
Anomaly Detection in Networks via Score-Based Generative Models

Dmitrii Gavrilev 1 Evgeny Burnaev 1 2

Abstract
Node outlier detection in attributed graphs is a
challenging problem for which there is no method
that would work well across different datasets.
Motivated by the state-of-the-art results of score-
based models in graph generative modeling, we
propose to incorporate them into the aforemen-
tioned problem. Our method achieves competi-
tive results on small-scale graphs. We provide
an empirical analysis of the Dirichlet energy, and
show that generative models might struggle to
accurately reconstruct it.

1. Introduction
Graphs are a natural structure to represent various kinds of
data, such as social networks, molecules, the Internet, and
infrastructure networks, to name but a few. They describe
the connectivity (relations) between objects. Analyzing net-
works might be crucial for both research and industry, e.g.,
for fraud detection. For instance, anomalous nodes might
reveal fraudsters in a network of transactions, potentially
preventing a significant loss of money (Ma et al., 2021)
or detecting false product reviews that could mislead cus-
tomers (Kumar et al., 2018). Another important scenario
is recognizing the Out-Of-Distribution (OOD) nodes in a
graph, on which a discriminative model may yield unreliable
predictions (Wu et al., 2023).

A graph G can be represented by the sets of nodes (vertices)
V and edges E. One of the ways to describe a graph is
to build the adjacency matrix A ∈ Rn×n, where n is the
number of nodes. Real-world networks are often attributed
graphs, meaning that the nodes and edges might additionally
have attributes described as vectors. In this paper, we use
the notions of ’attributes’ and ’features’ interchangeably.
Anomalous Node Detection (ANOS ND) is the problem of
recognizing the nodes in a graph that deviate dramatically

1Skolkovo Institute of Science and Technology, Moscow,
Russia 2Artificial Intelligence Research Institute, Moscow, Rus-
sia. Correspondence to: Dmitrii Gavrilev <dmitrygavri-
lyev@gmail.com>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling

from the others (Ma et al., 2021). That is, the goal is to
rank the nodes by the degree of abnormality. Due to the
cost of labeling training datasets, unsupervised methods are
preferred. However, to our knowledge, most of them fail
to solve ANOS ND (Liu et al., 2022b). Hence, devising an
unsupervised method that would work well across a wide
variety of graphs remains challenging.

Recently, score-based generative modeling (or diffusion-
based modeling) has been getting close attention due to its
expressive generation. It has been incorporated in various
modalities, including images (Dhariwal & Nichol, 2021),
audio (Chen et al., 2020a), video (Ho et al., 2022), text (Reid
et al., 2022), and graphs (Niu et al., 2020; Jo et al., 2022;
Vignac et al., 2022). In our work, we leverage score-based
graph generative models to detect anomalous nodes in a
given attributed network. The behavior of a node can be
characterized by its neighborhood, i.e., ego-graph. Formally,
an ego-graph of a node v is the induced subgraph of v
and its k-hop neighbors (Freeman, 1982). Our key idea
is to view a network as a collection of ego-graphs. This
view allows us to learn the probability distribution induced
by a network with score-based generative models. In the
context of anomaly detection on networks, our contribution
is twofold:

• Learning the distribution of ego-graphs with score-
based modeling;

• Introducing measures of abnormality based on the re-
construction error of attributed ego-graphs.

This paper is organized as follows. In Appendix A, we re-
view unsupervised methods for ANOS ND and the recent
advancements in graph generation. In Section 2, we briefly
describe the training procedure of GDSS Graph Diffusion
via the System of Stochastic Differential Equations (GDSS
(Jo et al., 2022)). Next, in Section 3, we present our method
of assigning anomaly scores. Section 4 describes the ex-
perimental setup, with Appendices B-G supplementing it.
Section 5 concludes with a discussion of the results and
provides insights regarding the limitations of our methods
and directions for improvement.

Anomaly Detection in Networks via Score-Based Generative Models

2. Background: Training GDSS
Let G0 = (X0,A0) ∈ RN×F × RN×N be an attributed
graph with node feature matrix X0 and adjacency matrix
A0, where N and F denote the number of nodes and fea-
tures, respectively. A graph G0 is an arbitrary ego-graph
drawn from the distribution pdata we want to learn. Forward
diffusion of GDSS is a continuous process that destroys
the graph structure and its properties. It is defined by the
following Itô SDE:

dGt = ft(Gt) dt+ gt dwt , (1)

where ft and gt are the drift and diffusion functions, respec-
tively, and wt is the Wiener process. Note that Gt, ft, gt
and wt are all functions of time t, which is written as a
subscript for brevity. This process spans over a time horizon
[0, T]. Therefore, G0 ∼ pdata denotes the original graph,
whereas Gt ∼ p0t(Gt|G0) indicates its terminal noisy ver-
sion. Note that Gt at t > 0 is not a sparse graph since
forward diffusion destroys the sparsity of the adjacency
matrix.

Let the drift function be separable into linear attribute and
adjacency components:

ft(Gt) = (f1,t(Xt), f2,t(At)) . (2)

The choice of the linear drift terms allows us to factorize
the transition kernel p0t(Gt|G0):

p0t(Gt|G0) = p0t(Xt|X0)p0t(At|A0). (3)

Moreover, sampling from p0t(Xt|X0) and p0t(At|A0) is
fast because they are Gaussian, each with a known mean
and covariance (see Sections 5.5 and 6.1 in (Särkkä & Solin,
2019) for more details). Thus, simulating the entire forward
process is not required. When the SDE is either Variance
Preserving (VP), Variance Exploding, or sub-VP, its transi-
tion kernel takes the following functional form (Song et al.,
2020):

p0t(Xt|X0) = N
(
Xt;mtX0, σ

2
t I
)
,

where mt is a scalar function of time, to which we refer to
as the signal decay factor. Similarly, the SDE for At has
the same functional form.

The reverse diffusion of GDSS is defined by the system of
SDEs:{
dXt =

[
f1,t(Xt)− g21,t∇Xt log pt(Xt,At)

]
dt+ g1,t dw1

dAt =
[
f2,t(At)− g22,t∇At log pt(Xt,At)

]
dt+ g2,t dw2

,

(4)
where dw1, dw2 and dt correspond to the time reversal.

The partial scores ∇Xt log pt(Xt,At) and
∇At log pt(Xt,At) are modeled with neural networks

sθ,t and sϕ,t, respectively, where θ and ϕ are the sets of
parameters. The training objectives for these networks are
the following:

min
θ

Et

{
λ1(t)EG0EGt|G0

∥sθ,t(Gt)−∇Xt log p0t(Xt|X0)∥22
}

min
ϕ

Et

{
λ2(t)EG0EGt|G0

∥sϕ,t(Gt)−∇At log p0t(At|A0)∥22
}

(5)

Positive weights λ1(t) and λ2(t) indicate the strength of
score matching at time t.

The effect of hubs In our setting, G0 denotes an uncor-
rupted ego-graph. Therefore, to estimate the expectation
EG0

in Eq. (5), we sample a random node v from G and
then build an ego-graph G0 = G0(v). Since the score
network for adjacency matrix sϕ(Gt) ∈ RN×N , both train-
ing and inference scale quadratically w.r.t. the number of
nodes. Hence, training GDSS might be computationally in-
tractable for large graphs. Real-world networks may contain
the so-called ”hubs”, i.e. nodes with a significant number
of links (Barabási & Albert, 1999; Barabási & Bonabeau,
2003). Consequently, even the 1-hop ego-graph of a hub
can hinder mini-batch training. To alleviate this issue, we
propose to sample subgraphs in which the number of nodes
does not exceed some predefined value M . Specifically, if
a sampled ego-graph has a number of nodes that exceeds
M , we simply truncate it by subsampling a subgraph of size
M . Note that in this subsampling procedure, we make sure
that the subgraph contains the central node of the original
ego-graph. For brevity, we do not differentiate between the
original ego-graph and its subgraph.

3. Ego-graph Reconstruction
Let G = (V, E ,X) be an unweighted attributed network
with the vertex set V , edge set E , and node attribute matrix
X ∈ R|V|×F . The goal is to rank the nodes from V such
that anomalous nodes are placed higher than normal nodes.
A common strategy for solving node outlier detection is to
design an unsupervised scoring function score(·) : V →
R that defines the node ranking (Ma et al., 2021). As a
convention, we consider positive examples to be outliers.
Consequently, larger scores should reflect higher degrees of
abnormalities.

Each node v of G induces a k-hop ego-graph G(v). We
assume that there is a hidden underlying distribution of
ego-graphs pdata from which the set of observed samples
{G(v) | v ∈ V} is drawn. To solve ANOS ND, we propose
to learn this distribution through GDSS (Song et al., 2020).
We assign anomaly scores using a dissimilarity between
the original and reconstructed ego-graphs with score-based
generative models. Our key assumption is that the generator
reconstructs inlier ego-graphs more accurately than outliers.

Anomaly Detection in Networks via Score-Based Generative Models

After learning the distribution of ego-graphs, we can calcu-
late the reconstruction error for each node. Given node v
and time τ , the reconstruction operator acts as follows:

1. Run the forward diffusion (Eq. (1)) on G(v) until time
τ , resulting in Gτ (v)

2. Solve the reverse diffusion (Eq. (4)) with an initial
condition on Gτ (v), resulting in Ĝ(v, τ)

We combine the ideas of sampling with different lev-
els of noise (Graham et al., 2022) and sampling mul-
tiple noisy versions of the same example (Liu et al.,
2022c). The ego-graphs are reconstructed several times
with different values of τ = τ1, . . . , τK distributed
uniformly in [0, T]. At each time τi, we sample S
noisy versions of the ego-graphs from p0τi . Let us de-
note G

(1)
τ (v),G

(2)
τ (v), . . . ,G

(S)
τ (v) the independently cor-

rupted ego-graphs centered around node v at time τ . Fur-
ther, we denote Ĝ(1)(v, τ), Ĝ(2)(v, τ), . . . , Ĝ(S)(v, τ) the
corresponding reconstructions. The system in Eq. (4) can be
solved numerically with the Euler-Maruyama or Predictor-
Corrector methods (Song et al., 2020). In addition, the au-
thors of GDSS present a novel solver, Symmetric Splitting
for System of SDEs (S4) (Jo et al., 2022).

Time τ is associated with the level of noise: the higher
values of τ correspond to the lower values of the Signal-to-
Noise Ratio (SNR). Given the variance of the perturbation
kernel σ2

t and the signal decay factor mt (see Eq. (2)), SNR
at time τ (Kingma et al., 2021) can be defined as

SNR(τ) =
m2

τ

σ2
τ

. (6)

In the limit τ → ∞, the original signal is completely dimin-
ished, and the reconstruction operator acts blindly. Thus,
we propose to reweight the errors at different noise scales
by

√
SNR(τ).

Given a dissimilarity measure d(·, ·) on graphs of the same
size and a time penalty function γ(·), we define the anomaly
score for node v as

score(v) =

K∑
i=1

S∑
j=1

(
γ(τi) · d(G(j)(v, τi), Ĝ(v))

)
. (7)

In this work, we set γ(τ) as either SNR(τ) or 1 (no weight-
ing). As for ego-graph dissimilarity, we propose two dif-
ferent ways of measuring it: 1) as a convex combination of
matrix distances; 2) as the difference in normalized ener-
gies.

Matrix distance One of the common ways to define a
dissimilarity measure for graphs is to sum the distances
between adjacency and feature matrices (Ding et al., 2019):

d(G, Ĝ) = (1− α) · ∥A− Â∥F
N2

+ α · ∥X− X̂∥F
N · F

, (8)

where α ∈ [0, 1] is a hyperparameter, N and F are the
numbers of nodes and features, respectively. In addition,
we normalize matrices by their size. Normalizing the errors
in adjacency matrices by their dimensionality helps to deal
with the bias towards larger ego-graphs. Moreover, the
normalization of the feature matrix error allows us to choose
the weight α across different datasets more consistently
since F depends on the dataset.

Shift in energy Let D be the diagonal matrix of node
degrees and L be the normalized Laplacian:

L = D†/2(D−A)D†/2. (9)

Note that instead of taking the exact inverse square root of
D, we operate with its pseudoinverse square root. This al-
lows us to normalize the Laplacian even if the reconstructed
ego-graphs contain isolated nodes. If a graph is directed,
then we symmetrize its Laplacian. Both features and struc-
ture can be incorporated into a single functional, the Dirich-
let energy of a graph, which is defined as the variation of
features along the edges (Cai & Wang, 2020):

E(X,L) =
∑

(i,j)∈E

∥∥∥∥∥ Xi√
Dii

− Xj√
Djj

∥∥∥∥∥
2

= TrX⊺LX.

(10)
It can be interpreted as a measure of feature smoothness,
with lower values of the energy indicating that the adjacent
nodes have similar features. In general, the Dirichlet energy
is unbounded above. Following (Di Giovanni et al., 2022),
we normalize the energy by the squared Frobenius norm of
features, which yields a quantity bounded by the Laplacian
spectral radius ρL:

0 ≤ E(X,L)

∥X∥2
≤ ρL ≤ 2. (11)

Contrary to the previous studies (Cai & Wang, 2020; Zhou
et al., 2021; Di Giovanni et al., 2022), we view energy as a
functional of both features and the Laplacian. Bounding the
energy helps quantify the shift in energy, which we define
through the absolute difference between reconstructed and
original energies:

d(G, Ĝ) =

∣∣∣∣∣E(X,L)

∥X∥2
− E(X̂, L̂)

∥X̂∥2

∣∣∣∣∣ . (12)

A large gap between energies indicates a drastic change
in how the node features align with each other as well as
structural changes. Thus, a shift in energy can serve as a
dissimilarity measure.

4. Experiments
To assess the quality of our method, we follow the evalua-
tion protocol from the BOND benchmark (Liu et al., 2022b).

Anomaly Detection in Networks via Score-Based Generative Models

Table 1. ROC-AUC (%) on datasets with organic outliers. The best average results are written in bold, and the best maximum results are
underlined. TLE and OOM C indicate that the method exceeded the time limit of 24 hours and failed to fit in VRAM, respectively.

Algorithm Weibo Reddit Disney Books Enron DGraph

LOF 56.5 ± 0.0 (56.5) 57.2 ± 0.0 (57.2) 47.9 ± 0.0 (47.9) 36.5 ± 0.0 (36.5) 46.4 ± 0.0 (46.4) TLE
IF 53.5 ± 2.8 (57.5) 45.2 ± 1.7 (47.5) 57.6 ± 2.9 (63.1) 43.0 ± 1.8 (47.5) 40.1 ± 1.4 (43.1) 60.9 ± 0.7(62.0)
MLPAE 82.1 ± 3.6 (86.1) 50.6 ± 0.0 (50.6) 49.2 ± 5.7(64.1) 42.5 ± 5.6 (52.6) 73.1 ± 0.0 (73.1) 37.0 ± 1.9 (41.3)

SCAN 63.7 ± 5.6 (70.8) 49.9 ± 0.3 (50.0) 50.5 ± 4.0 (56.1) 49.8 ± 1.7 (52.4) 52.8 ± 3.4 (58.1) TLE
Radar 98.9 ± 0.1(99.0) 54.9 ± 1.2 (56.9) 51.8 ± 0.0 (51.8) 52.8 ± 0.0 (52.8) 80.8 ± 0.0 (80.8) OOM C
ANOMALOUS 98.9 ± 0.1 (99.0) 54.9 ± 5.6 (60.4) 51.8 ± 0.0 (51.8) 52.8 ± 0.0 (52.8) 80.8 ± 0.0 (80.8) OOM C

GCNAE 90.8 ± 1.2 (92.5) 50.6 ± 0.0 (50.6) 42.2 ± 7.9 (52.7) 50.0 ± 4.5 (57.9) 66.6 ± 7.8 (80.1) 40.9 ± 0.5 (42.2)
DOMINANT 85.0 ± 14.6 (92.5) 56.0 ± 0.2 (56.4) 47.1 ± 4.5 (54.9) 50.1 ± 5.0 (58.1) 73.1 ± 8.9 (85.0) OOM C
DONE 85.3 ± 4.1 (88.7) 53.9 ± 2.9 (59.7) 41.7 ± 6.2 (50.6) 43.2 ± 4.0 (52.6) 46.7 ± 6.1 (67.1) OOM C
AdONE 84.6 ± 2.2 (87.6) 50.4 ± 4.5 (58.1) 48.8 ± 5.1 (59.2) 53.6 ± 2.0 (56.1) 44.5 ± 2.9 (53.6) OOM C
AnomalyDAE 91.5 ± 1.2 (92.8) 55.7 ± 0.4 (56.3) 48.8 ± 2.2 (55.4) 62.2 ± 8.1 (73.2) 54.3 ± 11.2 (69.1) OOM C
GAAN 92.5 ± 0.0 (92.5) 55.4 ± 0.4 (56.0) 48.0 ± 0.0 (48.0) 54.9 ± 5.0 (61.9) 73.1 ± 0.0 (73.1) OOM C
GUIDE OOM C OOM C 38.8 ± 8.9 (52.5) 48.4 ± 4.6 (63.5) OOM C OOM C
CONAD 85.4 ± 14.3 (92.7) 56.1 ± 0.1 (56.4) 48.0 ± 3.5 (53.1) 52.2 ± 6.9 (62.9) 71.9 ± 4.9 (84.9) 34.7 ± 1.2 (36.5)

Rec 74.5 ± 12.6 (88.6) 44.4 ± 0.4 (45.1) 65.0 ± 11.2 (79.8) 56.9 ± 2.7 (62.1) 44.0 ± 4.0 (51.4) TLE
Rec (unweighted) 74.4 ± 12.4 (88.2) 44.5 ± 0.4 (45.2) 63.1 ± 12.9 (78.1) 57.1 ± 2.8 (62.7) 44.0 ± 4.2 (51.4) TLE
Energy 51.3 ± 11.0 (64.8) 55.1 ± 0.8 (56.7) 56.7 ± 5.7 (67.0) 52.4 ± 3.8 (59.2) 36.5 ± 5.6 (48.2) TLE
Energy (unweighted) 51.9 ± 11.1 (67.8) 55.0 ± 0.9 (56.8) 58.4 ± 5.9 (68.2) 52.7 ± 3.0 (57.5) 35.5 ± 5.0 (46.9) TLE

This benchmark tests 14 different approaches, ranging from
matrix factorization to deep neural networks. For fair com-
parison, tuning of hyperparameters is performed on the
shared grid. BOND evaluates the algorithms on real-world
networks that include organic and synthetic anomalies. In
this work, we evaluate our methods only on graphs with
organic outliers. A detailed description of datasets as well
as their statistics is provided in Appendix B. In the prepro-
cessing step, we standardize the node feature matrices such
that each feature has a unit standard deviation. This allows
us to use the same level of noise for each feature during
forward diffusion.

If possible, the models from the BOND benchmark share
the same grid of hyperparameters. On each dataset, per-
formance is evaluated 20 times. At the beginning of a
trial, a model is built with randomly drawn hyperparam-
eters. To solve the reverse diffusion SDEs, we use the
Euler-Maruyama solver with ⌊100 · τ

T ⌋ steps. We set the
number of reconstruction levels K = 4 and the number
of samples per level S = 3. More details regarding the
architecture and hyperparameters can be found in Appendix
C. In Appendix E, we motivate our choice of SDE solver.

Tables 1, 5, and 6 show a comparison of our methods and
the baselines in terms of metrics (see Appendix D for the
description of metrics and additional results). The baseline
results are taken from BOND. Our results are shown in the
bottom rows (in bold). Rec stands for reconstruction-based
detection with matrix distance, whereas Energy corresponds
to setting a shift in energy as a dissimilarity measure. By
default, we assume that the scores are weighted with the
SNR time penalties. We first write the average metrics, the
standard deviation, and the maximum in brackets. Ego-
graphs are visualized in Appendix G.

Energy reconstruction Further, we investigate how well
GDSS reconstructs the energy. Figure 2 shows the origi-
nal and reconstructed normalized energies from different
noise levels. The energy values are collected using all 20
checkpoints. As can be seen from the histograms, GDSS
tends to generate ego-graphs with low energies. This effect
is more visible in Figure 3, where we plotted histograms of
the signed shift in energy E(X,L)

∥X∥2 − E(X̂,L̂)

∥X̂∥2
. A significant

bias towards positive values indicates that the reconstructed
ego-graphs are either smoother or sparser than their origi-
nals.

5. Discussion
In this work, we present a novel method to tackle node
outlier detection in attributed networks. Our approach lever-
ages score-based generative graph models to reconstruct
ego-graphs and is agnostic to the particular choice of model.
We assign anomaly scores based on a dissimilarity measure
between the original and reconstructed ego-graphs. We ex-
periment with two ways of measuring the dissimilarity: 1)
combining the norms of the differences between both the ad-
jacency and feature matrices; and 2) calculating the absolute
shift in normalized Dirichlet energies. The former measure
shows the best results on Disney dataset, whereas the rest
of the benchmarked methods completely fail. However, it
shows results that are poor on two larger datasets, Reddit
and Enron, and moderate on the others. The latter mea-
sure is consistently worse than the matrix distance, except
on Reddit, whose energy distribution forms a narrow band
located on smaller values, as opposed to the other graphs.
Analyzing the shift in energy might be helpful not only for
anomaly detection in networks but also for assessing the
quality of graph generative models.

Anomaly Detection in Networks via Score-Based Generative Models

Future directions involve finding an optimal architecture
and incorporating more expressive graph convolutions, such
as GRAFF (Di Giovanni et al., 2022). Another prospect
is guided generation with node positional encodings. Un-
folding a graph into a collection of ego-graphs comes with
both advantages and shortcomings. It serves as a technique
for training score-based models at a local scale, efficiently
learning the notion of normality in interactions. Neverthe-
less, information from neighborhoods may not be sufficient.
Employing positional encodings might alleviate this issue
by capturing subtle higher-order interactions. They include,
but are not limited to, Laplacian PE (Dwivedi et al., 2020),
SignNet (Lim et al., 2022), and geodesics (Rampášek et al.,
2022).

Acknowledgements
This work was supported by Ministry of Science and Higher
Education grant No. 075-10-2021-068.

References
Akoglu, L., McGlohon, M., and Faloutsos, C. Oddball:

Spotting anomalies in weighted graphs. In Pacific-Asia
conference on knowledge discovery and data mining, pp.
410–421. Springer, 2010.

Bandyopadhyay, S., Vivek, S. V., and Murty, M. Outlier
resistant unsupervised deep architectures for attributed
network embedding. In Proceedings of the 13th inter-
national conference on web search and data mining, pp.
25–33, 2020.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Barabási, A.-L. and Bonabeau, E. Scale-free networks.
Scientific american, 288(5):60–69, 2003.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof:
identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on
Management of data, pp. 93–104, 2000.

Cai, C. and Wang, Y. A note on over-smoothing for graph
neural networks. arXiv preprint arXiv:2006.13318, 2020.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. arXiv preprint arXiv:2009.00713, 2020a.

Chen, Z., Liu, B., Wang, M., Dai, P., Lv, J., and Bo, L.
Generative adversarial attributed network anomaly de-
tection. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
pp. 1989–1992, 2020b.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289, 2015.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Graph neu-
ral networks as gradient flows. arXiv preprint
arXiv:2206.10991, 2022.

Ding, K., Li, J., Bhanushali, R., and Liu, H. Deep anomaly
detection on attributed networks. In Proceedings of the
2019 SIAM International Conference on Data Mining, pp.
594–602. SIAM, 2019.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Freeman, L. C. Centered graphs and the structure of ego
networks. Mathematical Social Sciences, 3(3):291–304,
1982.

Fruchterman, T. M. and Reingold, E. M. Graph drawing
by force-directed placement. Software: Practice and
experience, 21(11):1129–1164, 1991.

Graham, M. S., Pinaya, W. H., Tudosiu, P.-D., Nachev, P.,
Ourselin, S., and Cardoso, M. J. Denoising diffusion
models for out-of-distribution detection. arXiv preprint
arXiv:2211.07740, 2022.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.
In Varoquaux, G., Vaught, T., and Millman, J. (eds.), Pro-
ceedings of the 7th Python in Science Conference, pp. 11
– 15, Pasadena, CA USA, 2008.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. arXiv preprint
arXiv:2204.03458, 2022.

Huang, X., Yang, Y., Wang, Y., Wang, C., Zhang, Z., Xu,
J., Chen, L., and Vazirgiannis, M. Dgraph: A large-
scale financial dataset for graph anomaly detection. In
Thirty-sixth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track, 2022.

Anomaly Detection in Networks via Score-Based Generative Models

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in science & engineering, 9(03):90–95, 2007.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative mod-
eling of graphs via the system of stochastic differential
equations. arXiv preprint arXiv:2202.02514, 2022.

Kingma, D., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. Advances in neural information
processing systems, 34:21696–21707, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Krizhevsky, A. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos,
C., and Subrahmanian, V. Rev2: Fraudulent user predic-
tion in rating platforms. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data
Mining, pp. 333–341, 2018.

Kumar, S., Zhang, X., and Leskovec, J. Predicting dynamic
embedding trajectory in temporal interaction networks.
In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.
1269–1278, 2019.

Leskovec, J., Adamic, L. A., and Huberman, B. A. The
dynamics of viral marketing. ACM Transactions on the
Web (TWEB), 1(1):5–es, 2007.

Li, J., Dani, H., Hu, X., and Liu, H. Radar: Residual
analysis for anomaly detection in attributed networks. In
IJCAI, volume 17, pp. 2152–2158, 2017.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and basis invariant networks
for spectral graph representation learning. arXiv preprint
arXiv:2202.13013, 2022.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation-based
anomaly detection. ACM Transactions on Knowledge
Discovery from Data (TKDD), 6(1):1–39, 2012.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows, 2019. URL https://arxiv.
org/abs/1905.13177.

Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R.,
Ding, K., Chen, C., Peng, H., Shu, K., Chen, G. H., Jia,
Z., and Yu, P. S. Pygod: A python library for graph outlier
detection. arXiv preprint arXiv:2204.12095, 2022a.

Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R.,
Ding, K., Chen, C., Peng, H., Shu, K., Sun, L., Li, J.,
Chen, G. H., Jia, Z., and Yu, P. S. Bond: Benchmarking
unsupervised outlier node detection on static attributed
graphs. arXiv preprint arXiv:2206.10071, 2022b.

Liu, L., Ren, Y., Cheng, X., and Zhao, Z. Diffusion de-
noising process for perceptron bias in out-of-distribution
detection. arXiv preprint arXiv:2211.11255, 2022c.

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z.,
Xiong, H., and Akoglu, L. A comprehensive survey
on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering, 2021.

Metsis, V., Androutsopoulos, I., and Paliouras, G. Spam
filtering with naive bayes-which naive bayes? In CEAS,
volume 17, pp. 28–69. Mountain View, CA, 2006.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling, 2020. URL https://arxiv.
org/abs/2003.00638.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q., et al. Anoma-
lous: A joint modeling approach for anomaly detection
on attributed networks. In IJCAI, pp. 3513–3519, 2018.

Pennebaker, J. W., Francis, M. E., and Booth, R. J. Lin-
guistic inquiry and word count: Liwc 2001. Mahway:
Lawrence Erlbaum Associates, 71(2001):2001, 2001.

Perozzi, B. and Akoglu, L. Scalable anomaly ranking of
attributed neighborhoods. In Proceedings of the 2016
SIAM International Conference on Data Mining, pp. 207–
215. SIAM, 2016.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Reid, M., Hellendoorn, V. J., and Neubig, G. Diffuser:
Discrete diffusion via edit-based reconstruction. arXiv
preprint arXiv:2210.16886, 2022.

https://arxiv.org/abs/1905.13177
https://arxiv.org/abs/1905.13177
https://arxiv.org/abs/2003.00638
https://arxiv.org/abs/2003.00638

Anomaly Detection in Networks via Score-Based Generative Models

Sakurada, M. and Yairi, T. Anomaly detection using au-
toencoders with nonlinear dimensionality reduction. In
Proceedings of the MLSDA 2014 2nd workshop on ma-
chine learning for sensory data analysis, pp. 4–11, 2014.

Sánchez, P. I., Müller, E., Laforet, F., Keller, F., and Böhm,
K. Statistical selection of congruent subspaces for min-
ing attributed graphs. In 2013 IEEE 13th international
conference on data mining, pp. 647–656. IEEE, 2013.

Särkkä, S. and Solin, A. Applied stochastic differential
equations, volume 10. Cambridge University Press, 2019.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In International conference on artificial neural networks,
pp. 412–422. Springer, 2018.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Wang, M. Y. Deep graph library: Towards efficient and
scalable deep learning on graphs. In ICLR workshop on
representation learning on graphs and manifolds, 2019.

Wang, Y., Zhang, J., Guo, S., Yin, H., Li, C., and Chen,
H. Decoupling representation learning and classification
for gnn-based anomaly detection. In Proceedings of the
44th international ACM SIGIR conference on research
and development in information retrieval, pp. 1239–1248,
2021.

Welling, M. and Kipf, T. N. Semi-supervised classification
with graph convolutional networks. In J. International
Conference on Learning Representations (ICLR 2017),
2016.

Wu, Q., Chen, Y., Yang, C., and Yan, J. Energy-based out-
of-distribution detection for graph neural networks. arXiv
preprint arXiv:2302.02914, 2023.

Xu, X., Yuruk, N., Feng, Z., and Schweiger, T. A. Scan: a
structural clustering algorithm for networks. In Proceed-
ings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 824–833,
2007.

Xu, Z., Huang, X., Zhao, Y., Dong, Y., and Li, J. Contrastive
attributed network anomaly detection with data augmen-
tation. In Advances in Knowledge Discovery and Data
Mining: 26th Pacific-Asia Conference, PAKDD 2022,

Chengdu, China, May 16–19, 2022, Proceedings, Part II,
pp. 444–457. Springer, 2022.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep
auto-regressive models, 2018. URL https://arxiv.
org/abs/1802.08773.

Yuan, X., Zhou, N., Yu, S., Huang, H., Chen, Z., and Xia,
F. Higher-order structure based anomaly detection on
attributed networks. In 2021 IEEE International Con-
ference on Big Data (Big Data), pp. 2691–2700. IEEE,
2021.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 586–595,
2018.

Zhao, T., Deng, C., Yu, K., Jiang, T., Wang, D., and Jiang,
M. Error-bounded graph anomaly loss for gnns. In Pro-
ceedings of the 29th ACM International Conference on
Information & Knowledge Management, pp. 1873–1882,
2020.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021.

https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1802.08773

Anomaly Detection in Networks via Score-Based Generative Models

A. Related Work
A.1. Anomaly Detection

In (Ma et al., 2021), the authors present a survey on graph anomaly detection methods. For ANOS ND, they provide the
following taxonomy of anomalies: global, in which node attributes differ from the distribution of attributes; structural, in
which the graph’s structure is considered; and community anomalies, in which attributes differ within the nodes in the
same community. They also review work that assigns anomaly scores to individual nodes based on their contribution to the
network reconstruction error. The BOND benchmark (Liu et al., 2022b) investigates the performance of

• graph-agnostic algorithms: LOF (Breunig et al., 2000), IF (Liu et al., 2012), MLPAE (Sakurada & Yairi, 2014)
• classical algorithms: SCAN (Xu et al., 2007), RADAR (Li et al., 2017), ANOMALOUS (Peng et al., 2018)
• deep algorithms: GCNAE (Kipf & Welling, 2016), DOMINANT (Ding et al., 2019), DONE, AdONE (Bandyopadhyay

et al., 2020), GAAN (Chen et al., 2020b), GUIDE (Yuan et al., 2021), CONAD (Xu et al., 2022).

For instance, DOMINANT (Ding et al., 2019) maps nodes of a graph into the latent space through a graph convolutional
encoder (Welling & Kipf, 2016). Then, the latent representations are passed into two separate decoders that reconstruct
the adjacency matrix and node features, respectively. The nodes are scored with the weighted sum of the corresponding
reconstruction errors.

Ego-networks Previous work regarding the analysis of ego-networks includes the non-deep learning algorithms OddBall
(Akoglu et al., 2010) and AMEN (Perozzi & Akoglu, 2016). The former solves ANOS ND on weighted unattributed graphs
by employing outlier detection on the graph statistics of ego-networks. OddBall relies on a set of heavy assumptions as to
what can be considered an anomaly, e.g., star-shaped or near-clique ego-networks. Therefore, it might not generalize well to
arbitrary graphs. Further, AMEN introduces the normality score for attributed subgraphs. For a given subgraph, it measures
how its nodes are similar to each other on some subset of attributes, as well as how they are dissimilar to the nodes from the
boundary (a set of nodes that do not belong to the subgraph but have at least one neighbor from it).

A.2. Score-Based Modeling for OOD detection

The idea of using diffusion-based generative models in OOD detection appears in (Liu et al., 2022c; Graham et al., 2022).
Particularly, they consider the problem of OOD detection in the image domain. In (Liu et al., 2022c), the authors propose to
sample neighbors in the input space for a given image by generating them via a diffusion model, which is pre-trained on the
in-distribution samples. The neighborhood is constructed by sampling the corrupted images from the forward transition
distribution q(xt|x0). A hyperparameter t ∈ [0, T] defines the level of corruption. Then, the neighborhood is passed to a
discriminator to extract features (e.g., a ResNet (He et al., 2016) pre-trained on an image classification task for in-distribution
data). Finally, they compute the OOD scores as the sum of absolute differences between the features of a given image and
its neighbors.

An alternative approach, proposed in (Graham et al., 2022), consists of sampling the corrupted images with different levels
of noise, distributed uniformly. The OOD scores are assigned as the combination of the MSE in image space and the LPIPS
(Learned Perceptual Image Patch Similarity (Zhang et al., 2018)) in AlexNet’s feature space (Krizhevsky, 2014).

A.3. Graph Generation

As for graph generative models, there is a great variety of deep-learning methods. They include sequential modeling through
variational auto-encoders (Simonovsky & Komodakis, 2018), recurrent neural networks (You et al., 2018), normalizing
flows (Liu et al., 2019) and score-based models (Niu et al., 2020; Jo et al., 2022). However, most of the methods consider
only non-attributed graphs.

The idea of leveraging score-based models to generate graphs is first explored in (Niu et al., 2020). The authors propose
the process of denoising the adjacency matrix. They inject the permutation invariance of the underlying distribution of
adjacency matrices as an inductive bias. It is done by designing a permutation equivariant score network, which can be
constructed of message passing layers. In particular, the authors introduce EDP-GNN, a graph neural network architecture
that is inspired by image dense prediction networks. It consists of the GNN layers that operate on multi-channel adjacency
matrices, which are analogous to the feature maps produced by image convolutional layers.

Further, in (Jo et al., 2022), the authors introduce Graph Diffusion via the System of Stochastic differential equations (GDSS)

Anomaly Detection in Networks via Score-Based Generative Models

as an extension of the previous method to attributed graphs. They consider continuous-time diffusion, where both node
features and the adjacency matrix are perturbed simultaneously. Forward and reverse diffusion processes are induced by
stochastic differential equations (SDEs). Solving the reverse diffusion is especially expensive due to the high dimensionality
of the score function. Hence, the authors instead aim to approximate the partial score functions that correspond to the node
features and adjacency matrix. This results in a system of SDEs that is equivalent to the original reverse diffusion SDE. To
that end, GDSS shows state-of-the-art performance in generating generic graphs and competitive performance in molecule
generation.

Another diffusion-based model for graph generation, DiGress (Vignac et al., 2022), considers node and edge features to be
discrete and drawn from the categorical distribution. Thus, each node and edge is attributed with exactly one type from the
attribute space. The structural information is stored in the edge features by introducing the absence of an edge as a separate
edge type. Graphs are perturbed through random transformations of their attributes. The transition matrices describe the
probabilities of jumping from one type to another. To sample graphs, one needs to design a tractable prior distribution. A
naive approach would be to choose uniform distribution over the attribute types as the prior. However, a noisy graph from
this prior is highly dense, for which many denoising steps are required. Instead, the authors propose to use the product of the
marginal distributions of node and edge types. As a result, the terminal graphs from the prior are much closer to the original
ones. DiGress can also be applied to a case of continuous Gaussian noise. Such a modification, ConGress, is similar to
GDSS yet models the full score function.

B. Datasets
• Weibo (Zhao et al., 2020) is the users-posts-hashtags graph from the social platform of the same name. The users are

considered suspicious (anomalies) if their posting frequency resembles that of bots (i.e., every x seconds). BOND
employs the directed user-user form of the same graph, with hashtags serving as the edges. The node attributes include
aggregated information from users’ posts, such as the post’s location and the text’s bag-of-word vectors. Further, the
attributes are compressed via dimensionality reduction techniques. Since anomaly labels are derived from timestamps,
temporal information is removed from the feature space.

• Reddit (Kumar et al., 2019; Wang et al., 2021) is a subset of the user-group (user-subreddit) bipartite graph of the
corresponding social media platform. Although both users and groups are considered nodes, there is no label to
differentiate between the two. The banned users are assumed to be outliers. The LIWC (Pennebaker et al., 2001)
representations of posts are aggregated for each node to construct features.

• Disney (Sánchez et al., 2013) is a co-purchase network of movies from Amazon (Leskovec et al., 2007) with manually
labeled anomalies. Each movie is attributed with its price, rating, number of reviews, etc.

• Books (Sánchez et al., 2013) originates from the Amazon co-purchase network (Leskovec et al., 2007), similar to the
Disney dataset. The items labeled with the amazonfail tag are considered outliers.

• Enron (Sánchez et al., 2013) is an email communication network, where nodes are email addresses and edges are
messages. Spam senders are labeled as outliers (Metsis et al., 2006). Each email address is described by statistics such
as the average message length and the average number of recipients.

• DGraph (Huang et al., 2022) is a financial social network where the nodes represent user accounts. The edge between
two users exists if one of them adds the other as an emergency contact. Users with an overdue history are regarded as
anomalous. The features include general information such as age, gender, and repayment dates.

C. Implementation Details
Architecture To speed up the evaluation, we use a lightweight variant of GDSS. For score networks sθ,t and sϕ,t, we set
the number of GCN and GMH layers to 1. The number of heads for GMH is set to 4. The inputs to GMH are the node
feature matrix X and the adjacency tensor [A,A2]. The output of GMH has four channels. The MLP inside the GMH block
has two linear layers. GCN and GMH are followed by the channel-mixing MLPs that have three layers. All MLP blocks
have the ELU activation (Clevert et al., 2015). We set the form of the forward diffusion SDEs to be Variance Preserving (VP
SDE):

dGt = −1

2
β(t)Gt dt+

√
β(t) dwt , (13)

Anomaly Detection in Networks via Score-Based Generative Models

Table 2. The statistics of datasets from BOND. Ratio indicates the ratios of outliers in a graph.

Dataset #Nodes #Edges #Features Avg. Degree Ratio

Weibo 8,405 407,963 400 48.5 10.3%
Reddit 10,984 168,016 64 15.3 3.3%
Disney 124 335 28 2.7 4.8%
Books 1,418 3,695 21 2.6 2.0%
Enron 13,533 176,987 18 13.1 0.4%
DGraph 3,700,550 4,300,999 17 1.2 0.4%

where β(t) = βmin + (βmax − βmin)t, βmin = 0.1, βmax = 1.

Hyperparameters Table 3 presents the pool of hyperparameters common to the algorithms from BOND. Alpha denotes
the balancing weight for reconstructing the structure and features. The deep learning models are optimized with the Adam
algorithm (Kingma & Ba, 2014). Note that Table 3 does not include batch sizes. Due to the high memory consumption
of our methods, we set them independently of the BOND benchmark. The corresponding batch sizes for each dataset are
shown in Table 4.

Table 3. The grid of hyperparameters shared by the algorithms from BOND.

Hyperparameters Weibo Disney Books Enron DGraph Reddit

learning rate [0.1, 0.05, 0.01]
weight decay 0.01

epoch 300 2 300
alpha [0.8, 0.5, 0.2]

hid. dim. [32, 64, 128, 256] [8, 12, 16] [32, 48, 64]

Table 4. Batch sizes used for training GDSS and inference.

Weibo Disney Books Enron DGraph Reddit

2048 full batch full batch 4096 - 4096

Software All methods are written in Python 3 and use PyTorch for autodifferentiation (Paszke et al., 2017). We employ
both DGL (Deep Graph Library (Wang, 2019) and PyG (PyTorch Geometric (Fey & Lenssen, 2019) for graphs, which are
popular libraries for training GNNs. For evaluation, we use the code from PyGOD, a library for graph outlier detection (Liu
et al., 2022a). Our code and model checkpoints are publicly available at https://github.com/realfolkcode/
GraphDiffusionAnomaly.

D. Metrics
• ROC-AUC assesses the quality of predicted scores by taking into account all possible thresholds that separate negative

and positive examples. At each threshold value, the true positive rate (TPR) and the false positive rate (FPR) are
calculated. Then, the Receiver Operating Curve is formed by plotting (FPR, TPR) pairs. ROC-AUC is an integral
measure defined as the area under the ROC curve. One of the popular interpretations is the probability of a random
positive example (anomaly) having a higher score than a random negative example. ROC-AUC equals 1 means that the
algorithm perfectly separates anomalies from normal nodes, whereas ROC-AUC equals 0.5 indicates that the model
makes random guesses.

• Average Precision is calculated as follows:

AP =
∑
n

(Rn −Rn−1)Pn, (14)

https://github.com/realfolkcode/GraphDiffusionAnomaly
https://github.com/realfolkcode/GraphDiffusionAnomaly

Anomaly Detection in Networks via Score-Based Generative Models

where n is the threshold index, Pn and Rn are the precision and recall at the n-th threshold, respectively (Pedregosa
et al., 2011). It can be seen as a summarization of the precision-recall curve.

• Recall@k indicates the fraction of true outliers among the top-k ranked examples. In the BOND benchmark, k is set
as the number of anomalies in a dataset. Hence, Recall@k measures how well the model places the outliers at the top
of the list.

Table 5. Average Precision (%) on datasets with organic outliers. The best average results are written in bold, and the best maximum
results are underlined. TLE and OOM C indicate that the method exceeded the time limit of 24 hours and failed to fit in VRAM,
respectively.

Algorithm Weibo Reddit Disney Books Enron DGraph

LOF 15.8 ± 0.0 (15.8) 4.2 ± 0.0 (4.2) 5.2 ± 0.0 (5.2) 1.5 ± 0.0 (1.5) 0.0 ± 0.0 (0.0) TLE
IF 12.9 ± 2.6 (19.8) 2.8 ± 0.1 (2.9) 10.1 ± 4.5 (22.6) 1.9 ± 0.2 (2.7) 0.1 ± 0.0 (0.1) 1.8 ± 0.0 (1.9)
MLPAE 52.8 ± 9.9 (64.5) 3.4 ± 0.0 (3.4) 5.9 ± 0.8 (7.9) 1.8 ± 0.3 (2.5) 0.1 ± 0.0 (0.1) 0.9 ± 0.0 (1.0)

SCAN 17.3 ± 3.4 (20.5) 3.3 ± 0.0 (3.3) 5.0 ± 0.3 (5.5) 2.0 ± 0.1 (2.1) 0.0 ± 0.0 (0.1) TLE
Radar 92.1 ± 0.7 (92.9) 3.6 ± 0.2 (3.9) 7.2 ± 0.0 (7.2) 2.2 ± 0.0 (2.2) 0.2 ± 0.0 (0.2) OOM C
ANOMALOUS 92.1 ± 0.7 (92.9) 4.0 ± 0.6 (5.1) 7.2 ± 0.0 (7.2) 2.2 ± 0.0 (2.2) 0.2 ± 0.0 (0.2) OOM C

GCNAE 70.8 ± 5.0 (80.9) 3.4 ± 0.0 (3.4) 4.8 ± 0.7 (5.8) 2.1 ± 0.4 (3.5) 0.1 ± 0.0 (0.1) 1.0 ± 0.0 (1.0)
DOMINANT 18.0 ± 10.2 (36.2) 3.7 ± 0.0 (3.8) 7.6 ± 5.0 (23.2) 2.2 ± 0.6 (4.1) 0.1 ± 0.1 (0.4) OOM C
DONE 65.5 ± 13.4 (77.3) 3.7 ± 0.4 (4.5) 5.0 ± 0.7 (6.4) 1.8 ± 0.3 (2.6) 0.1 ± 0.0 (0.1) OOM C
AdONE 62.9 ± 9.5 (74.4) 3.3 ± 0.4 (4.0) 6.1 ± 1.5 (11.7) 2.5 ± 0.3 (3.2) 0.1 ± 0.0 (0.1) OOM C
AnomalyDAE 38.5 ± 22.5 (77.3) 3.7 ± 0.1 (3.8) 5.7 ± 0.2 (6.3) 3.5 ± 1.4 (7.8) 0.1 ± 0.0 (0.1) OOM C
GAAN 80.3 ± 0.2 (80.7) 3.7 ± 0.1 (3.9) 5.6 ± 0.0 (5.6) 2.6 ± 0.8 (5.6) 0.1 ± 0.0 (0.1) OOM C
GUIDE OOM C OOM C 4.8 ± 0.9 (6.9) 1.9 ± 0.3 (3.1) OOM C OOM C
CONAD 15.6 ± 6.9 (31.7) 3.7 ± 0.3 (4.6) 6.0 ± 1.4 (11.5) 2.5 ± 0.8 (4.9) 0.1 ± 0.0 (0.3) 0.9 ± 0.0 (0.9)

Rec 28.6 ± 9.7 (42.4) 2.9 ± 0.1 (3.2) 13.9 ± 6.5 (33.6) 2.9 ± 0.8 (6.4) 0.1 ± 0.0 (0.1) TLE
Rec (unweighted) 29.2 ± 10.5 (43.0) 2.9 ± 0.1 (3.2) 14.6 ± 7.0 (30.8) 2.8 ± 0.6 (4.4) 0.1 ± 0.0 (0.2) TLE
Energy 10.7 ± 2.4 (14.1) 4.0 ± 0.4 (5.0) 15.9 ± 7.4 (29.2) 2.7 ± 0.7 (4.4) 0.0 ± 0.0 (0.1) TLE
Energy (unweighted) 11.0 ± 2.9 (18.0) 3.9 ± 0.3 (5.0) 17.2 ± 8.0 (29.0) 2.6 ± 0.6 (3.8) 0.0 ± 0.0 (0.0) TLE

Table 6. Recall@k (%) on datasets with organic outliers. The best average results are written in bold, and the best maximum results are
underlined. TLE and OOM C indicate that the method exceeded the time limit of 24 hours and failed to fit in VRAM, respectively.

Algorithm Weibo Reddit Disney Books Enron DGraph

LOF 22.0 ± 0.0 (22.0) 4.4 ± 0.0 (4.4) 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) TLE
IF 13.8 ± 6.4 (24.3) 0.1 ± 0.1 (0.3) 9.2 ± 8.3 (16.7) 1.1 ± 1.6 (3.6) 0.0 ± 0.0 (0.0) 0.1 ± 0.1 (0.4)
MLPAE 48.9 ± 11.0 (62.1) 3.0 ± 0.0 (3.0) 0.0 ± 0.0 (0.0) 0.9 ± 1.6 (3.6) 0.0 ± 0.0 (0.0) 0.5 ± 0.1 (0.6)

SCAN 23.8 ± 7.0 (30.5) 2.7 ± 0.3 (3.0) 7.5 ± 11.2 (33.3) 0.7 ± 1.4 (3.6) 0.0 ± 0.0 (0.0) TLE
Radar 86.4 ± 0.8 (87.4) 2.1 ± 0.8 (3.5) 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) OOM C
ANOMALOUS 86.4 ± 0.8 (87.4) 4.0 ± 1.9 (7.9) 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) OOM C

GCNAE 67.6 ± 5.2 (77.3) 3.0 ± 0.0 (3.0) 0.0 ± 0.0 (0.0) 0.7 ± 1.8 (7.1) 0.0 ± 0.0 (0.0) 0.4 ± 0.0 (0.4)
DOMINANT 19.7 ± 13.8 (37.4) 0.9 ± 0.4 (2.7) 3.3 ± 6.7 (16.7) 1.6 ± 3.1 (10.7) 0.0 ± 0.0 (0.0) OOM C
DONE 65.4 ± 12.4 (76.3) 2.8 ± 1.6 (5.7) 0.0 ± 0.0 (0.0) 1.1 ± 1.6 (3.6) 0.0 ± 0.0 (0.0) OOM C
AdONE 64.3 ± 7.6 (74.3) 1.0 ± 1.2 (3.8) 1.7 ± 5.0 (16.7) 3.0 ± 1.7 (7.1) 0.0 ± 0.0 (0.0) OOM C
AnomalyDAE 42.2 ± 23.7 (75.7) 0.9 ± 0.5 (3.0) 0.0 ± 0.0 (0.0) 2.7 ± 2.2 (7.1) 0.0 ± 0.0 (0.0) OOM C
GAAN 77.1 ± 0.2 (77.4) 1.1 ± 0.4 (2.2) 0.0 ± 0.0 (0.0) 1.8 ± 1.8 (3.6) 0.0 ± 0.0 (0.0) OOM C
GUIDE OOM c OOM C 0.0 ± 0.0 (0.0) 0.4 ± 1.1 (3.6) OOM C OOM C
CONAD 20.3 ± 13.3 (37.1) 1.3 ± 1.6 (7.6) 0.8 ± 3.6 (16.7) 1.7 ± 2.9 (10.7) 0.0 ± 0.0 (0.0) 0.4 ± 0.1 (0.6)

Rec 35.4 ± 12.9 (50.8) 2.2 ± 0.8 (4.4) 13.6 ± 11.2 (33.3) 2.1 ± 2.6 (7.1) 0.0 ± 0.0 (0.0) TLE
Rec (unweighted) 36.4 ± 14.5 (52.7) 2.4 ± 0.7 (4.1) 14.2 ± 12.5 (33.3) 2.4 ± 2.8 (10.7) 0.0 ± 0.0 (0.0) TLE
Energy 8.8 ± 4.3 (17.6) 4.2 ± 1.4 (7.1) 13.3 ± 10.0 (33.3) 2.7 ± 3.2 (10.7) 0.0 ± 0.0 (0.0) TLE
Energy (unweighted) 9.2 ± 5.0 (24.2) 3.6 ± 1.1 (6.8) 15.8 ± 12.3 (33.3) 2.5 ± 2.8 (7.1) 0.0 ± 0.0 (0.0) TLE

Anomaly Detection in Networks via Score-Based Generative Models

E. Solver Comparison
For the reconstruction approach, we motivate our choice of solver (Euler-Maruyama) by evaluating the average error at
different noise levels across the Books dataset. Formally, we compute each of the terms in Eq. (8) separately:

errorX(τ) =
1

|G|
∑
v∈G

∥X̂(j)(v, τ)−X(v)∥F
N(v) · F

(15)

errorA(τ) =
1

|G|
∑
v∈G

∥Â(j)(v, τ)−A(v)∥F
(N(v))2

. (16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
S4
EM
EM + Langevin
Reverse
Reverse + Langevin

(a) Feature matrix

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200 S4
EM
EM + Langevin
Reverse
Reverse + Langevin

(b) Adjacency matrix

Figure 1. The reconstruction errors of each graph component (y-axis) vs time τ (x-axis)

Figure 1 illustrates errorX and errorA for each solver at different reconstruction times τ . The reported errors are averaged
across 20 runs with different hyperparameters. As can be seen from the plots, a simple Euler-Maruyama (EM) scheme
consistently outperforms all the other solvers.

Both EM and Reverse (Song et al., 2020) correspond to different finite step discretization schemes of the underlying reverse-
time SDE. The remaining methods (S4 (Jo et al., 2022), EM + Langevin, Reverse + Langevin) are Predictor-Corrector
solvers that leverage the Langevin MCMC as a corrector to improve the quality of intermediate samples (Song et al., 2020).

Anomaly Detection in Networks via Score-Based Generative Models

F. Energy Histograms

10 3

10 2

10 1

100

101

original tau = 0.2 tau = 0.4 tau = 0.6 tau = 0.8

10 3

10 2

10 1

100

101

10 3

10 2

10 1

100

101

10 3

10 2

10 1

100

101

0 1 2

10 3

10 2

10 1

100

101

0 1 2 0 1 2 0 1 2 0 1 2

Figure 2. Histograms of the original and reconstructed normalized energies (log-densities). The datasets order from top to bottom: Weibo,
Reddit, Disney, Books, Enron.

Anomaly Detection in Networks via Score-Based Generative Models

10 3

10 1

101
tau = 0.2 tau = 0.4 tau = 0.6 tau = 0.8

10 3

10 1

101

10 3

10 1

101

10 3

10 1

101

2 0 2

10 3

10 1

101

2 0 2 2 0 2 2 0 2

Figure 3. Histograms of the differences between the original and reconstructed normalized energies (log-densitites). Dashed black line is
set to mark zero difference. The datasets order from top to bottom: Weibo, Reddit, Disney, Books, Enron.

Anomaly Detection in Networks via Score-Based Generative Models

G. Ego-graphs
In this appendix, we plot 8 randomly selected ego-graphs and their reconstructions from each dataset. We reconstruct
ego-graphs using checkpoints with index 0 (there are overall 20 checkpoints for each network). Graphs are summarized by
the number of nodes and edges, denoted as n and e, respectively. Node color indicates the relative error in features, with
cyan corresponding to perfect reconstruction, and magenta signifying that the error is comparable to the norm of features.
The colors are interpolated using the cool colormap from Matplotlib (Hunter, 2007). The graph layout is computed using
the Fruchterman-Reingold force-directed algorithm (Fruchterman & Reingold, 1991) (spring layout in NetworkX package
(Hagberg et al., 2008)).

(a) Original (b) τ = 0.2 (c) τ = 0.4 (d) τ = 0.6 (e) τ = 0.8

Figure 4. The original and reconstructed ego-graphs from Weibo dataset.

(a) Original (b) τ = 0.2 (c) τ = 0.4 (d) τ = 0.6 (e) τ = 0.8

Figure 5. The original and reconstructed ego-graphs from Reddit dataset.

Anomaly Detection in Networks via Score-Based Generative Models

(a) Original (b) τ = 0.2 (c) τ = 0.4 (d) τ = 0.6 (e) τ = 0.8

Figure 6. The original and reconstructed ego-graphs from Disney dataset.

(a) Original (b) τ = 0.2 (c) τ = 0.4 (d) τ = 0.6 (e) τ = 0.8

Figure 7. The original and reconstructed ego-graphs from Books dataset.

(a) Original (b) τ = 0.2 (c) τ = 0.4 (d) τ = 0.6 (e) τ = 0.8

Figure 8. The original and reconstructed ego-graphs from Enron dataset.

