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ABSTRACT

Optimally sequencing experimental assays in drug discovery is a high-stakes plan-
ning problem under severe uncertainty and resource constraints. A primary obsta-
cle for standard reinforcement learning (RL) is the absence of an explicit environ-
ment simulator or transition data (s, a, s′); planning must rely solely on a static
database of historical outcomes. We introduce the Implicit Bayesian Markov
Decision Process (IBMDP), a model-based RL framework designed for such
simulator-free settings. IBMDP constructs a case-guided implicit model of tran-
sition dynamics by forming a nonparametric belief distribution using similar his-
torical outcomes. This mechanism enables Bayesian belief updating as evidence
accumulates and employs ensemble MCTS planning to generate stable policies
that balance information gain toward desired outcomes with resource efficiency.
We validate IBMDP through comprehensive experiments. On a real-world central
nervous system (CNS) drug discovery task, IBMDP reduced resource consump-
tion by up to 92% compared to established heuristics while maintaining decision
confidence. To rigorously assess decision quality, we also benchmarked IBMDP
in a synthetic environment with a computable optimal policy. Our framework
achieves significantly higher alignment with this optimal policy than a determin-
istic value iteration alternative that uses the same similarity-based model, demon-
strating the superiority of our ensemble planner. IBMDP offers a practical solution
for sequential experimental design in data-rich but simulator-poor domains.

1 INTRODUCTION

To discover new drugs, scientists make sequential decisions to conduct multiple assays, often con-
strained by limited time, budget, and materials. The process typically begins with sparse evidence
from historical assay outcomes on past compounds. Executing an assay for a new drug candidate
compound yields an observation of the assay consuming monetary and time resources, each prob-
ing a distinct facet of developability of the compound (e.g., potency, ADME, safety). For example,
an in vitro assay may be cheap and fast but only weakly informative downstream, whereas an in
vivo assay is slower and more expensive yet more decisive for Go/No-Go decisions. Under tight
budget and schedule constraints, the central question is whether to run another assay or stop now.
Ideally, each chosen assay reduces posterior uncertainty while increasing the likelihood that the
compound satisfies predefined developability criteria. This is a planning problem under uncertainty,
further complicated by the absence of transition tuples (s, a, s′)—only historical assay outcomes
from past compounds are available. In practice, rule-based playbooks and expert heuristics are often
risk-averse or myopic, leading to inefficient use of constrained resources and suboptimal portfolio
outcomes.

To address these challenges, we propose the Implicit Bayesian Markov Decision Process (IBMDP),
a reinforcement learning (RL) framework for case-guided sequential assay planning that uses assay
outcomes of historical compounds to construct an implicit probabilistic model of information gain
acquired from assays. At each step, IBMDP forms a categorical distribution over historical com-
pound records using a variance-normalized distance kernel and samples plausible assay outcomes
consistent with the current partial evidence, thereby updating the candidate’s observed state. This
implicit, nonparametric transition model emphasizes contexts most relevant to the candidate without
requiring an explicit mechanistic simulator. Planning is performed with Monte Carlo Tree Search
with Double Progressive Widening (MCTS-DPW), and we run an ensemble of MCTS planners to
reduce variance from both stochastic sampling and tree search; majority voting across runs yields
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Figure 1: Sequential decisions in drug discovery through a data-driven, analog-guided simulator for
planning, which maintains a Bayesian belief over the most relevant historical compound analogs.

a Maximum-Likelihood Action-Sets Path (MLASP) that is stable across uncertainty levels. When
simulating possible courses of actions during search, IBMDP takes into account the resulting reduc-
tion in uncertainty towards desirable states (e.g., high drug likeliness in vivo) and recommends the
next assay only when the uncertainty reduction reaches a sufficient magnitude towards the desirable
states. From the Partially Observable MDP (POMDP) perspective, while standard methods main-
tain explicit probability distributions over hidden states and update them via Bayes’ rule, IBMDP
makes decisions by sampling from past experiences weighted by similarity to the current observed
state (Appendix A). While IBMDP trades formal convergence guarantees for practical applicability
in simulator-free settings, it provides empirically robust policies through ensemble MCTS planning
(Appendix A.6).

Contributions. (i) RL planning with evidence-adaptive dynamics: Unlike traditional RL with
fixed transition functions, IBMDP’s implicit dynamics evolve as observations accumulate—the
similarity-based belief continuously adapts, creating non-stationary but principled state transitions
from static historical data. (ii) Similarity-weighted Bayesian belief mechanism: We transform his-
torical outcomes into an adaptive generative model where transition probabilities dynamically shift
based on accumulated evidence, enabling planning without explicit dynamics or (s, a, s′) trajecto-
ries. (iii) Robust ensemble MCTS despite non-stationary dynamics: Our ensemble approach
with majority voting (MLASP) produces stable policies even with evolving transition models, opti-
mally balancing information gain with resource efficiency.

2 PRELIMINARIES

Compounds, Assays, and Historical Data Let A = {a1, . . . , aM} be the set of available assays
and X = {x1, . . . , xN} be the set of historical compounds, each with a fixed molecular representa-
tion. For a historical compound xi and an assay aj , the observed outcome is denoted by yi,j . The
complete historical dataset is represented as a set of tuples:

D = {(xi,yi)}Ni=1,

where yi = (yi,1, . . . , yi,M ) is the vector of all assay outcomes for compound xi. The new drug
candidate compound for which we are planning is denoted x⋆ ≡ xN+1. We also have access to per-
assay predictor models, such as Quantitative Structure-Activity Relationship (QSAR) models, which
are functions fj : x 7→ ŷj = fj(x) that can be queried for the candidate x⋆ during the planning
phase (Chen et al., 2024). For convenience, Appendix G collects all symbols used throughout the
paper in the Global Notation Reference.

Target Property Let g be the primary scalar target of interest, such as a definitive in vivo endpoint
that determines a compound’s success. The historical values for this target form the set G = {gi}Ni=1.
In many applications, the target property may correspond to one of the available assays. That is, for
some specific assay index j ∈ {1, . . . ,M}, we have gi ≡ yi,j for all compounds. Crucially, to
prevent data leakage, the set of target values G is never used in the computation of similarity or
distance metrics during planning. We define Ig = {i : gi is available} as the set of indices for
historical compounds where the target value has been measured.

State and Actions We formulate the assay planning problem for the candidate x⋆ as a finite-
horizon MDP with a discount factor γ ∈ [0, 1) and a maximum horizon T . At any decision step t,
we maintain an index set of assays that have already been performed, Mt ⊆ {1, . . . ,M}, and the set
of unmeasured assays, Ut := {1, . . . ,M} \Mt. The process starts with an empty set of measured
assays, M0 = ∅.
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The state at step t summarizes all accumulated knowledge about the candidate compound: st =(
x⋆, {y⋆,j}j∈Mt

)
. The action set at step t,At, consists of choosing a batch of up to m currently un-

measured assays to perform, or deciding to stop the experiment. Formally: At = P≤m(Ut) ∪ {eox}.
Here, P≤m(Ut) is the set of all subsets of Ut with size at most m, and ‘eox‘ (end-of-experiment) is
the terminal action. The parameter m ≤M is a user-specified throughput limit that caps how many
assays can be run in parallel at a single step. Executing an action At ⊆ Ut reveals the outcomes
{y⋆,j}j∈At

and updates the measured and unmeasured sets for the next step, t+ 1.

Reward Function Each action incurs a cost based on the resources it consumes (e.g., time, mate-
rials, monetary expense). Let cj ∈ Rq

≥0 be the cost vector for an individual assay aj . The cost for a
batch action At is the sum of the costs of the individual assays within it, i.e., c(st, At) =

∑
aj∈At

cj .
Let ρ ∈ Rq

≥0 be a user-defined vector of weights that specifies the trade-offs between different re-
sources. The scalar step reward, R(st, At), is defined as:

R(st, At) =

{
−ρTc(st, At), if At ∈ At \ {eox},
0, if At = eox.

Uncertainty and Goal-Likelihood Functionals To ensure resources are directed toward viable
drug candidates, we define two key state-dependent scalar functions based on similarity weights
wi(st) over historical records (to be formally defined in a later section). First, we renormalize the
weights to consider only the historical compounds for which the target value g is available:

w̃i(st) =
wi(st)∑

ℓ∈Ig
wℓ(st)

for i ∈ Ig.

Note that when |Ig| ≪ N , this renormalization may lead to variance underestimation as it restricts
the effective sample size. This limitation is discussed in the experimental analysis. Using these
normalized weights, we define:

1. State-Uncertainty (H(st)): The weighted variance of the target property g over the rele-
vant historical data, which serves as a measure of uncertainty about the candidate’s potential
outcome.

H(st) =
∑
i∈Ig

w̃i(st)
(
gi − ḡ(st)

)2
, where ḡ(st) =

∑
i∈Ig

w̃i(st) gi. (1)

2. Goal-Likelihood (L(st)): The weighted probability that the candidate’s target property
falls within a predefined desirable range [gmin, gmax].

L(st) =
∑
i∈Ig

w̃i(st)1[ gi ∈ [gmin, gmax] ]. (2)

Here, 1[·] denotes the indicator function, which returns 1 when its argument is true and 0
otherwise.

Constrained Objective The optimal policy π∗ is one that maximizes the total expected reward,
subject to constraints on terminal uncertainty and stepwise feasibility. Specifically, we aim to solve:

π∗ ∈ argmax
π

Eπ

[
T∑

t=0

γt R
(
st, π(st)

)]

subject to
{
H(sT ) ≤ ϵ, ϵ ∈ [0, 1],

L(st) ≥ τ, ∀t = 0, . . . , T − 1,

(3)

where ϵ > 0 is the maximum tolerable uncertainty at the terminal state sT , and τ ∈ (0, 1) is the
minimum acceptable goal-likelihood at every intermediate step. The feasibility constraint L(st) ≥ τ
ensures that the planning process remains on a trajectory toward a successful outcome, while the
terminal constraint H(sT ) ≤ ϵ guarantees that a decision is made with sufficient confidence.

3 IMPLICIT MODEL OF ENVIRONMENT DYNAMICS

The key challenge is updating the state transition st
At−−→ st+1—i.e., how the state evolves after

executing a batch of assays—when no explicit simulator is available and only historical data D can

3
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be leveraged to infer dynamics. We address this by constructing an implicit, generative model of the
environment’s dynamics. This model uses a similarity metric to dynamically re-weight historical
compound profiles, forming a belief over plausible outcomes for the candidate compound x⋆. This
avoids explicit parameterization of transition probabilities and implicitly propagates uncertainty by
sampling from historical compound analogs most relevant to the current state of x⋆.

Similarity Weight Computation The transition model is centered on a similarity weight, wi(st),
assigned to each historical compound record Di = (xi,yi) ∈ D. These weights quantify the
relevance of each historical case to the current state, st. The weights are computed using a variance-
normalized exponential kernel:

wi(st) = exp (−λw · d(st, Di)) , (4)
where d(st, Di) is a distance metric. The distance is computed over the set of all features known for
the candidate x⋆ at step t, which we denote as the feature set Kt. This set includes all initial QSAR
predictions and the outcomes of all measured assays in Mt. The distance compares these known
values for the candidate to the corresponding values for the historical compound xi:

d(st, Di) =
∑
k∈Kt

λk ·
(ϕk(st)− ϕk(Di))

2

σ2
k

, (5)

Here, ϕk(·) is an extractor function that returns the value of the k-th feature from a given state
or historical record. For the candidate, ϕk(st) is either a QSAR prediction or a measured assay
outcome {y⋆,j}j∈Mt

. For the historical compound, ϕk(Di) is the corresponding recorded value.
The term σ2

k is the empirical variance of feature k across the historical dataset D, computed as
σ2
k = 1

N

∑N
i=1(ϕk(Di) − ϕ̄k)

2 where ϕ̄k = 1
N

∑N
i=1 ϕk(Di). The parameter λk is a feature-

specific weight, and λw is a global temperature parameter. The variance normalization ensures a
dimensionless comparison across features with different scales.

Similarity-Based State Transition The transition from state st to st+1 after executing an action
(a batch of assays) At ⊆ Ut is simulated through a weighted sampling process. First, a historical
case is sampled from D with probability proportional to its similarity weight:

I ∼ Categorical
(
w1(st)

Z
, . . . ,

wN (st)

Z

)
, where Z =

N∑
i=1

wi(st).

Let the selected historical case be DI = (xI ,yI). The outcomes for the assays in the action batch
At are then ”revealed” by taking the corresponding values from this sampled case:

{y⋆,j := yI,j}j∈At .

The new state st+1 is formed by augmenting the previous state with these newly generated outcomes.
Formally, Mt+1 = Mt ∪At, and the new state is:

st+1 =
(
x⋆, {y⋆,j}j∈Mt+1

)
.

This generative process ensures that the simulated outcomes for the new assays are consistent with a
plausible, historically observed compound profile, thereby preserving correlations between assays.

Implicit Transition Modeling via Sampling The sampling mechanism described above defines
an implicit transition probability distribution P (st+1|st, At). This distribution is a mixture model
where each component corresponds to one of the historical cases in D. The probability of transi-
tioning to a specific next state st+1 is the total weight of all historical cases that would produce that
state:

P (st+1|st, At) =

N∑
i=1

wi(st)

Z
· 1[st+1 = st ⊕ {(aj , yi,j)}j∈At

], (6)

where ⊕ denotes the state update operation that augments the current state by adding new assay
outcomes to Mt and updating the observed values {y⋆,j}, and 1[·] is the indicator function. This
sampling-based approach approximates the true transition dynamics when the historical dataset D
is sufficiently representative of the underlying system. The quality of the approximation depends on
the coverage of D, the appropriateness of the similarity metric, and the dataset size N = |D|.

Bayesian Weight Update After transitioning to the new state st+1, the similarity weights are
re-evaluated to incorporate the new evidence. This recalculation is a direct and principled imple-
mentation of a Bayesian belief update. As we formally derive in Appendix A, our framework is
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equivalent to a POMDP where the hidden state is a latent index over the historical cases in D. The
similarity weights wi(st) represent the posterior belief over these latent ”prototypes,” and the recal-
culation after observing new assay outcomes is equivalent to applying Bayes’ rule. The new weights
{wi(st+1)}Ni=1 are computed using the same distance function as before, but now applied to the
augmented state st+1:

wi(st+1) = exp (−λw · d(st+1, Di)) . (7)
This update mechanism shifts the model’s belief toward historical cases that are most consistent with
the expanded set of evidence for the candidate x⋆, allowing the planner to refine its predictions and
subsequent decisions as more data is gathered.

4 IMPLICIT BAYESIAN MARKOV DECISION PROCESS (IBMDP)

The Implicit Bayesian Markov Decision Process (IBMDP) is a planning framework designed to
solve the constrained optimization problem defined in Equation equation 3. It integrates the im-
plicit, case-based transition model with a powerful planning algorithm to find reward-maximizing
sequences of assays. The core of the framework is a Monte Carlo Tree Search (MCTS) planner that
navigates the decision space by simulating potential experimental paths using the generative model
derived from historical data. To ensure the robustness of its recommendations, IBMDP employs an
ensemble method, aggregating the results of multiple independent planning runs.

The overall workflow proceeds as follows: Historical Data D informs a Similarity Module, which
computes weights wi(st) for the current state st. These weights drive the implicit transition model
used by an MCTS-DPW planner. The planner generates a policy, and this process is repeated
across an ensemble of runs. Finally, the policies are aggregated to construct a Maximum-Likelihood
Action-Sets Path (MLASP), which constitutes the final recommended experimental plan. The de-
tailed procedure is outlined in Algorithm 1.

Algorithm 1 Ensemble IBMDP Algorithm
Require: Initial state s0 = (x⋆,M0 = ∅), historical dataD, reward function R(s,A), functionals H(s), L(s),

thresholds ϵ, τ , horizon T , iterations nitr, ensemble size Ne.
Ensure: A Maximum-Likelihood Action-Sets Path (MLASP).
1: Initialize policy set Π← ∅.
2: for j = 1 to Ne do ▷ Ensemble loop
3: Initialize MCTS tree T with root node s0.
4: for i = 1 to nitr do ▷ MCTS iterations
5: Selection: Traverse T from s0 using a tree policy (e.g., UCB1) to select a leaf node sleaf .
6: Expansion: If sleaf is not a terminal state (H(sleaf ) > ϵ), choose an untried action A ∈ At(sleaf )

and create a new child node snew.
7: Simulation (Rollout): From snew, simulate a trajectory of states and actions using a reward-aware

heuristic policy until a terminal state or horizon T is reached.
8: During rollout, for a transition (s,A) → s′, the next state s′ is generated by the implicit model:

sample I ∼ Cat({wk(s)/Z}Nk=1) where Z =
∑N

k=1 wk(s) and set s′ = s⊕ {(ak, yI,k)}k∈A.
9: The total return Q is the cumulative reward, with a large negative reward (e.g.,−106) if L(s) < τ

for any state in the trajectory.
10: Backpropagation: Update the visit counts and value estimates for all nodes on the path from snew

back to the root using the return Q.
11: end for
12: Extract the optimal policy π∗

j from the final tree T by selecting the action with the highest value at
each node.

13: Π← Π ∪ {π∗
j }.

14: end for
15: Construct MLASP by aggregating policies in Π via majority voting at each decision step.
16: return MLASP

IBMDP begins with the initial state s0, which contains the candidate compound x⋆ and any pre-
existing QSAR predictions, with an empty set of measured assays (M0 = ∅). The planner, MCTS
with Double Progressive Widening (MCTS-DPW), is particularly well-suited for this problem due
to its ability to handle large, combinatorial action spaces—in this case, the power set of unmeasured
assays, P≤m(Ut).

During each simulation step within the MCTS algorithm, the planner must evaluate the consequence
of taking an action At. It does this by invoking the implicit transition model from the previous
section. A historical case DI is sampled based on the current similarity weights wi(st), and the
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outcomes for the assays in At are drawn from this case. This yields a simulated next state, st+1.
The planner then recalculates the similarity weights for this new state, wi(st+1), and evaluates the
state-uncertainty H(st+1) and goal-likelihood L(st+1). A state is considered terminal if the uncer-
tainty H(s) falls below the threshold ϵ, and the planner receives a negative reward if the feasibility
constraint L(s) < τ is violated at any step. The immediate step reward, R(st, At), is also recorded.
This process allows the MCTS to build a search tree that accurately reflects the trade-off between
reward (resource efficiency) and the expected information gain towards desired states, all guided by
the historical data.

To mitigate stochasticity, we run the planning process multiple times to form an ensemble. The
final recommendation (MLASP) is constructed by majority vote over the actions recommended by
the ensemble policies at each stage. This ensures the plan is robust and not an artifact of a single
simulation run.

5 EXPERIMENTS

We validate the performance of IBMDP through a two-part evaluation. First, we apply it to a real-
world sequential assay planning task in central nervous system (CNS) drug discovery to demonstrate
its practical utility and potential for resource savings. For reproducibility, we performed the same
experiment on a public dataset on selecting in vivo pharmacokinetics assays between rat and dog
to determine in vivo clearance in human (Appendix E). Second, we set up a synthetic environment
with a known optimal policy to rigorously assess the quality of its decision-making process.

5.1 BRAIN PENETRATION ASSAYS: A REAL-WORLD CASE STUDY

Problem Setting and Data. We evaluate IBMDP on a sequential assay-planning task for central
nervous system (CNS) drug discovery, where the objective is to efficiently determine a compound’s
brain penetration potential. This property is critically dependent on the compound’s ability to cross
the blood-brain barrier (BBB). The decision involves selecting from cheap, fast, but less informative
in vitro transporter assays (P-glycoprotein, PgP; Breast Cancer Resistance Protein, BCRP) and a
definitive but slow and expensive in vivo assay that measures the unbound brain-to-plasma partition
coefficient (kpuu).

Our historical dataset, D, comprises N = 220 compounds with complete measurements for all
relevant assays (100 nM PgP, 1 µM PgP, 100 nM BCRP) and the target property, kpuu. All compounds
also have associated QSAR predictions, which provide initial estimates for the assay outcomes (e.g.,
for PgP and BCRP activity) and other relevant properties such as Mean Residence Time (MRT). The
operational costs are defined as $400 and a 7-day turnaround for each in vitro assay, and $4,000 and
a 21-day turnaround for the in vivo kpuu assay. Actions are constrained to a maximum of 3 parallel
assays per step. A compound is considered to have high potential if its kpuu > 0.5.

Experimental Setup. The planning objective is to balance the reduction of state uncertainty H(s)
on the target kpuu, the increase in goal likelihood L(s) that kpuu is in the desirable range, and the
maximization of reward (efficient use of resources). An experimental sequence terminates when
the planner reaches a state of sufficient confidence, defined by the joint criteria H(sT ) ≤ ϵ and
L(st) ≥ τ for all intermediate steps. Outcomes are compared against a conventional, rule-based
decision strategy.

Rule-Based Baseline. In practice, decisions often follow simple heuristics based on QSAR pre-
dictions. For this task, the baseline heuristic is:

• A compound is deemed promising (likely 0.5 ≤ kpuu ≤ 1) if QSAR1uM PgP < 2 AND
QSAR100nM BCRP < 2.

• A compound is deemed non-promising (likely kpuu ≤ 0.5) if QSAR1uM PgP > 4 OR
QSAR100nM BCRP > 4.

We evaluated IBMDP across four representative scenarios from three categories designed to test
its performance against this heuristic: (i) Baseline confirmation (clear QSAR signals, Scenario
3), (ii) Heuristic challenge (conflicting or borderline QSAR signals, Scenarios 2 and 4), and (iii)
Opportunity discovery (QSARs suggest a non-promising compound that is, in fact, good, Scenario
1).
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Figure 2: Monetary-prioritized results from IBMDP for four representative compounds. Each plot
shows the Pareto front of achievable resource consumption versus terminal state uncertainty, with
the Maximum-Likelihood Action-Sets Path (MLASP) highlighted. This illustrates how IBMDP
provides a trade-off curve, allowing decision-makers to select a plan based on their risk and budget
tolerance.

Results. As shown in Table 1, IBMDP consistently identifies more resource-efficient experimental
plans than the traditional approach, which often defaults to running a full panel of assays consum-
ing $5,200. The table rows are ordered to correspond directly to the scenarios shown in Figure 2.
In the opportunity discovery scenario (row 1/Scenario 1), the heuristic would have incorrectly dis-
carded a valuable compound, whereas IBMDP recommends an efficient $800 plan to reveal its true
potential. For the next compound (row 2/Scenario 2), IBMDP finds a minimal $400 plan to re-
solve uncertainty. In the baseline confirmation scenario (row 3/Scenario 3), IBMDP recommends
just $400-$800 to confirm the promising profile. Finally, for the challenging case with conflicting
QSARs (row 4/Scenario 4), IBMDP efficiently resolves uncertainty for $400-$800. Across these
representative cases, IBMDP achieves the same or higher level of decision confidence with up to
92% reduction in resource consumption.

5.2 SIMULATION WITH SYNTHETIC DATA

Benchmark Setup. To rigorously assess the policy quality of IBMDP in a controlled setting, we
benchmarked it using a synthetic dataset where a theoretically optimal policy is computable (full de-
tails in Appendix D). We established this optimal policy using Value Iteration with the true, analytic
uncertainty dynamics (VI-Theo). We then compared IBMDP against both this VI-Theo baseline
and a deterministic variant using the same similarity-based estimation as IBMDP, but planned with
Value Iteration (VI-Sim).

Results. The results, summarized in Table 2, demonstrate the effectiveness of IBMDP’s stochas-
tic, ensemble-based planning. Over 100 independent trials, IBMDP’s primary recommendation (Top
1) aligned with the optimal VI-Theo policy in 47% of cases. In contrast, the deterministic VI-Sim

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Resource expense comparison between the traditional heuristic approach and IBMDP for
representative compounds. Rows are ordered to match scenarios 1-4 in Figure 2. The traditional
approach expense of $5200 reflects running the full assay panel ($4000 for kpuu plus 3 × $400 for
in vitro assays), which IBMDP consistently avoids.

QSAR Predictor Assays Expense (×$100)

1uM 100nM mrt kpuu 100nM 1uM 100nM Trad. IBMDP
PgP BCRP PgP PgP BCRP

5.0 9.6 1.0 0.53 15.9 12.9 8.2 52 8

0.9 8.5 2.6 0.53 2.2 1.1 14.2 52 4

1.7 1.3 1.8 0.54 1.1 0.8 1.3 52 4 - 8

21.4 0.7 1.2 0.64 17.4 19.7 0.8 52 4 - 8

approach achieved only 36% alignment. The advantage of the ensemble approach is further high-
lighted by the fact that the optimal action was contained within IBMDP’s top two recommendations
66% of the time, providing robust and effective coverage of the high-value policy space.

Table 2: Policy Alignment with Theoretical Baseline
Method Matches Match Rate (%)

IBMDP Top 1 47 47.0
IBMDP Top 2 66 66.0
VI Similarity 36 36.0

This superior performance stems from a fundamental difference in policy generation. While VI-
based methods converge to a single, deterministic policy, IBMDP’s ensemble of MCTS agents ex-
plores the policy space more broadly. This allows it to identify multiple, often near-equivalent,
high-value actions, which is particularly advantageous in assay selection where different feature
combinations can yield similar information gains. The results confirm that our ensemble-based
planner provides more robust and reliable recommendations than a deterministic alternative by ef-
fectively navigating the uncertainty inherent in the policy space itself.

6 CONCLUSIONS

To achieve case-guided planning, we presented IBMDP, a reinforcement learning framework that
turns historical cases into a generative model for sequential assay selection. By weighting historical
cases based on similarity, the algorithm enables robust, multi-step planning with Monte Carlo Tree
Search without requiring an explicit transition function. The application to a real-world drug dis-
covery problem demonstrated it uncovers ground truth of a compound with fewer, cheaper assays.
This work establishes a powerful methodology for leveraging past experience to guide future exper-
iments, with broad applicability in fields beyond drug discovery where historical data is abundant
but mechanistic models are scarce.

7 RELATED WORK

MDPs and Model-Based RL. MDPs formalize sequential decision-making (Puterman, 2014);
model-based RL learns dynamics for planning (Sutton & Barto, 2018; Kaiser et al., 2019; Moerland
et al., 2023). Kernel-based RL leverages similarity primarily for value approximation or smoothing
learned transitions (Ormoneit & Sen, 2002; Kveton & Theocharous, 2012; Xu et al., 2007). IBMDP
uses similarity to build a generative, nonparametric transition without (s, a, s′) tuples—sampling
assay outcomes from historical records rather than learning explicit kernels over next-states.

Bayesian RL and Bayesian Optimization. BRL maintains posteriors over model parameters
or values and samples explicit MDPs (e.g., PSRL) (Ghavamzadeh et al., 2015; Osband et al.,
2013; Agrawal & Jia, 2017). BO targets one-shot improvement of objective functions (Griffiths &
Hernández-Lobato, 2020; Gómez-Bombarelli et al., 2018). IBMDP avoids explicit parameter poste-
riors and performs Bayesian case-based generation via similarity-weighted reweighting of records,
enabling multi-step planning with reward optimization and feasibility constraints.
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Bayesian Experimental Design and Implicit Models. Canonical single-step BO/BED methods
are myopic and assume an explicit likelihood or simulator(Chaloner & Verdinelli, 1995; Rainforth
et al., 2024); implicit-BED handles intractable likelihoods with info-theoretic surrogates or policy
learning (Kleinegesse & Gutmann, 2020; 2021; Ivanova et al., 2021). IBMDP embeds an implicit
model inside an RL planner (MCTS-DPW), balancing reward, time, and feasibility—not solely
information gain.

Constrained MDPs and POMDPs. CMDPs typically constrain cumulative costs (Achiam et al.,
2017); our constraints target state properties (terminal uncertainty, per-step likelihood) enforced
during planning. The setting is akin to POMDPs (Kaelbling et al., 1998); our similarity-weighted
posterior over records acts as an implicit belief. While multi-step RL/POMDP solvers require simu-
lators or (s, a, s′) tuples, IBMDP uses a similarity-weighted, implicit generative model built directly
from historical assay profiles, preserving cross-assay dependence without learning explicit dynam-
ics. A direct benchmark is therefore not strictly comparable without substantial adaptation: (i)
redefining utilities over assays rather than inputs, (ii) adding resource-aware batching and a prin-
cipled stopping rule aligned with our constraints on H(s) and L(s), and (iii) supplying a posterior
predictive consistent with the no-simulator setting (Appendix A).

Ensembles in RL. Ensembles improve robustness and uncertainty estimates (Dietterich, 2000;
Zhou, 2012; Wiering & Van Hasselt, 2008; Osband et al., 2016; Lakshminarayanan et al., 2017).
IBMDP use ensembling pragmatically to stabilize stochastic planning.

Application Context. Prior RL in biomedicine focuses on trials or molecule generation/synthesis
(Bennett & Hauser, 2013; Eghbali-Zarch et al., 2019; Abbas et al., 2007; Fard et al., 2018; Wang
et al., 2021; Bengio et al., 2021; You et al., 2018; Zhou et al., 2019; Segler et al., 2018). Assay se-
lection in early discovery remains underexplored. IBMDP supplies a practical planner that converts
historical assay records into a coherent, generative transition model with operational constraints,
addressing the ”no (s, a, s′)” regime typical of discovery.

On Fair Comparison with Related Methods. While the above methods appear relevant, direct
benchmarking would be fundamentally unfair—each operates under different mathematical assump-
tions and problem formulations. Model-based RL requires (s, a, s′) data or simulators; Bayesian RL
samples from parameter posteriors; BO performs single-step optimization; POMDPs need explicit
transition models. IBMDP uniquely addresses the setting where only static historical outcomes
exist, making these comparisons ”apples to oranges.” See Appendix C for detailed analysis.

8 LIMITATIONS

Historical data coverage. Effectiveness hinges on the quality/representativeness of D; gaps or bias
can yield suboptimal choices. Unlike model-free RL with exploration, similarity-based sampling
cannot discover strategies absent fromD—though in discovery, stable physico-chemical regularities
partly mitigate this risk.

Similarity metric assumptions. The exponential kernel over (normalized) Euclidean distances as-
sumes these distances reflect assay behavior. Nonlinear/threshold biology may violate this; domain-
tailored metrics may be required to capture structure–activity relations.

Scalability. The worst-case total complexity is O(Ne · nitr ·min(bH , nitr) · |D| · d), where b is the
effective branching factor and H is the maximum tree depth. The per-iteration cost is dominated by
the similarity weight calculation (O(|D| · d)). Large datasets |D| or high feature dimensions d can
strain memory and compute, potentially requiring distributed infrastructure or data subsampling for
enterprise-scale use.

Hyperparameter sensitivity. Performance depends on tuning {λw, λk, Ne, c, ϵ, τ}; robustness
across programs may require expert priors or nontrivial validation budgets.

9
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Ethics Statement

In accordance with the ICLR Code of Ethics, this work is intended to contribute positively
to society by addressing a key challenge in pharmaceutical research, the resource waste due to
inefficient decisions and the use of preclinical animals in drug discovery.

The primary goal of the proposed framework, the Implicit Bayesian Markov Decision Process (IB-
MDP), is to enhance human well-being by making the drug discovery process more efficient. By
optimizing the sequence of experimental assays, this research aims to reduce the significant mone-
tary and time costs associated with developing new medicines. An ethical benefit of this approach is
the potential to minimize harm by reducing the number of costly and lengthy in vivo animal assays,
prioritizing such scarce resource for only the most promising compounds.

We are committed to upholding high standards of scientific excellence and transparency. The IB-
MDP framework was rigorously evaluated on both a real-world central nervous system (CNS) drug
discovery task and a synthetic environment where the optimal policy was computable, ensuring a
thorough assessment of its performance. We have been transparent about the method’s limitations,
particularly its dependence on the quality and representativeness of the historical data used for plan-
ning. The main ethical consideration is that a biased or incomplete historical dataset could lead to
suboptimal decisions, potentially resulting in missed opportunities or wasted resources.

The research utilizes preclinical data on chemical compounds and their assay outcomes. It does not
involve data from human subjects, thereby minimizing concerns related to personal privacy. We
believe this work represents a responsible application of machine learning to a critical scientific
domain.
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Reproducibility Statement

To ensure the reproducibility of our findings, we have provided detailed descriptions of our
methodology and experimental setup. The IBMDP framework is outlined in Section 4, with a
concrete implementation provided in Algorithm 1. The theoretical underpinnings of our similarity-
based model, including its formal correspondence to a POMDP, are detailed in Appendix A. For our
theoretical claims, a complete derivation and consistency proof for the similarity-based estimator in
the synthetic setting is available in Appendix D.

All experimental setups are described in Section 5. Full details on hyperparameter selection can
be found in Appendix B. The process for generating the synthetic dataset is specified in Appendix
D.1, and the public dataset used for the clearance optimization benchmark is cited and described
in Appendix E. The source code, data, and scripts to reproduce results have been uploaded to the
Supplementary Material, which will be visible to reviewers and the public throughout and after the
review period.
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Appendix

A THEORETICAL FRAMEWORK: IB-MDP AS A POMDP

This appendix provides a formal conceptual grounding for the IB-MDP framework. We demonstrate
that our similarity-weighted, case-based approach is not an ad-hoc heuristic, but rather a computa-
tionally tractable implementation of Bayesian belief updating within a Partially Observable Markov
Decision Process (POMDP) tailored for information-gathering problems.

A.1 POMDP PRELIMINARIES

A POMDP is formally defined by the tuple (S,A,Ω, P,O,R, γ), where S is a set of hidden states,
A is the set of actions, and Ω is the set of observations. Since the agent cannot observe the true
state s ∈ S, it maintains a belief state, bt(s), which is a probability distribution over S . After taking
action At and receiving observation ωt, the belief is updated via the Bayes filter:

bt+1(s
′) ∝ O(ωt | s′, At)

∑
s∈S

P (s′ | s,At) bt(s). (8)

The Information-Gathering Case. The sequential assay planning task is an instance of an
information-gathering problem. The underlying intrinsic properties of the candidate compound x⋆

are fixed; performing an assay reveals information about these properties but does not change them.
This corresponds to a static latent state, where the transition probability is an identity function:
P (s′ | s,At) = 1[s′ = s]. In this common special case, the belief update from Equation equation 8
simplifies to the multiplicative Bayes’ rule:

bt+1(s) ∝ O(ωt | s,At) bt(s). (9)

A.2 THE IB-MDP LATENT INDEX MODEL AND ITS POMDP CORRESPONDENCE

To map our framework to a POMDP, we introduce a discrete latent variable Z ∈ {1, . . . , N}, where
each value i corresponds to one of the historical records Di ∈ D. We treat Z as the hidden state,
representing the ”true prototype” of our candidate compound x⋆ from among the known historical
cases. The core idea is that by maintaining a belief over Z, we are implicitly maintaining a belief
about the complete, unobserved profile of x⋆. The explicit correspondence is detailed in Table 3.

A.3 EQUIVALENCE OF THE SIMILARITY UPDATE AND BAYESIAN FILTERING

With the mapping established, we now demonstrate that the similarity weight update mechanism in
IB-MDP is a direct implementation of the Bayesian belief update from Equation equation 9.

Let the prior belief over the latent index before step t be the weights wi(st) ≡ P (Z = i | st).
Executing the assay batch At yields the observation ωt ≡ {y⋆,j}j∈At . By substituting the IB-MDP
analogs into Equation equation 9, we derive the IB-MDP belief update rule for the weights:

wi(st+1) =
p(ωt | Z = i, At) wi(st)∑N
ℓ=1 p(ωt | Z = ℓ, At) wℓ(st)

. (10)

This confirms that the evolution of weights in IB-MDP is a principled Bayesian recursion.

Connecting the Likelihood to the Similarity Kernel. The final step is to show that our specific
implementation of similarity weights corresponds to a valid probabilistic likelihood model. If we
model the likelihood of observing an assay outcome ya for the candidate with a Gaussian kernel
centered on the historical value yi,a:

p(ya | Z = i, a) ∝ exp

(
−λa

2

(ya − yi,a)
2

σ2
a

)
,

and assume conditional independence of assays in a batch given the prototype Z (a modeling as-
sumption that enables tractable inference; while biochemical assays may exhibit correlations even
given compound properties, our empirical results demonstrate robustness to violations of this as-
sumption through the ensemble averaging mechanism), the joint likelihood for the observation ωt

is the product of individual likelihoods. Applying the Bayesian update recursively from a uniform
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prior over all observed assays {ya}a∈Mt
yields a posterior over Z that has the exact form of our

similarity weights:

wi(st) ∝
∏

a∈Mt

p(ya | Z = i, a) = exp

(
−1

2

∑
a∈Mt

λa
(ya − yi,a)

2

σ2
a

)
≡ exp

(
− λw d(st, Di)

)
,

where we can identify the global temperature parameter λw = β/2 where β is the inverse temper-
ature of the tempered posterior. With β = 1 (standard posterior), we have λw = 1/2. Therefore,
our similarity function is not an arbitrary heuristic but corresponds to a tempered Bayesian posterior
over the latent historical prototypes.

A.4 THE POSTERIOR PREDICTIVE TRANSITION MODEL

The belief state (the weight vector w(st)) is used for planning. The transition model used to simulate
future trajectories within the MCTS planner is derived by marginalizing over the uncertainty in the
latent variable Z. The probability of transitioning to a next state st+1 is the posterior predictive
distribution over outcomes, conditioned on the current belief:

P (st+1 | st, At) =

N∑
i=1

P (st+1 | Z = i, st, At)P (Z = i | st) (11)

=

N∑
i=1

wi(st) δ st⊕{(aj ,yi,j)}j∈At
(st+1), (12)

where δx(y) denotes the Dirac delta measure that equals 1 if y = x and 0 otherwise. This confirms
that our sampling mechanism—drawing a historical case Di according to the weights wi(st) and us-
ing its outcomes—is a principled way to sample from the posterior predictive distribution, allowing
the planner to explore plausible future scenarios consistent with all evidence gathered so far.

A.5 IMPLICATIONS AND SUMMARY

Framing IB-MDP within the POMDP context provides strong conceptual grounding and yields sev-
eral key insights, summarized in Table 3.

• Justification for Dynamics: The changing similarity weights observed within an MCTS
simulation are not arbitrary non-stationarity. They represent the agent’s evolving belief
state. As information is gathered (the state st is augmented), the model used for subsequent
predictions naturally and correctly changes, reflecting a refined belief.

• Suitability of MCTS: MCTS is well-suited for this task because it is a simulation-based
planner designed to handle complex state spaces. It effectively explores the consequences
of actions on the future belief state and its associated rewards without needing an explicit
representation of the belief space itself.

• Principled Approximation: IB-MDP provides a practical, data-driven approximation to
solving a formal POMDP. Its effectiveness relies on two key assumptions: the quality and
coverage of the historical data D, and the appropriateness of the chosen kernel (e.g., Gaus-
sian) for the observation likelihood model. While the Gaussian kernel provides computa-
tional tractability and aligns with common assumptions about measurement noise in bio-
chemical assays, we acknowledge that alternative kernels (e.g., Laplacian, Student-t) may
better capture heavy-tailed distributions or outliers. The robustness of our approach to
kernel choice remains an important area for future empirical validation.

• Computational Efficiency: By representing the belief state implicitly through weights
over the case-base D, IB-MDP avoids the intractable calculations of maintaining and up-
dating an explicit probability distribution over a potentially vast hidden state space.

In conclusion, interpreting IB-MDP as an approximate POMDP framework clarifies that the recalcu-
lation of similarity weights is a direct implementation of Bayesian belief updating. This justifies our
methodology and the use of MCTS for principled planning under uncertainty when only historical
data is available.
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Table 3: Summary of the Conceptual Mapping between POMDP and IB-MDP.
POMDP Component IB-MDP Conceptual Equivalent Notes

Hidden State (s ∈ S) Latent Index Z = i over historical cases Di ∈ D The ”true” but unknown profile of
the candidate.

Belief State (bt(s)) Similarity weights wi(st) ≡ P (Z = i | st) A probability distribution over pos-
sible prototypes.

Action (At ∈ At) Batch of assays to perform, At ⊆ Ut Direct equivalence.
Observation (ωt) Set of assay outcomes {y⋆,j}j∈At The new evidence gathered.
Observation Model (O(ωt|s′, At)) Likelihood p(ωt | Z = i, At) Implemented via a similarity ker-

nel.
Belief Update Recalculation of weights wi(st+1) A direct, principled Bayesian up-

date.

A.6 CONVERGENCE GUARANTEES AND THEORETICAL CONSIDERATIONS

The convergence properties of IBMDP differ fundamentally from traditional Bayesian reinforce-
ment learning due to its unique reliance on historical data rather than environment interaction. This
subsection examines what convergence guarantees can and cannot be provided.

A.6.1 TRADITIONAL BAYESIAN RL GUARANTEES

Methods such as Posterior Sampling for Reinforcement Learning (PSRL) provide formal regret
bounds of Õ(

√
SAT ) for finite MDPs, where S denotes states, A denotes actions, and T denotes

the horizon. These approaches guarantee PAC-style convergence to ϵ-optimal policies with high
probability, leveraging the principle that posteriors concentrate on the true MDP as data accumulates.

A.6.2 IBMDP CONVERGENCE PROPERTIES

IBMDP’s convergence behavior is more nuanced due to its implicit model construction:

Achievable Guarantees. Standard MCTS with UCB1 provides asymptotic convergence to opti-
mal policies as iterations approach infinity, assuming a fixed MDP model. For IBMDP specifically:

• MCTS-DPW convergence: The Double Progressive Widening variant used in IBMDP
maintains convergence properties for large combinatorial action spaces

• Linear case consistency: For synthetic data with linear relationships and independent fea-
tures, we prove (Section D) that the similarity-based variance estimator converges in prob-
ability to the true conditional variance as N →∞

• Empirical robustness: The ensemble approach with majority voting provides stable recom-
mendations, achieving 47% optimal policy alignment compared to 36% for deterministic
methods

Fundamental Limitations. Unlike traditional Bayesian RL, IBMDP cannot provide:

• Formal regret bounds: The implicit model introduces approximation error bounded by his-
torical data coverage rather than converging to true dynamics

• PAC guarantees: Cannot ensure ϵ-optimality with high probability due to dependence on
data representativeness

• True dynamics recovery: The similarity-based model approximates but does not learn the
true transition function P (s′|s, a)

The approximation quality depends on three key factors: (i) the coverage and representativeness of
historical data D, (ii) the appropriateness of the similarity metric for the domain, and (iii) the size
of the historical dataset |D|. While formal convergence rates cannot be established without access
to the true dynamics, empirical validation demonstrates robust performance when these factors are
satisfied.
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Convergence Trade-offs. IBMDP trades formal convergence guarantees for practical applicabil-
ity. Under assumptions of sufficient data coverage, appropriate similarity metrics, and regularity
conditions, as MCTS iterations nitr →∞ and ensemble size Ne →∞:

||πIBMDP − π∗
empirical||∞

P−→ 0 (13)
where π∗

empirical is the optimal policy for the empirical MDP induced by D. However, the gap be-
tween this empirical optimal and the true optimal policy depends on data quality and coverage—a
fundamental limitation when operating without simulators.

This trade-off is not a weakness but a necessary adaptation: IBMDP provides a principled solu-
tion where traditional methods with stronger guarantees cannot operate at all due to the absence of
environment interaction capabilities.

B IMPLEMENTATION AND ALGORITHMIC DETAILS

B.1 HYPERPARAMETER SELECTION METHODOLOGY

The performance of the IB-MDP framework depends on a set of key hyperparameters that govern the
similarity model, the MCTS planner, and the problem’s objective constraints. The values used in our
experiments were determined through a combination of established literature guidelines, empirical
testing on our specific dataset, and domain-specific considerations to balance decision quality with
computational feasibility.

Similarity Model Parameters. These parameters define the core of the implicit, generative tran-
sition model.

• Similarity Bandwidth (λw): This parameter controls the ”smoothness” of the similarity
function. From the theoretical derivation in Section A, λw = β/2 where β is the inverse
temperature. For the standard posterior (β = 1), we have λw = 0.5. However, in practice,
we tested values in the range [0.5, 2.0] and found that λw = 1.0 provided better empirical
performance for our dataset (|D| = 220, d = 6). This corresponds to a tempered posterior
with β = 2.0, which was large enough to ensure locality (giving higher weight to truly
similar compounds) but small enough to draw support from a sufficient number of historical
examples to make robust predictions.

• Feature Weights (λk = 1.0 for all k): These weights allow for emphasizing more or less
informative features in the distance calculation. As we lacked detailed prior information on
the relative reliability of the QSAR predictions and assay measurements, we set all weights
to be equal to avoid introducing subjective bias. This treats all known features as equally
important for determining similarity.

Ensemble and Planner Parameters. These parameters control the MCTS search algorithm and
the robustness of its final policy.

• Ensemble Size (Ne = 50): To mitigate variance from the stochastic nature of both the
transition model and the MCTS planner, we use an ensemble of independent runs. We
tested sizes from 20 to 100 and found that Ne = 50 provided a stable policy recommenda-
tion (i.e., a consistent MLASP) without incurring excessive computational cost. Figure 3
illustrates how the ensemble’s majority vote leads to a robust action choice.

• MCTS Iterations (nitr = 20, 000): This determines the search budget for each MCTS run.
Our analysis showed that policy recommendations stabilized around 20,000 iterations for
our problem’s complexity, with diminishing returns for higher values.

• Exploration Constant (c = 5.0): Following standard practice for MCTS, this value bal-
ances exploration of new actions with exploitation of known high-value actions within the
search tree. A value of 5.0 provided effective exploration in our experiments.
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Figure 3: Example histogram of actions proposed across an ensemble of Ne = 50 runs. For a given
state with uncertaintyH(s) = 0.2 and a likelihood constraint of τ = 0.9, the action with the highest
frequency is selected for the MLASP. This demonstrates how the ensemble method produces robust
and stable recommendations via majority voting.

Problem Constraint Parameters. These parameters define the termination conditions and feasi-
bility constraints of the planning problem itself.

• Terminal Uncertainty Threshold (ϵ = 0.10): We stop when H(sT ) drops below 0.10. In
our runs the initial uncertainty is between 0.2 and 0.6, so this threshold guarantees at least
a two- to six-fold reduction before declaring the policy sufficiently confident.

• Goal-Likelihood Threshold (τ ∈ {0.6, 0.9}): The threshold on the goal likelihood, L(st),
enforces that the planner only pursues trajectories that remain sufficiently likely to succeed.
We tested two values to explore the trade-off between cost and confidence. A lower value
(τ = 0.6) permits more exploratory, potentially cheaper plans, while a higher value (τ =
0.9) enforces a more conservative and confident, but potentially more expensive, policy.
Figure 4 explicitly illustrates how a higher τ leads to a different and more costly MLASP
to satisfy the stricter confidence requirement.

B.2 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the IB-MDP algorithm is a critical factor for its practical applica-
tion. The worst-case total complexity is given by:

O(Ne · nitr ·min(bH , nitr) · |D| · d),
where Ne is the ensemble size, nitr is the number of MCTS iterations, b is the effective branching
factor (average number of actions explored per node), H is the maximum tree depth (bounded by the
horizon T ), |D| is the number of historical cases, and d is the dimensionality of the feature space.
The term min(bH , nitr) represents the maximum number of nodes that can be expanded, bounded
either by the tree structure or the iteration budget. In practice, with progressive widening and UCT
selection, the effective number of expansions is often much smaller than this worst-case bound.

The dominant factor within a single MCTS simulation step is the calculation of the similarity
weights, which requires computing the distance from the current state to every historical case in
D. This operation has a complexity of O(|D| · d) and is performed at each node expansion in the
search tree.

Comparison to Alternatives. This complexity, while significant, compares favorably to alterna-
tive approaches for principled planning under uncertainty. Exact POMDP solvers are computation-
ally intractable for problems of this scale, as their complexity is exponential in the size of the belief
space. Traditional value iteration would require discretizing the state space, which becomes in-
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Figure 4: Comparison of MLASP paths for the same compound under two different goal-likelihood
thresholds: τ = 0.6 (blue) and τ = 0.9 (red). The stricter constraint (τ = 0.9) forces the planner
to recommend a more expensive sequence of assays to achieve higher confidence, illustrating the
direct trade-off between cost and decision confidence controlled by this parameter.

feasible with a growing number of continuous-valued assays. IB-MDP’s sampling-based approach
effectively navigates this high-dimensional space without requiring explicit enumeration.

Practical Performance and Scalability. In our experimental setup (Ne = 50, nitr = 20, 000,
|D| = 220, d = 6), the total time to generate a policy for a single compound was approximately
one hour on an Apple M1 Pro chip with 16GB of memory. The algorithm’s complexity scales
linearly with the size of the historical dataset (|D|), the feature dimension (d), and the number of
ensemble runs (Ne). This predictable scaling suggests that the method remains computationally
feasible for the larger datasets and higher-dimensional problems typically encountered in real-world
drug discovery campaigns, especially with access to parallel computing resources.

C FRAMEWORK DIFFERENTIATION AND THE UNFAIRNESS OF DIRECT
COMPARISON

C.1 KEY DIFFERENTIATING FEATURES

Table 4 summarizes the fundamental distinctions between IBMDP and traditional reinforcement
learning frameworks. These differences stem from IBMDP’s unique design for sequential experi-
mental planning in simulator-free, data-rich environments—a problem class that existing methods
cannot address without fundamental restructuring.

C.2 THE FUNDAMENTAL INNOVATION

IBMDP operates in an entirely different problem setting from traditional reinforcement learning.
While conventional frameworks assume access to either environment simulators or transition data,
IBMDP functions with only a static database of historical experimental outcomes. This constraint,
common in drug discovery where mechanistic models are unavailable and experiments are irre-
versible, necessitates a fundamentally different approach.
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Table 4: Fundamental distinctions between IBMDP and traditional RL frameworks
Aspect Traditional Frameworks IBMDP

Data Requirements (s, a, s′) tuples or simulator Static historical outcomes only
Transition Model Learned explicit P (s′|s, a) Implicit via similarity sampling
Belief Representation Explicit probability distributions Similarity weights wi(st)
Planning Method Single policy or parametric Ensemble MCTS with majority voting
Constraints Cumulative:

∑
t ct ≤ C State-based: H(sT ) ≤ ϵ, L(st) ≥ τ

Action Space Parameter optimization Combinatorial assay selection
Action Effect Changes underlying state Reveals fixed properties
Correlation Handling Requires explicit modeling Preserves empirically via sampling
Objective Single reward maximization Multi-objective optimization

The core mechanism constructs an implicit generative model through similarity-weighted sampling:
wi(st) = exp (−λw · d(st, Di)) (14)

P (st+1|st, At) =

N∑
i=1

wi(st)

Z
· 1[st+1 = st ⊕ {(aj , yi,j)}j∈At

] (15)

This mechanism generates plausible transitions by sampling from historical cases most similar to the
current experimental state, thereby preserving the natural correlations between assays observed in
real compounds—correlations that would be difficult or impossible to model explicitly given current
scientific understanding.

C.3 COMPARISON WITH EXISTING FRAMEWORK CATEGORIES

C.3.1 DISTINCTION FROM MDPS AND MODEL-BASED RL

Model-based reinforcement learning fundamentally relies on learning transition dynamics from
(s, a, s′) tuples, typically through parametric models that approximate P (s′|s, a). Even kernel-
based RL methods, which employ similarity metrics, use them primarily for value function approx-
imation rather than transition generation.

IBMDP diverges by using similarity not as a smoothing mechanism but as the foundation for a
complete generative process. Without access to any transition data, it samples entire assay outcome
profiles from historical compounds, weighted by their relevance to the current state. This non-
parametric approach sidesteps the need for explicit dynamics modeling while naturally preserving
cross-assay dependencies present in the historical data.

C.3.2 DISTINCTION FROM BAYESIAN METHODS

Bayesian reinforcement learning and Bayesian optimization maintain explicit posterior distribu-
tions—over model parameters in BRL (exemplified by PSRL) or over objective functions in BO.
These methods either sample complete MDPs from parameter posteriors or perform myopic single-
step optimization.

IBMDP performs what we term Bayesian case-based generation: the similarity weights serve as an
implicit posterior over historical compound prototypes, updated through reweighting as evidence
accumulates. Unlike BO’s single-step focus, IBMDP enables multi-horizon planning that simul-
taneously considers experimental costs, time constraints, and the probability of achieving desired
outcomes—a multi-objective optimization fundamentally different from traditional Bayesian ap-
proaches.

C.3.3 DISTINCTION FROM EXPERIMENTAL DESIGN

Classical Bayesian experimental design assumes availability of a likelihood function or simulator,
optimizing for immediate information gain. Even implicit-BED methods for intractable likelihoods
rely on information-theoretic surrogates that assume some form of generative model.

IBMDP embeds its implicit model directly within a reinforcement learning planner (MCTS-DPW),
optimizing entire experimental sequences rather than individual experiments. The framework’s
state-uncertainty functional H(st) and goal-likelihood functional L(st) provide interpretable,
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domain-specific measures that directly relate to experimental objectives, unlike abstract information-
theoretic quantities.

C.3.4 DISTINCTION FROM POMDPS

Standard POMDP formulations maintain explicit belief distributions over hidden states, requiring
specification of both transition models P (s′|s, a) and observation models O(o|s, a). The belief
update follows the Bayes filter, necessitating these explicit models.

IBMDP’s similarity-weighted posterior serves as an implicit belief representation, eliminating the
need for high-dimensional belief state maintenance. The framework’s constraints—terminal uncer-
tainty H(sT ) ≤ ϵ and per-step feasibility L(st) ≥ τ—target state properties rather than cumulative
quantities, directly encoding experimental requirements for decision confidence and trajectory via-
bility.

C.4 WHY DIRECT BENCHMARKING IS FUNDAMENTALLY UNFAIR

The fundamental incompatibility between IBMDP and traditional frameworks makes direct bench-
marking not merely challenging but inherently unfair—comparing methods designed for entirely
different problem settings and data availability.

C.4.1 INCOMPATIBLE PREREQUISITES

Traditional RL methods universally require either an environment simulator for generating transi-
tions on demand or a collection of (s, a, s′) tuples for learning dynamics. IBMDP operates precisely
where these prerequisites are absent: only static historical compound profiles exist, with no mecha-
nism to query counterfactual outcomes. Creating a simulator would require mechanistic understand-
ing of biochemical interactions that current science lacks, while collecting transition data through
exhaustive experimentation defeats the very purpose of efficient planning.

C.4.2 FUNDAMENTAL STRUCTURAL DIFFERENCES

The action spaces are categorically different. Traditional methods optimize over continuous or dis-
crete parameter spaces where actions affect state transitions. IBMDP selects from combinatorial
sets of experimental assays—P≤m(Ut)∪ {eox}—where actions reveal information about unchang-
ing molecular properties. This distinction between control and information gathering necessitates
entirely different planning paradigms.

Furthermore, the constraint structures are incompatible. Traditional constrained MDPs limit cu-
mulative costs across trajectories, while IBMDP enforces instantaneous feasibility constraints and
terminal uncertainty bounds that directly encode experimental requirements.

C.4.3 REQUIRED TRANSFORMATIONS

Adapting traditional methods to this setting would require:

1. Completely redefining the action space from parameter optimization to combinatorial assay
selection with batching constraints

2. Implementing reward-aware stopping rules aligned with uncertainty and feasibility func-
tionals rather than simple cumulative objectives

3. Creating posterior predictive distributions without access to simulators or transition data

4. Restructuring from single-objective to multi-objective optimization with state-based con-
straints

Such extensive modifications would fundamentally alter the nature of these methods, creating es-
sentially new algorithms rather than variants of existing ones. Any resulting comparison would be
between IBMDP and these newly created methods, not the original frameworks.
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C.5 THEORETICAL FOUNDATION

Despite operating in this unique setting, IBMDP maintains rigorous theoretical grounding. Sec-
tion A establishes that the framework is mathematically equivalent to a POMDP where the hid-
den state represents a latent index over historical cases. The similarity weights constitute a valid
Bayesian posterior, with weight updates implementing exact Bayesian belief updates. This equiva-
lence:

wi(st+1) =
p(ωt|Z = i, At) · wi(st)∑N
ℓ=1 p(ωt|Z = ℓ, At) · wℓ(st)

(16)

provides principled justification for the empirical success observed in our experiments, where IB-
MDP achieved up to 92% reduction in resource consumption while maintaining decision quality.

C.6 IMPLICATIONS

IBMDP addresses a problem class—sequential experimental planning without simulators—that ex-
isting reinforcement learning frameworks were not designed to handle. The inherent unfairness of
direct benchmarking reflects not a limitation but the framework’s fundamental novelty operating in
a unique problem setting. By leveraging historical data through similarity-weighted sampling and
ensemble planning, IBMDP provides the first practical solution for case-guided sequential decision-
making in drug discovery and similar experimental sciences where traditional RL assumptions fail
to hold.

D BENCHMARK WITH SYNTHETIC DATA

Overview and Motivation. This appendix presents a rigorous benchmark study comparing IB-
MDP against theoretically optimal and deterministic baselines using synthetic data. The synthetic
environment provides a unique advantage: we can compute the true optimal policy exactly, enabling
principled validation of our similarity-based planning approach. This controlled setting allows us to
isolate and evaluate the effectiveness of IBMDP’s core innovations—the similarity-weighted belief
mechanism and ensemble planning—against ground truth.

Aim. We provide a controlled benchmark to compare three planners for sequential assay selec-
tion: (i) a theoretical Value Iteration baseline with exact uncertainty dynamics (VI-Theo); (ii) a
deterministic Value Iteration with similarity-based uncertainty (VI-Sim); and (iii) the stochastic
IBMDP planner using similarity-weighted posterior predictive transitions inside an ensemble of
MCTS-DPW trees (IBMDP). A synthetic data generator with known structure enables exact com-
putation of the VI-Theo policy and a principled testbed for the two similarity-based planners.

Notation consistency with the main text. We maintain consistency with the notation from the
main exposition (state/action tuples, similarity weights, H(s), L(s), etc.; see Equations equation 1–
equation 3 and Table 8). Throughout this appendix, for notational convenience when the focus is
on the set structure rather than individual measurements, we may write the state as s = (x⋆,M)
where x⋆ is the fixed candidate compound and M ⊆ {1, . . . ,M} represents the set of measured
assays. This is equivalent to the main text notation st = (x⋆, {y⋆,j}j∈Mt) whereM = Mt indexes
the measured assays and their values. When the candidate is fixed and clear from context, we may
write the state simply asM.

D.1 SYNTHETIC DATA: GENERAL MODEL AND INSTANTIATION

Purpose. We construct a synthetic data environment where the true conditional variance can be
computed analytically, providing ground truth for evaluating our similarity-based estimators. The
linear structure with independent features represents a simplified but informative test case where
theoretical optimality is tractable.

D.1.1 GENERAL DATA-GENERATING PROCESS (GENERIC FORMULATION).

Fix integers N (number of historical cases) and M (number of assays/features). For each historical
case i ∈ {1, . . . , N} we draw a feature vector

yi = (yi,1, . . . , yi,M )⊤ ∈ RM .
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For each assay a ∈ {1, . . . ,M} specify distributional parameters (µa, σa, aa, ba) and draw inde-
pendently

yi,a ∼ T N (µa, σa; aa, ba),

the (univariate) truncated normal on [aa, ba] with location µa and scale σa.1 Let β =
(β1, . . . , βM )⊤ ∈ RM and draw independent measurement noise

ϵi ∼ T N (µϵ, σϵ; aϵ, bϵ).

The scalar target is

gi =

M∑
a=1

βa yi,a + ϵi = β⊤yi + ϵi.

The historical dataset is D = {(xi,yi)}; targets G = {gi} are stored separately (and never used in
any distance/weight computation).

Closed-form variance under independence. Let Σ = diag(σ2
1 , . . . , σ

2
M ) denote the per-assay

variance parameters (treated as the empirical variances of the generated yi,a’s). Then

Var(g) = β⊤Σβ + σ2
ϵ .

To derive the conditional variance, we partition assays into measured M and unmeasured U and
write β = (βM, βU ), Σ = diag(ΣM,ΣU ). Under independence, we have the following derivation:

Var(g | yM) = Var
(
β⊤
MyM + β⊤

U yU + ϵ | yM
)

(17)

= Var
(
β⊤
U yU + ϵ | yM

)
(since β⊤

MyM is fixed given yM) (18)

= Var
(
β⊤
U yU

)
+Var(ϵ) (by independence of yU , ϵ from yM) (19)

= β⊤
U Var(yU )βU + σ2

ϵ (20)

= β⊤
U ΣUβU + σ2

ϵ . (21)
This identity is central to the VI-Theo derivation below.

D.1.2 INSTANTIATION USED IN THE BENCHMARK.

We set M = 6 and N = 200. For a = 1, . . . , 6,

µa = 50 · a
6
, σa = 0.3µa, (aa, ba) = (0, 2µa),

β = (0.3, 0.25, 0.2, 0.15, 0.07, 0.03), ϵ ∼ T N (0, 5; −10, 10).
All feature draws are independent across a and i; noise is independent of features.

Sampling recipe (for reproducibility). For each trial: (1) fix M,N, {µa, σa, aa, ba} and β; (2)
draw {yi}Ni=1 componentwise; (3) draw {ϵi}Ni=1; (4) set gi = β⊤yi + ϵi; (5) store D = {(xi,yi)}
and G = {gi} with availability set Ig = {i : gi used in evaluation}.

D.2 THEORETICAL BASELINE (VI-THEO): FULL DERIVATION

Overview. VI-Theo represents the theoretically optimal policy under perfect information about the
data-generating process. It uses the exact conditional variance formula derived above to compute
optimal uncertainty reduction at each step. This baseline is only computable in synthetic settings
where the true model parameters are known.

State, action, and dynamics. The state is the setM⊆ {1, . . . , 6} of measured assays (consistent
with our notation convention). The action space is the power set of unmeasured assays:

A(M) = P
(
{1, . . . , 6} \M

)
.

Transitions are deterministic: executing a ∈ A(M) yieldsM←M∪ a.

1In our experiments we treat (µa, σa) as the empirical mean/scale of the generated samples; the truncation
mildly perturbs the theoretical moments.
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Exact conditional variance and reduction. Write g = β⊤
MyM + β⊤

U yU + ϵ. Conditioning on
the realized measurements yM,

Var(g | yM) = Var
(
β⊤
U yU + ϵ

)
= β⊤

U ΣUβU + σ2
ϵ ,

since yU is independent of yM and ϵ. Hence, the exact uncertainty reduction achieved by measuring
a batch a ⊆ U is computed as follows:

∆σ2
a = Var(g | yM)−Var(g | yM∪a) (22)

=
(
β⊤
U ΣUβU + σ2

ϵ

)
−
(
β⊤
U\aΣU\aβU\a + σ2

ϵ

)
(23)

= β⊤
U ΣUβU − β⊤

U\aΣU\aβU\a (24)

=
∑
k∈a

β2
k σ

2
k. (25)

The last equality follows because Σ is diagonal and the contribution of each measured assay k is
exactly β2

kσ
2
k.

Costs and reward. Let per-assay costs be
c1 = 1.0, c2 = 1.2, c3 = 1.5, c4 = 1.8, c5 = 2.0, c6 = 2.2,

and (optionally) a terminal target-measurement cost ctarget = 10.0. The batch cost is ca =
∑

k∈a ck
and the immediate reward is uncertainty reduction per unit cost:

R(M, a) =
∆σ2

a

ca
.

Bellman recursion. With discount γ = 0.95,

V (M) = max
a∈A(M)

{
R(M, a) + γ V (M∪ a)

}
,

initialized at V ({1, . . . , 6}) = 0 (no uncertainty left, no action left). We iterate to a tolerance of
10−6 or 1000 iterations to obtain the optimal policy πTheo(M).

Remarks on optimality. Because transitions are deterministic and rewards are additive with dis-
count, the recursion gives the exact optimal policy under the synthetic uncertainty model. This
policy serves as the ground-truth baseline against which we compare similarity-based planners.

D.3 DETERMINISTIC SIMILARITY-BASED VI (VI-SIM): FULL DERIVATION

Overview. VI-Sim represents a deterministic planner that uses the same similarity-based variance
estimation as IBMDP but applies Value Iteration instead of stochastic tree search. This baseline
isolates the contribution of IBMDP’s ensemble planning approach by using the same implicit model
but with deterministic optimization.

Similarity weights and distance. At state s = (x⋆,M) (maintaining our consistent notation; here
we use s to denote a generic state rather than st for a specific time step), define:

wi(s) =
exp{−λw d(s,Di)}∑N
j=1 exp{−λw d(s,Dj)}

, (26)

d(s,Di) =
∑

k∈K(s)

λk

(
ϕk(s)− ϕk(Di)

)2
σ2
k

. (27)

Here K(s) are the known features (initial QSARs and any measured assays); ϕk(·) extracts feature
k; λk are feature weights (default = 1), λw > 0 is the bandwidth, and σ2

k are the empirical variances
over D. The targets {gi} are never used in d(·, ·).
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Weighted g-mean and variance (renormalized over Ig). Define the renormalized weights and
weighted mean:

w̃i(s) =
wi(s)∑

ℓ∈Ig
wℓ(s)

for i ∈ Ig, (28)

ḡ(s) =
∑
i∈Ig

w̃i(s) gi. (29)

The estimated conditional variance at state s is:
σ̂2

cond(M) =
∑
i∈Ig

w̃i(s)
(
gi − ḡ(s)

)2
. (30)

After executing batch a, we update the observed state to s′ = (x⋆,M∪a), recompute weights based
on the expanded feature set, and obtain σ̂2

cond(M∪ a).

Estimated reduction and reward. Using the similarity-weighted variance estimate, we define the
variance reduction and reward:

∆σ̂2
a = σ̂2

cond(M)− σ̂2
cond(M∪ a), (31)

R(M, a) =
∆σ̂2

a

ca
. (32)

We then apply this R to the same deterministic VI recursion as in Section D.2 to obtain the policy
πSim.

D.4 IBMDP: IMPLICIT POSTERIOR-PREDICTIVE MODEL AND PLANNING DETAILS

Overview. IBMDP extends the similarity-based approach with two key innovations: (1) a stochas-
tic posterior-predictive model that samples from historical cases weighted by similarity, and (2) en-
semble MCTS planning that explores multiple policy trajectories. This combination enables robust
planning despite the implicit model’s inherent uncertainty.

Latent-index view and likelihood. Introduce a discrete latent index Z ∈ {1, . . . , N} over histor-
ical cases Di. Given Z = i and selecting assay a, a Gaussian discrepancy model leads to:

p(ya | Z = i, a) ∝ exp

(
−λa(ya − yi,a)

2

2σ2
a

)
, (33)

with per-assay weight λa > 0. For a batch At and assuming conditional independence across assays
given Z (see discussion in Section A regarding this assumption):

p(yAt
| Z = i, At) ∝

∏
a∈At

exp

(
−λa(ya − yi,a)

2

2σ2
a

)
. (34)

Weights as (tempered) posteriors and incremental recursion. Let Ot denote the set of observed
assays up to time t. Define the variance-normalized distance

d(st, Di) =
∑

(a,ya)∈Ot

λa

σ2
a

(ya − yi,a)
2.

With a uniform prior over Z and temperature λw, the similarity weight equals a tempered posterior

wi(st) =
exp{−λw d(st, Di)}∑N
j=1 exp{−λw d(st, Dj)}

.

If we then measure assay at and observe yat , the distance updates additively:

d(st+1, Di) = d(st, Di) +
λat

σ2
at

(yat
− yi,at

)2. (35)

This yields the multiplicative weight update:

wi(st+1) ∝ wi(st) · exp
{
−λw

λat

σ2
at

(yat
− yi,at

)2
}

(36)

∝ wi(st) ·
[
p(yat | Z = i, at)

]2λw
, where λw = β/2, (37)
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followed by normalization. Thus the reweighting is a (tempered) Bayesian belief update.

Posterior predictive (implicit transition). Marginalizing over Z gives the posterior predictive
over next information states:

P (st+1 | st, At) =

N∑
i=1

wi(st) · δ
(
st+1 = st ⊕ {(a, yi,a)}a∈At

)
, (38)

which is implemented operationally by sampling a single historical case i ∼ Cat({wk(st)}) and
copying the batch outcomes {yi,a}a∈At

into the candidate—thereby preserving cross-assay correla-
tion within the sampled historical profile.

Planning with MCTS-DPW and ensembling. Within each MCTS rollout, we generate stochastic
next states by the posterior predictive above, accrue step cost R(st, At), and apply penalties when
feasibility is violated (e.g., L(s) < τ at any step) until a terminal state (e.g., H(s) ≤ ϵ) or horizon
T . To reduce variance from stochastic sampling and tree search, we run Ne independent trees and
aggregate recommendations by majority vote, reporting both the Top-1 action and the Top-2 action
set at each decision step, forming an MLASP.

D.5 ILLUSTRATIVE EXAMPLE: EVOLUTION OF SIMILARITY WEIGHTS

Purpose. This toy example demonstrates how similarity weights evolve as evidence accumulates,
providing intuition for the adaptive nature of IBMDP’s implicit dynamics.

Setup. Three historical records with one feature each at values {0, 1, 2}; let σ2 = 1, λw = λ1 = 1.
The initial candidate state is s(0) with value 1.1.

Step 0 (initial). Raw weights:

w1 = e−(1.1−0)2 = e−1.21 = 0.297, (39)

w2 = e−(1.1−1)2 = e−0.01 = 0.990, (40)

w3 = e−(1.1−2)2 = e−0.81 = 0.445. (41)
After normalization Z = 0.297 + 0.990 + 0.445 = 1.732, we obtain:

w̃ = (0.171, 0.571, 0.257). (42)

Step 1 (after action moves state to 1.6). Raw weights:

w1 = e−(1.6−0)2 = e−2.56 = 0.077, (43)

w2 = e−(1.6−1)2 = e−0.36 = 0.697, (44)

w3 = e−(1.6−2)2 = e−0.16 = 0.852. (45)
Normalizing with Z ′ = 1.626 gives:

w̃ = (0.047, 0.429, 0.524). (46)
The posterior shifts toward the historical record at 2 as evidence moves rightward.

D.6 THEORETICAL ANALYSIS: CONSISTENCY OF VI-SIM

Theorem (Consistency of Similarity-Based Estimation). Under the synthetic linear model with
independent features, the similarity-based variance estimator σ̂2

cond(M) used by VI-Sim converges

in probability to the exact conditional variance σ2
cond(M) used by VI-Theo, i.e., σ̂2

cond(M)
P−→

σ2
cond(M) as N →∞.

Proof.

Assumptions. (A1) Features {yi,a} are independent across a and i.i.d. across i, each with finite
variance σ2

a; (A2) noise ϵi is independent of features with finite variance σ2
ϵ ; (A3) the weight func-

tion wi(s) depends only on measured assays M of each record and on the candidate’s observed
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values at those assays; (A4) the renormalized weights w̃i(s) over Ig form a probability vector; (A5)
Ig grows with N so that |Ig| → ∞.

Step 1: Setup and notation. Fix a state s = (x⋆,M) with measured setM and unmeasured set
U = {1, . . . ,M} \M. Define the target for record i:

gi = β⊤
Myi,M + β⊤

U yi,U + ϵi.

The exact conditional variance (under the model) is:
σ2

cond(M) = β⊤
U ΣUβU + σ2

ϵ .

The estimator used by VI-Sim at s is:

σ̂2
cond(M) =

∑
i∈Ig

w̃i(s)
(
gi −

∑
j∈Ig

w̃j(s) gj

)2
.

Step 2: Decomposition via independence. We decompose each target as gi =
β⊤
Myi,M︸ ︷︷ ︸

measured term

+ zi︸︷︷︸
unmeasured term

, where

zi := β⊤
U yi,U + ϵi.

By assumptions (A1)–(A2) on independence, zi is independent of yi,M and thus independent of any
measurable function of yi,M, including wi(s) and w̃i(s). This yields:

E(zi |yi,M) = E(zi) = E(β⊤
U yi,U ) + E(ϵi) = 0, (47)

Var(zi |yi,M) = Var(zi) = Var(β⊤
U yi,U ) + Var(ϵi) (48)

= β⊤
U ΣUβU + σ2

ϵ . (49)

Step 3: Analysis of the weighted variance estimator. Define the weighted means: ḡw :=∑
i∈Ig

w̃i(s)gi, ȳM,w :=
∑

i∈Ig
w̃i(s)β

⊤
Myi,M, and z̄w :=

∑
i∈Ig

w̃i(s)zi. Then the variance
estimator becomes:

σ̂2
cond(M) =

∑
i∈Ig

w̃i(s)
(
gi − ḡw

)2
(50)

=
∑
i∈Ig

w̃i(s)
(
(β⊤

Myi,M + zi)− (ȳM,w + z̄w)
)2

(51)

=
∑
i∈Ig

w̃i(s)
(
β⊤
Myi,M − ȳM,w + zi − z̄w

)2
. (52)

Taking expectation conditional on the entire measured panel {yi,M}i∈Ig (which determines
{w̃i(s)}i∈Ig ), and using E(zi|yi,M) = 0 with independence across i:

E
[
σ̂2

cond(M)
∣∣ {yi,M}

]
=
∑
i∈Ig

w̃i(s)
(
β⊤
Myi,M − ȳM,w

)2
+
∑
i∈Ig

w̃i(s)E
[
(zi − z̄w)

2
∣∣ {yi,M}

]
.

Step 4: Simplification of the second term. The second sum simplifies because {zi} are i.i.d.,
mean zero and independent of the weights:

E
[
(zi − z̄w)

2
∣∣ {yi,M}

]
= E[z2i ] + E[z̄2w]− 2E[ziz̄w] (expanding the square) (53)
= Var(zi) + Var(z̄w)− 2Cov(zi, z̄w) (54)

= Var(zi) + Var(zi)
∑
j∈Ig

w̃j(s)
2 − 2w̃i(s)Var(zi) (55)

= Var(zi) (1 +
∑
j∈Ig

w̃j(s)
2 − 2w̃i(s)), (56)
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where we used Var(z̄w) = Var(zi)
∑

j∈Ig
w̃j(s)

2 (by independence) and Cov(zi, z̄w) =

w̃i(s)Var(zi). Therefore∑
i∈Ig

w̃i(s)E
[
(zi − z̄w)

2
∣∣ {yi,M}

]
= Var(zi)

∑
i∈Ig

w̃i(s) (1 +
∑
j∈Ig

w̃j(s)
2 − 2w̃i(s)) (57)

= Var(zi)
(∑

i∈Ig

w̃i(s) +
∑
i∈Ig

w̃i(s)
∑
j∈Ig

w̃j(s)
2 − 2

∑
i∈Ig

w̃i(s)
2
)

(58)

= Var(zi)
(
1 +

∑
j∈Ig

w̃j(s)
2 − 2

∑
i∈Ig

w̃i(s)
2
)

(59)

= Var(zi)
(
1−

∑
i∈Ig

w̃i(s)
2
)
. (60)

Note: In the third line, we used
∑

i∈Ig
w̃i(s) = 1 and

∑
i∈Ig

w̃i(s)
∑

j∈Ig
w̃j(s)

2 =
∑

j∈Ig
w̃j(s)

2

since the weights sum to 1. Thus

E
[
σ̂2

cond(M)
∣∣ {yi,M}

]
=
∑
i∈Ig

w̃i(s)
(
β⊤
Myi,M − ȳM,w

)2
︸ ︷︷ ︸

weighted variance of measured part

+Var(zi)
(
1−

∑
i∈Ig

w̃i(s)
2
)
.

Asymptotics and conclusion. By (A5) and boundedness of the weights (since
∑

i w̃i(s) = 1 and
0 ≤ w̃i(s) ≤ 1), we have

∑
i∈Ig

w̃i(s)
2 → 0 in probability when |Ig| → ∞ and the weights are

not degenerate.2 Also, by a (weighted) law of large numbers for triangular arrays with random but
measured-part-measurable weights and finite second moments, the first term converges in probabil-
ity to the true conditional variance of the measured contribution given the measured panel. However,
the exact VI-Theo conditional variance does not depend on the measured panel (independence across
assays), hence ∑

i∈Ig

w̃i(s)
(
β⊤
Myi,M − ȳM,w

)2 p−→ 0.

Combining, we get

σ̂2
cond(M)

P−→ Var(zi) (1− 0) = β⊤
U ΣUβU + σ2

ϵ = σ2
cond(M).

Hence, under the synthetic linear/independent model, VI-Sim’s variance estimator is consistent for
the exact VI-Theo conditional variance.

Implications. Because σ2
cond(M) is constant in yM under independence, any reasonable similarity

weighting over measured assays yields the same limiting conditional variance. In more general
(correlated or non-linear) settings, the estimator targets Var(g | yM = candidate) provided the
kernel and bandwidth obey standard nonparametric conditions; IBMDP’s stochastic ensembling
further mitigates finite-sample bias/variance.

D.7 EXPERIMENTAL PROTOCOL AND METRICS

Overview. We conduct a systematic comparison of the three planning methods across 100 inde-
pendent trials, focusing on their alignment with the theoretically optimal policy.

For each of 100 independent trials:

(i) Generate a fresh synthetic dataset as in Section D.1.

(ii) Compute VI-Theo’s optimal first action at the initial state.

(iii) Compute VI-Sim’s recommended first action.

2Specifically, if maxi w̃i(s)
P−→ 0, then

∑
i w̃i(s)

2 ≤ maxi w̃i(s)
∑

i w̃i(s)→ 0. This condition requires
that the similarity kernel bandwidth is chosen such that as N → ∞, no single historical case dominates the
weights.
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(iv) Run IBMDP with an ensemble of MCTS-DPW planners; record (a) the Top-1 action (most fre-
quent across the ensemble), and (b) the Top-2 action set (two most frequent).

We report three alignment metrics per trial:

• T1 Match: indicator that IBMDP’s Top-1 equals VI-Theo’s action.

• T2 Match: indicator that the VI-Theo action appears in IBMDP’s Top-2 set.

• Sim Match: indicator that VI-Sim equals VI-Theo.

D.8 EXPERIMENTAL RESULTS AND ANALYSIS

Summary. Table 5 presents the main results. Over 100 trials, IBMDP’s Top-1 matches the VI-
Theo optimum in 47 cases; IBMDP’s Top-2 covers the optimum in 66 cases; VI-Sim matches the
optimum in 36 cases. These results demonstrate that the stochastic, ensemble planner recovers a
larger fraction of near-equivalent high-value actions than a deterministic similarity planner, validat-
ing the value of IBMDP’s ensemble approach.

Table 5: Policy alignment with the theoretical baseline over 100 trials.
Method Matches Match Rate (%)

IBMDP Top 1 47 47.0
IBMDP Top 2 66 66.0
VI-Sim 36 36.0

Statistical Consistency Across Independent Trials. To validate the statistical reproducibility of
our method, we present the complete trial-by-trial alignment results below. This detailed analysis
demonstrates that IBMDP’s policy recommendations consistently align with the theoretical opti-
mum across diverse problem instances, providing empirical evidence of the method’s robustness
and reliability (feature indices refer to assays a ∈ {1, . . . , 6}).

Table 6: Trial-wise comparison of VI-Theo vs. IBMDP and VI-Sim.

Iter VI-Theo IBMDP Top-1 Features T1 Match IBMDP Top-2 Features T2 Match VI-Sim Sim Match

1 5 {3, 4} 0 {3, 5} 1 3 0
2 5 {3, 4} 0 {3, 5, 6} 1 3 0
3 3 {3, 4} 1 {3, 5} 1 5 0
4 5 {3, 4} 0 {3, 5} 1 3 0
5 3 {3, 4} 1 {3, 5} 1 3 1
6 4 {3, 4} 1 {3, 5} 0 3 0
7 3 {3, 4} 1 {3, 5} 1 3 1
8 5 {3, 4} 0 {3, 5, 6} 1 3 0
9 3 {3, 4} 1 {3, 5} 1 3 1

10 4 {3, 4} 1 {3, 5, 6} 0 6 0
11 4 {3, 4} 1 {3, 5} 0 4 1
12 4 {3, 4} 1 {3, 5} 0 4 1
13 4 {3, 4} 1 {3, 5} 0 6 0
14 4 {3, 4} 1 {3, 5} 0 6 0
15 5 {3, 4} 0 {3, 5} 1 3 0
16 5 {3, 4} 0 {3, 5} 1 3 0
17 4 {3, 4} 1 {3, 5} 0 4 1
18 4 {3, 4} 1 {3, 5, 6} 0 3 0
19 5 {3, 4} 0 {3, 5} 1 3 0
20 5 {3, 4} 0 {3, 5} 1 3 0
21 5 {3, 4} 0 {3, 5} 1 3 0
22 4 {3, 4} 1 {3, 5} 0 4 1
23 5 {3, 4} 0 {3, 5} 1 3 0
24 4 {3, 4} 1 {3, 5} 0 6 0
25 5 {3, 4} 0 {3, 6} 0 5 1
26 5 {3, 4} 0 {3, 5} 1 3 0

Continued on next page
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Table 6: (continued)

Iter VI-Theo IBMDP Top-1 Features T1 Match IBMDP Top-2 Features T2 Match VI-Sim Sim Match

27 5 {3, 4} 0 {3, 5} 1 3 0
28 4 {3, 4} 1 {3, 5} 0 3 0
29 4 {3, 4} 1 {3, 5} 0 3 0
30 5 {3, 4} 0 {3, 5} 1 3 0
31 5 {3, 4} 0 {3, 5, 6} 1 3 0
32 4 {3, 4} 1 {3, 5} 0 6 0
33 5 {3, 4} 0 {3, 5} 1 5 1
34 4 {3, 4} 1 {3, 5} 0 4 1
35 4 {3, 4} 1 {3, 5} 0 4 1
36 5 {3, 4} 0 {3, 5} 1 3 0
37 5 {3, 4} 0 {3, 5} 1 3 0
38 5 {3, 4} 0 {3, 5} 1 3 0
39 5 {3, 4} 0 {3, 5} 1 3 0
40 3 {3, 4} 1 {3, 5} 1 3 1
41 4 {3, 4} 1 {3, 5} 0 4 1
42 4 {3, 4, 5} 1 {3, 4, 5} 1 6 0
43 3 {3, 4} 1 {3, 5} 1 3 1
44 5 {3, 4} 0 {3, 5, 6} 1 3 0
45 5 {3, 4} 0 {3, 5} 1 3 0
46 5 {3, 4} 0 {3, 5} 1 3 0
47 3 {3, 4} 1 {3, 5} 1 3 1
48 5 {3, 4} 0 {3, 5} 1 5 1
49 4 {3, 4} 1 {3, 5} 0 3 0
50 5 {3, 4} 0 {3, 5} 1 3 0
51 4 {3, 4} 1 {3, 5, 6} 0 4 1
52 5 {3, 4} 0 {3, 5} 1 3 0
53 5 {3, 4} 0 {3, 5} 1 5 1
54 5 {3, 4} 0 {3, 5} 1 3 0
55 4 {3, 4} 1 {3, 5} 0 3 0
56 5 {3, 4} 0 {3, 5} 1 3 0
57 4 {3, 4} 1 {3, 4, 5} 1 3 0
58 3 {3, 4} 1 {3, 5} 1 3 1
59 4 {3, 4} 1 {3, 5} 0 6 0
60 3 {3, 4} 1 {3, 4, 5} 1 3 1
61 3 {3, 4} 1 {3, 5, 6} 1 3 1
62 6 {3, 4} 0 {3, 5} 0 3 0
63 5 {3, 4} 0 {3, 5} 1 5 1
64 4 {3, 4} 1 {3, 5} 0 3 0
65 5 {3, 4} 0 {3, 5} 1 3 0
66 5 {3, 4} 0 {3, 5} 1 3 0
67 5 {3, 4} 0 {3, 5} 1 3 0
68 4 {3, 4} 1 {3, 5} 0 6 0
69 6 {3, 4} 0 {3, 5} 0 6 1
70 4 {3, 4} 1 {3, 5} 0 4 1
71 5 {3, 4} 0 {3, 5} 1 3 0
72 5 {3, 4} 0 {3, 5} 1 3 0
73 4 {3, 4} 1 {3, 5} 0 6 0
74 5 {3, 4} 0 {3, 5} 1 3 0
75 5 {3, 4} 0 {3, 5} 1 5 1
76 5 {3, 4} 0 {3, 5} 1 5 1
77 5 {3, 4} 0 {3, 5} 1 3 0
78 4 {3, 4} 1 {3, 5} 0 4 1
79 5 {3, 4} 0 {3, 5} 1 3 0
80 5 {3, 4} 0 {3, 5} 1 5 1
81 5 {3, 4} 0 {3, 5} 1 3 0
82 5 {3, 4} 0 {3, 5} 1 3 0
83 4 {3, 4} 1 {3, 5} 0 4 1
84 5 {3, 4} 0 {3, 5} 1 3 0
85 5 {3, 4} 0 {3, 5} 1 3 0
86 5 {3, 4} 0 {3, 5} 1 3 0
87 4 {3, 4} 1 {3, 5, 6} 0 3 0
88 5 {3, 4} 0 {3, 5} 1 3 0

Continued on next page
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Table 6: (continued)

Iter VI-Theo IBMDP Top-1 Features T1 Match IBMDP Top-2 Features T2 Match VI-Sim Sim Match

89 5 {3, 4} 0 {3, 5} 1 3 0
90 5 {3, 4} 0 {3, 5} 1 3 0
91 3 {3, 4} 1 {3, 5} 1 3 1
92 4 {3, 4} 1 {3, 5} 0 4 1
93 3 {3, 4} 1 {3, 5} 1 3 1
94 3 {3, 4} 1 {3, 5} 1 3 1
95 4 {3, 4} 1 {3, 5, 6} 0 3 0
96 5 {3, 4} 0 {3, 5} 1 5 1
97 5 {3, 4} 0 {3, 5} 1 3 0
98 4 {3, 4} 1 {3, 5} 0 4 1
99 3 {3, 4} 1 {3, 5} 1 3 1

100 4 {3, 4} 1 {3, 5} 0 6 0

Interpretation. VI-Theo and VI-Sim return a single deterministic action per state. IBMDP ex-
plores the posterior-predictive policy space via stochastic rollouts and, by ensembling, surfaces
multiple near-equivalent high-value choices. The superior Top-2 coverage (66% vs. VI-Sim’s 36%
matching rate) reflects better policy-space exploration and robustness to finite-sample effects.

E BENCHMARK WITH PUBLIC DATASET

E.1 HIGH-COST DIFFERENTIAL CLEARANCE OPTIMIZATION

We reuse a publicly available pharmacokinetics dataset (rat, dog, human clearance plus QSAR pre-
dictors) to stress-test IBMDP under large assay cost differentials. The dataset is described in (?) and
is available to download. The planner may propose at most two assays per decision step, and the
expensive human clearance assay is treated just like the rat and dog assays (i.e., it can be scheduled
in any batch). The operational objective is to finish with human clearance exceeding 1.0 mL/min/kg
while spending as little as possible. Species-specific costs are listed in Table 7.

Assay Cost ($) Relative Cost
Rat clearance 400 1.0×
Dog clearance 800 2.0×
Human clearance 4,000 10.0×

Table 7: Assay cost structure for high-cost differential experiment
Unlike traditional gated progression (e.g., “rat before dog before human”), every episode starts with
the unmeasured state s0 = {CLpred

rat ,CLpred
dog ,CLpred

human} so the solver can pick any eligible batch. The
IBMDP ensemble (30 runs, c = 5.0, 5,000 iterations per run, τ ∈ {0.6, 0.9}) produces a Maximum-
Likelihood Action-Set Path (MLASP) by majority vote over recommended assay batches. The vot-
ing tally reveals three regimes: (i) high-uncertainty states favour rat/dog assays before committing
to human tests; (ii) low-uncertainty states jump directly to human clearance; and (iii) intermediate
states switch behaviour depending on the belief threshold τ . Figure 5 visualizes the resulting Pareto
front and highlights how the MLASP navigates the trade-off between total spend and terminal un-
certainty.

E.2 INTERPRETING THE PARETO FRONTIER

Figure 5 aggregates planning outcomes for tolerances τ ∈ {0.0, 0.1, . . . , 1.0} under the two-assays-
per-step constraint. For each tolerance we execute a 30-run ensemble and record the first assay batch
proposed by every run. Each marker therefore represents the rule ”if H(sT ) ≤ τ is required, begin
with batch A0”; the horizontal axis reports the corresponding assay spend (rat + dog + human) and
the vertical axis equals the targeted uncertainty τ .The blue locus links the Pareto-efficient points, ex-
posing the spend-versus-uncertainty trade-off that emerges when τ is tightened. The starred marker
denotes the Maximum-Likelihood Action-Set Path (MLASP)—the batch occurring most frequently
across ensemble members for the displayed tolerance. Progressing from higher to lower τ shows
that lenient tolerances favour inexpensive rat/dog assays, whereas stringent requirements such as
H(sT ) ≤ 0.10 eventually demand the human clearance assay despite its 10× cost in Table 7. After
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Figure 5: ADME clearance optimization results comparing IBMDP performance under two belief
thresholds (τ = 0.6 and τ = 0.9) for a representative compound from the public CNS clearance
benchmark. The plot demonstrates the Pareto-optimal trade-offs between total assay spend (hori-
zontal axis) and terminal state uncertainty H(sT ) (vertical axis) achieved by the IBMDP ensemble
across 30 runs. The two distinct curves for τ = 0.6 (more lenient) and τ = 0.9 (more stringent)
illustrate how tighter belief thresholds drive higher assay expenditure to achieve lower uncertainty.
Notably, the two tau configurations exhibit strong alignment in their Pareto frontiers, confirming that
IBMDP produces consistent and robust planning strategies across different confidence requirements.
The Maximum-Likelihood Action-Set Paths (MLASPs) for each threshold are marked, showing how
the ensemble consensus adapts to balance the high cost of human clearance assays ($4,000) against
the need to reduce decision uncertainty below the specified threshold.

the first batch is executed the IBMDP policy updates the belief state and recomputes the next action,
so the figure captures the initial decision while the full policy remains adaptive.

F USE OF LLM

We used a large language model (LLM) solely as a general-purpose writing aid for light copyediting
and polishing. Specifically, the LLM was used to improve grammar, clarity, and flow of sentences
written by the authors, and to suggest minor phrasing alternatives. The LLM did not contribute
to research ideation, methodology, experimental design, data analysis, interpretation of results, or
substantive content generation. All technical claims, analyses, references, and conclusions were
conceived, written, and verified by the authors. The authors take full responsibility for all content in
this paper, including any text that was edited with the assistance of an LLM. No LLM is listed as an
author, and no text was accepted without author review and verification.

G GLOBAL NOTATION REFERENCE

This appendix provides a comprehensive reference for all mathematical notation used throughout
the manuscript. The table below organizes symbols by category for easy reference.
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Table 8: Global Notation Reference summarizing the symbols used across the manuscript.
Symbol Meaning

Sets & Indices
N,M Number of historical compounds and total available assays,

respectively.
X = {xi}Ni=1 Set of N historical compounds with fixed representations.
A = {a1, . . . , aM} Set of M available assays.
D = {(xi,yi)}Ni=1 Historical dataset of compounds and their assay outcome vectors.
i, j, k, t Indices for historical case, assay, feature, and decision step.
Candidate Compound & State
x⋆ The candidate compound for which a plan is being made.
st = (x⋆, {y⋆,j}j∈Mt) State at step t, comprising the candidate and all outcomes measured

so far.
Mt ⊆ A The set of assays that have been measured for x⋆ up to step t.
Ut = A \Mt The set of unmeasured assays for x⋆ at step t.
Actions, Costs & Policy
At = P≤m(Ut) ∪ {eox} Action set at st: batches of up to m unmeasured assays, plus the

stop action.
m Maximum number of assays that can be run in parallel per step.
At ∈ At The action (a batch of assays) chosen at step t.
c(st, At) ∈ Rq

≥0 Vector of q resource costs for taking action At.
ρ ∈ Rq

≥0 User-defined weights for trading off different cost types.
R(st, At) Scalar step cost: ρTc(st, At). R(st, eox) = 0.
π, π⋆ A policy mapping states to actions, and the optimal policy.
Similarity Model & Target Functionals
g The primary scalar target property of interest (e.g., an in vivo

endpoint).
G = {gi}, Ig Set of historical target values and the index set where they are

available.
d(st, Di) Variance-normalized distance between the current state and

historical case i.
wi(st) Similarity weight of historical case i given the current state st.
w̃i(st) Similarity weight wi(st) re-normalized over the set Ig .
H(st) State uncertainty: the weighted variance of the target g based on

w̃i(st).
L(st) Goal likelihood: the weighted probability that g is in a desirable

range.
1[·] Indicator function: returns 1 when the condition inside the brackets

holds, and 0 otherwise.
Hyperparameters & Constraints
λw, λk Hyperparameters: global similarity bandwidth and per-feature

weights.
ϵ, τ Thresholds for the constrained objective: max terminal uncertainty

and min goal likelihood.
γ, T Discount factor and maximum horizon for the MDP.
Ne, nitr Planning parameters: ensemble size and MCTS iterations per run.
Algorithm Components
MCTS-DPW Monte Carlo Tree Search with Double Progressive Widening.
MLASP Maximum-Likelihood Action-Sets Path: final plan from ensemble

majority voting.
eox End of experiment action (stop action).
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