1468 1) Positive Impacts: The in-depth understanding gained through PADetBench will contribute significantly to the development of more robust object detection models. By identifying vulnerabilities and limitations, researchers and practitioners can design improved algorithms that are better equipped to handle physical adversarial attacks. This enhanced robustness is crucial for real-world applications where reliability and accuracy are paramount.

1473 2) *Negative Impacts*: While the benchmark provides valuable insights, there is a risk that it could be
1474 misused to conduct physical attacks in real-life scenarios. Such misuse could threaten the security
of critical applications involving intelligent visual perception systems. Therefore, it is essential to
promote responsible use of the benchmark and to emphasize the importance of ethical considerations
in research and development.

1478 1479

1480 1481

1482 1483

1484

1499

1500 1501 1502

1503

B ADDITIONAL CONTENT OF THE EXPERIMENTS

B.1 GENETATED DATA FOR ABLATION STUDIES

We provide the generated data samples for the ablation studies in Fig. 16.

Figure 16: The randomly selected samples for the ablation studies of six different dynamics.

B.2 A DETAILED ILLUSTRATION OF THE PERFORMANCE GAP

1504 1505 B.2.1 PERFORMANCE GAP BETWEEN THE BENCHMARK AND THE ORIGINAL PAPERS

In this section, we provide an explanation for the performance gap between the reported attack performance in the original papers and the results in our benchmark. Our benchmark encompasses a wide range of physical dynamics, whereas previous validation settings are often limited to a few specific scenarios. The comprehensive physical dynamics in our benchmark reveal the shortcomings of existing object detectors and physical attacks and this is the main motivation of our work. Therefore, our benchmark might not be captured by previous validation settings, leading to the discrepancy between our results and the reviewer's individual experiences.

In comparison, we removed various physical dynamics including weather (rain, snow, fog), lighting (nighttime), and distance (far positions), and reproduced the results of several attack methods on YOLOv7 as reported in ACTIVE (Suryanto et al., 2023), which are listed in Table 22. It is worth noting that these reported results are also included in our benchmark with particular evaluation settings.

Contrary to the simplified settings of these reproduced experiments, more comprehensive physical dynamics incorporated into our benchmark significantly highlight the ineffectiveness of existing physical attacks. These aspects may not have been adequately captured by previous validation settings. As illustrated in Tabel 22, when we exclude various dynamics, the effectiveness of physical attacks notably increases, thereby reducing the performance of object detectors. Therefore, our benchmark strive to encompass and align these physical dynamics for comprehensive and equitable comparisons.

1523 1524 1525

B.2.2 PERFORMANCE GAP BETWEEN ATTACKS AGAINST VEHICLE AND PERSON DETECTION

For the gap between attacks against vehicle and person detection, one reason is that these attacks are optimized to fool object detectors in particular target detection during training process. Consequently, we follow the attack purpose of the original works in this benchmark to attack specified target category accordingly for fairness, which partially accounts for the phenomenon that pedestrian detection performance is less affected regarding various attacks in comparison with car detection.

Another potential reason is that the stronger physical perturbations are optimized with consideration of 3D space and accommodate more complex physical dynamics, while physical attacks aiming to fool person detectors are commonly performed with optimized 2D patches, which work well in particular physical dynamics, as evidenced by the ablation experiments in B.2.1, which empirically demonstrate the pressing need and necessity of a comprehensive and rigorous benchmark for physical attacks.

- 1537
- 1538 B.3 SUPPLEMENTED EXPERIMENTS ANALYSIS AND DISCUSSION
- 1539 1540 B.3.1 DETECTION PERSPECTIVE
- 1541 Vehicle Detection Perspective:

Physical attacks on vehicle detection systems pose a substantial challenge due to the specialized nature of the perturbations crafted to deceive these models. These attacks can lead to a drastic decline in average recall rates, reaching as low as 50%. This high level of vulnerability is largely attributed to the complex dynamics in the 3D environment where vehicles operate. Physical attacks on vehicle detectors exploit this three-dimensional context, introducing perturbations that consider real-world factors such as lighting, perspective, occlusion, and motion, making them more effective in disrupting the model's performance.

On the other hand, pedestrians, operating in a somewhat simpler 2D plane, seem to be less affected by similar adversarial attacks, with a decrease in average recall rates of less than 20%. Adversarial examples targeting pedestrian detection typically involve 2D patches, which might be more straightforward to apply in specific scenarios but may not account for the full range of real-world complexities. As a result, there is an urgent demand to establish a comprehensive and stringent benchmark to systematically evaluate the resilience of these models against physical attacks, facilitating research and development towards more secure systems.

Pedestrian Detection Perspective:

In contrast to vehicle detection, pedestrian detectors exhibit a certain level of inherent robustness, potentially due to the simpler constraints imposed on the recognition process. Nevertheless, as seen across various detectors, the extent of this robustness varies widely. Models like EfficientNet, YOLO series, RTMDet (one-stage detectors), and DDQ (transformer-based detectors) demonstrate commendable resistance to physical attacks. The superior performance of DDQ could be linked to the attention mechanisms inherent to transformer architectures, which are capable of capturing global spatial dependencies, thus mitigating the impact of adversarial perturbations.

1565 However, it is evident from the benchmark results that not all state-of-the-art (SOTA) detectors offer comparable adversarial robustness. Many detectors exhibit varying degrees of vulnerability,

indicating that peak accuracy in standard detection tasks does not automatically guarantee resilience
 against adversarial threats. Consequently, this benchmarking framework not only identifies areas
 of weakness for refinement but also contributes to a better understanding of the interplay between
 detection performance and adversarial robustness in real-world deployments.

1570 In conclusion, understanding and mitigating the effects of physical attacks in both vehicle and 1571 pedestrian detection domains can greatly benefit deep learning and computer vision research. By 1572 developing more robust models resistant to such attacks, we can enhance the safety and reliability 1573 of autonomous systems that rely on accurate object detection, ultimately fostering advancements 1574 in the fields of automotive technology, smart city infrastructure, and robotics. Furthermore, this 1575 benchmark would encourage researchers to explore defensive techniques and novel architectures that 1576 better withstand both digital and physical adversarial threats, pushing the boundaries of deep learning and computer vision capabilities. 1577

- 1578
- 1579

1580 B.3.2 ATTACK PERSPECTIVE

1581

From the attacker's viewpoint, the effectiveness of physical attacks on deep learning-based vehicle detection systems is highly variant. Certain methodologies, such as ACTIVE, achieve astonishingly high success rates in defeating the detectors, with ASR values surpassing 70%. However, the majority of current attacks struggle to maintain comparable performance, often failing to reach even 20% ASR. This discrepancy can be partly attributed to the rapid advancements in detection algorithms, with the latest state-of-the-art models like EfficientNet, YOLO series, and RTMDet demonstrating increased resilience against known attacks. This disparity in the evolutionary pace between attackers and defenders underscores the importance of continuous research and innovation in adversarial attacks to keep pace with the evolving landscape of detection techniques.

Moreover, this evolving dynamic underscores a critical need for a more dynamic and collaborative
ecosystem in deep learning and computer vision research. By closing the gap between attack
methods and detector capabilities, the field will likely see increased robustness and security measures,
ultimately benefiting automotive safety and other real-world applications relying on these systems.

On the other hand, when evaluating person detection, the outcome of physical attacks exhibits a different pattern, with ASR values typically remaining below 20%, and often even below 0%, which indicates that the attack method is less effective than random guessing and the eye-catching perturbation may arouse more attention than the object itself. Additionally, the variable transferability of these attack methodologies across different detectors leads to a wide disparity in ASR values. In certain instances, this manifests as negative ASR figures, indicative of a backfiring effect where the detectors become more adept at identifying targets in the presence of attempted attacks.

1602 The significantly lower effectiveness of these attacks on pedestrian detection models highlights the 1603 comparative advantages of their 2D nature against primarily 2D adversarial perturbations. Neverthe-1604 less, the AdvTexture method, despite being a 2D approach, manages to incorporate 3D considerations, 1605 achieving higher ASRs compared to other attacks. This underscores the pivotal role of incorporat-1606 ing 3D awareness into attack strategies to exploit the vulnerabilities of pedestrian detectors more 1607 effectively.

1608 These contrasting observations highlight the need for more sophisticated attack methods in the 1609 domain of pedestrian detection. By advancing the understanding of how 2D techniques can be adapted or combined with 3D concepts, attackers can create more potent adversarial samples, driving 1610 defender-side innovation to fortify models further. Such advancements will ultimately contribute to 1612 the progression of the field by promoting the design of more secure and reliable computer vision 1613 systems, particularly relevant in surveillance, autonomous navigation, and smart city infrastructures.

In summary, the diverse outcomes of physical attacks on both vehicle and person detection emphasize
the importance of ongoing research and competition between attack and defense approaches. As
the attacks become more intricate and align with the complex nature of real-world scenarios, deep
learning and computer vision models will adapt, increasing their resilience and overall functionality.
This continuous push-and-pull between adversaries and protectors fosters the evolution of robust,
secure, and accurate object-detection technologies essential for numerous applications, including automotive safety, surveillance, and urban automation.

Table 5: Overall ex	perim	ental re	esults c	of vehi	cle det	ection	in the n	netric c	of mAP	P50
			<u>A</u> .				\$		~	
	~	. "	20			_	2 ⁴ 0		õ	
	and	Du	E	N.	(Y	2×	Q	Ñ	1	4
	0	فنجه	V.	\mathcal{Q}'	4	∇	d,	$\tilde{\mathcal{S}}$	0,	2
ATSS	0.83	0.477	0.231	0.545	0.606	0.502	0.434	0.678	0.235	0.
AutoAssign	0.786	0.574	0.37	0.559	0.589	0.609	0.415	0.722	0.487	0.
CenterNet	0.839	0.558	0.297	0.552	0.57	0.58	0.426	0.742	0.412	0.
CentripetalNet	0.78	0.685	0.558	0.725	0.687	0.725	0.527	0.801	0.501	0.
CornerNet	0.748	0.586	0.438	0.652	0.593	0.653	0.458	0.779	0.429	0.
DDOD	0.838	0.708	0.433	0.695	0.686	0.745	0.548	0.785	0.694	0.
DyHead	0.876	0.611	0.385	0.566	0.725	0.614	0.574	0.671	0.402	0
EfficientNet	0.881	0.711	0.506	0.687	0.721	0.764	0.638	0.763	0.71	0.
FCOS	0.933	0.804	0.676	0.838	0.795	0.855	0.658	0.894	0.76	0.
FoveaBox	0.814	0.597	0.294	0.514	0.645	0.548	0.467	0.649	0.469	0.
FreeAnchor	0.81	0.51	0.381	0.611	0.563	0.643	0.431	0.638	0.336	0.
FSAF	0.788	0.51	0.233	0.566	0.559	0.537	0.432	0.661	0.364	0.
GFL	0.852	0.509	0.202	0.456	0.626	0.485	0.485	0.63	0.201	0.
LD	0.825	0.554	0.305	0.563	0.658	0.548	0.463	0.664	0.29	0.
NAS-FPN	0.87	0.623	0.473	0.662	0.673	0.695	0.5	0.764	0.382	0.
PAA	0.808	0.582	0.474	0.621	0.605	0.619	0.501	0.685	0.567	0
RetinaNet	0.85	0.511	0.349	0.565	0.653	0.568	0.479	0.684	0.43	0.
RTMDet	0.875	0.717	0.625	0.771	0.733	0.753	0.736	0.821	0.676	0
TOOD	0.781	0.495	0.353	0.522	0.584	0.557	0.462	0.615	0.37	0.
VarifocalNet	0.874	0.472	0.205	0.424	0.628	0.529	0.419	0.573	0.208	0.
YOLOv5	0.886	0.76	0.744	0.762	0.807	0.821	0.788	0.857	0.812	0
YOLOv6	0.907	0.824	0.747	0.834	0.833	0.887	0.776	0.896	0.851	0.
YOLOv7	0.906	0.774	0.762	0.829	0.822	0.866	0.786	0.903	0.774	0.
YOLOv8	0.929	0.791	0.761	0.812	0.838	0.873	0.793	0.917	0.74	0.
YOLOX	0.908	0.766	0.683	0.783	0.817	0.851	0.794	0.849	0.702	0.
Faster R-CNN	0.772	0.375	0.141	0.338	0.509	0.46	0.369	0.612	0.268	0.
Cascade R-CNN	0.802	0.483	0.297	0.488	0.574	0.607	0.407	0.673	0.334	0.
Cascade RPN	0.805	0.53	0.291	0.452	0.588	0.55	0.441	0.662	0.452	0.
Double Heads	0.797	0.521	0.295	0.539	0.537	0.621	0.404	0.713	0.445	0.
FPG	0.846	0.678	0.486	0.714	0.671	0.749	0.503	0.806	0.47	0
Grid R-CNN	0.795	0.472	0.244	0.513	0.529	0.65	0.399	0.699	0.392	0.
Guided Anchoring	0.904	0.723	0.555	0.747	0.748	0.781	0.524	0.828	0.738	0.
HRNet	0.76	0.547	0.29	0.52	0.512	0.571	0.336	0.738	0.462	0.
Libra R-CNN	0.78	0.49	0.294	0.527	0.563	0.492	0.486	0.664	0.334	0
PAFPN	0.8	0.497	0.206	0.463	0.562	0.54	0.413	0.682	0.383	0
RenPoints	0.847	0.576	0.220	0.525	0.502	0.557	0.427	0.712	0.565	0
Res2Net	0.874	0.570	0.494	0.525	0.72	0.557	0.482	0.797	0.505	0.
ResNeSt	0.837	0.502	0.352	0.535	0.587	0.499	0.538	0.493	0.001	0.
SABI	0.057	0.502	0.352	0.555	0.567	0.535	0.330	0.475	0.350	0.
SADE Sparse R_CNN	0.774	0.40	0.202	0.301	0.505	0.333	0.423	0.040	0.339	0.
	0.774	0.409	0.237	0.398	0.004	0.410	0.44	0.510	0.025	0.
Conditional DETR	0.030	0.114	0.048	0.055	0.551	0.17	0.555	0.190	0.025	0.
	0.795	0.554	0.408	0.575	0.640	0.017	0.525	0.7	0.457	0.
	0.809	0.55	0.457	0.331	0.049	0.070	0.031	0.020	0.453	0.
DAB-DEIK	0.838	0.391	0.194	0.508	0.016	0.473	0.488	0.576	0.103	0.
Deformable DETR	0.827	0.042	0.371	0.328	0.641	0.67	0.40	0.062	0.325	0.
DINO	0.78	0.351	0.236	0.322	0.543	0.56	0.423	0.526	0.217	0
PVI	0.828	0./19	0.355	0.648	0./11	0.802	0.54/	0.853	0.592	0
PVTv2	0.845	0.666	0.494	0.763	0.621	0.844	0.425	0.803	0.704	0.

B.4 ADDITIONAL OVERALL EXPERIMENTAL RESULTS

Due to space constraints, we provide additional overall experimental results in this part, as shown in Table 5, 6, 7, 8, 9, 10, 11, and 12. In addition, the visualized evaluation results are shown in Fig. 17, 18, 19, 20, 21, 22, and 23.

		\$	Æ				<i>[C</i>]	\$	Ś
	and the second s	207	Ŕ	~~	. 	a^{∇}	300	400	20 20
	0°	2.00	∇_{∇}	2	4. 2,	N.	\$ ⁰	\mathcal{P}	উ
ATSS	0.238	0.156	0.077	0.182	0.183	0.164	0.133	0.212	0.08
AutoAssign	0.238	0.183	0.126	0.189	0.182	0.199	0.139	0.236	0.164
CenterNet	0.238	0.167	0.093	0.178	0.165	0.182	0.14	0.23	0.12
CentripetalNet	0.228	0.215	0.164	0.225	0.206	0.22	0.161	0.245	0.15
CornerNet	0.218	0.184	0.132	0.198	0.175	0.199	0.142	0.237	0.129
DDOD	0.242	0.21	0.127	0.221	0.202	0.234	0.174	0.242	0.21
DyHead	0.26	0.196	0.121	0.18	0.221	0.191	0.18	0.21	0.12
EfficientNet	0.252	0.225	0.168	0.217	0.219	0.239	0.206	0.243	0.232
FCOS	0.277	0.251	0.211	0.266	0.246	0.272	0.214	0.285	0.236
FoveaBox	0.235	0.184	0.089	0.165	0.191	0.17	0.145	0.196	0.149
FreeAnchor	0.241	0.159	0.111	0.19	0.179	0.205	0.138	0.205	0.098
FSAF	0.231	0.171	0.077	0.187	0.181	0.181	0.141	0.213	0.12
GFL	0.244	0.169	0.064	0.152	0.192	0.163	0.157	0.201	0.069
LD	0.235	0.176	0.095	0.181	0.205	0.176	0.146	0.208	0.094
NAS-FPN	0.256	0.199	0.146	0.209	0.213	0.215	0.16	0.251	0.124
PAA	0.237	0.178	0.139	0.189	0.178	0.195	0.157	0.208	0.173
RetinaNet	0.249	0.169	0.108	0.194	0.209	0.189	0.166	0.227	0.15
RTMDet	0.254	0.227	0.185	0.235	0.224	0.232	0.239	0.241	0.209
TOOD	0.231	0.155	0.109	0.159	0.173	0.176	0.14	0.183	0.118
VarifocalNet	0.248	0.144	0.063	0.127	0.188	0.164	0.132	0.175	0.062
YOLOv5	0.259	0.227	0.223	0.23	0.237	0.249	0.244	0.253	0.246
YOLOv6	0.256	0.245	0.218	0.251	0.242	0.262	0.238	0.263	0.25
YOLOv7	0.265	0.241	0.225	0.252	0.246	0.262	0.241	0.272	0.227
YOLOv8	0.276	0.246	0.239	0.254	0.252	0.269	0.256	0.283	0.236
YOLOX	0.263	0.233	0.212	0.236	0.237	0.253	0.248	0.251	0.217
Faster R-CNN	0.212	0.117	0.042	0.11	0.159	0.145	0.111	0.193	0.087
Cascade R-CNN	0.232	0.152	0.088	0.15	0.182	0.19	0.135	0.214	0.11
Cascade RPN	0.229	0.157	0.083	0.132	0.175	0.157	0.137	0.201	0.122
Double Heads	0.238	0.168	0.09	0.179	0.171	0.205	0.143	0.231	0.15
FPG	0.247	0.222	0.149	0.224	0.21	0.233	0.161	0.265	0.152
Grid R-CNN	0.231	0.154	0.078	0.173	0.17	0.208	0.135	0.225	0.127
Guided Anchoring	0.269	0.239	0.176	0.244	0.235	0.243	0.174	0.265	0.244
HRNet	0.219	0.171	0.091	0.164	0.159	0.173	0.114	0.236	0.148
Libra R-CNN	0.234	0.161	0.094	0.18	0.179	0.169	0.159	0.222	0.115
PAFPN	0.219	0.147	0.057	0.145	0.17	0.168	0.122	0.205	0.129
RepPoints	0.251	0.18	0.068	0.167	0.172	0.185	0.141	0.234	0.189
Res2Net	0.25	0.195	0.154	0.217	0.212	0.22	0.162	0.244	0.192
ResNeSt	0.23	0.156	0.101	0.158	0.174	0.154	0.169	0.142	0.126
SABL	0.233	0.146	0.08	0.159	0.173	0.177	0.139	0.199	0.123
Sparse R-CNN	0.238	0.159	0.095	0.137	0.195	0.145	0.154	0.172	0.12
DETR	0.186	0.047	0.017	0.01	0.113	0.059	0.111	0.065	0.00
Conditional DETR	0.236	0.183	0.129	0.183	0.199	0.205	0.172	0.211	0.154
DDO	0.232	0.164	0.133	0.152	0.185	0.2	0.189	0.182	0.13
DAB-DETR	0.239	0.115	0.057	0.09	0.178	0.145	0.143	0.157	0.05
Deformable DETR	0.229	0.187	0.106	0.147	0.177	0.197	0.136	0.188	0.158
DINO	0.232	0.11	0.075	0.104	0.172	0.18	0.139	0.161	0.078
PVT	0.229	0.229	0.106	0.213	0.224	0.254	0.177	0.26	0.19
DVT_{v}	0.24	0.214	0.154	0.252	0.105	0.275	0.147	0.244	0.237

B.5 Additional ablation experiments 1722

B.5.1 ABLATION STUDY ON PHYSICAL DYNAMICS 1724

1725

Due to space constraints, we provide additional ablation experimental results in this part, as shown in 1726 Table 13, 14, 15, 16, 17, and 18. In addition, the visualized evaluation results are shown in Fig. 24, 1727 25, and 26.

		~	Æ				{c}	7	á
	£7	207	Ē	~~~	~	\mathcal{A}^{∇}	S.	40°	Å,
	Cor.	2.00	V V	N	L.C.	₹ ⁷	20	\$°	J
ATSS	0.973	0.808	0.518	0.84	0.883	0.811	0.732	0.924	0.54
AutoAssign	0.946	0.846	0.703	0.876	0.849	0.888	0.763	0.938	0.85
CenterNet	0.976	0.926	0.674	0.893	0.901	0.897	0.806	0.97	0.87
CentripetalNet	0.943	0.867	0.753	0.908	0.901	0.918	0.749	0.958	0.81
CornerNet	0.948	0.8	0.692	0.905	0.847	0.902	0.697	0.959	0.72
DDOD	0.95	0.936	0.756	0.923	0.9	0.934	0.863	0.948	0.94
DvHead	0.977	0.836	0.606	0.792	0.903	0.845	0.838	0.843	0.68
EfficientNet	0.977	0.974	0.912	0.975	0.974	0.97	0.951	0.973	0.96
FCOS	0.981	0.974	0.93	0.968	0.951	0.975	0.931	0.972	0.93
FoveaBox	0.955	0.873	0.623	0.806	0.896	0.832	0.748	0.881	0.76
Free Anchor	0.973	0.841	0.855	0.000	0.864	0.032	0.781	0.001	0.70
FSAE	0.975	0.836	0.655	0.920	0.804	0.937	0.632	0.07	0.65
CEI	0.95	0.030	0.507	0.000	0.023	0.04	0.052	0.910	0.05
UL	0.978	0.857	0.575	0.01	0.908	0.039	0.850	0.915	0.54
LD MAC EDM	0.90	0.095	0.379	0.002	0.927	0.071	0.745	0.917	0.07
NAS-FPIN	0.975	0.910	0.768	0.932	0.944	0.946	0.817	0.937	0.70
PAA	0.966	0.923	0.861	0.952	0.905	0.937	0.895	0.938	0.95
RetinaNet	0.98	0.859	0.764	0.915	0.934	0.89	0.775	0.921	0.72
RIMDet	0.982	0.954	0.943	0.971	0.958	0.971	0.975	0.98	0.99
TOOD	0.908	0.763	0.666	0.83	0.834	0.826	0.717	0.847	0.62
VarifocalNet	0.977	0.802	0.486	0.77	0.9	0.832	0.671	0.866	0.46
YOLOv5	0.975	0.979	0.967	0.974	0.977	0.974	0.974	0.972	0.98
YOLOv6	0.985	0.982	0.968	0.974	0.983	0.979	0.974	0.984	0.97
YOLOv7	0.962	0.924	0.931	0.948	0.939	0.958	0.932	0.96	0.93
YOLOv8	0.975	0.919	0.903	0.93	0.942	0.96	0.916	0.965	0.88
YOLOX	0.955	0.877	0.853	0.902	0.91	0.945	0.926	0.918	0.86
Faster R-CNN	0.846	0.479	0.268	0.493	0.595	0.593	0.417	0.752	0.33
Cascade R-CNN	0.854	0.539	0.382	0.591	0.65	0.689	0.448	0.78	0.36
Cascade RPN	0.973	0.884	0.741	0.933	0.898	0.957	0.885	0.967	0.86
Double Heads	0.849	0.597	0.416	0.654	0.621	0.725	0.459	0.819	0.48
FPG	0.912	0.763	0.624	0.848	0.761	0.866	0.587	0.907	0.6
Grid R-CNN	0.873	0.585	0.39	0.672	0.653	0.794	0.488	0.836	0.49
Guided Anchoring	0.975	0.962	0.914	0.966	0.962	0.966	0.839	0.050	0.92
HRNet	0.844	0.655	0.429	0.687	0.627	0.732	0.033	0.875	0.52
Libra R_CNN	0.044	0.055	0.429	0.824	0.027	0.752	0.425	0.075	0.55
DA EDN	0.959	0.620	0.333	0.624	0.692	0.650	0.005	0.92	0.30
DopDointo	0.030	0.01	0.505	0.391	0.001	0.039	0.72	0.005	0.43
Reproduts Des 2Not	0.978	0.903	0.595	0.874	0.005	0.004	0.655	0.945	0.00
Des NeS4	0.911	0.092	0.341	0.737	0.705	0.795	0.511	0.852	0.04
Resinest	0.929	0.040	0.497	0.727	0.701	0.091	0.085	0.802	0.51
SABL	0.856	0.545	0.387	0.646	0.656	0.636	0.488	0.774	0.40
Sparse R-CNN	0.959	0.877	0.513	0.759	0.913	0.746	0.733	0.882	0.60
DETR	0.746	0.328	0.232	0.256	0.468	0.383	0.457	0.369	0.23
Conditional DETR	0.962	0.831	0.73	0.931	0.865	0.934	0.881	0.964	0.83
DDQ	0.983	0.976	0.972	0.979	0.975	0.975	0.977	0.974	0.98
DAB-DETR	0.98	0.909	0.928	0.97	0.948	0.968	0.946	0.924	0.9
Deformable DETR	0.954	0.907	0.704	0.902	0.879	0.924	0.766	0.905	0.9
DINO	0.975	0.895	0.883	0.953	0.923	0.958	0.922	0.953	0.91
PVT	0.948	0.953	0.827	0.936	0.957	0.956	0.901	0.963	0.95
	0.070	0.040	0.004	0.050	0.024	0.072	0.025	0.007	0.04

T 11 7 ... 14 £ alstala dat ati. in th . • c $\mathbf{\Omega}$

1700

1774

1775 1776

B.5.2 Ablation study on training dataset

1777 1778

To further investigate the impact of the training dataset on the physical attacks, we collected ten 1779 physical attacks for fooling person detection, and the results are shown in Table 20, where the Median 1780 ASR represents the median attack success rate across the 48 detectors. It can be observed that physical 1781 attacks trained on the INRIA and COCO datasets achieve comparable performance in general.

Table 8: Overa	II experimer	ital res	ults of	vehicl	e detec	tion in	the me	etric of	mAR
	Qean dean	Rendom	4CMVS	0 ¹	J.S.	ADDA	AOOO (1000	302400V	CAMOL,
ATSS	0.374	0.318	0.206	0.341	0.342	0.321	0.296	0.371	0.219
AutoAssis	gn 0.385	0.341	0.293	0.366	0.335	0.367	0.32	0.39	0.345
CenterNe	et 0.396	0.365	0.275	0.373	0.353	0.373	0.342	0.408	0.344
Centripetal	Net 0.378	0.362	0.313	0.386	0.365	0.384	0.31	0.404	0.32
CornerNe	et 0.387	0.337	0.286	0.382	0.343	0.38	0.292	0.401	0.282
DDOD	0.366	0.363	0.302	0.371	0.347	0.379	0.357	0.383	0.360
DyHead	0.378	0.338	0.254	0.32	0.35	0.338	0.342	0.336	0.25
EfficientN	let 0.387	0.397	0.377	0.395	0.393	0.394	0.399	0.402	0.40
FCOS	0.401	0.4	0.382	0.399	0.389	0.405	0.389	0.418	0.37
FoveaBo	x 0.371	0.337	0.246	0.327	0.344	0.333	0.304	0.353	0.303
FreeAnch	or 0.384	0.332	0.333	0.367	0.345	0.38	0.324	0.365	0.244
FSAF	0.37	0.337	0.229	0.362	0.33	0.342	0.271	0.377	0.25
GFL	0.375	0.337	0.238	0.336	0.354	0.341	0.348	0.373	0.220
LD	0.372	0.352	0.236	0.351	0.367	0.348	0.314	0.367	0.268
NAS-FPI	N 0.38	0.367	0.307	0.373	0.378	0.375	0.34	0.384	0.290
PAA	0.399	0.371	0.337	0.385	0.357	0.39	0.376	0.388	0.383
RetinaNe	et 0.392	0.343	0.298	0.371	0.378	0.367	0.34	0.39	0.30
RTMDet	t 0.357	0.322	0.293	0.345	0.319	0.351	0.34	0.362	0.304
TOOD	0.345	0.293	0.261	0.332	0.312	0.329	0.283	0.327	0.23
VarifocalN	let 0.376	0.31	0.188	0.304	0.352	0.329	0.277	0.338	0.17
YOLOv:	0.364	0.364	0.366	0.371	0.358	0.378	0.377	0.373	0.354
YOLOve	6 0.357	0.361	0.343	0.363	0.352	0.37	0.359	0.37	0.35
YOLOV	0.366	0.356	0.339	0.36	0.355	0.371	0.358	0.376	0.33
YOLOv	3 0.376	0.358	0.354	0.369	0.357	0.376	0.368	0.385	0.33
YOLOX	0.362	0.33	0.325	0.345	0.338	0.368	0.367	0.358	0.30
Faster R-C	NN 0.303	0.187	0.099	0.194	0.228	0.236	0.163	0.302	0.134
Cascade R-C	UNN 0.316	0.213	0.14/	0.232	0.255	0.272	0.185	0.312	0.14
Cascade K	$\frac{1}{2} = \frac{1}{2}$	0.333	0.270	0.351	0.341	0.338	0.353	0.370	0.30
Double Hea	ads 0.52	0.239	0.105	0.27	0.249	0.299	0.2	0.333	0.19.
Crid P CN	U.347	0.31	0.249	0.35	0.302	0.352	0.239	0.379	0.24
Guidad Anah	0.320	0.25	0.155	0.275	0.239	0.312	0.205	0.35	0.10
HRNet	0.303	0.390	0.373	0.39	0.385	0.364	0.55	0.399	0.50
Libra R-C	NN 0.383	0.239	0.139	0.232	0.220	0.204	0.333	0.335	0.100 0.22
PA FPN	0.304	0.320	0.233	0.334	0.337	0.313	0.335	0.303	0.22
RenPoint	0.307	0.220	0.127	0.220	0.249	0.234	0.105	0.304	0.10
Res2Net	t 0.307	0.350	0.208	0.302	0.342	0.372	0.330	0.338	0.30
ResNeSt	t 0.341	0.257	0.189	0.274	0.261	0.27	0.268	0.302	0.20
SARI	0.318	0.213	0.151	0.26	0.253	0.257	0.200	0.303	0.16
Sparse R-C	NN 0.395	0.367	0.219	0.324	0.38	0.32	0.312	0.381	0.24
DETR	0.334	0.144	0.105	0.106	0.203	0.171	0.204	0.158	0.08
Conditional F	DETR 0.387	0.341	0.32	0.404	0.342	0.406	0.367	0.391	0.32
DDO	0.393	0.389	0.388	0.394	0.39	0.389	0.403	0.391	0.37
DAB-DET	R 0.404	0.366	0.384	0.406	0.385	0.413	0.404	0.376	0.36
Deformable I	DETR 0.378	0.352	0.277	0.351	0.333	0.372	0.3	0.351	0.339
DINO	0.388	0.353	0.353	0.39	0.364	0.388	0.372	0.384	0.340
PVT	0.349	0.371	0.319	0.365	0.37	0.379	0.365	0.382	0.38
PVTv2	0.372	0.372	0.359	0.386	0.365	0.399	0.354	0.39	0.384
1 : 1 / 2	0.0.2			2.200				0.07	

1829

1830

B.5.3 ABLATION STUDY ON 2D AND 3D PERTURBATIONS

1831Physical attacks that evaluate 2D adversarial patches from a frontal perspective have a significant1832limitation, as they do not account for the effects of multiple viewing angles in a 3D environment.1833Our study aims to bridge this gap by developing a comprehensive benchmark for assessing physical1834attacks from various angles and incorporating a broader range of physical dynamics. During our1835investigation, we noted a substantial drop in performance (detection rate: $\frac{n_{detected}}{n_{total}}$) when adversarial1835patches were only applied to the frontal view of objects. To ensure a fair comparison and enhance

	Clean Clean	Pendon	Adr Can	Con Con	Natto Natto	QUAY	CAD	their Coast	D_{Ab}	Adr 7 stil	Adv Tekture	Adip	Advation
ATSS	0.54	0.517	0.498	0.428	0.419	0.473	0.522	0.468	0.495	0.458	0.385	0.454	0.49
AutoAssign	0.491	0.466	0.454	0.314	0.36	0.423	0.456	0.43	0.403	0.41	0.346	0.427	0.45
CenterNet	0.524	0.476	0.477	0.408	0.39	0.469	0.483	0.436	0.437	0.45	0.372	0.43	0.47
CentripetalNet	0.526	0.53	0.524	0.48	0.349	0.524	0.508	0.51	0.471	0.473	0.405	0.472	0.51
CornerNet	0.517	0.51	0.505	0.403	0.295	0.488	0.494	0.449	0.444	0.42	0.345	0.414	0.4
DDOD	0.481	0.48	0.448	0.359	0.416	0.421	0.47	0.445	0.453	0.433	0.329	0.409	0.44
DyHead	0.474	0.483	0.485	0.406	0.402	0.464	0.501	0.454	0.473	0.433	0.4	0.433	0.46
EfficientNet	0.457	0.431	0.442	0.398	0.418	0.406	0.431	0.399	0.407	0.403	0.394	0.396	0.42
FCOS	0.45	0.438	0.429	0.364	0.383	0.41	0.433	0.407	0.404	0.407	0.356	0.409	0.42
FoveaBox	0.543	0.53	0.536	0.473	0.475	0.482	0.54	0.481	0.523	0.483	0.374	0.458	0.49
FreeAnchor	0.537	0.522	0.493	0.414	0.396	0.431	0.492	0.443	0.446	0.411	0.331	0.447	0.4
FSAF	0.554	0.551	0.529	0.444	0.439	0.485	0.538	0.496	0.515	0.457	0.379	0.479	0.51
GFL	0.57	0.541	0.532	0.431	0.453	0.495	0.509	0.478	0.495	0.48	0.398	0.459	0.52
LD	0.57	0.54	0.524	0.401	0.397	0.486	0.517	0.484	0.489	0.477	0.385	0.484	0.51
NAS-FPN	0.442	0.436	0.433	0.365	0.391	0.4	0.451	0.399	0.394	0.398	0.32	0.399	0.41
PAA	0.464	0.464	0.457	0.402	0.389	0.43	0.451	0.432	0.447	0.402	0.322	0.409	0.44
RetinaNet	0.522	0.543	0.497	0.438	0.425	0.459	0.505	0.483	0.478	0.454	0.384	0.475	0.48
RTMDet	0.533	0.482	0.515	0.52	0.466	0.46	0.495	0.437	0.472	0.47	0.459	0.449	0.46
TOOD	0.474	0.5	0.475	0.384	0.376	0.453	0.503	0.453	0.486	0.441	0.371	0.435	0.45
VarifocalNet	0.492	0.505	0.481	0.387	0.395	0.443	0.504	0.444	0.469	0.445	0.368	0.436	0.4
YOLOv5	0.481	0.46	0.472	0.448	0.403	0.453	0.484	0.454	0.485	0.418	0.35	0.42	0.45
YOLOv6	0.467	0.445	0.461	0.456	0.435	0.438	0.444	0.446	0.459	0.437	0.423	0.432	0.44
YOLOv7	0.463	0.438	0.48	0.446	0.343	0.401	0.438	0.403	0.457	0.402	0.372	0.366	0.42
YOLOv8	0.434	0.421	0.431	0.432	0.402	0.415	0.421	0.416	0.429	0.416	0.405	0.409	0.41
YOLOX	0.448	0.436	0.457	0.457	0.382	0.432	0.46	0.425	0.46	0.433	0.393	0.412	0.42
Faster R-CNN	0.541	0.547	0.497	0.416	0.425	0.456	0.532	0.468	0.456	0.448	0.341	0.432	0.51
Cascade R-CNN	0.559	0.551	0.539	0.431	0.445	0.488	0.551	0.463	0.508	0.479	0.355	0.454	0.52
Cascade RPN	0.538	0.537	0.528	0.389	0.407	0.482	0.508	0.472	0.483	0.461	0.335	0.445	0.50
Double Heads	0.552	0.526	0.531	0.419	0.408	0.46	0.533	0.442	0.489	0.454	0.359	0.44	0.49
FPG	0.462	0.473	0.451	0.413	0.395	0.415	0.466	0.408	0.424	0.405	0.317	0.409	0.44
Grid R-CNN	0.512	0.502	0.492	0.397	0.404	0.449	0.517	0.462	0.471	0.43	0.363	0.424	0.48
Guided Anchoring	0.497	0.537	0.504	0.427	0.396	0.47	0.525	0.479	0.454	0.449	0.375	0.452	0.49
HRNet	0.498	0.489	0.495	0.457	0.404	0.453	0.489	0.47	0.442	0.472	0.419	0.437	0.44
Libra R-CNN	0.535	0.517	0.479	0.452	0.404	0.446	0.468	0.433	0.447	0.431	0.374	0.421	0.44
PAFPN	0.539	0.534	0.529	0.429	0.438	0.468	0.522	0.477	0.47	0.458	0.349	0.447	0.51
RepPoints	0.572	0.559	0.53	0.434	0.475	0.478	0.535	0.47	0.504	0.455	0.38	0.451	0.52
Res2Net	0.449	0.437	0.435	0.403	0.301	0.402	0.458	0.406	0.407	0.386	0.324	0.387	0.42
ResNeSt	0.443	0.455	0.409	0.396	0.396	0.405	0.432	0.385	0.364	0.374	0.358	0.374	0.41
SABL	0.563	0.559	0.525	0.418	0.471	0.491	0.534	0.503	0.498	0.496	0.382	0.484	0.53
Sparse R-CNN	0.492	0.481	0.477	0.38	0.347	0.434	0.484	0.386	0.396	0.407	0.352	0.389	0.45
DETR	0.553	0.497	0.481	0.337	0.318	0.467	0.49	0.466	0.432	0.473	0.343	0.444	0.47
Conditional DETR	0.535	0.497	0.453	0.378	0.351	0.424	0.449	0.401	0.44	0.416	0.294	0.412	0.42
DDQ	0.449	0.454	0.452	0.377	0.388	0.424	0.451	0.426	0.408	0.422	0.34	0.421	0.43
DAB-DETR	0.441	0.429	0.428	0.344	0.36	0.371	0.407	0.357	0.373	0.374	0.276	0.336	0.39
Deformable DETR	0.475	0.462	0.475	0.345	0.389	0.421	0.46	0.442	0.418	0.424	0.286	0.416	0.47
DINO	0.419	0.421	0.416	0.337	0.283	0.385	0.415	0.402	0.375	0.391	0.316	0.378	0.39
PVT	0.474	0.465	0.418	0.378	0.368	0.383	0.405	0.359	0.369	0.393	0.381	0.391	0.4
PVT_{y2}	0.51	0.431	0.41	0.403	0.4	0 305	0.414	0 380	0.41	0.384	0 347	0.382	0.30

T 1 1 0 **O** 111 A DEO(M)

1874

1026

the efficacy of the attacks, we expanded the application of these patches to cover the entirety of the 1875 object's surface. Additional experiments were conducted to assess the impact of adversarial patches 1876 on frontal views using several object detection algorithms. The results are summarized in Table 21. 1877 The 'Entire Surface' column highlights cases where the adversarial patch was applied across the 1878 entire surface of an object. The values in parentheses indicate the relative decrease in performance 1879 compared to full-surface patching.

1880 1881

С USER FEEDBACK 1882

1883 To ensure ease of use, we have addressed potential barriers by user feedback, such as CARLA 1884 deployment and customizing adversarial objects, by providing a comprehensive Docker installation 1885 guide for CARLA and a tutorial on customizing adversarial objects in our documentation. These 1886 resources enable users to install CARLA and customize objects in just a few minutes. We also 1887 conducted usability testing with five researchers from a well-known University and got feedback 1888 from them in the form of a survey questionnaire as shown in Table 24. The users consistently found 1889 the benchmark easy to use and provided positive feedback on its usability.

Table 10: **Overall** experimental results of **person** detection in the metric of **mAP50:95**(%).

			~	~		*			at		15	lure	8	,£
		lean	Condon and Condon	Adv.Ca	a c	Varia	<u>a</u>	a T	W.S.C.	af o	Adr Tsy	at res	1 dep	arp a
	ATSS	0.157	0.148	0.147	0.121	0.113	0.127	0.155	0.138	0.143	0.128	0.098	0.132	0.138
A	AutoAssign	0.149	0.137	0.13	0.082	0.098	0.12	0.136	0.126	0.113	0.114	0.089	0.123	0.131
	CenterNet	0.161	0.145	0.147	0.12	0.111	0.141	0.151	0.132	0.132	0.135	0.102	0.124	0.14
Ce	entripetalNet	0.143	0.145	0.144	0.142	0.083	0.145	0.139	0.142	0.131	0.128	0.109	0.127	0.13
	CornerNet	0.142	0.141	0.138	0.12	0.07	0.133	0.141	0.128	0.125	0.115	0.091	0.111	0.13
	DDOD	0.142	0.141	0.129	0.102	0.119	0.115	0.139	0.133	0.131	0.129	0.085	0.114	0.12
	DyHead	0.135	0.137	0.144	0.113	0.109	0.127	0.149	0.132	0.141	0.12	0.106	0.122	0.13
F	EfficientNet	0.123	0.115	0.119	0.115	0.113	0.106	0.116	0.105	0.11	0.106	0.100	0.104	0.10
-	FCOS	0.126	0.117	0.117	0.1	0.102	0.108	0.118	0.109	0.106	0 107	0.094	0.106	0.10
	FoveaBox	0.173	0.163	0.166	0.135	0.133	0.141	0.162	0.141	0.155	0.136	0.098	0.131	0.14
E	ree Anchor	0.165	0.155	0.147	0.122	0.106	0.121	0.149	0.134	0.132	0.108	0.083	0.127	0.14
1	FSAE	0.105	0.155	0.147	0.122	0.13	0.142	0.149	0.155	0.152	0.131	0.005	0.127	0.15
	GFI	0.177	0.164	0.162	0.123	0.13	0.138	0.16	0.133	0.157	0.131	0.108	0.133	0.15
	ID	0.170	0.164	0.162	0.123	0.10	0.138	0.162	0.145	0.137	0.144	0.100	0.135	0.15
	NAS EDN	0.177	0.104	0.102	0.107	0.109	0.145	0.102	0.147	0.140	0.142	0.101	0.145	0.13
	INAS-FFIN	0.127	0.119	0.122	0.107	0.11	0.100	0.135	0.112	0.111	0.100	0.070	0.11	0.11
	PAA	0.152	0.152	0.15	0.112	0.105	0.110	0.155	0.120	0.129	0.108	0.081	0.12	0.12
	DTMD	0.155	0.107	0.151	0.155	0.123	0.13	0.158	0.152	0.142	0.134	0.100	0.144	0.14
	KIMDet	0.152	0.133	0.148	0.158	0.129	0.12	0.14	0.112	0.137	0.129	0.120	0.117	0.12
	TOOD	0.131	0.145	0.139	0.108	0.099	0.121	0.154	0.13	0.143	0.122	0.093	0.122	0.12
V	arifocalNet	0.141	0.152	0.145	0.11	0.111	0.127	0.157	0.133	0.144	0.125	0.095	0.132	0.13
	YOLOV5	0.135	0.124	0.132	0.129	0.104	0.122	0.136	0.124	0.142	0.108	0.082	0.106	0.12
	YOLOv6	0.13	0.121	0.129	0.139	0.119	0.118	0.126	0.123	0.128	0.118	0.115	0.116	0.11
	YOLOv7	0.125	0.115	0.129	0.117	0.083	0.101	0.115	0.105	0.129	0.101	0.091	0.091	0.11
	YOLOv8	0.12	0.113	0.12	0.128	0.111	0.111	0.115	0.111	0.119	0.109	0.106	0.106	0.11
	YOLOX	0.13	0.122	0.129	0.138	0.106	0.117	0.129	0.12	0.137	0.121	0.103	0.112	0.11
Fa	ster R-CNN	0.159	0.166	0.146	0.114	0.11	0.119	0.164	0.136	0.133	0.122	0.083	0.121	0.15
Cas	scade R-CNN	0.171	0.166	0.165	0.12	0.122	0.141	0.17	0.136	0.15	0.136	0.09	0.131	0.15
C	ascade RPN	0.163	0.161	0.153	0.105	0.109	0.138	0.153	0.14	0.142	0.13	0.082	0.129	0.15
D	ouble Heads	0.169	0.161	0.164	0.12	0.11	0.134	0.165	0.128	0.144	0.128	0.085	0.126	0.15
	FPG	0.133	0.136	0.132	0.121	0.109	0.112	0.141	0.115	0.124	0.105	0.073	0.112	0.12
G	rid R-CNN	0.151	0.145	0.145	0.109	0.11	0.123	0.15	0.13	0.139	0.116	0.091	0.114	0.13
Guio	led Anchoring	0.142	0.162	0.153	0.119	0.107	0.137	0.163	0.136	0.132	0.123	0.094	0.128	0.14
	HRNet	0.147	0.139	0.146	0.132	0.105	0.117	0.141	0.133	0.122	0.132	0.109	0.117	0.12
Li	ibra R-CNN	0.155	0.145	0.136	0.133	0.119	0.119	0.134	0.123	0.126	0.121	0.102	0.115	0.12
	PAFPN	0.163	0.157	0.158	0.118	0.12	0.124	0.156	0.137	0.137	0.125	0.086	0.121	0.14
	RepPoints	0.178	0.177	0.166	0.124	0.14	0.131	0.167	0.135	0.146	0.132	0.099	0.129	0.15
	Res2Net	0.123	0.115	0.122	0.112	0.075	0.106	0.132	0.113	0.115	0.1	0.086	0.099	0.11
	ResNeSt	0.125	0.132	0.118	0.11	0.11	0.109	0.125	0.108	0.102	0.101	0.091	0.1	0.11
	SABL	0.177	0.169	0.166	0.118	0.133	0.145	0.166	0.151	0.147	0.143	0.096	0.141	0.16
Sp	arse R-CNN	0.135	0.134	0.138	0.104	0.092	0.114	0.141	0.106	0.111	0.109	0.095	0.103	0.12
	DETR	0.171	0.151	0.151	0.101	0.088	0.142	0.152	0.146	0.126	0.138	0.095	0.128	0.14
Con	ditional DETR	0.157	0.138	0.128	0.1	0.09	0.114	0.129	0.112	0.123	0.108	0.068	0.105	0.11
	DDQ	0.119	0.119	0.124	0.099	0.099	0.112	0.124	0.116	0.113	0.11	0.085	0.113	0.11
Ľ	AB-DETR	0.118	0.111	0.117	0.092	0.094	0.099	0.111	0.095	0.101	0.098	0.071	0.087	0.10
Defc	ormable DETR	0.136	0.129	0.142	0.093	0.107	0.118	0.134	0.128	0.12	0.12	0.073	0.114	0.13
	DINO	0.112	0.11	0.112	0.086	0.068	0.097	0.113	0.106	0.098	0.101	0.083	0.097	0.1
	PVT	0.14	0.134	0.117	0.107	0.099	0.108	0.115	0.099	0.102	0.111	0.106	0.109	0.11
		0.150	0 122	0.110	0.110	0.112	0 109	0.126	0.110	0 1 2 2	0.11	0.007	0.108	0.11

			~	S		\$			oat		in the second se	Lane Contraction of the second	.5	(en)
		de la	¹ do ₁	L.	ç	a a	Ð	2		2	13	AN AN	J.B.	J.a
		õ	\$ ⁸	20 70	S	Ş	\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	$\mathcal{Q}^{\mathcal{C}}$	70	70	70	20 70
А	TSS	0.835	0.827	0.823	0.802	0.782	0.823	0.818	0.789	0.788	0.798	0.741	0.786	0.823
Auto	Assign	0.854	0.837	0.841	0.794	0.827	0.832	0.826	0.814	0.817	0.827	0.793	0.811	0.832
Cen	terNet	0.848	0.835	0.84	0.849	0.809	0.842	0.829	0.823	0.822	0.828	0.794	0.82	0.848
Centri	petainet	0.854	0.858	0.838	0.809	0.779	0.85	0.83	0.86	0.82	0.814	0.737	0.841	0.854
Cor	nerivet	0.8/1	0.87	0.855	0.814	0.776	0.855	0.841	0.848	0.820	0.805	0.74	0.604	0.85
D	DOD	0.737	0.729	0.739	0.723	0.740	0.710	0.732	0.713	0.725	0.72	0.078	0.094	0.72
Dy	Head	0.725	0.731	0.747	0.702	0.7	0.723	0.745	0.711	0.711	0.725	0.724	0.710	0.721
Епс	ientinet	0.794	0.//1	0.789	0.768	0.751	0.758	0.781	0.762	0.754	0.762	0.748	0.752	0.760
F	LUS	0.897	0.905	0.89	0.864	0.86	0.891	0.894	0.893	0.858	0.897	0.82	0.898	0.899
Fov	eaBox	0.824	0.814	0.836	0.836	0.794	0.825	0.813	0.799	0.819	0.81	0.785	0.776	0.818
Free	Anchor	0.792	0.801	0.788	0.791	0.772	0.786	0.789	0.768	0.769	0.781	0.717	0.784	0.79.
F	SAF	0.812	0.814	0.818	0.803	0.79	0.807	0.822	0.808	0.808	0.803	0.785	0.803	0.80
C	iFL	0.827	0.803	0.805	0.796	0.782	0.806	0.784	0.781	0.763	0.785	0.743	0.777	0.804
		0.809	0.797	0.802	0.785	0.762	0.787	0.786	0.764	0.77	0.777	0.735	0.763	0.79
NA	S-FPN	0.773	0.765	0.775	0.726	0.75	0.74	0.768	0.744	0.732	0.741	0.7	0.751	0.76
P	PAA	0.816	0.819	0.821	0.808	0.791	0.805	0.805	0.792	0.784	0.78	0.73	0.783	0.80
Ret	inaNet	0.838	0.823	0.843	0.817	0.795	0.823	0.822	0.802	0.796	0.818	0.777	0.791	0.823
RT	MDet	0.976	0.978	0.974	0.973	0.972	0.975	0.974	0.966	0.971	0.97	0.966	0.976	0.97
T	DOD	0.73	0.732	0.731	0.708	0.691	0.734	0.737	0.716	0.723	0.724	0.69	0.714	0.72
Varif	ocalNet	0.794	0.772	0.786	0.767	0.738	0.765	0.77	0.744	0.755	0.758	0.729	0.745	0.77
YO	LOv5	0.814	0.832	0.836	0.773	0.782	0.825	0.831	0.841	0.814	0.829	0.817	0.836	0.83
YO	LOv6	0.96	0.963	0.957	0.951	0.939	0.959	0.943	0.964	0.943	0.95	0.921	0.956	0.96
YO	LOv7	0.729	0.73	0.744	0.723	0.7	0.716	0.731	0.712	0.721	0.731	0.721	0.723	0.72
YO	LOv8	0.677	0.667	0.686	0.67	0.669	0.676	0.676	0.679	0.687	0.674	0.675	0.674	0.66
YC	DLOX	0.685	0.697	0.702	0.702	0.702	0.7	0.708	0.706	0.709	0.707	0.731	0.71	0.68
Faster	R-CNN	0.69	0.682	0.691	0.625	0.659	0.679	0.674	0.653	0.645	0.679	0.615	0.639	0.67
Cascad	e R-CNN	0.699	0.689	0.703	0.644	0.652	0.679	0.695	0.66	0.673	0.677	0.623	0.651	0.68
Casca	ide RPN	0.785	0.791	0.789	0.759	0.758	0.78	0.776	0.748	0.751	0.774	0.715	0.758	0.78
Doub	le Heads	0.696	0.688	0.7	0.636	0.639	0.677	0.678	0.664	0.654	0.679	0.623	0.643	0.67
F	FPG	0.656	0.659	0.665	0.598	0.598	0.643	0.659	0.636	0.622	0.642	0.588	0.635	0.65
Grid	R-CNN	0.677	0.664	0.67	0.638	0.635	0.666	0.669	0.654	0.655	0.659	0.632	0.644	0.65
Guided	Anchoring	0.74	0.732	0.748	0.729	0.709	0.738	0.745	0.733	0.711	0.736	0.72	0.718	0.73
H	RNet	0.665	0.669	0.679	0.645	0.644	0.671	0.673	0.661	0.646	0.676	0.65	0.645	0.64
Libra	R-CNN	0.829	0.813	0.831	0.822	0.766	0.81	0.811	0.781	0.776	0.797	0.754	0.778	0.81
PA	FPN	0.685	0.682	0.697	0.644	0.647	0.678	0.679	0.664	0.658	0.682	0.614	0.651	0.679
Rep	Points	0.826	0.813	0.822	0.816	0.813	0.804	0.807	0.799	0.808	0.801	0.783	0.779	0.81
Re	s2Net	0.636	0.63	0.638	0.599	0.543	0.627	0.623	0.614	0.602	0.623	0.578	0.618	0.63
Re	sNeSt	0.648	0.651	0.625	0.61	0.61	0.636	0.619	0.614	0.586	0.607	0.593	0.609	0.64
S	ABL	0.711	0.704	0.707	0.65	0.66	0.69	0.678	0.675	0.675	0.688	0.635	0.661	0.69
Sparse	R-CNN	0.702	0.685	0.694	0.67	0.668	0.672	0.688	0.65	0.644	0.667	0.649	0.651	0.68
D	ETR	0.893	0.9	0.877	0.761	0.798	0.904	0.887	0.891	0.827	0.882	0.789	0.889	0.89
Conditio	onal DETR	0.73	0.729	0.717	0.706	0.708	0.697	0.703	0.67	0.691	0.683	0.643	0.692	0.69
D	DQ	0.774	0.774	0.768	0.768	0.758	0.746	0.757	0.728	0.744	0.748	0.725	0.745	0.74
DAB	-DETR	0.743	0.739	0.745	0.737	0.76	0.729	0.742	0.705	0.73	0.717	0.703	0.716	0.722
Deformation	able DETR	0.703	0.699	0.707	0.68	0.693	0.671	0.692	0.666	0.675	0.673	0.591	0.67	0.679
D	INO	0.739	0.748	0.744	0.735	0.747	0.732	0.747	0.723	0.72	0.727	0.718	0.734	0.73
F	VT	0.703	0.705	0.7	0.692	0.673	0.693	0.696	0.679	0.669	0.692	0.681	0.691	0.68
PV	/Tv2	0.738	0.733	0.714	0.736	0.731	0.712	0.733	0.715	0.705	0.725	0.7	0.716	0.709

Table 11: Overall experimental results of person detection in the metric of mAR50(%).

								*		κ.	5°		
	ean	ndon	A Carl	ç	the atch	R	2	1000 Stores	2	17 July	tr Peter	tr b	44
	õ	\$ ⁶	70	5	Ś,	4	Ň	2	Q.	70	70	70	х,
ATSS	0.326	0.313	0.318	0.301	0.298	0.304	0.306	0.291	0.302	0.297	0.269	0.286	0.3
AutoAssign	0.317	0.309	0.309	0.288	0.306	0.299	0.305	0.297	0.3	0.301	0.282	0.297	0.3
CenterNet	0.351	0.344	0.342	0.341	0.315	0.342	0.332	0.326	0.325	0.332	0.309	0.329	0.3
CorperNet	0.332	0.337	0.320	0.52	0.295	0.335	0.314	0.338	0.311	0.307	0.277	0.321	0.3
DDOD	0.331	0.355	0.325	0.300	0.281	0.322	0.267	0.256	0.300	0.297	0.27	0.250	0.3
DyHead	0.283	0.284	0.275	0.262	0.273	0.230	0.207	0.273	0.279	0.202	0.215	0.251	0.2
EfficientNet	0.29	0.283	0.295	0.283	0.284	0.277	0.291	0.278	0.284	0.28	0.274	0.272	0.2
FCOS	0.339	0.341	0.341	0.323	0.331	0.331	0.339	0.337	0.322	0.337	0.296	0.335	0.3
FoveaBox	0.304	0.298	0.316	0.309	0.29	0.295	0.293	0.285	0.301	0.292	0.276	0.279	0.2
FreeAnchor	0.289	0.289	0.29	0.283	0.278	0.28	0.284	0.276	0.278	0.277	0.249	0.28	0.2
FSAF	0.307	0.305	0.31	0.298	0.304	0.299	0.307	0.299	0.307	0.294	0.279	0.297	0.3
GFL	0.311	0.298	0.304	0.29	0.29	0.292	0.29	0.283	0.285	0.284	0.267	0.281	0.2
LD	0.302	0.293	0.298	0.283	0.28	0.285	0.291	0.278	0.286	0.283	0.263	0.276	0.
NAS-FPN	0.294	0.28	0.293	0.265	0.278	0.27	0.285	0.271	0.272	0.271	0.242	0.272	0.2
PAA	0.321	0.322	0.323	0.308	0.303	0.312	0.32	0.312	0.313	0.303	0.269	0.304	0.3
RetinaNet	0.317	0.32	0.327	0.314	0.305	0.312	0.316	0.309	0.307	0.312	0.295	0.304	0.3
RIMDet	0.246	0.242	0.248	0.235	0.233	0.236	0.244	0.229	0.237	0.238	0.233	0.233	0.2
TOOD	0.277	0.276	0.278	0.262	0.258	0.2/1	0.277	0.266	0.274	0.269	0.249	0.265	0.2
VOL Ov5	0.295	0.287	0.290	0.281	0.277	0.28	0.280	0.271	0.28	0.277	0.262	0.274	0.2
YOLOV5	0.241	0.239	0.243	0.233	0.222	0.237	0.242	0.230	0.241	0.229	0.179	0.223	0.2
YOLOv7	0.241	0.237	0.24	0.232	0.235	0.231	0.230	0.232	0.235	0.231	0.228	0.228	0.2
YOLOv8	0.242	0.230	0.242	0.225	0.235	0.221	0.237	0.210	0.233	0.220	0.213	0.233	0.2
YOLOX	0.242	0.241	0.243	0.233	0.217	0.237	0.241	0.237	0.239	0.236	0.227	0.234	0.3
Faster R-CNN	0.256	0.255	0.261	0.228	0.242	0.246	0.253	0.24	0.244	0.25	0.212	0.233	0.2
Cascade R-CNN	0.262	0.255	0.267	0.238	0.246	0.248	0.261	0.244	0.256	0.249	0.224	0.24	0.2
Cascade RPN	0.279	0.278	0.28	0.26	0.266	0.27	0.274	0.261	0.266	0.268	0.241	0.262	0.
Double Heads	0.26	0.255	0.262	0.233	0.232	0.243	0.253	0.24	0.245	0.244	0.209	0.233	0.2
FPG	0.248	0.243	0.251	0.217	0.211	0.233	0.247	0.235	0.235	0.231	0.196	0.229	0.2
Grid R-CNN	0.25	0.244	0.251	0.235	0.24	0.243	0.25	0.241	0.248	0.246	0.234	0.238	0.
Guided Anchoring	0.271	0.266	0.271	0.254	0.252	0.262	0.272	0.259	0.257	0.265	0.244	0.253	0.2
HRNet	0.253	0.248	0.256	0.243	0.233	0.246	0.25	0.246	0.243	0.252	0.239	0.234	0.2
Libra R-CNN	0.321	0.314	0.319	0.319	0.293	0.302	0.307	0.294	0.3	0.303	0.285	0.291	0
PAFPN	0.257	0.253	0.263	0.232	0.243	0.245	0.255	0.243	0.251	0.249	0.212	0.235	0.
RepPoints	0.314	0.31	0.319	0.304	0.306	0.295	0.301	0.291	0.305	0.298	0.28	0.287	0.
Res2Net DecNeSt	0.237	0.231	0.24	0.22	0.193	0.229	0.234	0.227	0.226	0.228	0.216	0.222	0
S A DI	0.244	0.246	0.250	0.224	0.220	0.250	0.250	0.231	0.217	0.220	0.214	0.221	0.
SADL Sporse P. CNN	0.271	0.20	0.27	0.24	0.251	0.234	0.250	0.247	0.237	0.252	0.228	0.243	0.
DETP	0.208	0.202	0.207	0.23	0.255	0.231	0.205	0.240	0.247	0.233	0.247	0.244	0
Conditional DETR	0.42	0.42	0.391	0.278	0.332	0.285	0.39	0.268	0.269	0.268	0.326	0.372	0.
DDO	0.322	0.32	0.32	0.303	0.304	0.301	0.313	0.29	0.29	0.305	0.284	0.299	0
DAB-DETR	0.301	0.301	0.303	0.3	0.31	0.295	0.296	0.277	0.294	0.285	0.27	0.28	0.
Deformable DETR	0.281	0.271	0.278	0.258	0.282	0.256	0.27	0.252	0.261	0.26	0.221	0.257	0.
DINO	0.303	0.309	0.303	0.29	0.294	0.294	0.302	0.287	0.276	0.293	0.276	0.293	0.1
PVT	0.273	0.275	0.27	0.264	0.253	0.268	0.271	0.26	0.254	0.271	0.266	0.267	0.2
PVTv2	0.284	0.283	0 277	0.278	0.277	0.271	0.281	0.276	0.266	0.279	0.264	0.273	0.7

 Table 13: Ablation experimental results (weather) of vehicle detection in the metric of mAR50(%).

2063			æ	.47				ltch	6	Ś	
2064		can	indo,	Ē	Z	T	a^{∇}	ð,	And and a second	4 MC	AC.
2065	ATSS	0.075	~~ 0.063	₹ 0.863	୍ଦ 0.963	<u>ب</u> ې 0.05	₹ ⁷	م 0 863	ଙ୍ 0.063	C [*]	& 0.875
2066	AutoAssign	0.975	1.0	0.803	1.0	1.0	1.0	0.805	0.903	1.0	0.988
2067	CenterNet	0.95	1.0	0.963	1.0	0.975	1.0	0.887	1.0	1.0	0.925
2067	CentripetalNet	0.975	1.0	0.938	1.0	0.95	1.0	0.975	1.0	0.988	0.988
2068	CornerNet	1.0	1.0	0.95	1.0	1.0	1.0	1.0	1.0	1.0	0.95
2069	DDOD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.988
2070	EfficientNet	0.988	1.0	1.0	1.0	1.0	0.988	1.0	1.0	1.0	0.975
2010	FCOS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.988	1.0	0.975
2071	FoveaBox	1.0	1.0	0.95	1.0	1.0	1.0	0.988	1.0	1.0	1.0
2072	FreeAnchor	1.0	0.863	0.812	0.975	0.863	1.0	0.8	0.875	0.875	0.887
2073	FSAF	0.988	0.887	0.887	0.988	0.925	1.0	0.925	0.975	0.9	0.912
2070	GFL	0.988	0.875	0.875	1.0	0.912	1.0	0.887	0.875	0.875	0.875
2074	LD NAS EDN	1.0	0.9	0.887	1.0	0.975	1.0	0.887	1.0	0.9	0.975
2075	PAA	0.988	1.0	0.988	1.0	0.905	1.0	0.975	1.0	1.0	1.0
2076	RetinaNet	0.988	0.938	0.925	0.963	0.925	1.0	0.863	0.988	0.863	0.925
0077	RTMDet	1.0	1.0	1.0	1.0	1.0	0.988	1.0	1.0	1.0	1.0
2077	TOOD	1.0	1.0	0.912	1.0	1.0	1.0	0.988	1.0	1.0	1.0
2078	VarifocalNet	0.988	0.938	0.85	0.887	0.95	1.0	0.925	0.85	0.875	0.887
2079	YOLOV5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2020	YOLOV7	1.0	1.0	1.0	1.0	1.0	0.905	1.0	1.0	1.0	1.0
2000	YOLOv8	1.0	1.0	1.0	1.0	1.0	0.925	1.0	1.0	1.0	1.0
2081	YOLOX	1.0	1.0	1.0	1.0	1.0	0.988	1.0	1.0	1.0	1.0
2082	Faster R-CNN	0.988	0.85	0.562	0.775	0.85	0.938	0.762	0.887	0.725	0.875
2083	Cascade R-CNN	1.0	0.863	0.738	0.875	0.912	0.975	0.787	0.925	0.787	0.863
2000	Cascade RPN	1.0	1.0	0.988	1.0	0.988	0.975	0.988	1.0	0.988	0.988
2084	Double Heads	0.975	0.9	0.812	0.875	0.825	1.0	0.838	0.975	0.838	0.875
2085	Grid R-CNN	1.0	0.988	0.93	0.963	0.988	0.988	0.838	0.988	0.938	0.925
2086	Guided Anchoring	1.0	1.0	1.0	1.0	1.0	0.988	1.0	1.0	1.0	0.975
2007	HRNet	0.938	0.875	0.938	0.95	0.875	0.963	0.775	0.9	0.95	0.925
2007	Libra R-CNN	0.988	0.938	0.938	0.963	0.963	1.0	0.975	1.0	0.9	0.975
2088	PAFPN	0.988	0.863	0.637	0.825	0.887	0.963	0.838	0.963	0.825	0.863
2089	RepPoints	0.988	0.975	0.875	1.0	0.9	1.0	0.975	0.975	0.975	0.912
2000	Res2Net ResNeSt	0.975	1.0	0.925	0.988	0.988	1.0	0.912	0.938	0.988	1.0
2090	SABL	1.0	0.803	0.775	0.938	0.887	0.988	0.787	0.95	0.805	0.863
2091	Sparse R-CNN	0.975	0.912	0.85	1.0	0.988	0.988	0.95	0.95	0.838	0.9
2092	DETR	0.95	0.537	0.388	0.237	0.8	0.713	0.812	0.5	0.487	0.8
2093	Conditional DETR	0.988	0.887	0.975	0.975	0.975	1.0	1.0	1.0	0.875	0.912
20004	DDQ	0.988	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2094	DAB-DETR Deformable DETP	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.975	1.0
2095	DINO	1.0	1.0	0.9	0.938	0.95	0.975	1.0	1.0	0.912	1.0
2096	PVT	0.988	1.0	0.75	0.988	1.0	1.0	0.988	1.0	1.0	0.925
2007	PVTv2	1.0	0.988	0.988	1.0	1.0	1.0	0.887	1.0	1.0	0.912
2037											

Table 14: Ablation experimental results (spot) of vehicle detection in the metric of mAR50(%).

2116											
2117			æ	Ś				atch	<i>'</i> 0	ŝ	
2118		lean	ando	Ē	Z.	J.	\mathcal{A}^{∇}	0°.	St.	A.M.	a de
2119	4755	0	€	V 0.995	~>	-4; ⁻	<i>▼</i>	2	∾ ⁷	0.975	Q 975
2120	AutoAssign	0.958	0.979	0.885	0.99	0.909	0.99	0.969	0.909	0.875	0.875
2121	CenterNet	0.99	0.979	0.99	0.99	0.979	0.99	0.885	0.979	0.99	0.938
2121	CentripetalNet	1.0	0.99	0.979	0.99	0.99	0.99	0.979	1.0	0.99	0.979
2122	CornerNet	0.99	0.99	0.958	0.99	0.99	0.99	0.979	1.0	0.969	0.99
2123	DyHead	1.0	1.0	0.99	1.0	0.99	1.0	1.0	0.99	0.99	1.0
2124	EfficientNet	0.958	0.99	0.969	0.99	0.99	0.99	0.979	1.0	0.99	0.979
0105	FCOS	1.0	0.99	0.99	0.99	0.99	0.99	0.979	0.99	0.99	0.958
2123	FoveaBox	0.99	0.99	0.875	0.99	0.99	0.99	0.99	0.99	0.99	0.979
2126	FreeAnchor	0.99	0.865	0.833	0.979	0.885	0.99	0.792	0.938	0.885	0.865
2127	GEI	0.00	0.900	0.812	0.99	0.938	0.99	0.805	0.938	0.873	0.885
2128	LD	0.99	0.948	0.896	0.99	0.958	0.99	0.823	0.979	0.896	0.890
0100	NAS-FPN	1.0	0.885	0.969	0.979	0.948	1.0	0.979	1.0	0.927	0.917
2129	PAA	0.99	0.99	0.979	0.99	0.99	0.99	0.958	0.99	0.99	0.99
2130	RetinaNet	0.99	0.865	0.865	0.917	0.948	0.979	0.854	0.917	0.802	0.875
2131	TOOD	1.0	1.0	0.99	1.0	0.99	0.979	0.99	0.99	1.0	0.99
2132	VarifocalNet	1.0	0.99	0.802	0.865	0.938	0.99	0.885	0.823	0.833	0.875
2102	YOLOv5	1.0	0.99	0.99	1.0	0.99	1.0	1.0	0.99	0.99	0.969
2133	YOLOv6	1.0	1.0	1.0	1.0	1.0	0.979	1.0	1.0	1.0	1.0
2134	YOLOv7	1.0	1.0	1.0	0.99	0.99	0.917	1.0	1.0	0.99	0.99
2135	YOLOv8	1.0	1.0	1.0	1.0	1.0	0.958	1.0	1.0	0.99	1.0
2136	Faster R-CNN	0.00	0.99	0.74	0.99	0.99	0.958	0.99	0.948	0.99	0.99
2150	Cascade R-CNN	0.99	0.865	0.854	0.969	0.885	0.99	0.823	0.917	0.844	0.854
2137	Cascade RPN	0.99	0.958	0.938	0.99	0.938	0.969	0.906	0.99	0.99	0.958
2138	Double Heads	0.99	0.896	0.927	0.969	0.823	0.99	0.865	0.99	0.844	0.865
2139	FPG	1.0	0.948	0.896	0.979	0.958	0.99	0.833	0.99	0.969	0.906
21/0	Grid R-CNN Guidad Anabaring	0.979	0.906	0.885	0.979	0.917	0.979	0.875	0.99	0.917	0.896
2140	HRNet	0.969	0.979	0.99	0.99	0.854	0.917	0.979	0.99	0.99	0.979
2141	Libra R-CNN	1.0	0.958	0.917	0.99	0.948	0.99	0.948	0.99	0.854	0.948
2142	PAFPN	0.99	0.875	0.74	0.938	0.938	0.969	0.927	0.979	0.844	0.844
2143	RepPoints	0.99	0.979	0.823	0.99	0.885	0.99	0.948	0.979	0.927	0.896
0144	Res2Net	0.979	0.979	0.979	0.99	0.99	0.99	0.927	0.99	0.979	0.979
2144	SABL	0.938	0.803	0.958	0.979	0.99	0.99	0.99	0.979	0.917	0.969
2145	Sparse R-CNN	0.99	0.969	0.917	0.99	0.99	0.99	0.958	0.979	0.875	0.948
2146	DETR	0.99	0.677	0.448	0.302	0.885	0.875	0.854	0.74	0.594	0.844
2147	Conditional DETR	0.99	0.958	0.938	0.979	0.979	0.948	0.969	0.99	0.906	0.896
0140	DDQ	1.0	0.99	1.0	1.0	0.99	1.0	1.0	0.99	1.0	1.0
2148	DAB-DETR	1.0	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
2149	DETOTINADIE DETR	1.0	0.948	0.875	0.917	0.917	0.909	0.917	0.979	0.979	0.958
2150	PVT	0.938	0.979	0.625	0.979	0.969	0.99	0.927	0.99	0.99	0.812
2151	PVTv2	1.0	0.979	0.99	0.99	0.979	0.99	0.802	0.99	0.99	0.875
2101	-										
2152											

Table 15: Ablation experimental results (distance) of vehicle detection in the metric of mAR50(%).

2170											
2171			Ŧ	\$				atch	ò	ŝ	
2172		lean	ando	Ē	Z.	J.	\mathcal{A}^{∇}	0 ²	5	A.M.	a a
2173	ATSS	0.070	≪	∇	-\chi	-4¢ ⁻	<u>√</u>	Q=	\mathcal{O}^{\dagger}	0.070	æ
2174	AutoAssign	0.979	0.979	0.938	0.99	0.99	0.99	0.948	0.979	0.979	0.938
0175	CenterNet	0.99	0.979	1.0	0.99	0.979	1.0	0.99	1.0	1.0	0.969
2175	CentripetalNet	0.979	0.99	0.969	0.99	0.99	0.99	0.99	0.99	0.99	0.99
2176	CornerNet	1.0	0.99	0.99	0.99	0.99	0.979	0.99	0.99	0.99	0.99
2177	DDOD	0.99	0.979	0.958	0.99	0.979	0.99	0.969	0.99	0.99	0.979
2178	EfficientNet	0.99	0.99	0.99	0.99	0.99	0.979	0.99	0.99	0.979	0.99
2170	FCOS	0.99	0.99	0.99	0.979	0.99	0.99	0.969	0.99	0.99	0.969
2179	FoveaBox	0.99	0.99	0.979	0.99	0.99	0.99	0.99	0.99	0.99	0.979
2180	FreeAnchor	0.979	0.917	0.865	0.979	0.927	0.99	0.802	0.969	0.802	0.917
2181	FSAF	1.0	0.917	0.885	0.99	0.958	0.979	0.896	0.99	0.917	0.906
2100	GFL	0.979	0.969	0.948	0.99	0.969	0.979	0.958	0.99	0.896	0.969
2182	LD NAS EDN	0.979	0.969	0.969	0.99	0.979	0.99	0.958	0.99	0.969	0.979
2183	PAA	0.99	1.0	0.979	0.979	0.979	0.99	0.99	0.99	0.948	0.958
2184	RetinaNet	0.979	0.917	0.917	0.969	0.979	0.979	0.875	0.979	0.875	0.927
0105	RTMDet	0.99	0.99	1.0	0.938	0.99	0.958	1.0	1.0	0.99	0.99
2185	TOOD	0.99	0.99	0.948	0.979	0.979	0.99	0.99	0.99	0.99	0.979
2186	VarifocalNet	0.979	0.938	0.854	0.958	0.969	0.979	0.906	0.979	0.833	0.896
2187	YOLOv5	0.99	1.0	1.0	0.99	1.0	0.979	0.99	1.0	0.99	1.0
0100	YOLOV6	0.99	0.99	0.99	0.969	0.99	0.99	0.99	0.99	0.979	0.99
2100	YOLOv8	0.979	0.99	0.99	0.99	0.99	0.909	0.99	0.99	0.99	0.99
2189	YOLOX	0.979	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
2190	Faster R-CNN	0.979	0.885	0.76	0.99	0.958	0.979	0.802	0.958	0.875	0.896
2101	Cascade R-CNN	0.99	0.906	0.823	0.979	0.948	0.99	0.792	0.958	0.875	0.896
2101	Cascade RPN	0.99	0.979	0.958	0.979	0.979	0.99	0.927	0.99	0.979	0.958
2192	Double Heads	0.99	0.948	0.885	0.99	0.896	0.99	0.875	0.969	0.927	0.885
2193	Grid R-CNN	0.979	0.99	0.979	0.979	0.979	0.979	0.900	0.99	0.938	0.938
2194	Guided Anchoring	0.90	0.99	0.99	0.99	0.99	0.979	0.005	0.99	0.99	0.0979
0105	HRNet	0.979	0.927	0.875	0.979	0.938	0.979	0.885	0.969	0.99	0.969
2195	Libra R-CNN	0.99	0.969	0.969	0.979	0.979	0.979	0.969	0.99	0.958	0.938
2196	PAFPN	0.979	0.875	0.781	0.969	0.938	0.979	0.823	0.958	0.885	0.885
2197	RepPoints	0.99	0.958	0.896	0.99	0.948	0.99	0.979	1.0	1.0	0.938
2109	Res2Net BosNoSt	0.979	0.99	0.979	0.99	0.979	0.979	0.979	0.99	0.99	0.979
2190	SABL	0.979	0.927	0.938	0.909	0.909	0.979	0.979	0.909	0.917	0.909
2199	Sparse R-CNN	0.979	0.979	0.865	0.99	0.99	0.979	0.938	0.99	0.906	0.979
2200	DETR	0.979	0.771	0.615	0.604	0.896	0.708	0.885	0.635	0.625	0.906
2201	Conditional DETR	0.979	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
2201	DDQ	0.979	0.99	0.99	0.99	0.979	0.979	0.99	0.99	0.99	0.99
2202	DAB-DETR	0.99	0.99	0.99	0.99	0.99	0.99	1.0	0.979	0.99	0.99
2203	Deformable DETR	0.99	0.99	0.969	0.979	0.969	0.969	0.948	0.979	0.979	0.979
2204	PVT	0.958	0.979	0.792	0.958	0.969	0.979	0.875	0.979	0.969	0.958
2205	PVTv2	0.979	0.99	0.917	1.0	1.0	0.99	0.875	0.99	0.99	0.948
2200											

		2214
		2215
		2216
		2217
		2218
		2219
		2220
		2221
		2222
latio	Table 16: Abl	2223
		2224
		2225
		2226
		2227
A		2228
C		2229
		2230
		2231
H		2232
		2233
I		2234
		2235
		2236
		2237
		2238
		2239
١		2240
		2241
		2242
		2243
Fa		2244
Ca		2245
D		2246
C		2247
Gui		2248
L		2249
		2250
		2251
		2252
Sp		2253
Con		2254
con		2255
I Defe		2256
Den		2257
		2258
		2259
		2260
		2261
		2262
		2263
		2264
		2265

on experimental results (ϕ) of **vehicle** detection in the metric of **mAR50**(%).

		~	Æ				Ę,	2	\$	
	5	20 D	Â	. ۷	. 	a^{∇}	30	20 ⁰	20	Ş
	Se.	20	V V	4	40	₹,	20	$\mathcal{P}_{\mathbf{r}}$	Ś	Ð,
ATSS	1.0	0.98	0.86	0.98	0.99	1.0	0.92	1.0	0.9	0.91
AutoAssign	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.99
CenterNet	0.99	1.0	0.98	1.0	1.0	1.0	0.98	1.0	0.99	0.98
CentripetalNet	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.99	1.0
CornerNet	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DDOD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DyHead	1.0	1.0	0.99	1.0	1.0	1.0	1.0	1.0	1.0	1.0
EfficientNet	1.0	1.0	0.98	1.0	1.0	1.0	1.0	1.0	1.0	1.0
FCOS	1.0	1.0	1.0	1.0	1.0	0.99	1.0	1.0	1.0	1.0
FoveaBox	1.0	1.0	0.95	1.0	1.0	1.0	1.0	1.0	1.0	1.0
FreeAnchor	1.0	0.87	0.93	0.96	0.89	1.0	0.89	1.0	0.98	0.9
FSAF	1.0	0.98	0.94	0.99	0.96	1.0	0.96	1.0	0.95	0.91
GFL	1.0	0.95	0.93	0.99	1.0	1.0	0.95	1.0	0.86	0.9
LD	0.99	1.0	1.0	1.0	1.0	1.0	0.98	1.0	0.93	1.0
NAS-FPN	1.0	1.0	0.98	0.99	0.98	1.0	0.98	1.0	0.99	0.97
PAA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
RetinaNet	1.0	0.97	0.98	0.99	1.0	1.0	0.96	1.0	0.91	0.89
RTMDet	1.0	1.0	1.0	0.97	1.0	0.97	1.0	1.0	1.0	1.0
TOOD	1.0	1.0	0.96	1.0	1.0	1.0	1.0	1.0	1.0	1.0
VarifocalNet	0.99	0.94	0.97	0.98	0.99	1.0	0.94	1.0	0.88	0.91
YOLOv5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
YOLOv6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
YOLOV/	1.0	1.0	1.0	1.0	1.0	0.97	1.0	1.0	1.0	1.0
YOLOV8	1.0	1.0	1.0	1.0	1.0	0.99	1.0	1.0	1.0	1.0
YOLOX	1.0	1.0	1.0	1.0	1.0	0.98	1.0	1.0	1.0	1.0
Faster R-CNN	1.0	0.86	0.77	0.95	0.91	1.0	0.83	1.0	0.83	0.85
Cascade K-CNN	1.0	0.89	0.91	0.99	0.97	1.0	0.93	0.99	0.88	0.9
Cascade RPN	1.0	1.0	0.97	1.0	1.0	0.99	0.96	1.0	1.0	0.93
Double Heads	1.0	1.0	0.95	1.0	0.97	1.0	0.95	1.0	0.92	0.91
Crid D CNN	1.0	1.0	0.90	0.99	1.0	0.99	0.97	1.0	1.0	0.99
Cuidad Anahanina	1.0	0.97	0.89	1.0	1.0	0.99	0.95	1.0	0.94	0.9
UDNot	1.0	1.0	1.0	1.0	1.0	0.99	0.84	1.0	1.0	1.0
Libro P. CNN	1.0	1.0	0.01	1.0	0.94	1.0	1.0	1.0	0.96	0.95
DA FDN	1.0	0.03	0.91	0.07	0.97	1.0	0.05	1.0	0.90	0.90
PenDointe	1.0	1.0	0.85	1.0	0.99	1.0	1.0	1.0	0.9	0.9
Reproduts Rec2Net	0.08	1.0	1.0	0.00	1.0	1.0	1.0	1.0	0.90	1.0
ResNeSt	0.96	0.85	0.94	0.99	1.0	0.96	0.00	0.00	0.95	0.99
SABL	1.0	1.0	0.94	0.99	0.96	1.0	0.92	1.0	0.89	0.89
Sparse R-CNN	1.0	1.0	0.88	0.99	1.0	0.98	1.0	1.0	0.02	0.05
DETR	1.0	0.84	0.00	0.49	0.93	0.93	0.96	0.87	0.92	0.93
Conditional DETR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DDO	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DAB-DETR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Deformable DETR	0.99	1.0	0.99	1.0	0.99	1.0	0.99	1.0	0.98	1.0
DINO	1.0	1.0	0.99	1.0	1.0	1.0	1.0	1.0	0.98	1.0
PVT	1.0	0.98	0.7	0.98	0.96	1.0	0.92	1.0	0.96	0.85
PVTv2	1.0	1.0	1.0	1.0	1.0	1.0	0.82	1.0	1.0	0.97

2269												
2270												
2271												
2272												
2273												
2274												
2275												
2275												
2270	Table 17. Ab	lation annonin	antal	#0.011	ta (0)	of w	a h tal	o dat	antion		a mat	mia af
2211	Table 17: AD	ation experime	entai	resui	ts (0)	01 V	emci	e dei	lection	1 m ui	e met	
2210					6				*		~	
2279			5	QUI I	- A	_	_	X	and the second	200	Ď	5
2280			Coord and a second seco	2200	\mathcal{L}	5	Ę.S.	÷.	20	\$°	ন্ট	$\mathcal{A}^{\mathbb{Z}}$
2281		ATSS	0.98	0.96	0.47	0.73	0.94	0.85	0.77	1.0	0.76	0.7
2282		AutoAssign	1.0	0.86	0.74	0.92	0.91	0.97	0.71	0.93	0.87	0.98
2283		CentripetalNet	1.0	1.0	0.02	1.0	0.98	1.0	0.74	1.0	0.92	0.98
2284		CornerNet	0.99	0.79	0.49	0.75	0.93	0.78	0.51	0.95	0.66	0.6
2285		DDOD DyHead	0.99	0.97	0.61	0.99	0.85	0.98	0.61	0.55	0.96	0.97
2286		EfficientNet	1.0	0.79	0.81	1.0	0.84	1.0	0.78	1.0	0.97	1.0
2287		FCOS	1.0	0.94	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2288		FreeAnchor	1.0	0.82	1.0	0.90	0.87	1.0	0.07	0.87	0.90	1.0
2289		FSAF	1.0	1.0	0.64	1.0	0.82	1.0	0.99	1.0	1.0	1.0
2290		LD	1.0	0.97	0.45	0.95	1.0	0.96	0.94	0.98	0.73	1.0
2201		NAS-FPN	1.0	0.92	0.52	0.86	1.0	0.79	0.72	0.94	0.65	0.92
2201		PAA RetinaNet	1.0	1.0	0.97	0.99	0.94	1.0	0.97	1.0	1.0	1.0 1.0
2232		RTMDet	1.0	1.0	0.99	0.98	1.0	1.0	1.0	1.0	1.0	0.88
2293		TOOD VarifaaalNat	0.83	0.85	0.52	0.87	0.76	0.84	0.8	0.97	0.96	0.8
2294		YOLOv5	1.0	1.0	0.48	1.0	1.0	1.0	0.64	1.0	1.0	1.0
2295		YOLOv6	1.0	1.0	0.73	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2296		YOLOv7 YOLOv8	0.98	0.76	0.78	0.72	0.91	1.0	0.78	1.0	0.75	0.79
2297		YOLOX	1.0	0.92	0.62	0.92	0.95	0.02	0.88	1.0	0.05	0.98
2298		Faster R-CNN	0.85	0.49	0.46	0.52	0.66	0.73	0.53	0.63	0.55	0.49
2299		Cascade R-CNN Cascade RPN	1.0	0.64	0.47	0.54	0.67	1.0	0.62	1.0	0.55	0.82
2300		Double Heads	0.76	0.72	0.46	0.57	0.68	0.71	0.63	0.87	0.6	0.62
2301		FPG Grid R-CNN	1.0	0.89	0.5	0.93	0.97	0.9	0.72	0.91	0.96	0.53
2302		Guided Anchoring	1.0	1.0	0.87	0.99	1.0	1.0	0.8	1.0	1.0	0.9
2303		HRNet	0.96	0.78	0.55	0.59	0.73	0.83	0.62	0.81	0.62	0.62
2304		PAFPN	0.74	0.63	0.07	0.51	0.63	0.71	0.62	0.66	0.57	0.44
2305		RepPoints	1.0	1.0	0.63	1.0	0.94	0.77	1.0	1.0	1.0	0.9
2306		Res2Net ResNeSt	0.9	0.64	0.57	0.55	0.73	0.65	0.66	0.77	0.66	0.72
2307		SABL	0.77	0.53	0.45	0.54	0.66	0.66	0.61	0.66	0.56	0.47
22007		Sparse R-CNN	1.0	0.96	0.63	0.91	1.0	0.72	0.8	0.78	0.87	0.85
2300		Conditional DETR	1.0	0.30	0.59	0.43	1.0	0.64	0.31	1.0	0.33	0.97
2309		DDQ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2310		DAB-DETR Deformable DETR	1.0 1.0	1.0 1.0	1.0 0.94	1.0	1.0	$1.0 \\ 1.0$	1.0	0.99	1.0	0.98
2311		DINO	1.0	1.0	0.93	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2312		PVT PVTv2	1.0	1.0	0.95	1.0	1.0	1.0	1.0	1.0	1.0	0.96
2313		1 1 1 1 2	1.0	0.95	0.04	0.94	0.87	1.0	0.70	1.0	0.70	0.0
2314												
2315												
2316												

of mAR50(%).

2322

Table 18: Ablation experimental results (sphere) of vehicle detection in the metric of mAR50(%). A POOP ACTURE -CAMOU | , 30,000 () A Collo Real ADA S Cean \tilde{Q} 200 ATSS 0.71 0.45 0.79 0.84 0.85 0.68 0.71 0.73 AutoAssign 0.74 0.83 0.89 CenterNet 0.58 0.9 0.7 0.71 0.78 0.79 0.86 0.85 0.86 CentripetalNet 0.66 0.76 0.7 0.82 CornerNet 0.75 0.61 0.87 0.86 DDOD 0.74 0.86 0.82 0.79 0.8 0.79 0.73 0.77 DvHead 0.53 0.79 EfficientNet FCOS 0.76 0.5 0.76 0.87 0.81 0.72 FoveaBox 0.74 0.73 0.790.81 0.84FreeAnchor 0.85 0.89 0.74 0.75 0.8 0.72 0.81 FSAF 0.49 0.67 0.84 GFL. 0.8 0.48 0.92 0.81 0.87 0.75 LD 0.86 0.52 0.9 0.85 0.93 NAS-FPN 0.9 0.66 .96 0.73 0.82 0.75 0.88 PAA 0.86 0.81 0.67 0.85 0.89 0.86 0.81 0.84 0.83 0.8 RetinaNet RTMDet 0.72 0.48 0.74 0.67 TOOD 0.72 0.73 0.79 0.840.86 0.66 0.87 0.79 0.83 0.8 VarifocalNet 0.75 YOLOv5 YOLOv6 YOLOv7 0.96 YOLOv8 0.87 0.89 0.84 YOLOX 0.77 Faster R-CNN 0.8^{-6} 0.45 0.35 0.47 0.54 0.59 0.49 0.61 0.44 0.49 Cascade R-CNN 0.82 0.51 0.4 0.52 0.58 0.64 0.53 0.62 0.48 0.51 Cascade RPN 0.62 Double Heads 0.83 0.61 0.44 0.58 0.58 0.72 0.54 0.8 0.57 0.57 FPG 0.78 0.5 0.82 0.7 0.71 Grid R-CNN 0.51 0.37 0.6 0.58 0.73 0.55 0.76 0.47 0.55 Guided Anchoring HRNet 0.6 0.52 0.59 0.54 0.73 0.51 0.56 0.6 Libra R-CNN 0.49 0.76 0.8 0.74 0.81 0.72 PAFPN 0.84 0.55 0.37 0.52 0.59 0.65 0.58 0.71 0.5 0.54 RepPoints 0.52 0.83 0.8 0.8 0.80.55 0.59 0.66 0.77 0.83 0.54 0.79 0.73 Res2Net 0.52 0.63 0.8 0.78 ResNeSt 0.43 0.9 0.68 0.64 0.62 SABL 0.82 0.49 0.4 0.52 0.56 0.57 0.53 0.71 0.46 0.49 0.79 (0.32 (Sparse R-CNN 0.55 0.8 0.83 0.8 0.86 0.71 0.3 0.57 0.52 0.63 0.43 0.38 0.5 DETR 0.44 0.8 Conditional DETR 0.71 0.9 DDQ DAB-DETR 0.9 0.74 0.86 0.87 0.93 0.86 Deformable DETR 0.96 DINO PVT 0.94 0.78 0.87 0.96 0.87 0.8 PVTv2 0.77 0.78 0.8

2358

2359

2360

2361

2362

2363

2364

2365

2366

2374

 Table 19: Ablation experimental results (distance) of Traffic sign detection in the metric of mAR50(%).

 Clean AdvCam RP2 ShapeShifter

 Clean AdvCam RP2 ShapeShifter

 2380

 Clean AdvCam RP2 ShapeShifter

 2381

 Clean AdvCam RP2 ShapeShifter

 2382

 AutoAssign CenterNet

 0.903 0.919 0.892 0.919

 2382

 CenterNet

 CentripetalNet
 0.903 0.91 0.875 0.914

 0.903 0.91 0.875 0.914

2382	AutoAssign	0.921	0.943	0.896	0.915
0202	CenterNet	0.903	0.91	0.875	0.914
2303	CentripetalNet	0.951	0.946	0.924	0.951
2384	CornerNet	0.942	0.951	0.929	0.947
2385	DDOD	0.916	0.926	0.9	0.915
2226	EfficientNet	0.927	0.955	0.800	0.921
2380	FCOS	0.921	0.915	0.007	0.919
2387	FoveaBox	0.915	0.917	0.871	0.913
2388	FreeAnchor	0.921	0.919	0.877	0.912
2000	FSAF	0.901	0.907	0.864	0.899
2389	GFL	0.927	0.942	0.887	0.908
2390	LD	0.933	0.931	0.88	0.92
2391	NAS-FPN	0.93	0.942	0.883	0.925
2001	PAA	0.928	0.921	0.886	0.91
2392	Retinanet	0.921	0.912	0.805	0.899
2393	TOOD	0.929	0.942	0.802	0.927
2394	VarifocalNet	0.929	0.932	0.902	0.921
	YOLOv5	0.941	0.943	0.882	0.945
2395	YOLOv6	0.94	0.954	0.901	0.936
2396	YOLOv7	0.945	0.942	0.89	0.942
2307	YOLOv8	0.942	0.943	0.868	0.944
2337	YOLOX	0.923	0.922	0.866	0.906
2398	Faster R-CNN	0.891	0.897	0.863	0.861
2399	Cascade RPN	0.929	0.924	0.891	0.895
2400	Double Heads	0.927	0.95	0.847	0.88
2400	FPG	0.921	0.935	0.859	0.897
2401	Grid R-CNN	0.913	0.911	0.865	0.91
2402	Guided Anchoring	0.928	0.921	0.899	0.925
2402	HRNet	0.923	0.915	0.91	0.904
2403	Libra R-CNN	0.921	0.922	0.885	0.905
2404	PAFPN	0.901	0.89	0.85	0.882
2405	RepPoints	0.915	0.908	0.865	0.887
2406	Reszinet ResNeSt	0.91	0.897	0.801	0.899
2400	SABL	0.929	0.901	0.872	0.898
2407	Sparse R-CNN	0.931	0.925	0.9	0.927
2408	DETR	0.908	0.904	0.878	0.933
2.000	Conditional DETR	0.93	0.931	0.907	0.924
2409	DDQ	0.949	0.95	0.901	0.932
2410	DAB-DETR	0.931	0.94	0.902	0.919
2411	Deformable DETR	0.943	0.955	0.893	0.933
	DINO	0.94	0.944	0.885	0.936
2412	PVT DVTv2	0.906	0.886	0.868	0.861
2413	PV IV2	0.915	0.899	0.877	0.905
2414					

Table 20: Ablation study on training dataset.

Physical attacks	Training datasets	Median ASR
AdvCam	ImageNet	0
AdvCaT	376 self-collected images	0
MTD	-	2
LAP	INRIA	2
AdvPattern	Market1501	2
AdvTshirt	40 self-collected videos	3
DAP	INRIA	5
NaTPatch	INRIA	5
InvisCloak	COCO	5
AdvTexture	INRIA	7

×

46

85(3)

78

83(5)

79(4)

74

77(3)

 \times

 \checkmark

AdvPatch

NatPatch

NatPatch

2482

Table 22: Comparison of reported and reproduced results.

		Clean	Random	CAMOU	DTA	ACTIVE
VOL Ou2	Reported	86	67	60	32	23
TOLOVS	Reproduced	86	66	62	33	23
YOLOv7	Reported	93	86	83	59	42
	Reproduced	93	85	83	60	41
DVT	Reported	89	78	69	56	52
F V I	Reproduced	89	78	69	56	51

of mAR50(%).

Table 24: User feedback survey.

2640						
2641	Questions	User1	User2	User3	User4	User5
640	Q1	4	5	5	4	5
.042	Q2	5	5	5	5	5
643	Q3	Yes	Yes	Yes	Yes	Yes
644	Q4	Yes	Yes	Yes	Yes	Yes
645	Q5	4	5	5	4.5	5

Figure 25: The **ablation** experimental results of **vehicle** detection on **Altitude angle** (θ) in the metric of mAR50(%).

Figure 26: The **ablation** experimental results of **vehicle** detection on **Ball-space** in the metric of mAR50(%).