

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CASE-GUIDED SEQUENTIAL ASSAY PLANNING IN DRUG DISCOVERY

Anonymous authors

Paper under double-blind review

ABSTRACT

Optimally sequencing experimental assays in drug discovery is a high-stakes planning problem under severe uncertainty and resource constraints. A primary obstacle for standard reinforcement learning (RL) is the absence of an explicit environment simulator or transition data (s, a, s') ; planning must rely solely on a static database of historical outcomes. We introduce the Implicit Bayesian Markov Decision Process (IBMDP), a model-based RL framework designed for such simulator-free settings. IBMDP constructs a case-guided implicit model of transition dynamics by forming a nonparametric belief distribution using similar historical outcomes. This mechanism enables Bayesian belief updating as evidence accumulates and employs ensemble MCTS planning to generate stable policies that balance information gain toward desired outcomes with resource efficiency. We validate IBMDP through comprehensive experiments. On a real-world central nervous system (CNS) drug discovery task, IBMDP reduced resource consumption by up to 92% compared to established heuristics while maintaining decision confidence. To rigorously assess decision quality, we also benchmarked IBMDP in a synthetic environment with a computable optimal policy. Our framework achieves significantly higher alignment with this optimal policy than a deterministic value iteration alternative that uses the same similarity-based model, demonstrating the superiority of our ensemble planner. IBMDP offers a practical solution for sequential experimental design in data-rich but simulator-poor domains.

1 INTRODUCTION

To discover new drugs, scientists make sequential decisions to conduct multiple assays, often constrained by limited time, budget, and materials. The process typically begins with sparse evidence from historical assay outcomes on past compounds. Executing an assay for a new drug candidate compound yields an observation of the assay consuming monetary and time resources, each probing a distinct facet of developability of the compound (e.g., potency, ADME, safety). For example, an *in vitro* assay may be cheap and fast but only weakly informative downstream, whereas an *in vivo* assay is slower and more expensive yet more decisive for Go/No-Go decisions. Under tight budget and schedule constraints, the central question is whether to run another assay or stop now. Ideally, each chosen assay reduces posterior uncertainty while increasing the likelihood that the compound satisfies predefined developability criteria. This is a planning problem under uncertainty, further complicated by the absence of transition tuples (s, a, s') —only historical assay outcomes from past compounds are available. In practice, rule-based playbooks and expert heuristics are often risk-averse or myopic, leading to inefficient use of constrained resources and suboptimal portfolio outcomes.

To address these challenges, we propose the Implicit Bayesian Markov Decision Process (IBMDP), a reinforcement learning (RL) framework for case-guided sequential assay planning that uses assay outcomes of historical compounds to construct an implicit probabilistic model of information gain acquired from assays. At each step, IBMDP forms a categorical distribution over historical compound records using a variance-normalized distance kernel and samples plausible assay outcomes consistent with the current partial evidence, thereby updating the candidate’s observed state. This implicit, nonparametric transition model emphasizes contexts most relevant to the candidate without requiring an explicit mechanistic simulator. Planning is performed with Monte Carlo Tree Search with Double Progressive Widening (MCTS-DPW), and we run an ensemble of MCTS planners to reduce variance from both stochastic sampling and tree search; majority voting across runs yields

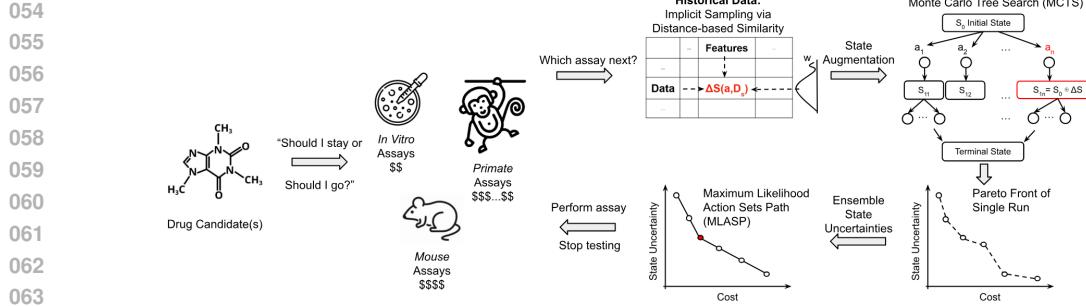


Figure 1: Sequential decisions in drug discovery through a data-driven, analog-guided simulator for planning, which maintains a Bayesian belief over the most relevant historical compound analogs.

a Maximum-Likelihood Action-Sets Path (MLASP) that is stable across uncertainty levels. When simulating possible courses of actions during search, IBMDP takes into account the resulting reduction in uncertainty towards desirable states (e.g., high drug likeliness *in vivo*) and recommends the next assay only when the uncertainty reduction reaches a sufficient magnitude towards the desirable states. From the Partially Observable MDP (POMDP) perspective, while standard methods maintain explicit probability distributions over hidden states and update them via Bayes’ rule, IBMDP makes decisions by sampling from past experiences weighted by similarity to the current observed state (Appendix A). While IBMDP trades formal convergence guarantees for practical applicability in simulator-free settings, it provides empirically robust policies through ensemble MCTS planning (Appendix A.6).

Contributions. **(i) RL planning with evidence-adaptive dynamics:** Unlike traditional RL with fixed transition functions, IBMDP’s implicit dynamics evolve as observations accumulate—the similarity-based belief continuously adapts, creating non-stationary but principled state transitions from static historical data. **(ii) Similarity-weighted Bayesian belief mechanism:** We transform historical outcomes into an adaptive generative model where transition probabilities dynamically shift based on accumulated evidence, enabling planning without explicit dynamics or (s, a, s') trajectories. **(iii) Robust ensemble MCTS despite non-stationary dynamics:** Our ensemble approach with majority voting (MLASP) produces stable policies even with evolving transition models, optimally balancing information gain with resource efficiency.

2 PRELIMINARIES

Compounds, Assays, and Historical Data Let $\mathcal{A} = \{a_1, \dots, a_M\}$ be the set of available assays and $\mathcal{X} = \{x_1, \dots, x_N\}$ be the set of historical compounds, each with a fixed molecular representation. For a historical compound x_i and an assay a_j , the observed outcome is denoted by $y_{i,j}$. The complete historical dataset is represented as a set of tuples:

$$\mathcal{D} = \{(x_i, \mathbf{y}_i)\}_{i=1}^N,$$

where $\mathbf{y}_i = (y_{i,1}, \dots, y_{i,M})$ is the vector of all assay outcomes for compound x_i . The new drug candidate compound for which we are planning is denoted $x_* \equiv x_{N+1}$. We also have access to per-assay predictor models, such as Quantitative Structure-Activity Relationship (QSAR) models, which are functions $f_j : x \mapsto \hat{y}_j = f_j(x)$ that can be queried for the candidate x_* during the planning phase (Chen et al., 2024). For convenience, Appendix G collects all symbols used throughout the paper in the *Global Notation Reference*.

Target Property Let g be the primary scalar target of interest, such as a definitive *in vivo* endpoint that determines a compound’s success. The historical values for this target form the set $G = \{g_i\}_{i=1}^N$. In many applications, the target property may correspond to one of the available assays. That is, for some specific assay index $j \in \{1, \dots, M\}$, we have $g_i \equiv y_{i,j}$ for all compounds. Crucially, to prevent data leakage, the set of target values G is never used in the computation of similarity or distance metrics during planning. We define $I_g = \{i : g_i \text{ is available}\}$ as the set of indices for historical compounds where the target value has been measured.

State and Actions We formulate the assay planning problem for the candidate x_* as a finite-horizon MDP with a discount factor $\gamma \in [0, 1)$ and a maximum horizon T . At any decision step t , we maintain an index set of assays that have already been performed, $M_t \subseteq \{1, \dots, M\}$, and the set of unmeasured assays, $U_t := \{1, \dots, M\} \setminus M_t$. The process starts with an empty set of measured assays, $M_0 = \emptyset$.

108 The **state** at step t summarizes all accumulated knowledge about the candidate compound: $s_t =$
 109 $(x_*, \{y_{*,j}\}_{j \in M_t})$. The **action set** at step t , \mathcal{A}_t , consists of choosing a batch of up to m currently un-
 110 measured assays to perform, or deciding to stop the experiment. Formally: $\mathcal{A}_t = \mathcal{P}_{\leq m}(U_t) \cup \{\text{eox}\}$.
 111 Here, $\mathcal{P}_{\leq m}(U_t)$ is the set of all subsets of U_t with size at most m , and ‘eox’ (end-of-experiment) is
 112 the terminal action. The parameter $m \leq M$ is a user-specified throughput limit that caps how many
 113 assays can be run in parallel at a single step. Executing an action $A_t \subseteq U_t$ reveals the outcomes
 114 $\{y_{*,j}\}_{j \in A_t}$ and updates the measured and unmeasured sets for the next step, $t + 1$.

115
 116 **Reward Function** Each action incurs a cost based on the resources it consumes (e.g., time, mate-
 117 rials, monetary expense). Let $c_j \in \mathbb{R}_{\geq 0}^q$ be the cost vector for an individual assay a_j . The cost for a
 118 batch action A_t is the sum of the costs of the individual assays within it, i.e., $c(s_t, A_t) = \sum_{a_j \in A_t} c_j$.
 119 Let $\rho \in \mathbb{R}_{\geq 0}^q$ be a user-defined vector of weights that specifies the trade-offs between different re-
 120 sources. The scalar step reward, $R(s_t, A_t)$, is defined as:

$$121 \quad R(s_t, A_t) = \begin{cases} -\rho^T c(s_t, A_t), & \text{if } A_t \in \mathcal{A}_t \setminus \{\text{eox}\}, \\ 122 \quad 0, & \text{if } A_t = \text{eox}. \end{cases}$$

124 **Uncertainty and Goal-Likelihood Functionals** To ensure resources are directed toward viable
 125 drug candidates, we define two key state-dependent scalar functions based on similarity weights
 126 $w_i(s_t)$ over historical records (to be formally defined in a later section). First, we renormalize the
 127 weights to consider only the historical compounds for which the target value g is available:

$$128 \quad \tilde{w}_i(s_t) = \frac{w_i(s_t)}{\sum_{\ell \in I_g} w_\ell(s_t)} \quad \text{for } i \in I_g.$$

130 Note that when $|I_g| \ll N$, this renormalization may lead to variance underestimation as it restricts
 131 the effective sample size. This limitation is discussed in the experimental analysis. Using these
 132 normalized weights, we define:

134 1. **State-Uncertainty** ($H(s_t)$): The weighted variance of the target property g over the rele-
 135 vant historical data, which serves as a measure of uncertainty about the candidate’s potential
 136 outcome.

$$137 \quad H(s_t) = \sum_{i \in I_g} \tilde{w}_i(s_t) (g_i - \bar{g}(s_t))^2, \quad \text{where } \bar{g}(s_t) = \sum_{i \in I_g} \tilde{w}_i(s_t) g_i. \quad (1)$$

139 2. **Goal-Likelihood** ($L(s_t)$): The weighted probability that the candidate’s target property
 140 falls within a predefined desirable range $[g_{\min}, g_{\max}]$.

$$142 \quad L(s_t) = \sum_{i \in I_g} \tilde{w}_i(s_t) \mathbf{1}[g_i \in [g_{\min}, g_{\max}]]. \quad (2)$$

144 Here, $\mathbf{1}[\cdot]$ denotes the indicator function, which returns 1 when its argument is true and 0
 145 otherwise.

147 **Constrained Objective** The optimal policy π^* is one that maximizes the total expected reward,
 148 subject to constraints on terminal uncertainty and stepwise feasibility. Specifically, we aim to solve:

$$149 \quad \pi^* \in \arg \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^T \gamma^t R(s_t, \pi(s_t)) \right] \quad (3)$$

$$150 \quad \text{subject to } \begin{cases} H(s_T) \leq \epsilon, & \epsilon \in [0, 1], \\ 151 \quad L(s_t) \geq \tau, & \forall t = 0, \dots, T-1, \end{cases}$$

152 where $\epsilon > 0$ is the maximum tolerable uncertainty at the terminal state s_T , and $\tau \in (0, 1)$ is the
 153 minimum acceptable goal-likelihood at every intermediate step. The feasibility constraint $L(s_t) \geq \tau$
 154 ensures that the planning process remains on a trajectory toward a successful outcome, while the
 155 terminal constraint $H(s_T) \leq \epsilon$ guarantees that a decision is made with sufficient confidence.

156 3 IMPLICIT MODEL OF ENVIRONMENT DYNAMICS

158 The key challenge is updating the state transition $s_t \xrightarrow{A_t} s_{t+1}$ —i.e., how the state evolves after
 159 executing a batch of assays—when no explicit simulator is available and only historical data \mathcal{D} can

be leveraged to infer dynamics. We address this by constructing an implicit, generative model of the environment’s dynamics. This model uses a similarity metric to dynamically re-weight historical compound profiles, forming a belief over plausible outcomes for the candidate compound x_* . This avoids explicit parameterization of transition probabilities and implicitly propagates uncertainty by sampling from historical compound analogs most relevant to the current state of x_* .

Similarity Weight Computation The transition model is centered on a similarity weight, $w_i(s_t)$, assigned to each historical compound record $D_i = (x_i, \mathbf{y}_i) \in \mathcal{D}$. These weights quantify the relevance of each historical case to the current state, s_t . The weights are computed using a variance-normalized exponential kernel:

$$w_i(s_t) = \exp(-\lambda_w \cdot d(s_t, D_i)), \quad (4)$$

where $d(s_t, D_i)$ is a distance metric. The distance is computed over the set of all features known for the candidate x_* at step t , which we denote as the feature set \mathcal{K}_t . This set includes all initial QSAR predictions and the outcomes of all measured assays in M_t . The distance compares these known values for the candidate to the corresponding values for the historical compound x_i :

$$d(s_t, D_i) = \sum_{k \in \mathcal{K}_t} \lambda_k \cdot \frac{(\phi_k(s_t) - \phi_k(D_i))^2}{\sigma_k^2}, \quad (5)$$

Here, $\phi_k(\cdot)$ is an extractor function that returns the value of the k -th feature from a given state or historical record. For the candidate, $\phi_k(s_t)$ is either a QSAR prediction or a measured assay outcome $\{y_{*,j}\}_{j \in M_t}$. For the historical compound, $\phi_k(D_i)$ is the corresponding recorded value. The term σ_k^2 is the empirical variance of feature k across the historical dataset \mathcal{D} , computed as $\sigma_k^2 = \frac{1}{N} \sum_{i=1}^N (\phi_k(D_i) - \bar{\phi}_k)^2$ where $\bar{\phi}_k = \frac{1}{N} \sum_{i=1}^N \phi_k(D_i)$. The parameter λ_k is a feature-specific weight, and λ_w is a global temperature parameter. The variance normalization ensures a dimensionless comparison across features with different scales.

Similarity-Based State Transition The transition from state s_t to s_{t+1} after executing an action (a batch of assays) $A_t \subseteq U_t$ is simulated through a weighted sampling process. First, a historical case is sampled from \mathcal{D} with probability proportional to its similarity weight:

$$I \sim \text{Categorical} \left(\frac{w_1(s_t)}{Z}, \dots, \frac{w_N(s_t)}{Z} \right), \quad \text{where } Z = \sum_{i=1}^N w_i(s_t).$$

Let the selected historical case be $D_I = (x_I, \mathbf{y}_I)$. The outcomes for the assays in the action batch A_t are then “revealed” by taking the corresponding values from this sampled case:

$$\{y_{*,j} := y_{I,j}\}_{j \in A_t}.$$

The new state s_{t+1} is formed by augmenting the previous state with these newly generated outcomes. Formally, $M_{t+1} = M_t \cup A_t$, and the new state is:

$$s_{t+1} = (x_*, \{y_{*,j}\}_{j \in M_{t+1}}).$$

This generative process ensures that the simulated outcomes for the new assays are consistent with a plausible, historically observed compound profile, thereby preserving correlations between assays.

Implicit Transition Modeling via Sampling The sampling mechanism described above defines an implicit transition probability distribution $P(s_{t+1}|s_t, A_t)$. This distribution is a mixture model where each component corresponds to one of the historical cases in \mathcal{D} . The probability of transitioning to a specific next state s_{t+1} is the total weight of all historical cases that would produce that state:

$$P(s_{t+1}|s_t, A_t) = \sum_{i=1}^N \frac{w_i(s_t)}{Z} \cdot \mathbf{1}[s_{t+1} = s_t \oplus \{(a_j, y_{i,j})\}_{j \in A_t}], \quad (6)$$

where \oplus denotes the state update operation that augments the current state by adding new assay outcomes to M_t and updating the observed values $\{y_{*,j}\}$, and $\mathbf{1}[\cdot]$ is the indicator function. This sampling-based approach approximates the true transition dynamics when the historical dataset \mathcal{D} is sufficiently representative of the underlying system. The quality of the approximation depends on the coverage of \mathcal{D} , the appropriateness of the similarity metric, and the dataset size $N = |\mathcal{D}|$.

Bayesian Weight Update After transitioning to the new state s_{t+1} , the similarity weights are re-evaluated to incorporate the new evidence. This recalculation is a direct and principled implementation of a Bayesian belief update. As we formally derive in Appendix A, our framework is

equivalent to a POMDP where the hidden state is a latent index over the historical cases in \mathcal{D} . The similarity weights $w_i(s_t)$ represent the posterior belief over these latent “prototypes,” and the recalculation after observing new assay outcomes is equivalent to applying Bayes’ rule. The new weights $\{w_i(s_{t+1})\}_{i=1}^N$ are computed using the same distance function as before, but now applied to the augmented state s_{t+1} :

$$w_i(s_{t+1}) = \exp(-\lambda_w \cdot d(s_{t+1}, D_i)). \quad (7)$$

This update mechanism shifts the model’s belief toward historical cases that are most consistent with the expanded set of evidence for the candidate x_* , allowing the planner to refine its predictions and subsequent decisions as more data is gathered.

4 IMPLICIT BAYESIAN MARKOV DECISION PROCESS (IBMDP)

The Implicit Bayesian Markov Decision Process (IBMDP) is a planning framework designed to solve the constrained optimization problem defined in Equation 3. It integrates the implicit, case-based transition model with a powerful planning algorithm to find reward-maximizing sequences of assays. The core of the framework is a Monte Carlo Tree Search (MCTS) planner that navigates the decision space by simulating potential experimental paths using the generative model derived from historical data. To ensure the robustness of its recommendations, IBMDP employs an ensemble method, aggregating the results of multiple independent planning runs.

The overall workflow proceeds as follows: Historical Data \mathcal{D} informs a Similarity Module, which computes weights $w_i(s_t)$ for the current state s_t . These weights drive the implicit transition model used by an MCTS-DPW planner. The planner generates a policy, and this process is repeated across an ensemble of runs. Finally, the policies are aggregated to construct a Maximum-Likelihood Action-Sets Path (MLASP), which constitutes the final recommended experimental plan. The detailed procedure is outlined in Algorithm 1.

Algorithm 1 Ensemble IBMDP Algorithm

Require: Initial state $s_0 = (x_*, M_0 = \emptyset)$, historical data \mathcal{D} , reward function $R(s, A)$, functionals $H(s), L(s)$, thresholds ϵ, τ , horizon T , iterations n_{itr} , ensemble size N_e .

Ensure: A Maximum-Likelihood Action-Sets Path (MLASP).

- 1: Initialize policy set $\Pi \leftarrow \emptyset$.
- 2: **for** $j = 1$ to N_e **do** ▷ Ensemble loop
- 3: Initialize MCTS tree \mathcal{T} with root node s_0 .
- 4: **for** $i = 1$ to n_{itr} **do** ▷ MCTS iterations
- 5: **Selection:** Traverse \mathcal{T} from s_0 using a tree policy (e.g., UCB1) to select a leaf node s_{leaf} .
- 6: **Expansion:** If s_{leaf} is not a terminal state ($H(s_{leaf}) > \epsilon$), choose an untried action $A \in \mathcal{A}_t(s_{leaf})$ and create a new child node s_{new} .
- 7: **Simulation (Rollout):** From s_{new} , simulate a trajectory of states and actions using a reward-aware heuristic policy until a terminal state or horizon T is reached.
- 8: During rollout, for a transition $(s, A) \rightarrow s'$, the next state s' is generated by the implicit model: sample $I \sim \text{Cat}(\{w_k(s)/Z\}_{k=1}^N)$ where $Z = \sum_{k=1}^N w_k(s)$ and set $s' = s \oplus \{(a_k, y_{I,k})\}_{k \in A}$.
- 9: The total return Q is the cumulative reward, with a large negative reward (e.g., -10^6) if $L(s) < \tau$ for any state in the trajectory.
- 10: **Backpropagation:** Update the visit counts and value estimates for all nodes on the path from s_{new} back to the root using the return Q .
- 11: **end for**
- 12: Extract the optimal policy π_j^* from the final tree \mathcal{T} by selecting the action with the highest value at each node.
- 13: $\Pi \leftarrow \Pi \cup \{\pi_j^*\}$.
- 14: **end for**
- 15: Construct MLASP by aggregating policies in Π via majority voting at each decision step.
- 16: **return** MLASP

IBMDP begins with the initial state s_0 , which contains the candidate compound x_* and any pre-existing QSAR predictions, with an empty set of measured assays ($M_0 = \emptyset$). The planner, MCTS with Double Progressive Widening (MCTS-DPW), is particularly well-suited for this problem due to its ability to handle large, combinatorial action spaces—in this case, the power set of unmeasured assays, $\mathcal{P}_{\leq m}(U_t)$.

During each simulation step within the MCTS algorithm, the planner must evaluate the consequence of taking an action A_t . It does this by invoking the implicit transition model from the previous section. A historical case D_I is sampled based on the current similarity weights $w_i(s_t)$, and the

270 outcomes for the assays in A_t are drawn from this case. This yields a simulated next state, s_{t+1} .
 271 The planner then recalculates the similarity weights for this new state, $w_i(s_{t+1})$, and evaluates the
 272 state-uncertainty $H(s_{t+1})$ and goal-likelihood $L(s_{t+1})$. A state is considered terminal if the uncer-
 273 tainty $H(s)$ falls below the threshold ϵ , and the planner receives a negative reward if the feasibility
 274 constraint $L(s) < \tau$ is violated at any step. The immediate step reward, $R(s_t, A_t)$, is also recorded.
 275 This process allows the MCTS to build a search tree that accurately reflects the trade-off between
 276 reward (resource efficiency) and the expected information gain towards desired states, all guided by
 277 the historical data.

278 To mitigate stochasticity, we run the planning process multiple times to form an ensemble. The
 279 final recommendation (MLASP) is constructed by majority vote over the actions recommended by
 280 the ensemble policies at each stage. This ensures the plan is robust and not an artifact of a single
 281 simulation run.

282 5 EXPERIMENTS

284 We validate the performance of IBMDP through a two-part evaluation. First, we apply it to a real-
 285 world sequential assay planning task in central nervous system (CNS) drug discovery to demonstrate
 286 its practical utility and potential for resource savings. For reproducibility, we performed the same
 287 experiment on a public dataset on selecting *in vivo* pharmacokinetics assays between rat and dog
 288 to determine *in vivo* clearance in human (Appendix E). Second, we set up a synthetic environment
 289 with a known optimal policy to rigorously assess the quality of its decision-making process.

290 5.1 BRAIN PENETRATION ASSAYS: A REAL-WORLD CASE STUDY

292 **Problem Setting and Data.** We evaluate IBMDP on a sequential assay-planning task for central
 293 nervous system (CNS) drug discovery, where the objective is to efficiently determine a compound’s
 294 brain penetration potential. This property is critically dependent on the compound’s ability to cross
 295 the blood-brain barrier (BBB). The decision involves selecting from cheap, fast, but less informative
 296 *in vitro* transporter assays (P-glycoprotein, PgP; Breast Cancer Resistance Protein, BCRP) and a
 297 definitive but slow and expensive *in vivo* assay that measures the unbound brain-to-plasma partition
 298 coefficient (k_{puu}).

299 Our historical dataset, \mathcal{D} , comprises $N = 220$ compounds with complete measurements for all
 300 relevant assays (100 nM PgP, 1 μ M PgP, 100 nM BCRP) and the target property, k_{puu} . All compounds
 301 also have associated QSAR predictions, which provide initial estimates for the assay outcomes (e.g.,
 302 for PgP and BCRP activity) and other relevant properties such as Mean Residence Time (MRT). The
 303 operational costs are defined as \$400 and a 7-day turnaround for each *in vitro* assay, and \$4,000 and
 304 a 21-day turnaround for the *in vivo* k_{puu} assay. Actions are constrained to a maximum of 3 parallel
 305 assays per step. A compound is considered to have high potential if its $k_{\text{puu}} > 0.5$.

306 **Experimental Setup.** The planning objective is to balance the reduction of state uncertainty $H(s)$
 307 on the target k_{puu} , the increase in goal likelihood $L(s)$ that k_{puu} is in the desirable range, and the
 308 maximization of reward (efficient use of resources). An experimental sequence terminates when
 309 the planner reaches a state of sufficient confidence, defined by the joint criteria $H(s_T) \leq \epsilon$ and
 310 $L(s_t) \geq \tau$ for all intermediate steps. Outcomes are compared against a conventional, rule-based
 311 decision strategy.

312 **Rule-Based Baseline.** In practice, decisions often follow simple heuristics based on QSAR pre-
 313 dictions. For this task, the baseline heuristic is:

- 315 • A compound is deemed **promising** (likely $0.5 \leq k_{\text{puu}} \leq 1$) if $\text{QSAR}_{1\mu\text{M},\text{PgP}} < 2$ AND
 316 $\text{QSAR}_{100\text{nM},\text{BCRP}} < 2$.
- 317 • A compound is deemed **non-promising** (likely $k_{\text{puu}} \leq 0.5$) if $\text{QSAR}_{1\mu\text{M},\text{PgP}} > 4$ OR
 318 $\text{QSAR}_{100\text{nM},\text{BCRP}} > 4$.

320 We evaluated IBMDP across four representative scenarios from three categories designed to test
 321 its performance against this heuristic: (i) **Baseline confirmation** (clear QSAR signals, Scenario
 322 3), (ii) **Heuristic challenge** (conflicting or borderline QSAR signals, Scenarios 2 and 4), and (iii)
 323 **Opportunity discovery** (QSARs suggest a non-promising compound that is, in fact, good, Scenario
 1).

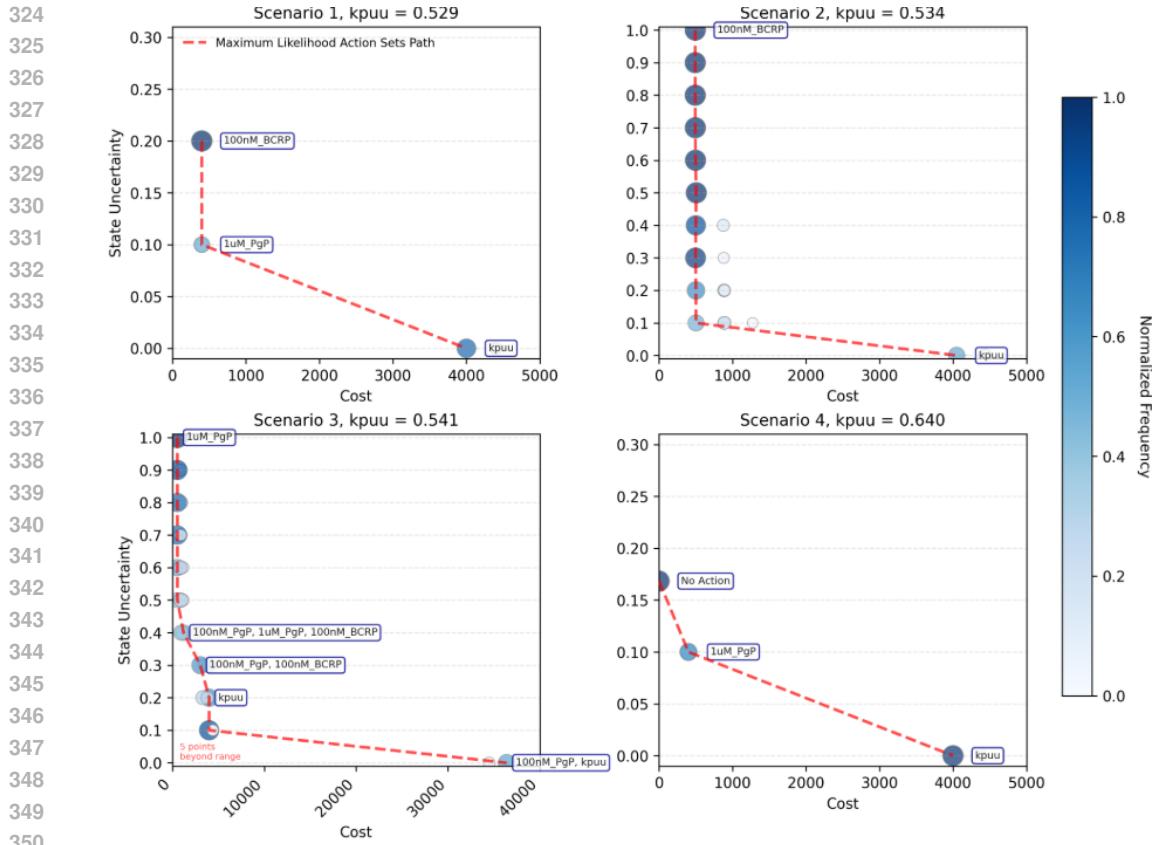


Figure 2: Monetary-prioritized results from IBMDP for four representative compounds. Each plot shows the Pareto front of achievable resource consumption versus terminal state uncertainty, with the Maximum-Likelihood Action-Sets Path (MLASP) highlighted. This illustrates how IBMDP provides a trade-off curve, allowing decision-makers to select a plan based on their risk and budget tolerance.

Results. As shown in Table 1, IBMDP consistently identifies more resource-efficient experimental plans than the traditional approach, which often defaults to running a full panel of assays consuming \$5,200. The table rows are ordered to correspond directly to the scenarios shown in Figure 2. In the opportunity discovery scenario (row 1/Scenario 1), the heuristic would have incorrectly discarded a valuable compound, whereas IBMDP recommends an efficient \$800 plan to reveal its true potential. For the next compound (row 2/Scenario 2), IBMDP finds a minimal \$400 plan to resolve uncertainty. In the baseline confirmation scenario (row 3/Scenario 3), IBMDP recommends just \$400-\$800 to confirm the promising profile. Finally, for the challenging case with conflicting QSARs (row 4/Scenario 4), IBMDP efficiently resolves uncertainty for \$400-\$800. Across these representative cases, IBMDP achieves the same or higher level of decision confidence with up to 92% reduction in resource consumption.

5.2 SIMULATION WITH SYNTHETIC DATA

Benchmark Setup. To rigorously assess the policy quality of IBMDP in a controlled setting, we benchmarked it using a synthetic dataset where a theoretically optimal policy is computable (full details in Appendix D). We established this optimal policy using Value Iteration with the true, analytic uncertainty dynamics (VI-Theo). We then compared IBMDP against both this VI-Theo baseline and a deterministic variant using the same similarity-based estimation as IBMDP, but planned with Value Iteration (VI-Sim).

Results. The results, summarized in Table 2, demonstrate the effectiveness of IBMDP’s stochastic, ensemble-based planning. Over 100 independent trials, IBMDP’s primary recommendation (Top 1) aligned with the optimal VI-Theo policy in 47% of cases. In contrast, the deterministic VI-Sim

378
 379 Table 1: Resource expense comparison between the traditional heuristic approach and IBMDP for
 380 representative compounds. Rows are ordered to match scenarios 1-4 in Figure 2. The traditional
 381 approach expense of \$5200 reflects running the full assay panel (\$4000 for k_{pnu} plus $3 \times \$400$ for
 382 *in vitro* assays), which IBMDP consistently avoids.

	QSAR Predictor			Assays				Expense (×\$100)	
	1uM PgP	100nM BCRP	mrt	kpuu	100nM PgP	1uM PgP	100nM BCRP	Trad.	IBMDP
385	5.0	9.6	1.0	0.53	15.9	12.9	8.2	52	8
386	0.9	8.5	2.6	0.53	2.2	1.1	14.2	52	4
387	1.7	1.3	1.8	0.54	1.1	0.8	1.3	52	4 - 8
388	21.4	0.7	1.2	0.64	17.4	19.7	0.8	52	4 - 8
389									
390									

391 approach achieved only 36% alignment. The advantage of the ensemble approach is further highlighted by the fact that the optimal action was contained within IBMDP’s top two recommendations 393 66% of the time, providing robust and effective coverage of the high-value policy space.

395 Table 2: Policy Alignment with Theoretical Baseline

Method	Matches	Match Rate (%)
IBMDP Top 1	47	47.0
IBMDP Top 2	66	66.0
VI Similarity	36	36.0

401 This superior performance stems from a fundamental difference in policy generation. While VI-
 402 based methods converge to a single, deterministic policy, IBMDP’s ensemble of MCTS agents ex-
 403 plores the policy space more broadly. This allows it to identify multiple, often near-equivalent,
 404 high-value actions, which is particularly advantageous in assay selection where different feature
 405 combinations can yield similar information gains. The results confirm that our ensemble-based
 406 planner provides more robust and reliable recommendations than a deterministic alternative by ef-
 407 fectively navigating the uncertainty inherent in the policy space itself.

409 6 CONCLUSIONS

411 To achieve case-guided planning, we presented IBMDP, a reinforcement learning framework that
 412 turns historical cases into a generative model for sequential assay selection. By weighting historical
 413 cases based on similarity, the algorithm enables robust, multi-step planning with Monte Carlo Tree
 414 Search without requiring an explicit transition function. The application to a real-world drug dis-
 415 covery problem demonstrated it uncovers ground truth of a compound with fewer, cheaper assays.
 416 This work establishes a powerful methodology for leveraging past experience to guide future ex-
 417 periments, with broad applicability in fields beyond drug discovery where historical data is abundant
 418 but mechanistic models are scarce.

419 7 RELATED WORK

421 **MDPs and Model-Based RL.** MDPs formalize sequential decision-making (Puterman, 2014);
 422 model-based RL learns dynamics for planning (Sutton & Barto, 2018; Kaiser et al., 2019; Moerland
 423 et al., 2023). Kernel-based RL leverages similarity primarily for value approximation or smoothing
 424 learned transitions (Ormoneit & Sen, 2002; Kveton & Theocharous, 2012; Xu et al., 2007). IBMDP
 425 uses similarity to build a *generative*, nonparametric transition *without* (s, a, s') tuples—sampling
 426 assay outcomes from historical records rather than learning explicit kernels over next-states.

427 **Bayesian RL and Bayesian Optimization.** BRL maintains posteriors over model parameters
 428 or values and samples explicit MDPs (e.g., PSRL) (Ghavamzadeh et al., 2015; Osband et al.,
 429 2013; Agrawal & Jia, 2017). BO targets one-shot improvement of objective functions (Griffiths &
 430 Hernández-Lobato, 2020; Gómez-Bombarelli et al., 2018). IBMDP avoids explicit parameter poste-
 431 riors and performs *Bayesian case-based generation* via similarity-weighted reweighting of records,
 enabling *multi-step* planning with reward optimization and feasibility constraints.

432 **Bayesian Experimental Design and Implicit Models.** Canonical single-step BO/BED methods
 433 are myopic and assume an explicit likelihood or simulator(Chaloner & Verdinelli, 1995; Rainforth
 434 et al., 2024); implicit-BED handles intractable likelihoods with info-theoretic surrogates or policy
 435 learning (Kleinegesse & Gutmann, 2020; 2021; Ivanova et al., 2021). IBMDP embeds an implicit
 436 model inside an *RL planner* (MCTS-DPW), balancing reward, time, and feasibility—not solely
 437 information gain.

438 **Constrained MDPs and POMDPs.** CMDPs typically constrain cumulative costs (Achiam et al.,
 439 2017); our constraints target *state* properties (terminal uncertainty, per-step likelihood) enforced
 440 during planning. The setting is akin to POMDPs (Kaelbling et al., 1998); our similarity-weighted
 441 posterior over records acts as an *implicit belief*. While multi-step RL/POMDP solvers require simu-
 442 lators or (s, a, s') tuples, IBMDP uses a *similarity-weighted, implicit generative model* built directly
 443 from historical assay profiles, preserving cross-assay dependence without learning explicit dynam-
 444 ics. A direct benchmark is therefore not strictly comparable without substantial adaptation: (i)
 445 redefining utilities over *assays* rather than inputs, (ii) adding *resource-aware* batching and a prin-
 446 cipled *stopping* rule aligned with our constraints on $H(s)$ and $L(s)$, and (iii) supplying a *posterior*
 447 *predictive* consistent with the no-simulator setting (Appendix A).

448 **Ensembles in RL.** Ensembles improve robustness and uncertainty estimates (Dietterich, 2000;
 449 Zhou, 2012; Wiering & Van Hasselt, 2008; Osband et al., 2016; Lakshminarayanan et al., 2017).
 450 IBMDP use ensembling pragmatically to stabilize stochastic planning.

451 **Application Context.** Prior RL in biomedicine focuses on trials or molecule generation/synthesis
 452 (Bennett & Hauser, 2013; Eghbali-Zarch et al., 2019; Abbas et al., 2007; Fard et al., 2018; Wang
 453 et al., 2021; Bengio et al., 2021; You et al., 2018; Zhou et al., 2019; Segler et al., 2018). Assay se-
 454 lection in early discovery remains underexplored. IBMDP supplies a practical planner that converts
 455 historical assay records into a coherent, generative transition model with operational constraints,
 addressing the “no (s, a, s') ” regime typical of discovery.

456 **On Fair Comparison with Related Methods.** While the above methods appear relevant, direct
 457 benchmarking would be fundamentally unfair—each operates under different mathematical assump-
 458 tions and problem formulations. Model-based RL requires (s, a, s') data or simulators; Bayesian RL
 459 samples from parameter posteriors; BO performs single-step optimization; POMDPs need explicit
 460 transition models. IBMDP uniquely addresses the setting where only static historical outcomes
 461 exist, making these comparisons “apples to oranges.” See Appendix C for detailed analysis.

462 8 LIMITATIONS

464 **Historical data coverage.** Effectiveness hinges on the quality/representativeness of \mathcal{D} ; gaps or bias
 465 can yield suboptimal choices. Unlike model-free RL with exploration, similarity-based sampling
 466 cannot discover strategies absent from \mathcal{D} —though in discovery, stable physico-chemical regularities
 467 partly mitigate this risk.

468 **Similarity metric assumptions.** The exponential kernel over (normalized) Euclidean distances as-
 469 sumes these distances reflect assay behavior. Nonlinear/threshold biology may violate this; domain-
 470 tailored metrics may be required to capture structure–activity relations.

472 **Scalability.** The worst-case total complexity is $O(N_e \cdot n_{\text{itr}} \cdot \min(b^H, n_{\text{itr}}) \cdot |\mathcal{D}| \cdot d)$, where b is the
 473 effective branching factor and H is the maximum tree depth. The per-iteration cost is dominated by
 474 the similarity weight calculation ($O(|\mathcal{D}| \cdot d)$). Large datasets $|\mathcal{D}|$ or high feature dimensions d can
 475 strain memory and compute, potentially requiring distributed infrastructure or data subsampling for
 enterprise-scale use.

476 **Hyperparameter sensitivity.** Performance depends on tuning $\{\lambda_w, \lambda_k, N_e, c, \epsilon, \tau\}$; robustness
 477 across programs may require expert priors or nontrivial validation budgets.

479
 480
 481
 482
 483
 484
 485

486
487**Ethics Statement**488
489
490

In accordance with the ICLR Code of Ethics, this work is intended to contribute positively to society by addressing a key challenge in pharmaceutical research, the resource waste due to inefficient decisions and the use of preclinical animals in drug discovery.

491
492
493
494
495
496

The primary goal of the proposed framework, the Implicit Bayesian Markov Decision Process (IB-MDP), is to enhance human well-being by making the drug discovery process more efficient. By optimizing the sequence of experimental assays, this research aims to reduce the significant monetary and time costs associated with developing new medicines. An ethical benefit of this approach is the potential to minimize harm by reducing the number of costly and lengthy *in vivo* animal assays, prioritizing such scarce resource for only the most promising compounds.

497
498
499
500
501
502
503

We are committed to upholding high standards of scientific excellence and transparency. The IB-MDP framework was rigorously evaluated on both a real-world central nervous system (CNS) drug discovery task and a synthetic environment where the optimal policy was computable, ensuring a thorough assessment of its performance. We have been transparent about the method's limitations, particularly its dependence on the quality and representativeness of the historical data used for planning. The main ethical consideration is that a biased or incomplete historical dataset could lead to suboptimal decisions, potentially resulting in missed opportunities or wasted resources.

504
505
506
507

The research utilizes preclinical data on chemical compounds and their assay outcomes. It does not involve data from human subjects, thereby minimizing concerns related to personal privacy. We believe this work represents a responsible application of machine learning to a critical scientific domain.

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541**Reproducibility Statement**542
543
544
545
546
547

To ensure the reproducibility of our findings, we have provided detailed descriptions of our methodology and experimental setup. The IBMDP framework is outlined in Section 4, with a concrete implementation provided in Algorithm 1. The theoretical underpinnings of our similarity-based model, including its formal correspondence to a POMDP, are detailed in Appendix A. For our theoretical claims, a complete derivation and consistency proof for the similarity-based estimator in the synthetic setting is available in Appendix D.

548
549
550
551
552
553

All experimental setups are described in Section 5. Full details on hyperparameter selection can be found in Appendix B. The process for generating the synthetic dataset is specified in Appendix D.1, and the public dataset used for the clearance optimization benchmark is cited and described in Appendix E. The source code, data, and scripts to reproduce results have been uploaded to the Supplementary Material, which will be visible to reviewers and the public throughout and after the review period.

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Ismail Abbas, Joan Rovira, and Josep Casanovas. Clinical trial optimization: Monte carlo simulation
597 markov model for planning clinical trials recruitment. *Contemporary Clinical Trials*, 28(3):220–
598 231, 2007.

599 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
600 *International conference on machine learning*, pp. 22–31. PMLR, 2017.

601 Shipra Agrawal and Randy Jia. Posterior sampling for reinforcement learning: worst-case regret
602 bounds. *Advances in Neural Information Processing Systems*, 30, 2017.

603 Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
604 network based generative models for non-iterative diverse candidate generation. *Advances in
605 Neural Information Processing Systems*, 34:27381–27394, 2021.

606 Casey C Bennett and Kris Hauser. Artificial intelligence framework for simulating clinical decision-
607 making: A markov decision process approach. *Artificial intelligence in medicine*, 57:9–19, 2013.

608 Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. *Statistical
609 science*, pp. 273–304, 1995.

610 Jacky Chen, Yunsie Chung, Jonathan Tynan, Chen Cheng, Song Yang, and Alan Cheng. Perfor-
611 mance insights for small molecule drug discovery models: data scaling, multitasking, and gener-
612 alization, 2024. Preprint.

613 Thomas G Dietterich. Ensemble methods in machine learning. In *International workshop on multi-
614 ple classifier systems*, pp. 1–15. Springer, 2000.

615 Maryam Eghbali-Zarch, Reza Tavakkoli-Moghaddam, Fatemeh Esfahanian, Amir Azaron, and Mo-
616 hammad Mehdi Sepehri. A markov decision process for modeling adverse drug reactions in
617 medication treatment of type 2 diabetes. *Proceedings of the Institution of Mechanical Engineers,
618 Part H: Journal of Engineering in Medicine*, 233(8):793–811, 2019.

619 Mahdi M Fard, Sandor Szalma, Shashikant Vattikuti, and Gyan Bhanot. A bayesian markov decision
620 process framework for optimal decision making in clinical trials. *IEEE Journal of Biomedical and
621 Health Informatics*, 22(6):2061–2068, 2018.

622 Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
623 learning: A survey. *Foundations and Trends® in Machine Learning*, 8(5-6):359–483, 2015.

624 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
625 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
626 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
627 uous representation of molecules. *ACS central science*, 4(2):268–276, 2018.

628 Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
629 automatic chemical design using variational autoencoders. *Chemical science*, 11(2):577–586,
630 2020.

631 Desislava R Ivanova, Adam Foster, Simon Kleinegesse, Michael U Gutmann, and Tom Rainforth.
632 Implicit deep adaptive design: Policy-based experimental design without likelihoods. In *Advances
633 in Neural Information Processing Systems*, volume 34, pp. 25785–25798, 2021.

634 Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
635 partially observable stochastic domains. *Artificial intelligence*, 101(1-2):99–134, 1998.

636 Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Krzysztof
637 Czechowski, Dumitru Erhan, Chelsea Finn, Patryk Kozakowski, Sergey Levine, et al. Model-
638 based reinforcement learning for atari. *arXiv preprint arXiv:1903.00374*, 2019.

639 Steven Kleinegesse and Michael U Gutmann. Bayesian experimental design for implicit models
640 by mutual information neural estimation. In *International conference on machine learning*, pp.
641 5316–5326. PMLR, 2020.

642 Steven Kleinegesse and Michael U Gutmann. Gradient-based bayesian experimental design for
643 implicit models using mutual information lower bounds. *arXiv preprint arXiv:2105.04379*, 2021.

648 Branislav Kveton and Georgios Theocharous. Kernel-based reinforcement learning on represen-
 649 tative states. In *Proceedings of the AAAI Conference on Artificial Intelligence*, number 1, pp.
 650 977–983, 2012.

651 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 652 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 653 30, 2017.

654 Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M Jonker. Model-based reinforce-
 655 ment learning: A survey. *Foundations and Trends® in Machine Learning*, 16(1):1–118, 2023.

656 Dirk Ormoneit and Šaunak Sen. Kernel-based reinforcement learning. *Machine learning*, 49:161–
 657 178, 2002.

658 Ian Osband, Daniel Russo, and Benjamin Van Roy. More effective reinforcement learning via pos-
 659 terior sampling. In *Advances in neural information processing systems*, volume 26, 2013.

660 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
 661 bootstrapped dqn. *Advances in neural information processing systems*, 29, 2016.

662 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 663 Wiley & Sons, 2014.

664 Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian ex-
 665 perimental design. *Statistical Science*, 39:100–114, 2024.

666 Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
 667 networks and symbolic ai. *Nature*, 555(7698):604–610, 2018.

668 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

669 Jike Wang, Chang-Yu Hsieh, Mingyang Wang, Xiaorui Wang, Zhenxing Wu, Dejun Jiang, Benben
 670 Liao, Xujun Zhang, Bo Yang, Qiaojun He, et al. Multi-constraint molecular generation based
 671 on conditional transformer, knowledge distillation and reinforcement learning. *Nature Machine
 672 Intelligence*, 3(10):914–922, 2021.

673 Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in reinforcement learning. *IEEE
 674 Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 38(4):930–936, 2008.

675 Xin Xu, Dewen Hu, and Xicheng Lu. Kernel-based least squares policy iteration for reinforcement
 676 learning. *IEEE transactions on neural networks*, 18(4):973–992, 2007.

677 Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
 678 network for goal-directed molecular graph generation. *Advances in neural information processing
 679 systems*, 31, 2018.

680 Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
 681 molecules via deep reinforcement learning. *Scientific reports*, 9(1):10752, 2019.

682 Zhi-Hua Zhou. *Ensemble methods: foundations and algorithms*. CRC press, 2012.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 Appendix

705 A THEORETICAL FRAMEWORK: IB-MDP AS A POMDP

707 This appendix provides a formal conceptual grounding for the IB-MDP framework. We demonstrate
 708 that our similarity-weighted, case-based approach is not an ad-hoc heuristic, but rather a computa-
 709 tionally tractable implementation of Bayesian belief updating within a Partially Observable Markov
 710 Decision Process (POMDP) tailored for information-gathering problems.

711 A.1 POMDP PRELIMINARIES

713 A POMDP is formally defined by the tuple $(\mathcal{S}, \mathcal{A}, \Omega, P, O, R, \gamma)$, where \mathcal{S} is a set of hidden states,
 714 \mathcal{A} is the set of actions, and Ω is the set of observations. Since the agent cannot observe the true
 715 state $s \in \mathcal{S}$, it maintains a belief state, $b_t(s)$, which is a probability distribution over \mathcal{S} . After taking
 716 action A_t and receiving observation ω_t , the belief is updated via the Bayes filter:

$$717 b_{t+1}(s') \propto O(\omega_t | s', A_t) \sum_{s \in \mathcal{S}} P(s' | s, A_t) b_t(s). \quad (8)$$

720 **The Information-Gathering Case.** The sequential assay planning task is an instance of an
 721 *information-gathering* problem. The underlying intrinsic properties of the candidate compound x_*
 722 are fixed; performing an assay reveals information about these properties but does not change them.
 723 This corresponds to a static latent state, where the transition probability is an identity function:
 724 $P(s' | s, A_t) = \mathbf{1}[s' = s]$. In this common special case, the belief update from Equation equation 8
 725 simplifies to the multiplicative Bayes' rule:

$$726 b_{t+1}(s) \propto O(\omega_t | s, A_t) b_t(s). \quad (9)$$

727 A.2 THE IB-MDP LATENT INDEX MODEL AND ITS POMDP CORRESPONDENCE

729 To map our framework to a POMDP, we introduce a discrete latent variable $Z \in \{1, \dots, N\}$, where
 730 each value i corresponds to one of the historical records $D_i \in \mathcal{D}$. We treat Z as the hidden state,
 731 representing the "true prototype" of our candidate compound x_* from among the known historical
 732 cases. The core idea is that by maintaining a belief over Z , we are implicitly maintaining a belief
 733 about the complete, unobserved profile of x_* . The explicit correspondence is detailed in Table 3.

735 A.3 EQUIVALENCE OF THE SIMILARITY UPDATE AND BAYESIAN FILTERING

736 With the mapping established, we now demonstrate that the similarity weight update mechanism in
 737 IB-MDP is a direct implementation of the Bayesian belief update from Equation equation 9.

739 Let the prior belief over the latent index before step t be the weights $w_i(s_t) \equiv P(Z = i | s_t)$.
 740 Executing the assay batch A_t yields the observation $\omega_t \equiv \{y_{*,j}\}_{j \in A_t}$. By substituting the IB-MDP
 741 analogs into Equation equation 9, we derive the IB-MDP belief update rule for the weights:

$$742 w_i(s_{t+1}) = \frac{p(\omega_t | Z = i, A_t) w_i(s_t)}{\sum_{\ell=1}^N p(\omega_t | Z = \ell, A_t) w_{\ell}(s_t)}. \quad (10)$$

744 This confirms that the evolution of weights in IB-MDP is a principled Bayesian recursion.

746 **Connecting the Likelihood to the Similarity Kernel.** The final step is to show that our specific
 747 implementation of similarity weights corresponds to a valid probabilistic likelihood model. If we
 748 model the likelihood of observing an assay outcome y_a for the candidate with a Gaussian kernel
 749 centered on the historical value $y_{i,a}$:

$$750 p(y_a | Z = i, a) \propto \exp\left(-\frac{\lambda_a}{2} \frac{(y_a - y_{i,a})^2}{\sigma_a^2}\right),$$

752 and assume conditional independence of assays in a batch given the prototype Z (a modeling as-
 753 sumption that enables tractable inference; while biochemical assays may exhibit correlations even
 754 given compound properties, our empirical results demonstrate robustness to violations of this as-
 755 sumption through the ensemble averaging mechanism), the joint likelihood for the observation ω_t
 is the product of individual likelihoods. Applying the Bayesian update recursively from a uniform

756 prior over all observed assays $\{y_a\}_{a \in M_t}$ yields a posterior over Z that has the exact form of our
 757 similarity weights:

$$759 \quad w_i(s_t) \propto \prod_{a \in M_t} p(y_a | Z = i, a) = \exp\left(-\frac{1}{2} \sum_{a \in M_t} \lambda_a \frac{(y_a - y_{i,a})^2}{\sigma_a^2}\right) \equiv \exp(-\lambda_w d(s_t, D_i)),$$

761 where we can identify the global temperature parameter $\lambda_w = \beta/2$ where β is the inverse temperature
 762 of the tempered posterior. With $\beta = 1$ (standard posterior), we have $\lambda_w = 1/2$. Therefore,
 763 our similarity function is not an arbitrary heuristic but corresponds to a tempered Bayesian posterior
 764 over the latent historical prototypes.

766 A.4 THE POSTERIOR PREDICTIVE TRANSITION MODEL

768 The belief state (the weight vector $w(s_t)$) is used for planning. The transition model used to simulate
 769 future trajectories within the MCTS planner is derived by marginalizing over the uncertainty in the
 770 latent variable Z . The probability of transitioning to a next state s_{t+1} is the posterior predictive
 771 distribution over outcomes, conditioned on the current belief:

$$772 \quad P(s_{t+1} | s_t, A_t) = \sum_{i=1}^N P(s_{t+1} | Z = i, s_t, A_t) P(Z = i | s_t) \quad (11)$$

$$774 \quad = \sum_{i=1}^N w_i(s_t) \delta_{s_t \oplus \{(a_j, y_{i,j})\}_{j \in A_t}}(s_{t+1}), \quad (12)$$

777 where $\delta_x(y)$ denotes the Dirac delta measure that equals 1 if $y = x$ and 0 otherwise. This confirms
 778 that our sampling mechanism—drawing a historical case D_i according to the weights $w_i(s_t)$ and us-
 779 ing its outcomes—is a principled way to sample from the posterior predictive distribution, allowing
 780 the planner to explore plausible future scenarios consistent with all evidence gathered so far.

782 A.5 IMPLICATIONS AND SUMMARY

784 Framing IB-MDP within the POMDP context provides strong conceptual grounding and yields sev-
 785 eral key insights, summarized in Table 3.

- 787 • **Justification for Dynamics:** The changing similarity weights observed *within* an MCTS
 788 simulation are not arbitrary non-stationarity. They represent the agent’s evolving belief
 789 state. As information is gathered (the state s_t is augmented), the model used for subsequent
 790 predictions naturally and correctly changes, reflecting a refined belief.
- 791 • **Suitability of MCTS:** MCTS is well-suited for this task because it is a simulation-based
 792 planner designed to handle complex state spaces. It effectively explores the consequences
 793 of actions on the future belief state and its associated rewards without needing an explicit
 794 representation of the belief space itself.
- 795 • **Principled Approximation:** IB-MDP provides a practical, data-driven approximation to
 796 solving a formal POMDP. Its effectiveness relies on two key assumptions: the quality and
 797 coverage of the historical data \mathcal{D} , and the appropriateness of the chosen kernel (e.g., Gaussian)
 798 for the observation likelihood model. While the Gaussian kernel provides computa-
 799 tional tractability and aligns with common assumptions about measurement noise in bio-
 800 chemical assays, we acknowledge that alternative kernels (e.g., Laplacian, Student-t) may
 801 better capture heavy-tailed distributions or outliers. The robustness of our approach to
 802 kernel choice remains an important area for future empirical validation.
- 803 • **Computational Efficiency:** By representing the belief state implicitly through weights
 804 over the case-base \mathcal{D} , IB-MDP avoids the intractable calculations of maintaining and up-
 805 dating an explicit probability distribution over a potentially vast hidden state space.

807 In conclusion, interpreting IB-MDP as an approximate POMDP framework clarifies that the recalcula-
 808 tion of similarity weights is a direct implementation of Bayesian belief updating. This justifies our
 809 methodology and the use of MCTS for principled planning under uncertainty when only historical
 data is available.

Table 3: Summary of the Conceptual Mapping between POMDP and IB-MDP.		
POMDP Component	IB-MDP Conceptual Equivalent	Notes
Hidden State ($s \in \mathcal{S}$)	Latent Index $Z = i$ over historical cases $D_i \in \mathcal{D}$	The “true” but unknown profile of the candidate.
Belief State ($b_t(s)$)	Similarity weights $w_i(s_t) \equiv P(Z = i s_t)$	A probability distribution over possible prototypes.
Action ($A_t \in \mathcal{A}_t$)	Batch of assays to perform, $A_t \subseteq U_t$	Direct equivalence.
Observation (ω_t)	Set of assay outcomes $\{y_{*,j}\}_{j \in A_t}$	The new evidence gathered.
Observation Model ($O(\omega_t s', A_t)$)	Likelihood $p(\omega_t Z = i, A_t)$	Implemented via a similarity kernel.
Belief Update	Recalculation of weights $w_i(s_{t+1})$	A direct, principled Bayesian update.

820 A.6 CONVERGENCE GUARANTEES AND THEORETICAL CONSIDERATIONS

822 The convergence properties of IBMDP differ fundamentally from traditional Bayesian reinforcement learning due to its unique reliance on historical data rather than environment interaction. This
823 subsection examines what convergence guarantees can and cannot be provided.

826 A.6.1 TRADITIONAL BAYESIAN RL GUARANTEES

828 Methods such as Posterior Sampling for Reinforcement Learning (PSRL) provide formal regret
829 bounds of $\tilde{O}(\sqrt{SAT})$ for finite MDPs, where S denotes states, A denotes actions, and T denotes
830 the horizon. These approaches guarantee PAC-style convergence to ϵ -optimal policies with high
831 probability, leveraging the principle that posteriors concentrate on the true MDP as data accumulates.

832 A.6.2 IBMDP CONVERGENCE PROPERTIES

834 IBMDP’s convergence behavior is more nuanced due to its implicit model construction:

836 **Achievable Guarantees.** Standard MCTS with UCB1 provides asymptotic convergence to optimal
837 policies as iterations approach infinity, assuming a fixed MDP model. For IBMDP specifically:

- 839 • MCTS-DPW convergence: The Double Progressive Widening variant used in IBMDP
840 maintains convergence properties for large combinatorial action spaces
- 842 • Linear case consistency: For synthetic data with linear relationships and independent fea-
843 tures, we prove (Section D) that the similarity-based variance estimator converges in prob-
844 ability to the true conditional variance as $N \rightarrow \infty$
- 846 • Empirical robustness: The ensemble approach with majority voting provides stable recom-
847 mendations, achieving 47% optimal policy alignment compared to 36% for deterministic
848 methods

849 **Fundamental Limitations.** Unlike traditional Bayesian RL, IBMDP cannot provide:

- 852 • Formal regret bounds: The implicit model introduces approximation error bounded by his-
853 torical data coverage rather than converging to true dynamics
- 855 • PAC guarantees: Cannot ensure ϵ -optimality with high probability due to dependence on
856 data representativeness
- 858 • True dynamics recovery: The similarity-based model approximates but does not learn the
859 true transition function $P(s'|s, a)$

860 The approximation quality depends on three key factors: (i) the coverage and representativeness of
861 historical data \mathcal{D} , (ii) the appropriateness of the similarity metric for the domain, and (iii) the size
862 of the historical dataset $|\mathcal{D}|$. While formal convergence rates cannot be established without access
863 to the true dynamics, empirical validation demonstrates robust performance when these factors are
864 satisfied.

864 **Convergence Trade-offs.** IBMDP trades formal convergence guarantees for practical applicability.
 865 Under assumptions of sufficient data coverage, appropriate similarity metrics, and regularity
 866 conditions, as MCTS iterations $n_{\text{itr}} \rightarrow \infty$ and ensemble size $N_e \rightarrow \infty$:

$$\|\pi_{\text{IBMDP}} - \pi_{\text{empirical}}^*\|_\infty \xrightarrow{P} 0 \quad (13)$$

867 where $\pi_{\text{empirical}}^*$ is the optimal policy for the empirical MDP induced by \mathcal{D} . However, the gap be-
 868 tween this empirical optimal and the true optimal policy depends on data quality and coverage—a
 869 fundamental limitation when operating without simulators.

870 This trade-off is not a weakness but a necessary adaptation: IBMDP provides a principled solu-
 871 tion where traditional methods with stronger guarantees cannot operate at all due to the absence of
 872 environment interaction capabilities.

873 B IMPLEMENTATION AND ALGORITHMIC DETAILS

874 B.1 HYPERPARAMETER SELECTION METHODOLOGY

875 The performance of the IB-MDP framework depends on a set of key hyperparameters that govern the
 876 similarity model, the MCTS planner, and the problem’s objective constraints. The values used in our
 877 experiments were determined through a combination of established literature guidelines, empirical
 878 testing on our specific dataset, and domain-specific considerations to balance decision quality with
 879 computational feasibility.

880 **Similarity Model Parameters.** These parameters define the core of the implicit, generative transi-
 881 tion model.

- 882 • **Similarity Bandwidth (λ_w):** This parameter controls the "smoothness" of the similarity
 883 function. From the theoretical derivation in Section A, $\lambda_w = \beta/2$ where β is the inverse
 884 temperature. For the standard posterior ($\beta = 1$), we have $\lambda_w = 0.5$. However, in practice,
 885 we tested values in the range $[0.5, 2.0]$ and found that $\lambda_w = 1.0$ provided better empirical
 886 performance for our dataset ($|\mathcal{D}| = 220, d = 6$). This corresponds to a tempered posterior
 887 with $\beta = 2.0$, which was large enough to ensure locality (giving higher weight to truly
 888 similar compounds) but small enough to draw support from a sufficient number of historical
 889 examples to make robust predictions.
- 890 • **Feature Weights ($\lambda_k = 1.0$ for all k):** These weights allow for emphasizing more or less
 891 informative features in the distance calculation. As we lacked detailed prior information on
 892 the relative reliability of the QSAR predictions and assay measurements, we set all weights
 893 to be equal to avoid introducing subjective bias. This treats all known features as equally
 894 important for determining similarity.

902 **Ensemble and Planner Parameters.** These parameters control the MCTS search algorithm and
 903 the robustness of its final policy.

- 904 • **Ensemble Size ($N_e = 50$):** To mitigate variance from the stochastic nature of both the
 905 transition model and the MCTS planner, we use an ensemble of independent runs. We
 906 tested sizes from 20 to 100 and found that $N_e = 50$ provided a stable policy recommenda-
 907 tion (i.e., a consistent MLASP) without incurring excessive computational cost. Figure 3
 908 illustrates how the ensemble’s majority vote leads to a robust action choice.
- 909 • **MCTS Iterations ($n_{\text{itr}} = 20,000$):** This determines the search budget for each MCTS run.
 910 Our analysis showed that policy recommendations stabilized around 20,000 iterations for
 911 our problem’s complexity, with diminishing returns for higher values.
- 912 • **Exploration Constant ($c = 5.0$):** Following standard practice for MCTS, this value bal-
 913 ances exploration of new actions with exploitation of known high-value actions within the
 914 search tree. A value of 5.0 provided effective exploration in our experiments.

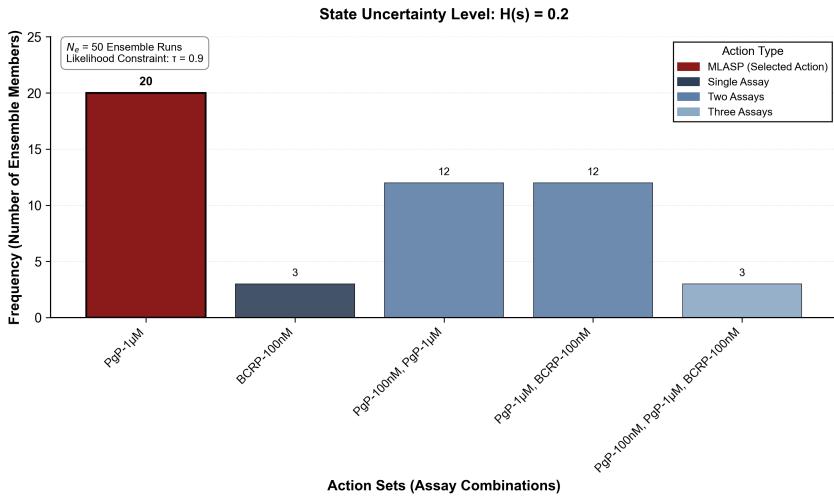


Figure 3: Example histogram of actions proposed across an ensemble of $N_e = 50$ runs. For a given state with uncertainty $\mathcal{H}(s) = 0.2$ and a likelihood constraint of $\tau = 0.9$, the action with the highest frequency is selected for the MLASP. This demonstrates how the ensemble method produces robust and stable recommendations via majority voting.

Problem Constraint Parameters. These parameters define the termination conditions and feasibility constraints of the planning problem itself.

- **Terminal Uncertainty Threshold ($\epsilon = 0.10$):** We stop when $H(s_T)$ drops below 0.10. In our runs the initial uncertainty is between 0.2 and 0.6, so this threshold guarantees at least a two- to six-fold reduction before declaring the policy sufficiently confident.
- **Goal-Likelihood Threshold ($\tau \in \{0.6, 0.9\}$):** The threshold on the goal likelihood, $L(s_t)$, enforces that the planner only pursues trajectories that remain sufficiently likely to succeed. We tested two values to explore the trade-off between cost and confidence. A lower value ($\tau = 0.6$) permits more exploratory, potentially cheaper plans, while a higher value ($\tau = 0.9$) enforces a more conservative and confident, but potentially more expensive, policy. Figure 4 explicitly illustrates how a higher τ leads to a different and more costly MLASP to satisfy the stricter confidence requirement.

B.2 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the IB-MDP algorithm is a critical factor for its practical application. The worst-case total complexity is given by:

$$O(N_e \cdot n_{\text{itr}} \cdot \min(b^H, n_{\text{itr}}) \cdot |\mathcal{D}| \cdot d),$$

where N_e is the ensemble size, n_{itr} is the number of MCTS iterations, b is the effective branching factor (average number of actions explored per node), H is the maximum tree depth (bounded by the horizon T), $|\mathcal{D}|$ is the number of historical cases, and d is the dimensionality of the feature space. The term $\min(b^H, n_{\text{itr}})$ represents the maximum number of nodes that can be expanded, bounded either by the tree structure or the iteration budget. In practice, with progressive widening and UCT selection, the effective number of expansions is often much smaller than this worst-case bound.

The dominant factor within a single MCTS simulation step is the calculation of the similarity weights, which requires computing the distance from the current state to every historical case in \mathcal{D} . This operation has a complexity of $O(|\mathcal{D}| \cdot d)$ and is performed at each node expansion in the search tree.

Comparison to Alternatives. This complexity, while significant, compares favorably to alternative approaches for principled planning under uncertainty. Exact POMDP solvers are computationally intractable for problems of this scale, as their complexity is exponential in the size of the belief space. Traditional value iteration would require discretizing the state space, which becomes in-

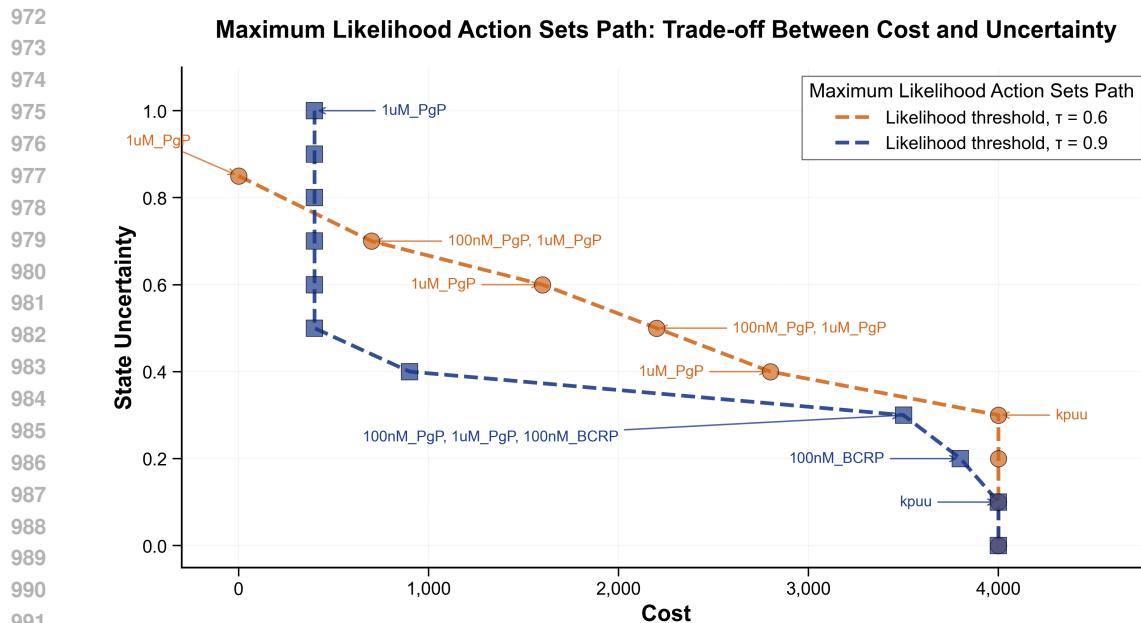


Figure 4: Comparison of MLASP paths for the same compound under two different goal-likelihood thresholds: $\tau = 0.6$ (blue) and $\tau = 0.9$ (red). The stricter constraint ($\tau = 0.9$) forces the planner to recommend a more expensive sequence of assays to achieve higher confidence, illustrating the direct trade-off between cost and decision confidence controlled by this parameter.

feasible with a growing number of continuous-valued assays. IB-MDP’s sampling-based approach effectively navigates this high-dimensional space without requiring explicit enumeration.

Practical Performance and Scalability. In our experimental setup ($N_e = 50$, $n_{itr} = 20,000$, $|\mathcal{D}| = 220$, $d = 6$), the total time to generate a policy for a single compound was approximately one hour on an Apple M1 Pro chip with 16GB of memory. The algorithm’s complexity scales linearly with the size of the historical dataset ($|\mathcal{D}|$), the feature dimension (d), and the number of ensemble runs (N_e). This predictable scaling suggests that the method remains computationally feasible for the larger datasets and higher-dimensional problems typically encountered in real-world drug discovery campaigns, especially with access to parallel computing resources.

C FRAMEWORK DIFFERENTIATION AND THE UNFAIRNESS OF DIRECT COMPARISON

C.1 KEY DIFFERENTIATING FEATURES

Table 4 summarizes the fundamental distinctions between IBMDP and traditional reinforcement learning frameworks. These differences stem from IBMDP’s unique design for sequential experimental planning in simulator-free, data-rich environments—a problem class that existing methods cannot address without fundamental restructuring.

C.2 THE FUNDAMENTAL INNOVATION

IBMDP operates in an entirely different problem setting from traditional reinforcement learning. While conventional frameworks assume access to either environment simulators or transition data, IBMDP functions with only a static database of historical experimental outcomes. This constraint, common in drug discovery where mechanistic models are unavailable and experiments are irreversible, necessitates a fundamentally different approach.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

Aspect	Traditional Frameworks	IBMDP
Data Requirements	(s, a, s') tuples or simulator	Static historical outcomes only
Transition Model	Learned explicit $P(s' s, a)$	Implicit via similarity sampling
Belief Representation	Explicit probability distributions	Similarity weights $w_i(s_t)$
Planning Method	Single policy or parametric	Ensemble MCTS with majority voting
Constraints	Cumulative: $\sum_t c_t \leq C$	State-based: $H(s_T) \leq \epsilon, L(s_t) \geq \tau$
Action Space	Parameter optimization	Combinatorial assay selection
Action Effect	Changes underlying state	Reveals fixed properties
Correlation Handling	Requires explicit modeling	Preserves empirically via sampling
Objective	Single reward maximization	Multi-objective optimization

1037 The core mechanism constructs an implicit generative model through similarity-weighted sampling:

1038
$$w_i(s_t) = \exp(-\lambda_w \cdot d(s_t, D_i)) \quad (14)$$

1039
1040
$$P(s_{t+1}|s_t, A_t) = \sum_{i=1}^N \frac{w_i(s_t)}{Z} \cdot \mathbf{1}[s_{t+1} = s_t \oplus \{(a_j, y_{i,j})\}_{j \in A_t}] \quad (15)$$

1041
1042

1043 This mechanism generates plausible transitions by sampling from historical cases most similar to the
1044 current experimental state, thereby preserving the natural correlations between assays observed in
1045 real compounds—correlations that would be difficult or impossible to model explicitly given current
1046 scientific understanding.1047
1048 C.3 COMPARISON WITH EXISTING FRAMEWORK CATEGORIES1049
1050 C.3.1 DISTINCTION FROM MDPs AND MODEL-BASED RL1051 Model-based reinforcement learning fundamentally relies on learning transition dynamics from
1052 (s, a, s') tuples, typically through parametric models that approximate $P(s'|s, a)$. Even kernel-
1053 based RL methods, which employ similarity metrics, use them primarily for value function approx-
1054 imation rather than transition generation.1055 IBMDP diverges by using similarity not as a smoothing mechanism but as the foundation for a
1056 complete generative process. Without access to any transition data, it samples entire assay outcome
1057 profiles from historical compounds, weighted by their relevance to the current state. This non-
1058 parametric approach sidesteps the need for explicit dynamics modeling while naturally preserving
1059 cross-assay dependencies present in the historical data.1060
1061 C.3.2 DISTINCTION FROM BAYESIAN METHODS1062 Bayesian reinforcement learning and Bayesian optimization maintain explicit posterior distribu-
1063 tions—over model parameters in BRL (exemplified by PSRL) or over objective functions in BO.
1064 These methods either sample complete MDPs from parameter posteriors or perform myopic single-
1065 step optimization.1066 IBMDP performs what we term Bayesian case-based generation: the similarity weights serve as an
1067 implicit posterior over historical compound prototypes, updated through reweighting as evidence
1068 accumulates. Unlike BO’s single-step focus, IBMDP enables multi-horizon planning that sim-
1069 taneously considers experimental costs, time constraints, and the probability of achieving desired
1070 outcomes—a multi-objective optimization fundamentally different from traditional Bayesian ap-
1071 proaches.1072
1073 C.3.3 DISTINCTION FROM EXPERIMENTAL DESIGN1074 Classical Bayesian experimental design assumes availability of a likelihood function or simulator,
1075 optimizing for immediate information gain. Even implicit-BED methods for intractable likelihoods
1076 rely on information-theoretic surrogates that assume some form of generative model.1077 IBMDP embeds its implicit model directly within a reinforcement learning planner (MCTS-DPW),
1078 optimizing entire experimental sequences rather than individual experiments. The framework’s
1079 state-uncertainty functional $H(s_t)$ and goal-likelihood functional $L(s_t)$ provide interpretable,

1080 domain-specific measures that directly relate to experimental objectives, unlike abstract information-
 1081 theoretic quantities.
 1082

1083 **C.3.4 DISTINCTION FROM POMDPs**
 1084

1085 Standard POMDP formulations maintain explicit belief distributions over hidden states, requiring
 1086 specification of both transition models $P(s'|s, a)$ and observation models $O(o|s, a)$. The belief
 1087 update follows the Bayes filter, necessitating these explicit models.

1088 IBMDP’s similarity-weighted posterior serves as an implicit belief representation, eliminating the
 1089 need for high-dimensional belief state maintenance. The framework’s constraints—terminal uncer-
 1090 tainty $H(s_T) \leq \epsilon$ and per-step feasibility $L(s_t) \geq \tau$ —target state properties rather than cumulative
 1091 quantities, directly encoding experimental requirements for decision confidence and trajectory via-
 1092 ability.

1093 **C.4 WHY DIRECT BENCHMARKING IS FUNDAMENTALLY UNFAIR**
 1094

1095 The fundamental incompatibility between IBMDP and traditional frameworks makes direct bench-
 1096 marking not merely challenging but inherently unfair—comparing methods designed for entirely
 1097 different problem settings and data availability.

1098 **C.4.1 INCOMPATIBLE PREREQUISITES**
 1099

1100 Traditional RL methods universally require either an environment simulator for generating transi-
 1101 tions on demand or a collection of (s, a, s') tuples for learning dynamics. IBMDP operates precisely
 1102 where these prerequisites are absent: only static historical compound profiles exist, with no mecha-
 1103 nism to query counterfactual outcomes. Creating a simulator would require mechanistic under-
 1104 standing of biochemical interactions that current science lacks, while collecting transition data through
 1105 exhaustive experimentation defeats the very purpose of efficient planning.

1106 **C.4.2 FUNDAMENTAL STRUCTURAL DIFFERENCES**
 1107

1108 The action spaces are categorically different. Traditional methods optimize over continuous or dis-
 1109 crete parameter spaces where actions affect state transitions. IBMDP selects from combinatorial
 1110 sets of experimental assays— $\mathcal{P}_{\leq m}(U_t) \cup \{\text{eox}\}$ —where actions reveal information about unchang-
 1111 ing molecular properties. This distinction between control and information gathering necessitates
 1112 entirely different planning paradigms.

1113 Furthermore, the constraint structures are incompatible. Traditional constrained MDPs limit cu-
 1114 mulative costs across trajectories, while IBMDP enforces instantaneous feasibility constraints and
 1115 terminal uncertainty bounds that directly encode experimental requirements.

1116 **C.4.3 REQUIRED TRANSFORMATIONS**
 1117

1118 Adapting traditional methods to this setting would require:
 1119

- 1120 1. Completely redefining the action space from parameter optimization to combinatorial assay
 1121 selection with batching constraints
- 1122 2. Implementing reward-aware stopping rules aligned with uncertainty and feasibility func-
 1123 tionals rather than simple cumulative objectives
- 1124 3. Creating posterior predictive distributions without access to simulators or transition data
- 1125 4. Restructuring from single-objective to multi-objective optimization with state-based con-
 1126 straints

1127 Such extensive modifications would fundamentally alter the nature of these methods, creating es-
 1128 sentially new algorithms rather than variants of existing ones. Any resulting comparison would be
 1129 between IBMDP and these newly created methods, not the original frameworks.

1134 C.5 THEORETICAL FOUNDATION
1135

1136 Despite operating in this unique setting, IBMDP maintains rigorous theoretical grounding. Sec-
1137 tion A establishes that the framework is mathematically equivalent to a POMDP where the hid-
1138 den state represents a latent index over historical cases. The similarity weights constitute a valid
1139 Bayesian posterior, with weight updates implementing exact Bayesian belief updates. This equiva-
1140 lence:

$$1141 w_i(s_{t+1}) = \frac{p(\omega_t | Z = i, A_t) \cdot w_i(s_t)}{\sum_{\ell=1}^N p(\omega_t | Z = \ell, A_t) \cdot w_\ell(s_t)} \quad (16)$$

1142 provides principled justification for the empirical success observed in our experiments, where IB-
1143 MDP achieved up to 92% reduction in resource consumption while maintaining decision quality.

1144 C.6 IMPLICATIONS
1145

1146 IBMDP addresses a problem class—sequential experimental planning without simulators—that ex-
1147 isting reinforcement learning frameworks were not designed to handle. The inherent unfairness of
1148 direct benchmarking reflects not a limitation but the framework’s fundamental novelty operating in
1149 a unique problem setting. By leveraging historical data through similarity-weighted sampling and
1150 ensemble planning, IBMDP provides the first practical solution for case-guided sequential decision-
1151 making in drug discovery and similar experimental sciences where traditional RL assumptions fail
1152 to hold.

1153

1154 D BENCHMARK WITH SYNTHETIC DATA
1155

1156 **Overview and Motivation.** This appendix presents a rigorous benchmark study comparing IB-
1157 MDP against theoretically optimal and deterministic baselines using synthetic data. The synthetic
1158 environment provides a unique advantage: we can compute the true optimal policy exactly, enabling
1159 principled validation of our similarity-based planning approach. This controlled setting allows us to
1160 isolate and evaluate the effectiveness of IBMDP’s core innovations—the similarity-weighted belief
1161 mechanism and ensemble planning—against ground truth.

1162

1163 **Aim.** We provide a controlled benchmark to compare three planners for sequential assay selec-
1164 tion: (i) a *theoretical* Value Iteration baseline with *exact* uncertainty dynamics (**VI-Theo**); (ii) a *deterministic*
1165 Value Iteration with *similarity-based* uncertainty (**VI-Sim**); and (iii) the *stochastic*
1166 IBMDP planner using *similarity-weighted posterior predictive* transitions inside an ensemble of
1167 MCTS-DPW trees (**IBMDP**). A synthetic data generator with known structure enables exact com-
1168 putation of the VI-Theo policy and a principled testbed for the two similarity-based planners.

1169

1170 **Notation consistency with the main text.** We maintain consistency with the notation from the
1171 main exposition (state/action tuples, similarity weights, $H(s)$, $L(s)$, etc.; see Equations equation 1–
1172 equation 3 and Table 8). Throughout this appendix, for notational convenience when the focus is
1173 on the set structure rather than individual measurements, we may write the state as $s = (x_*, \mathcal{M})$
1174 where x_* is the fixed candidate compound and $\mathcal{M} \subseteq \{1, \dots, M\}$ represents the set of measured
1175 assays. This is equivalent to the main text notation $s_t = (x_*, \{y_{*,j}\}_{j \in \mathcal{M}_t})$ where $\mathcal{M} = \mathcal{M}_t$ indexes
1176 the measured assays and their values. When the candidate is fixed and clear from context, we may
1177 write the state simply as \mathcal{M} .

1178

D.1 SYNTHETIC DATA: GENERAL MODEL AND INSTANTIATION

1179

1180 **Purpose.** We construct a synthetic data environment where the true conditional variance can be
1181 computed analytically, providing ground truth for evaluating our similarity-based estimators. The
1182 linear structure with independent features represents a simplified but informative test case where
1183 theoretical optimality is tractable.

1184

D.1.1 GENERAL DATA-GENERATING PROCESS (GENERIC FORMULATION).

1185

1186 Fix integers N (number of historical cases) and M (number of assays/features). For each historical
1187 case $i \in \{1, \dots, N\}$ we draw a feature vector

$$1188 \mathbf{y}_i = (y_{i,1}, \dots, y_{i,M})^\top \in \mathbb{R}^M.$$

1188 For each assay $a \in \{1, \dots, M\}$ specify distributional parameters $(\mu_a, \sigma_a, a_a, b_a)$ and draw inde-
 1189 pendently

$$y_{i,a} \sim \mathcal{TN}(\mu_a, \sigma_a; a_a, b_a),$$

1190 the (univariate) truncated normal on $[a_a, b_a]$ with location μ_a and scale σ_a .¹ Let $\beta =$
 1191 $(\beta_1, \dots, \beta_M)^\top \in \mathbb{R}^M$ and draw independent measurement noise

$$\epsilon_i \sim \mathcal{TN}(\mu_\epsilon, \sigma_\epsilon; a_\epsilon, b_\epsilon).$$

1192 The scalar target is

$$g_i = \sum_{a=1}^M \beta_a y_{i,a} + \epsilon_i = \beta^\top \mathbf{y}_i + \epsilon_i.$$

1193 The historical dataset is $\mathcal{D} = \{(x_i, \mathbf{y}_i)\}$; targets $G = \{g_i\}$ are stored separately (and *never* used in
 1194 any distance/weight computation).

1201 **Closed-form variance under independence.** Let $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_M^2)$ denote the per-assay
 1202 variance parameters (treated as the empirical variances of the generated $y_{i,a}$'s). Then

$$\text{Var}(g) = \beta^\top \Sigma \beta + \sigma_\epsilon^2.$$

1203 To derive the conditional variance, we partition assays into measured \mathcal{M} and unmeasured \mathcal{U} and
 1204 write $\beta = (\beta_{\mathcal{M}}, \beta_{\mathcal{U}})$, $\Sigma = \text{diag}(\Sigma_{\mathcal{M}}, \Sigma_{\mathcal{U}})$. Under independence, we have the following derivation:

$$\text{Var}(g \mid \mathbf{y}_{\mathcal{M}}) = \text{Var}(\beta_{\mathcal{M}}^\top \mathbf{y}_{\mathcal{M}} + \beta_{\mathcal{U}}^\top \mathbf{y}_{\mathcal{U}} + \epsilon \mid \mathbf{y}_{\mathcal{M}}) \quad (17)$$

$$= \text{Var}(\beta_{\mathcal{U}}^\top \mathbf{y}_{\mathcal{U}} + \epsilon \mid \mathbf{y}_{\mathcal{M}}) \quad (\text{since } \beta_{\mathcal{M}}^\top \mathbf{y}_{\mathcal{M}} \text{ is fixed given } \mathbf{y}_{\mathcal{M}}) \quad (18)$$

$$= \text{Var}(\beta_{\mathcal{U}}^\top \mathbf{y}_{\mathcal{U}}) + \text{Var}(\epsilon) \quad (\text{by independence of } \mathbf{y}_{\mathcal{U}}, \epsilon \text{ from } \mathbf{y}_{\mathcal{M}}) \quad (19)$$

$$= \beta_{\mathcal{U}}^\top \text{Var}(\mathbf{y}_{\mathcal{U}}) \beta_{\mathcal{U}} + \sigma_\epsilon^2 \quad (20)$$

$$= \beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} + \sigma_\epsilon^2. \quad (21)$$

1213 This identity is central to the VI-Theo derivation below.

1214 D.1.2 INSTANTIATION USED IN THE BENCHMARK.

1215 We set $M = 6$ and $N = 200$. For $a = 1, \dots, 6$,

$$\mu_a = 50 \cdot \frac{a}{6}, \quad \sigma_a = 0.3 \mu_a, \quad (a_a, b_a) = (0, 2\mu_a),$$

$$\beta = (0.3, 0.25, 0.2, 0.15, 0.07, 0.03), \quad \epsilon \sim \mathcal{TN}(0, 5; -10, 10).$$

1216 All feature draws are independent across a and i ; noise is independent of features.

1217 **Sampling recipe (for reproducibility).** For each trial: (1) fix $M, N, \{\mu_a, \sigma_a, a_a, b_a\}$ and β ; (2)
 1218 draw $\{\mathbf{y}_i\}_{i=1}^N$ componentwise; (3) draw $\{\epsilon_i\}_{i=1}^N$; (4) set $g_i = \beta^\top \mathbf{y}_i + \epsilon_i$; (5) store $\mathcal{D} = \{(x_i, \mathbf{y}_i)\}$
 1219 and $G = \{g_i\}$ with availability set $I_g = \{i : g_i \text{ used in evaluation}\}$.

1220 D.2 THEORETICAL BASELINE (VI-THEO): FULL DERIVATION

1221 **Overview.** VI-Theo represents the theoretically optimal policy under perfect information about the
 1222 data-generating process. It uses the exact conditional variance formula derived above to compute
 1223 optimal uncertainty reduction at each step. This baseline is only computable in synthetic settings
 1224 where the true model parameters are known.

1225 **State, action, and dynamics.** The state is the set $\mathcal{M} \subseteq \{1, \dots, 6\}$ of measured assays (consistent
 1226 with our notation convention). The action space is the power set of unmeasured assays:

$$A(\mathcal{M}) = \mathcal{P}(\{1, \dots, 6\} \setminus \mathcal{M}).$$

1227 Transitions are deterministic: executing $a \in A(\mathcal{M})$ yields $\mathcal{M} \leftarrow \mathcal{M} \cup a$.

1228 ¹In our experiments we treat (μ_a, σ_a) as the empirical mean/scale of the generated samples; the truncation
 1229 mildly perturbs the theoretical moments.

1242 **Exact conditional variance and reduction.** Write $g = \beta_{\mathcal{M}}^\top \mathbf{y}_{\mathcal{M}} + \beta_{\mathcal{U}}^\top \mathbf{y}_{\mathcal{U}} + \epsilon$. Conditioning on
 1243 the realized measurements $\mathbf{y}_{\mathcal{M}}$,

$$1244 \text{Var}(g | \mathbf{y}_{\mathcal{M}}) = \text{Var}(\beta_{\mathcal{U}}^\top \mathbf{y}_{\mathcal{U}} + \epsilon) = \beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} + \sigma_\epsilon^2,$$

1245 since $\mathbf{y}_{\mathcal{U}}$ is independent of $\mathbf{y}_{\mathcal{M}}$ and ϵ . Hence, the *exact* uncertainty reduction achieved by measuring
 1246 a batch $a \subseteq \mathcal{U}$ is computed as follows:

$$1248 \Delta\sigma_a^2 = \text{Var}(g | \mathbf{y}_{\mathcal{M}}) - \text{Var}(g | \mathbf{y}_{\mathcal{M} \cup a}) \quad (22)$$

$$1249 = (\beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} + \sigma_\epsilon^2) - (\beta_{\mathcal{U} \setminus a}^\top \Sigma_{\mathcal{U} \setminus a} \beta_{\mathcal{U} \setminus a} + \sigma_\epsilon^2) \quad (23)$$

$$1251 = \beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} - \beta_{\mathcal{U} \setminus a}^\top \Sigma_{\mathcal{U} \setminus a} \beta_{\mathcal{U} \setminus a} \quad (24)$$

$$1252 = \sum_{k \in a} \beta_k^2 \sigma_k^2. \quad (25)$$

1254 The last equality follows because Σ is diagonal and the contribution of each measured assay k is
 1255 exactly $\beta_k^2 \sigma_k^2$.

1258 **Costs and reward.** Let per-assay costs be

$$1259 c_1 = 1.0, \quad c_2 = 1.2, \quad c_3 = 1.5, \quad c_4 = 1.8, \quad c_5 = 2.0, \quad c_6 = 2.2,$$

1260 and (optionally) a terminal target-measurement cost $c_{\text{target}} = 10.0$. The batch cost is $c_a = \sum_{k \in a} c_k$
 1261 and the immediate reward is *uncertainty reduction per unit cost*:

$$1262 R(\mathcal{M}, a) = \frac{\Delta\sigma_a^2}{c_a}.$$

1266 **Bellman recursion.** With discount $\gamma = 0.95$,

$$1268 V(\mathcal{M}) = \max_{a \in A(\mathcal{M})} \left\{ R(\mathcal{M}, a) + \gamma V(\mathcal{M} \cup a) \right\},$$

1270 initialized at $V(\{1, \dots, 6\}) = 0$ (no uncertainty left, no action left). We iterate to a tolerance of
 1271 10^{-6} or 1000 iterations to obtain the optimal policy $\pi_{\text{Theo}}(\mathcal{M})$.

1274 **Remarks on optimality.** Because transitions are deterministic and rewards are additive with dis-
 1275 count, the recursion gives the exact optimal policy under the synthetic uncertainty model. This
 1276 policy serves as the *ground-truth baseline* against which we compare similarity-based planners.

1278 D.3 DETERMINISTIC SIMILARITY-BASED VI (VI-SIM): FULL DERIVATION

1280 **Overview.** VI-Sim represents a deterministic planner that uses the same similarity-based variance
 1281 estimation as IBMDP but applies Value Iteration instead of stochastic tree search. This baseline
 1282 isolates the contribution of IBMDP’s ensemble planning approach by using the same implicit model
 1283 but with deterministic optimization.

1286 **Similarity weights and distance.** At state $s = (x_*, \mathcal{M})$ (maintaining our consistent notation; here
 1287 we use s to denote a generic state rather than s_t for a specific time step), define:

$$1288 w_i(s) = \frac{\exp\{-\lambda_w d(s, D_i)\}}{\sum_{j=1}^N \exp\{-\lambda_w d(s, D_j)\}}, \quad (26)$$

$$1291 d(s, D_i) = \sum_{k \in \mathcal{K}(s)} \lambda_k \frac{(\phi_k(s) - \phi_k(D_i))^2}{\sigma_k^2}. \quad (27)$$

1294 Here $\mathcal{K}(s)$ are the known features (initial QSARs and any measured assays); $\phi_k(\cdot)$ extracts feature
 1295 k ; λ_k are feature weights (default = 1), $\lambda_w > 0$ is the bandwidth, and σ_k^2 are the empirical variances
 1296 over \mathcal{D} . The targets $\{g_i\}$ are never used in $d(\cdot, \cdot)$.

1296 **Weighted g -mean and variance (renormalized over I_g).** Define the renormalized weights and
 1297 weighted mean:

$$1299 \quad \tilde{w}_i(s) = \frac{w_i(s)}{\sum_{\ell \in I_g} w_\ell(s)} \quad \text{for } i \in I_g, \quad (28)$$

$$1301 \quad \bar{g}(s) = \sum_{i \in I_g} \tilde{w}_i(s) g_i. \quad (29)$$

1303 The estimated conditional variance at state s is:

$$1304 \quad \hat{\sigma}_{\text{cond}}^2(\mathcal{M}) = \sum_{i \in I_g} \tilde{w}_i(s) (g_i - \bar{g}(s))^2. \quad (30)$$

1306 After executing batch a , we update the observed state to $s' = (x_*, \mathcal{M} \cup a)$, recompute weights based
 1307 on the expanded feature set, and obtain $\hat{\sigma}_{\text{cond}}^2(\mathcal{M} \cup a)$.

1309 **Estimated reduction and reward.** Using the similarity-weighted variance estimate, we define the
 1310 variance reduction and reward:

$$1311 \quad \Delta \hat{\sigma}_a^2 = \hat{\sigma}_{\text{cond}}^2(\mathcal{M}) - \hat{\sigma}_{\text{cond}}^2(\mathcal{M} \cup a), \quad (31)$$

$$1313 \quad R(\mathcal{M}, a) = \frac{\Delta \hat{\sigma}_a^2}{c_a}. \quad (32)$$

1315 We then apply this R to the same deterministic VI recursion as in Section D.2 to obtain the policy
 1316 π_{Sim} .

1317 D.4 IBMDP: IMPLICIT POSTERIOR-PREDICTIVE MODEL AND PLANNING DETAILS

1319 **Overview.** IBMDP extends the similarity-based approach with two key innovations: (1) a stochastic
 1320 posterior-predictive model that samples from historical cases weighted by similarity, and (2) ensemble
 1321 MCTS planning that explores multiple policy trajectories. This combination enables robust
 1322 planning despite the implicit model’s inherent uncertainty.

1324 **Latent-index view and likelihood.** Introduce a discrete latent index $Z \in \{1, \dots, N\}$ over historical cases D_i . Given $Z = i$ and selecting assay a , a Gaussian discrepancy model leads to:

$$1326 \quad p(y_a | Z = i, a) \propto \exp\left(-\frac{\lambda_a(y_a - y_{i,a})^2}{2\sigma_a^2}\right), \quad (33)$$

1328 with per-assay weight $\lambda_a > 0$. For a batch A_t and assuming conditional independence across assays
 1329 given Z (see discussion in Section A regarding this assumption):

$$1331 \quad p(\mathbf{y}_{A_t} | Z = i, A_t) \propto \prod_{a \in A_t} \exp\left(-\frac{\lambda_a(y_a - y_{i,a})^2}{2\sigma_a^2}\right). \quad (34)$$

1334 **Weights as (tempered) posteriors and incremental recursion.** Let O_t denote the set of observed
 1335 assays up to time t . Define the variance-normalized distance

$$1336 \quad d(s_t, D_i) = \sum_{(a, y_a) \in O_t} \frac{\lambda_a}{\sigma_a^2} (y_a - y_{i,a})^2.$$

1339 With a uniform prior over Z and temperature λ_w , the similarity weight equals a tempered posterior

$$1340 \quad w_i(s_t) = \frac{\exp\{-\lambda_w d(s_t, D_i)\}}{\sum_{j=1}^N \exp\{-\lambda_w d(s_t, D_j)\}}.$$

1342 If we then measure assay a_t and observe y_{a_t} , the distance updates additively:

$$1344 \quad d(s_{t+1}, D_i) = d(s_t, D_i) + \frac{\lambda_{a_t}}{\sigma_{a_t}^2} (y_{a_t} - y_{i,a_t})^2. \quad (35)$$

1346 This yields the multiplicative weight update:

$$1347 \quad w_i(s_{t+1}) \propto w_i(s_t) \cdot \exp\left\{-\lambda_w \frac{\lambda_{a_t}}{\sigma_{a_t}^2} (y_{a_t} - y_{i,a_t})^2\right\} \quad (36)$$

$$1349 \quad \propto w_i(s_t) \cdot [p(y_{a_t} | Z = i, a_t)]^{2\lambda_w}, \quad \text{where } \lambda_w = \beta/2, \quad (37)$$

1350 followed by normalization. Thus the reweighting is a (tempered) Bayesian belief update.
 1351

1352 **Posterior predictive (implicit transition).** Marginalizing over Z gives the posterior predictive
 1353 over next information states:

$$1355 \quad P(s_{t+1} | s_t, A_t) = \sum_{i=1}^N w_i(s_t) \cdot \delta(s_{t+1} = s_t \oplus \{(a, y_{i,a})\}_{a \in A_t}), \quad (38)$$

1357 which is implemented operationally by sampling a single historical case $i \sim \text{Cat}(\{w_k(s_t)\})$ and
 1358 *copying* the batch outcomes $\{y_{i,a}\}_{a \in A_t}$ into the candidate—thereby preserving cross-assay correlation
 1359 within the sampled historical profile.

1360 **Planning with MCTS-DPW and ensembling.** Within each MCTS rollout, we generate stochastic
 1361 next states by the posterior predictive above, accrue step cost $R(s_t, A_t)$, and apply penalties when
 1362 feasibility is violated (e.g., $L(s) < \tau$ at any step) until a terminal state (e.g., $H(s) \leq \epsilon$) or horizon
 1363 T . To reduce variance from stochastic sampling and tree search, we run N_e independent trees and
 1364 aggregate recommendations by majority vote, reporting both the *Top-1* action and the *Top-2* action
 1365 set at each decision step, forming an MLASP.

1367 D.5 ILLUSTRATIVE EXAMPLE: EVOLUTION OF SIMILARITY WEIGHTS

1369 **Purpose.** This toy example demonstrates how similarity weights evolve as evidence accumulates,
 1370 providing intuition for the adaptive nature of IBMMDP’s implicit dynamics.

1372 **Setup.** Three historical records with one feature each at values $\{0, 1, 2\}$; let $\sigma^2 = 1$, $\lambda_w = \lambda_1 = 1$.
 1373 The initial candidate state is $s^{(0)}$ with value 1.1.

1375 **Step 0 (initial).** Raw weights:

$$1376 \quad w_1 = e^{-(1.1-0)^2} = e^{-1.21} = 0.297, \quad (39)$$

$$1378 \quad w_2 = e^{-(1.1-1)^2} = e^{-0.01} = 0.990, \quad (40)$$

$$1380 \quad w_3 = e^{-(1.1-2)^2} = e^{-0.81} = 0.445. \quad (41)$$

1381 After normalization $Z = 0.297 + 0.990 + 0.445 = 1.732$, we obtain:

$$1382 \quad \tilde{w} = (0.171, 0.571, 0.257). \quad (42)$$

1383 **Step 1 (after action moves state to 1.6).** Raw weights:

$$1385 \quad w_1 = e^{-(1.6-0)^2} = e^{-2.56} = 0.077, \quad (43)$$

$$1386 \quad w_2 = e^{-(1.6-1)^2} = e^{-0.36} = 0.697, \quad (44)$$

$$1388 \quad w_3 = e^{-(1.6-2)^2} = e^{-0.16} = 0.852. \quad (45)$$

1389 Normalizing with $Z' = 1.626$ gives:

$$1390 \quad \tilde{w} = (0.047, 0.429, 0.524). \quad (46)$$

1391 The posterior shifts toward the historical record at 2 as evidence moves rightward.

1393 D.6 THEORETICAL ANALYSIS: CONSISTENCY OF VI-SIM

1395 **Theorem (Consistency of Similarity-Based Estimation).** Under the synthetic linear model with
 1396 independent features, the similarity-based variance estimator $\hat{\sigma}_{\text{cond}}^2(\mathcal{M})$ used by VI-Sim converges
 1397 in probability to the exact conditional variance $\sigma_{\text{cond}}^2(\mathcal{M})$ used by VI-Theo, i.e., $\hat{\sigma}_{\text{cond}}^2(\mathcal{M}) \xrightarrow{P} \sigma_{\text{cond}}^2(\mathcal{M})$
 1398 as $N \rightarrow \infty$.

1399 **Proof.**

1402 **Assumptions.** (A1) Features $\{y_{i,a}\}$ are independent across a and i.i.d. across i , each with finite
 1403 variance σ_a^2 ; (A2) noise ϵ_i is independent of features with finite variance σ_ϵ^2 ; (A3) the weight func-
 1404 tion $w_i(s)$ depends only on *measured* assays \mathcal{M} of each record and on the candidate’s observed

values at those assays; (A4) the renormalized weights $\tilde{w}_i(s)$ over I_g form a probability vector; (A5) I_g grows with N so that $|I_g| \rightarrow \infty$.

Step 1: Setup and notation. Fix a state $s = (x_*, \mathcal{M})$ with measured set \mathcal{M} and unmeasured set $\mathcal{U} = \{1, \dots, M\} \setminus \mathcal{M}$. Define the target for record i :

$$g_i = \beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}} + \beta_{\mathcal{U}}^\top \mathbf{y}_{i,\mathcal{U}} + \epsilon_i.$$

The exact conditional variance (under the model) is:

$$\sigma_{\text{cond}}^2(\mathcal{M}) = \beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} + \sigma_\epsilon^2.$$

The estimator used by VI-Sim at s is:

$$\hat{\sigma}_{\text{cond}}^2(\mathcal{M}) = \sum_{i \in I_g} \tilde{w}_i(s) \left(g_i - \sum_{j \in I_g} \tilde{w}_j(s) g_j \right)^2.$$

Step 2: Decomposition via independence. We decompose each target as $g_i = \underbrace{\beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}}}_{\text{measured term}} + \underbrace{z_i}_{\text{unmeasured term}}$, where

$$z_i := \beta_{\mathcal{U}}^\top \mathbf{y}_{i,\mathcal{U}} + \epsilon_i.$$

By assumptions (A1)–(A2) on independence, z_i is independent of $\mathbf{y}_{i,\mathcal{M}}$ and thus independent of any measurable function of $\mathbf{y}_{i,\mathcal{M}}$, including $w_i(s)$ and $\tilde{w}_i(s)$. This yields:

$$\mathbb{E}(z_i | \mathbf{y}_{i,\mathcal{M}}) = \mathbb{E}(z_i) = \mathbb{E}(\beta_{\mathcal{U}}^\top \mathbf{y}_{i,\mathcal{U}}) + \mathbb{E}(\epsilon_i) = 0, \quad (47)$$

$$\text{Var}(z_i | \mathbf{y}_{i,\mathcal{M}}) = \text{Var}(z_i) = \text{Var}(\beta_{\mathcal{U}}^\top \mathbf{y}_{i,\mathcal{U}}) + \text{Var}(\epsilon_i) \quad (48)$$

$$= \beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} + \sigma_\epsilon^2. \quad (49)$$

Step 3: Analysis of the weighted variance estimator. Define the weighted means: $\bar{g}_w := \sum_{i \in I_g} \tilde{w}_i(s) g_i$, $\bar{y}_{\mathcal{M},w} := \sum_{i \in I_g} \tilde{w}_i(s) \beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}}$, and $\bar{z}_w := \sum_{i \in I_g} \tilde{w}_i(s) z_i$. Then the variance estimator becomes:

$$\hat{\sigma}_{\text{cond}}^2(\mathcal{M}) = \sum_{i \in I_g} \tilde{w}_i(s) \left(g_i - \bar{g}_w \right)^2 \quad (50)$$

$$= \sum_{i \in I_g} \tilde{w}_i(s) \left((\beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}} + z_i) - (\bar{y}_{\mathcal{M},w} + \bar{z}_w) \right)^2 \quad (51)$$

$$= \sum_{i \in I_g} \tilde{w}_i(s) \left(\beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}} - \bar{y}_{\mathcal{M},w} + z_i - \bar{z}_w \right)^2. \quad (52)$$

Taking expectation conditional on the *entire* measured panel $\{\mathbf{y}_{i,\mathcal{M}}\}_{i \in I_g}$ (which determines $\{\tilde{w}_i(s)\}_{i \in I_g}$), and using $\mathbb{E}(z_i | \mathbf{y}_{i,\mathcal{M}}) = 0$ with independence across i :

$$\mathbb{E}[\hat{\sigma}_{\text{cond}}^2(\mathcal{M}) | \{\mathbf{y}_{i,\mathcal{M}}\}] = \sum_{i \in I_g} \tilde{w}_i(s) \left(\beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}} - \bar{y}_{\mathcal{M},w} \right)^2 + \sum_{i \in I_g} \tilde{w}_i(s) \mathbb{E}[(z_i - \bar{z}_w)^2 | \{\mathbf{y}_{i,\mathcal{M}}\}].$$

Step 4: Simplification of the second term. The second sum simplifies because $\{z_i\}$ are i.i.d., mean zero and independent of the weights:

$$\mathbb{E}[(z_i - \bar{z}_w)^2 | \{\mathbf{y}_{i,\mathcal{M}}\}] = \mathbb{E}[z_i^2] + \mathbb{E}[\bar{z}_w^2] - 2\mathbb{E}[z_i \bar{z}_w] \quad (\text{expanding the square}) \quad (53)$$

$$= \text{Var}(z_i) + \text{Var}(\bar{z}_w) - 2\text{Cov}(z_i, \bar{z}_w) \quad (54)$$

$$= \text{Var}(z_i) + \text{Var}(\bar{z}_w) \sum_{j \in I_g} \tilde{w}_j(s)^2 - 2\tilde{w}_i(s)\text{Var}(z_i) \quad (55)$$

$$= \text{Var}(z_i) (1 + \sum_{j \in I_g} \tilde{w}_j(s)^2 - 2\tilde{w}_i(s)), \quad (56)$$

1458 where we used $\text{Var}(\bar{z}_w) = \text{Var}(z_i) \sum_{j \in I_g} \tilde{w}_j(s)^2$ (by independence) and $\text{Cov}(z_i, \bar{z}_w) =$
 1459 $\tilde{w}_i(s) \text{Var}(z_i)$. Therefore
 1460

$$\sum_{i \in I_g} \tilde{w}_i(s) \mathbb{E}[(z_i - \bar{z}_w)^2 \mid \{\mathbf{y}_{i,\mathcal{M}}\}] = \text{Var}(z_i) \sum_{i \in I_g} \tilde{w}_i(s) (1 + \sum_{j \in I_g} \tilde{w}_j(s)^2 - 2\tilde{w}_i(s)) \quad (57)$$

$$= \text{Var}(z_i) \left(\sum_{i \in I_g} \tilde{w}_i(s) + \sum_{i \in I_g} \tilde{w}_i(s) \sum_{j \in I_g} \tilde{w}_j(s)^2 - 2 \sum_{i \in I_g} \tilde{w}_i(s)^2 \right) \quad (58)$$

$$= \text{Var}(z_i) \left(1 + \sum_{j \in I_g} \tilde{w}_j(s)^2 - 2 \sum_{i \in I_g} \tilde{w}_i(s)^2 \right) \quad (59)$$

$$= \text{Var}(z_i) \left(1 - \sum_{i \in I_g} \tilde{w}_i(s)^2 \right). \quad (60)$$

1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472 Note: In the third line, we used $\sum_{i \in I_g} \tilde{w}_i(s) = 1$ and $\sum_{i \in I_g} \tilde{w}_i(s) \sum_{j \in I_g} \tilde{w}_j(s)^2 = \sum_{j \in I_g} \tilde{w}_j(s)^2$
 1473 since the weights sum to 1. Thus

$$\mathbb{E}[\hat{\sigma}_{\text{cond}}^2(\mathcal{M}) \mid \{\mathbf{y}_{i,\mathcal{M}}\}] = \sum_{i \in I_g} \tilde{w}_i(s) \underbrace{\left(\beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}} - \bar{y}_{\mathcal{M},w} \right)^2}_{\text{weighted variance of measured part}} + \text{Var}(z_i) \left(1 - \sum_{i \in I_g} \tilde{w}_i(s)^2 \right).$$

1474
 1475
 1476
 1477
 1478
Asymptotics and conclusion. By (A5) and boundedness of the weights (since $\sum_i \tilde{w}_i(s) = 1$ and
 1479 $0 \leq \tilde{w}_i(s) \leq 1$), we have $\sum_{i \in I_g} \tilde{w}_i(s)^2 \rightarrow 0$ in probability when $|I_g| \rightarrow \infty$ and the weights are
 1480 not degenerate.² Also, by a (weighted) law of large numbers for triangular arrays with random but
 1481 *measured-part*-measurable weights and finite second moments, the first term converges in probability
 1482 to the *true* conditional variance of the measured contribution *given the measured panel*. However,
 1483 the exact VI-Theo conditional variance *does not depend* on the measured panel (independence across
 1484 assays), hence
 1485

$$\sum_{i \in I_g} \tilde{w}_i(s) \left(\beta_{\mathcal{M}}^\top \mathbf{y}_{i,\mathcal{M}} - \bar{y}_{\mathcal{M},w} \right)^2 \xrightarrow{p} 0.$$

1486 Combining, we get
 1487

$$\hat{\sigma}_{\text{cond}}^2(\mathcal{M}) \xrightarrow{P} \text{Var}(z_i) (1 - 0) = \beta_{\mathcal{U}}^\top \Sigma_{\mathcal{U}} \beta_{\mathcal{U}} + \sigma_{\epsilon}^2 = \sigma_{\text{cond}}^2(\mathcal{M}).$$

1488 Hence, under the synthetic linear/independent model, VI-Sim's variance estimator is consistent for
 1489 the exact VI-Theo conditional variance.
 1490

1491
Implications. Because $\sigma_{\text{cond}}^2(\mathcal{M})$ is constant in $\mathbf{y}_{\mathcal{M}}$ under independence, any reasonable similarity
 1492 weighting over measured assays yields the same limiting conditional variance. In more general
 1493 (correlated or non-linear) settings, the estimator targets $\text{Var}(g \mid \mathbf{y}_{\mathcal{M}} = \text{candidate})$ provided the
 1494 kernel and bandwidth obey standard nonparametric conditions; IBMDP's stochastic ensembling
 1495 further mitigates finite-sample bias/variance.
 1496

1497 D.7 EXPERIMENTAL PROTOCOL AND METRICS

1498
 1499
Overview. We conduct a systematic comparison of the three planning methods across 100 inde-
 1500 pendent trials, focusing on their alignment with the theoretically optimal policy.
 1501

1502 For each of 100 independent trials:

- 1503 (i) Generate a fresh synthetic dataset as in Section D.1.
- 1504 (ii) Compute VI-Theo's optimal first action at the initial state.
- 1505 (iii) Compute VI-Sim's recommended first action.

1506
 1507
 1508
 1509
 1510 ²Specifically, if $\max_i \tilde{w}_i(s) \xrightarrow{P} 0$, then $\sum_i \tilde{w}_i(s)^2 \leq \max_i \tilde{w}_i(s) \sum_i \tilde{w}_i(s) \rightarrow 0$. This condition requires
 1511 that the similarity kernel bandwidth is chosen such that as $N \rightarrow \infty$, no single historical case dominates the
 1512 weights.

1512 (iv) Run IBMDP with an ensemble of MCTS-DPW planners; record (a) the *Top-1* action (most frequent across the ensemble), and (b) the *Top-2* action set (two most frequent).

1513

1514

1515 We report three alignment metrics per trial:

1516

1517 • **T1 Match:** indicator that IBMDP’s Top-1 equals VI-Theo’s action.

1518

1519 • **T2 Match:** indicator that the VI-Theo action appears in IBMDP’s Top-2 set.

1520

1521 • **Sim Match:** indicator that VI-Sim equals VI-Theo.

1522 **D.8 EXPERIMENTAL RESULTS AND ANALYSIS**

1523

1524 **Summary.** Table 5 presents the main results. Over 100 trials, IBMDP’s Top-1 matches the VI-
 1525 Theo optimum in 47 cases; IBMDP’s Top-2 covers the optimum in 66 cases; VI-Sim matches the
 1526 optimum in 36 cases. These results demonstrate that the stochastic, ensemble planner recovers a
 1527 larger fraction of near-equivalent high-value actions than a deterministic similarity planner, validating
 1528 the value of IBMDP’s ensemble approach.

1529 **Table 5: Policy alignment with the theoretical baseline over 100 trials.**

Method	Matches	Match Rate (%)
IBMDP Top 1	47	47.0
IBMDP Top 2	66	66.0
VI-Sim	36	36.0

1536 **Statistical Consistency Across Independent Trials.** To validate the statistical reproducibility of
 1537 our method, we present the complete trial-by-trial alignment results below. This detailed analysis
 1538 demonstrates that IBMDP’s policy recommendations consistently align with the theoretical optimum
 1539 across diverse problem instances, providing empirical evidence of the method’s robustness
 1540 and reliability (feature indices refer to assays $a \in \{1, \dots, 6\}$).

1541 **Table 6: Trial-wise comparison of VI-Theo vs. IBMDP and VI-Sim.**

1542

Iter	VI-Theo	IBMDP Top-1 Features	T1 Match	IBMDP Top-2 Features	T2 Match	VI-Sim	Sim Match
1	5	{3, 4}	0	{3, 5}	1	3	0
2	5	{3, 4}	0	{3, 5, 6}	1	3	0
3	3	{3, 4}	1	{3, 5}	1	5	0
4	5	{3, 4}	0	{3, 5}	1	3	0
5	3	{3, 4}	1	{3, 5}	1	3	1
6	4	{3, 4}	1	{3, 5}	0	3	0
7	3	{3, 4}	1	{3, 5}	1	3	1
8	5	{3, 4}	0	{3, 5, 6}	1	3	0
9	3	{3, 4}	1	{3, 5}	1	3	1
10	4	{3, 4}	1	{3, 5, 6}	0	6	0
11	4	{3, 4}	1	{3, 5}	0	4	1
12	4	{3, 4}	1	{3, 5}	0	4	1
13	4	{3, 4}	1	{3, 5}	0	6	0
14	4	{3, 4}	1	{3, 5}	0	6	0
15	5	{3, 4}	0	{3, 5}	1	3	0
16	5	{3, 4}	0	{3, 5}	1	3	0
17	4	{3, 4}	1	{3, 5}	0	4	1
18	4	{3, 4}	1	{3, 5, 6}	0	3	0
19	5	{3, 4}	0	{3, 5}	1	3	0
20	5	{3, 4}	0	{3, 5}	1	3	0
21	5	{3, 4}	0	{3, 5}	1	3	0
22	4	{3, 4}	1	{3, 5}	0	4	1
23	5	{3, 4}	0	{3, 5}	1	3	0
24	4	{3, 4}	1	{3, 5}	0	6	0
25	5	{3, 4}	0	{3, 6}	0	5	1
26	5	{3, 4}	0	{3, 5}	1	3	0

1565 *Continued on next page*

1566

1567

1568

Table 6: (continued)

Iter	VI-Theo	IBMDP Top-1 Features	T1 Match	IBMDP Top-2 Features	T2 Match	VI-Sim	Sim Match
1569	27	{3, 4}	0	{3, 5}	1	3	0
1570	28	{3, 4}	1	{3, 5}	0	3	0
1571	29	{3, 4}	1	{3, 5}	0	3	0
1572	30	{3, 4}	0	{3, 5}	1	3	0
1573	31	{3, 4}	0	{3, 5, 6}	1	3	0
1574	32	{3, 4}	1	{3, 5}	0	6	0
1575	33	{3, 4}	0	{3, 5}	1	5	1
1576	34	{3, 4}	1	{3, 5}	0	4	1
1577	35	{3, 4}	1	{3, 5}	0	4	1
1578	36	{3, 4}	0	{3, 5}	1	3	0
1579	37	{3, 4}	0	{3, 5}	1	3	0
1580	38	{3, 4}	0	{3, 5}	1	3	0
1581	39	{3, 4}	0	{3, 5}	1	3	0
1582	40	{3, 4}	1	{3, 5}	1	3	1
1583	41	{3, 4}	1	{3, 5}	0	4	1
1584	42	{3, 4, 5}	1	{3, 4, 5}	1	6	0
1585	43	{3, 4}	1	{3, 5}	1	3	1
1586	44	{3, 4}	0	{3, 5, 6}	1	3	0
1587	45	{3, 4}	0	{3, 5}	1	3	0
1588	46	{3, 4}	0	{3, 5}	1	3	0
1589	47	{3, 4}	1	{3, 5}	1	3	1
1590	48	{3, 4}	0	{3, 5}	1	5	1
1591	49	{3, 4}	1	{3, 5}	0	3	0
1592	50	{3, 4}	0	{3, 5}	1	3	0
1593	51	{3, 4}	1	{3, 5, 6}	0	4	1
1594	52	{3, 4}	0	{3, 5}	1	3	0
1595	53	{3, 4}	0	{3, 5}	1	5	1
1596	54	{3, 4}	0	{3, 5}	1	3	0
1597	55	{3, 4}	1	{3, 5}	0	3	0
1598	56	{3, 4}	0	{3, 5}	1	3	0
1599	57	{3, 4}	1	{3, 4, 5}	1	3	0
1600	58	{3, 4}	1	{3, 5}	1	3	1
1601	59	{3, 4}	1	{3, 5}	0	6	0
1602	60	{3, 4}	1	{3, 4, 5}	1	3	1
1603	61	{3, 4}	1	{3, 5, 6}	1	3	1
1604	62	{3, 4}	0	{3, 5}	0	3	0
1605	63	{3, 4}	0	{3, 5}	1	5	1
1606	64	{3, 4}	1	{3, 5}	0	3	0
1607	65	{3, 4}	0	{3, 5}	1	3	0
1608	66	{3, 4}	0	{3, 5}	1	3	0
1609	67	{3, 4}	0	{3, 5}	1	3	0
1610	68	{3, 4}	1	{3, 5}	0	6	0
1611	69	{3, 4}	0	{3, 5}	0	6	1
1612	70	{3, 4}	1	{3, 5}	0	4	1
1613	71	{3, 4}	0	{3, 5}	1	3	0
1614	72	{3, 4}	0	{3, 5}	1	3	0
1615	73	{3, 4}	1	{3, 5}	0	6	0
1616	74	{3, 4}	0	{3, 5}	1	3	0
1617	75	{3, 4}	0	{3, 5}	1	5	1
1618	76	{3, 4}	0	{3, 5}	1	5	1
1619	77	{3, 4}	0	{3, 5}	1	3	0
1620	78	{3, 4}	1	{3, 5}	0	4	1
1621	79	{3, 4}	0	{3, 5}	1	3	0
1622	80	{3, 4}	0	{3, 5}	1	5	1
1623	81	{3, 4}	0	{3, 5}	1	3	0
1624	82	{3, 4}	0	{3, 5}	1	3	0
1625	83	{3, 4}	1	{3, 5}	0	4	1
1626	84	{3, 4}	0	{3, 5}	1	3	0
1627	85	{3, 4}	0	{3, 5}	1	3	0
1628	86	{3, 4}	0	{3, 5}	1	3	0
1629	87	{3, 4}	1	{3, 5, 6}	0	3	0
1630	88	{3, 4}	0	{3, 5}	1	3	0

Continued on next page

Table 6: (continued)

Iter	VI-Theo	IBMDP Top-1 Features	T1 Match	IBMDP Top-2 Features	T2 Match	VI-Sim	Sim Match
89	5	{3, 4}	0	{3, 5}	1	3	0
90	5	{3, 4}	0	{3, 5}	1	3	0
91	3	{3, 4}	1	{3, 5}	1	3	1
92	4	{3, 4}	1	{3, 5}	0	4	1
93	3	{3, 4}	1	{3, 5}	1	3	1
94	3	{3, 4}	1	{3, 5}	1	3	1
95	4	{3, 4}	1	{3, 5, 6}	0	3	0
96	5	{3, 4}	0	{3, 5}	1	5	1
97	5	{3, 4}	0	{3, 5}	1	3	0
98	4	{3, 4}	1	{3, 5}	0	4	1
99	3	{3, 4}	1	{3, 5}	1	3	1
100	4	{3, 4}	1	{3, 5}	0	6	0

Interpretation. VI-Theo and VI-Sim return a single deterministic action per state. IBMDP explores the posterior-predictive policy space via stochastic rollouts and, by ensembling, surfaces *multiple* near-equivalent high-value choices. The superior Top-2 coverage (66% vs. VI-Sim’s 36% matching rate) reflects better policy-space exploration and robustness to finite-sample effects.

E BENCHMARK WITH PUBLIC DATASET

E.1 HIGH-COST DIFFERENTIAL CLEARANCE OPTIMIZATION

We reuse a publicly available pharmacokinetics dataset (rat, dog, human clearance plus QSAR predictors) to stress-test IBMDP under large assay cost differentials. The dataset is described in (?) and is available to download. The planner may propose at most two assays per decision step, and the expensive human clearance assay is treated just like the rat and dog assays (i.e., it can be scheduled in any batch). The operational objective is to finish with human clearance exceeding 1.0 mL/min/kg while spending as little as possible. Species-specific costs are listed in Table 7.

Assay	Cost (\$)	Relative Cost
Rat clearance	400	1.0x
Dog clearance	800	2.0x
Human clearance	4,000	10.0x

Table 7: Assay cost structure for high-cost differential experiment

Unlike traditional gated progression (e.g., “rat before dog before human”), every episode starts with the unmeasured state $s_0 = \{\text{CL}_{\text{rat}}^{\text{pred}}, \text{CL}_{\text{dog}}^{\text{pred}}, \text{CL}_{\text{human}}^{\text{pred}}\}$ so the solver can pick any eligible batch. The IBMDP ensemble (30 runs, $c = 5.0, 5,000$ iterations per run, $\tau \in \{0.6, 0.9\}$) produces a Maximum-Likelihood Action-Set Path (MLASP) by majority vote over recommended assay batches. The voting tally reveals three regimes: (i) high-uncertainty states favour rat/dog assays before committing to human tests; (ii) low-uncertainty states jump directly to human clearance; and (iii) intermediate states switch behaviour depending on the belief threshold τ . Figure 5 visualizes the resulting Pareto front and highlights how the MLASP navigates the trade-off between total spend and terminal uncertainty.

E.2 INTERPRETING THE PARETO FRONTIER

Figure 5 aggregates planning outcomes for tolerances $\tau \in \{0.0, 0.1, \dots, 1.0\}$ under the two-assays-per-step constraint. For each tolerance we execute a 30-run ensemble and record the first assay batch proposed by every run. Each marker therefore represents the rule “if $H(s_T) \leq \tau$ is required, begin with batch A_0 ”; the horizontal axis reports the corresponding assay spend (rat + dog + human) and the vertical axis equals the targeted uncertainty τ . The blue locus links the Pareto-efficient points, exposing the spend-versus-uncertainty trade-off that emerges when τ is tightened. The starred marker denotes the Maximum-Likelihood Action-Set Path (MLASP)—the batch occurring most frequently across ensemble members for the displayed tolerance. Progressing from higher to lower τ shows that lenient tolerances favour inexpensive rat/dog assays, whereas stringent requirements such as $H(s_T) \leq 0.10$ eventually demand the human clearance assay despite its 10x cost in Table 7. After

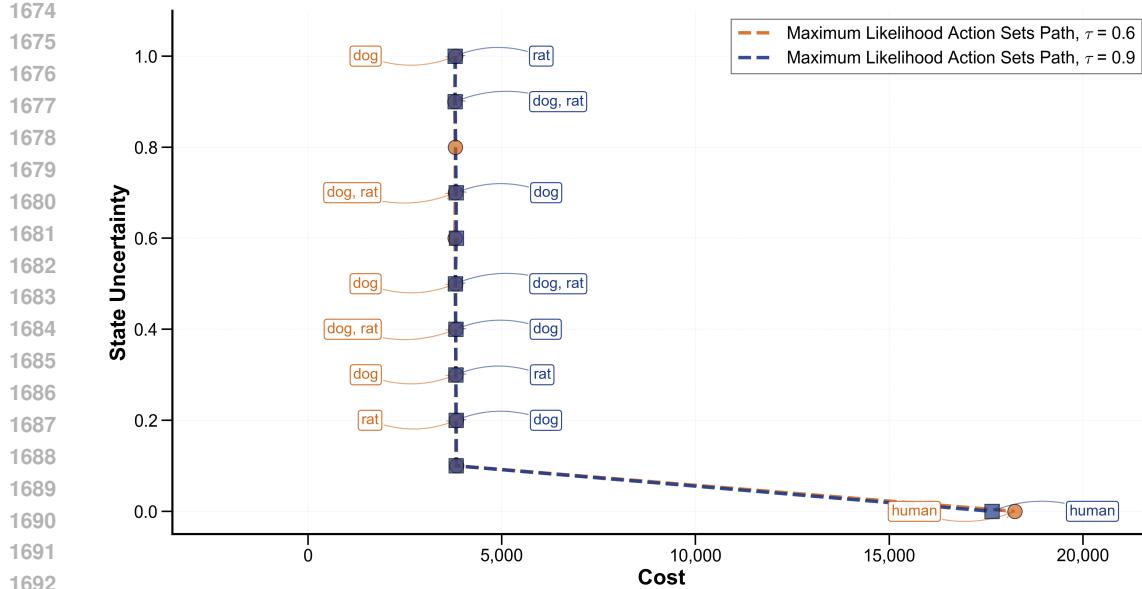


Figure 5: ADME clearance optimization results comparing IBMDP performance under two belief thresholds ($\tau = 0.6$ and $\tau = 0.9$) for a representative compound from the public CNS clearance benchmark. The plot demonstrates the Pareto-optimal trade-offs between total assay spend (horizontal axis) and terminal state uncertainty $H(s_T)$ (vertical axis) achieved by the IBMDP ensemble across 30 runs. The two distinct curves for $\tau = 0.6$ (more lenient) and $\tau = 0.9$ (more stringent) illustrate how tighter belief thresholds drive higher assay expenditure to achieve lower uncertainty. Notably, the two tau configurations exhibit strong alignment in their Pareto frontiers, confirming that IBMDP produces consistent and robust planning strategies across different confidence requirements. The Maximum-Likelihood Action-Set Paths (MLASPs) for each threshold are marked, showing how the ensemble consensus adapts to balance the high cost of human clearance assays (\$4,000) against the need to reduce decision uncertainty below the specified threshold.

the first batch is executed the IBMDP policy updates the belief state and recomputes the next action, so the figure captures the initial decision while the full policy remains adaptive.

F USE OF LLM

We used a large language model (LLM) solely as a general-purpose writing aid for light copyediting and polishing. Specifically, the LLM was used to improve grammar, clarity, and flow of sentences written by the authors, and to suggest minor phrasing alternatives. The LLM did not contribute to research ideation, methodology, experimental design, data analysis, interpretation of results, or substantive content generation. All technical claims, analyses, references, and conclusions were conceived, written, and verified by the authors. The authors take full responsibility for all content in this paper, including any text that was edited with the assistance of an LLM. No LLM is listed as an author, and no text was accepted without author review and verification.

G GLOBAL NOTATION REFERENCE

This appendix provides a comprehensive reference for all mathematical notation used throughout the manuscript. The table below organizes symbols by category for easy reference.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Table 8: Global Notation Reference summarizing the symbols used across the manuscript.

Symbol	Meaning
Sets & Indices	
N, M	Number of historical compounds and total available assays, respectively.
$X = \{x_i\}_{i=1}^N$	Set of N historical compounds with fixed representations.
$\mathcal{A} = \{a_1, \dots, a_M\}$	Set of M available assays.
$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$	Historical dataset of compounds and their assay outcome vectors.
i, j, k, t	Indices for historical case, assay, feature, and decision step.
Candidate Compound & State	
x_*	The candidate compound for which a plan is being made.
$s_t = (x_*, \{y_{*,j}\}_{j \in M_t})$	State at step t , comprising the candidate and all outcomes measured so far.
$M_t \subseteq \mathcal{A}$	The set of assays that have been measured for x_* up to step t .
$U_t = \mathcal{A} \setminus M_t$	The set of unmeasured assays for x_* at step t .
Actions, Costs & Policy	
$\mathcal{A}_t = \mathcal{P}_{\leq m}(U_t) \cup \{\text{eox}\}$	Action set at s_t : batches of up to m unmeasured assays, plus the stop action.
m	Maximum number of assays that can be run in parallel per step.
$A_t \in \mathcal{A}_t$	The action (a batch of assays) chosen at step t .
$c(s_t, A_t) \in \mathbb{R}_{\geq 0}^q$	Vector of q resource costs for taking action A_t .
$\rho \in \mathbb{R}_{\geq 0}^q$	User-defined weights for trading off different cost types.
$R(s_t, \bar{A}_t)$	Scalar step cost: $\rho^\top c(s_t, A_t)$. $R(s_t, \text{eox}) = 0$.
π, π^*	A policy mapping states to actions, and the optimal policy.
Similarity Model & Target Functionals	
g	The primary scalar target property of interest (e.g., an <i>in vivo</i> endpoint).
$G = \{g_i\}, I_g$	Set of historical target values and the index set where they are available.
$d(s_t, D_i)$	Variance-normalized distance between the current state and historical case i .
$w_i(s_t)$	Similarity weight of historical case i given the current state s_t .
$\tilde{w}_i(s_t)$	Similarity weight $w_i(s_t)$ re-normalized over the set I_g .
$H(s_t)$	State uncertainty: the weighted variance of the target g based on $\tilde{w}_i(s_t)$.
$L(s_t)$	Goal likelihood: the weighted probability that g is in a desirable range.
$1[\cdot]$	Indicator function: returns 1 when the condition inside the brackets holds, and 0 otherwise.
Hyperparameters & Constraints	
λ_w, λ_k	Hyperparameters: global similarity bandwidth and per-feature weights.
ϵ, τ	Thresholds for the constrained objective: max terminal uncertainty and min goal likelihood.
γ, T	Discount factor and maximum horizon for the MDP.
N_e, n_{itr}	Planning parameters: ensemble size and MCTS iterations per run.
Algorithm Components	
MCTS-DPW	Monte Carlo Tree Search with Double Progressive Widening.
MLASP	Maximum-Likelihood Action-Sets Path: final plan from ensemble majority voting.
eox	End of experiment action (stop action).