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Abstract

Structural Entropy (SE) measures the structural
information contained in a graph. Minimizing or
maximizing SE helps to reveal or obscure the in-
trinsic structural patterns underlying graphs in an
interpretable manner, finding applications in vari-
ous tasks driven by networked data. However, SE
ignores the heterogeneity inherent in the graph re-
lations, which is ubiquitous in modern networks. In
this work, we extend SE to consider heterogeneous
relations and propose the first metric for multi-
relational graph structural information, namely,
multi-relational structural entropy (MrSE). To this
end, we first cast SE through the novel lens of
the stationary distribution from random surfing,
which readily extends to multi-relational networks
by considering the choices of both nodes and re-
lation types simultaneously at each step. The re-
sulting MrSE is then optimized by a new greedy
algorithm to reveal the essential structures within
a multi-relational network. Experimental results
highlight that the proposed MrSE offers a more
insightful interpretation of the structure of multi-
relational graphs compared to SE. Additionally, it
enhances the performance of two tasks that involve
real-world multi-relational graphs, including node
clustering and social event detection.

1 INTRODUCTION

In recent decades, graphs have become ubiquitous in our
daily lives, with examples ranging from social networks and
recommendation networks to publication networks, all effec-
tively represented using graphs. Structural entropy (SE) [Li
and Pan, 2016], which measures the amount of structural
information contained in a graph, provides a useful tool
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Figure 1: Decode the essential structures of a multi-
relational graph with MrSE (ours) and SE. (a) is a multi-
relational graph G′. (b) shows the essential structures of
G′, decoded with MrSE. (c) is a single-relational graph G
reduced from G′. (d) shows the essential structures of G,
decoded with SE.

for graph analysis. Specifically, unlike various graph mea-
sures [Raychaudhury et al., 1984, Braunstein et al., 2006,
Dehmer, 2008, Bianconi, 2009] that are based on unstruc-
tured probability distributions, SE is interpretable [Liu et al.,
2021]. Minimizing or maximizing SE helps to disclose or
obfuscate the essential structures underlying the raw, noisy
graphs. Such favorable properties of SE lead to its recent
applications in tasks including graph pooling [Wu et al.,
2022], community structure deception [Liu et al., 2019],
graph contrastive learning [Wu et al., 2023], graph similar-
ity measure [Liu et al., 2021], graph structure learning [Zou
et al., 2023], network design [Liu et al., 2021], and social
event detection [Cao et al., 2024].

However, SE assumes the existence of only a single type
of relation between nodes, while in reality, graphs are mul-
tiplex [De Domenico et al., 2013] in nature, incorporating
heterogeneous relation types. For example, there may be
multiple edges between two papers in a publication network,
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indicating shared authors, keywords, citations, accepted con-
ferences, etc. As shown in Figures 1(a) and 1(c), analyzing
multi-relational graphs with SE requires preprocessing them
into single-relational graphs, which leads to information
loss. This is due to the complementary nature of various
relation types in revealing the graph’s structure, with some
relations being more informative than others. For instance,
to determine if one paper is a follow-up study of another,
examining the citations in addition to the keywords proves
beneficial, while relying on accepted conferences may not
provide as much insight. Therefore, it is essential to extend
SE to consider multiple relation types.

In this work, we propose the first metric for multi-relational
graph structural information, namely, multi-relational struc-
tural entropy (MrSE). Specifically, the original definition
of SE measures the minimum number of bits required to
determine the code of the node that is accessible with one
step of random walk on a single-relational graph G [Li and
Pan, 2016], calculated from node degree statistics. Inspired
by this, we propose to interpret SE with the stationary distri-
bution vector obtained through random surfing [Page et al.,
1999], i.e., taking an infinite long random walk, on G. Con-
tinuing with this idea, we then introduce the definition of the
MrSE, incorporating random surfing on a multi-relational
graph G′. During this multi-relational random surfing pro-
cess, we simultaneously consider the choices of node and
relation type at each step. The resulting stationary distribu-
tion vectors, one for nodes and one for relations, are used for
MrSE calculation. We further illustrate how our proposed
MrSE metric can be used to decode essential structures, such
as communities, within G′. Through experiments on syn-
thetic graphs, we demonstrate that our proposed MrSE out-
performs SE in interpreting the structure of multi-relational
graphs. Additionally, MrSE improves the performance of
two real-world multi-relational graph tasks, namely node
clustering and social event detection.

Our paper makes the following contributions:

• We introduce MrSE, the first metric designed to quan-
tify the structural information within multi-relational
graphs. Extending the favorable properties of SE,
MrSE addresses heterogeneous relation types and
serves as an improved tool for measuring and inter-
preting complex multi-relational graph structures.

• We demonstrate how our proposed MrSE metric can
decipher structures within multi-relational graphs. In-
troducing an algorithm for 2-dimensional (2D) MrSE
minimization, we enable the detection of communities
within multi-relational graphs.

• Experiments on synthetic graphs with varying total
numbers of relations, sizes, and sparsities demonstrate
that our proposed MrSE, in comparison to SE, of-
fers a more insightful interpretation of the structure
of multi-relational graphs. Notably, a greater reduction

is observed when employing MrSE for graph entropy
minimization, indicating a more effective decoding of
structural information. Furthermore, experiments on
real-world multi-relational graph data show that MrSE
improves the performance of two tasks, namely node
clustering and social event detection.

2 RELATED WORKS AND
BACKGROUND

Entropy-based Graph Metrics. Measuring graph com-
plexity is an important issue in graph analysis. To tackle
this, various entropy-based graph measures [Raychaudhury
et al., 1984, Braunstein et al., 2006, Dehmer, 2008, Bianconi,
2009, Li and Pan, 2016] have been proposed. Each of these
measures represents a distinct form of Shannon entropy de-
signed for different types of distributions extracted from
the graphs. For example, the von Neumann graph entropy
[Braunstein et al., 2006] is defined as the Shannon entropy
of the Laplacian spectra. In contrast to previous metrics,
SE quantifies the Shannon entropy of degree statistics, pro-
viding interpretability from an algebraic perspective. Mean-
while, all these metrics are designed for single-relational
graphs. Hence, there is pressing need of a metric that can
assess the complexity of multi-relational graphs.

Structural Entropy (SE). Let G = (V,E) be a single-
relational graph, where V is a set of nodes and E is a set of
edges. Assuming that the structure of G can be represented
with an encoding tree, the formal definitions of the encoding
tree and SE are as follows:

Definition 2.1. [Li and Pan, 2016] An encoding tree T is a
tree that encodes a hierarchical partition of V . T satisfies:
1) Each node α in T is associated with a node subset Tα ⊆
V . In particular, the root node λ of T is associated with V ,
and any leaf node γ in T is associated with a single node
in V . 2) The node subsets associated with the children of α
form a partition of Tα. 3) Denote the height of α as h(α).
Let h(γ) = 0 and h(α−) = h(α) + 1, where α− is the
parent node of α. h(T ) = max

α∈T
{h(α)} is the height of T .

Definition 2.2. [Li and Pan, 2016] Given a single-relational
graph G and an encoding tree T , the structural entropy (SE)
of G relative to T is

HT (G) = −
∑

α∈T ,α ̸=λ

gα
vol(Tλ)

log
vol(Tα)

vol(Tα−)
, (1)

where gα is the summation of the degrees of the cut edges
of Tα, i.e., edges in E that have exactly one endpoint in
Tα. For a directed G, gα is the summation of the in-degrees
of the nodes in Tα. vol(·) stands for the volume, i.e., the
sum of the (in-)degrees, of the associated node subset. E.g.,
vol(Tα), vol(Tα−), and vol(Tλ) refer to the volume of Tα,
Tα− , and V , respectively.



Note that an encoding tree T is essentially a description
of a graph’s structure. Meanwhile, the SE values reveal
how well T captures the structures of the graph.H(k)(G),
the k-dimensional SE of G, is defined as HT (G) that as-
sociated with a T that satisfies h(T ) = k. For k = 1,
the 1-dimensional (1D) SE, H(1)(G), is equivalent to the
Shannon entropy of the degree heterogeneity. H(1)(G) is
associated with a unique T of height 1, measuring the intrin-
sic information within G without making assumptions about
higher-order structures, such as communities. For k > 1,
minimizing or maximizing H(k)(G) is equivalent to seek-
ing a T of height k that reveals or hides the k-dimensional
structures within G. E.g., Figures 1(c) and 1(d) visualize
how minimizing the 2-dimensional (2D) SE reveals the
2D structures, i.e., communities, within G. The resulting
T is optimal, i.e., corresponds to the minimum 2D SE.
P = {α|α ∈ T , h(α) = 1} forms a partition of V that high-
light the communities within G. We provide more examples
of encoding trees and the 2D SE minimization process in
Appendix B.

SE has found various applications [Wu et al., 2022, 2023,
Liu et al., 2021, 2019, Li et al., 2016, 2018, Cao et al.,
2024, Peng et al., 2024, Zou et al., 2024, Zeng et al., 2024,
2023a,b,c]. However, SE assumes the existence of only a
single type of relation between nodes. This limitation calls
for an improved SE measure that addresses the widespread
heterogeneity of relation types.

3 MULTI-RELATIONAL STRUCTURAL
ENTROPY (MRSE)

In this section, we first interpret SE from the perspective
of random surfing (Section 3.1). Following this intuition,
we then draw inspiration from random surfing on multi-
relational networks and derive the multi-relational structural
entropy (MrSE) measure (Section 3.2). Finally, we show
how to decode the structures within a multi-relational graph
by minimizing the proposed MrSE (Section 3.3). Appendix
A summarizes the notations used in this work.

3.1 A RANDOM SURFING-BASED
INTERPRETATION OF SE

As shown in Definition 2.2, the original definition of SE is
based on degree statistics. Meanwhile, we observe that the
degree heterogeneity of G resembles the stationary probabil-
ity vector resulting from random surfing [Page et al., 1999]
on G. Leveraging this, we interpret Definition 2.2 through
the lens of random surfing, as outlined below.

We denote the adjacency matrix of G as A ∈ R|V |×|V |
+ ,

with entry Aj,i equal the weight of the edge that starts from
node i ∈ V and ends at node j ∈ V . We assume that G
is strongly connected, i.e., A is irreducible. A surfer ran-

domly starts from node i ∈ V . At each step, the surfer
randomly steps into a neighboring node in {j|Aj,i ̸= 0}.
The surfing process can thus be seen as a Markov chain with
transition probability matrix Ã, where Ã is acquired from
column-normalizing A such that ∀i,

∑|V |
j=1 Ãj,i = 1 holds.

Let x ∈ R|V |
+ be the stationary distribution, i.e., a probability

distribution that indicates where the surfer is likely to be
after an infinitely long walk. x satisfies x = Ãx and can be
calculated using the Power Method [Journée et al., 2010].
With Ã and x, Equation (1) can be rewritten as:

HT (G) = −
∑

α∈T ,α̸=λ

p→α log
pα
pα−

, (2)

where p→α =
∑

i∈V \Tα
xi

∑
j∈Tα

Ãj,i, pα =
∑

i∈Tα
xi,

and pα− =
∑

i∈Tα−
xi.

Particularly, the 1D SE of G is rewritten as H(1)(G) =

−
|V |∑
i=1

xi log xi, which measures the intrinsic information

contained in G.

Proposition 3.1. Equation (1) and Equation (2) give the
same definition ofHT (G).

Proof. For the first multiplicand on the RHS of Equation (1),
we have

gα
vol(Tλ)

=
∑

i∈V \Tα

∑
j∈Tα

P (i, j)

=
∑

i∈V \Tα

P (i)
∑

j∈Tα

P (j|i)

=
∑

i∈V \Tα

xi
∑

j∈Tα

Ãj,i

= p→α.

(3)

Additionally, for the second multiplicand on the RHS of
Equation (1), we have

log
vol(Tα)

vol(Tα−)
= log

vol(Tα)

vol(Tλ)
− log

vol(Tα−)

vol(Tλ)

= log(
∑

i∈Tα

xi)− log(
∑

i∈Tα−
xi)

= log
pα
pα−

,

(4)

which concludes the proof.

The assumption of strong connectivity for G may be violated
in certain situations. In such cases, stochasticity adjustment
[Page et al., 1999] is required to transform G into a strongly
connected graph. Specifically, we replace all zero columns
in Ã with 1/|V |e, where e is a vector of ones. In addition, we
make primitivity adjustment [Page et al., 1999] to decrease
the number of iterations needed for the Power Method to
converge. Specifically, we replace Ã with a new transition
matrix B = cÃ + (1− c)E, where (1− c) is the probability



for the surfer to teleport to a random node and E is the
teleportation matrix. We set E to 1/|V |ee⊤ and c to 0.85
following [Page et al., 1999]. We note, nonetheless, that
the selection of c requires balancing two demands: 1) c is
small enough so that the Power Method converges fast and
2) c is reasonably large so that G is not over-modulated and
its intrinsic structural information is kept. We propose to
explore the best strategy for choosing c in the future.

3.2 FROM MULTI-RELATIONAL RANDOM
SURFING TO MRSE

Following the intuitions in Section 3.1, we derive the first
metric for multi-relational graph structural information, i.e.,
multi-relational structural entropy (MrSE), based on random
surfing on multi-relational networks.

We denote a multi-relational network as G′ = (V,E′, R),
where V , E′, and R stand for the node, edge, and rela-
tion sets of G′, respectively. The adjacency tensor of G′

is A′ ∈ R|V |×|V |×|R|
+ , with entry A′

i,j,r equals the weight
of the edge that starts from j ∈ V , ends at i ∈ V , and
associates with relation r ∈ R. At each step of the multi-
relational surfing, the surfer jointly considers which neigh-
boring node to visit and which relation to use. We provide
examples of G′, A′, and multi-relational random surfing in
Appendix C. Inspired by [Ng et al., 2011], we use two tran-
sition matrices, denoted as V andR, to model the choices
of the neighboring node and the relation, respectively. We
assume that A′ is irreducible [Ng et al., 2011], i.e., for any
fixed r, a slice of A′, (A′

i,j,r) ∈ R|V |×|V |
+ is irreducible.

V and R are constructed as Vi,j,r = A′
i,j,r/

|V |∑
i=1

A′
i,j,r and

Ri,j,r = A′
i,j,r/

|R|∑
r=1

A′
i,j,r, respectively. Let x′ ∈ R|V |

+ and

y ∈ R|R|
+ be two probability distributions that tell us which

node the surfer is likely to visit and which relation the surfer
is likely to use at each step, respectively. After an infinitely
long walk on G′, x′ and y would converge to two station-

ary distributions that satisfy
|R|∑
r=1

|V |∑
j=1

Vi,j,rx
′

jyr = x
′

i and

|V |∑
i=1

|V |∑
j=1

Ri,j,rx
′

jx
′

i = yr, respectively. x′ and y can be calcu-

lated using the MultiRank algorithm [Ng et al., 2011]. With
V , x′, and y, we introduce the definition of MrSE as follows.

Definition 3.2. Given a multi-relational graph G′, and an
encoding tree T . Assume we have the node and relation sta-
tionary distributions x′ and y acquired from multi-relational
random surfing on G′ following node and relation transition
matrices V andR. The multi-relational structural entropy
(MrSE) of G′ relative to T is

HT (G′) = −
∑

α∈T ,α ̸=λ

p′→α log
p′α
p′α−

, (5)

where p′→α =
∑

i∈V \Tα
x′
i

∑
j∈Tα

∑
r∈RVj,i,ryr, p′α =∑

i∈Tα
x′i, and p′α− =

∑
i∈Tα−

x′i.

Particularly, the 1D MrSE of G′,H(1)(G′) = −
|V |∑
i=1

x′i log x′i,

measures the intrinsic information contained in G′.

Proposition 3.3. The probabilistic interpretations of SE
and MrSE are identical.

Proof. Both p′→α in Equation (5) and p→α in Equation (2)
essentially mean the probability of entering community Tα.
We have

p′→α =
∑

i∈V \Tα

∑
j∈Tα

P (i, j)

=
∑

i∈V \Tα

P (i)
∑

j∈Tα

P (j|i)

=
∑

i∈V \Tα

P (i)
∑

j∈Tα

∑
r∈R

P (j|i, r)P (r)

=
∑

i∈V \Tα

x′i
∑

j∈Tα

∑
r∈R
Vj,i,ryr,

(6)

so it aligns with the probabilistic interpretation of p→α as
shown in Equation (3).

Additionally, p′α and p′α− in Equation (5) stand for the prob-
abilities of the surfer being in communities Tα and Tα− ,
respectively. Since Tα ⊂ Tα− , the surfer has to be already
in community Tα− before they can enter Tα. Therefore,
log

p′
α

p′
α−

= log p′α − log p′α− is the amount of new informa-
tion, measured in bits, contained in entering Tα. Similarly,
log pα

pα−
in Equation (2) also stands for the new information

contained in entering Tα.

Consequently, SE measures the amount of information con-
tained in one step of random walk on a single-relational G,
while MrSE is the multi-relational counterpart of SE. MrSE
and SE share the same probabilistic interpretation.

In the case that A′ is reducible, we need to adjust G′ to en-
sure that x′ and y converge. Specifically, we make stochastic-
ity adjustments to V andR such that ∀(i, r),

∑|V |
j=1 Vj,i,r =

1 and ∀(j, i),
∑|R|

r=1Rj,i,r = 1. Additionally, for faster con-
vergence, we make primitivity adjustment by replacing V
with cV+(1−c)E′, where E′ is the teleportation matrix. We
set c to 0.85 and E′ = 1/|V |1, where 1 is a |V | × |V | × |R|
all-ones matrix. These choices follow the same intuition as
Section 3.1. Specifically, the E′ value specifies that for any
relation r ∈ R, the surfer has equal chances to teleport to
any of the objects.



3.3 DECODING MULTI-RELATIONAL GRAPH
STRUCTURE VIA MRSE MINIMIZATION

Uncovering the essential structures within the raw and noisy
graphs is crucial. 2D SE minimization [Li and Pan, 2016]
provides an effective unsupervised tool for decoding com-
munities from single-relational graphs and has found appli-
cations in various tasks [Wu et al., 2022, 2023, Cao et al.,
2024]. In this section, we propose to reveal the essential
structures within multi-relational graphs by minimizing the
proposed MrSE metric 1.

Firstly, following [Li and Pan, 2016], a MERGE operator is
defined as follows.

Definition 3.4. Given an encoding tree T and its two non-
root nodes, αo1 and αo2 , MERGE(αo1 , αo2) removes αo1

and αo2 from T and adds a new node αn to T . αn satisfies:
1) the children nodes of αn in T is a combination of the
children of αo1 and αo2 ; 2) αn

− = λ.

The merge operation changes T and, therefore, would cause
a change in the associated MrSE value. Based on Definition
3.2, the change follows:

∆MrSEαo1
,αo2

= MrSEnew −MrSEold

= −p′→αn
log p′αn

− p′αo1
log

p′αo1

p′αn

− p′αo2
log

p′αo2

p′αn

+ p′→αo1
log p′αo1

+ p′→αo2
log p′αo2

.

(7)

The derivation of Equation (7) can be found in Appendix E.

We propose a 2D MrSE minimization algorithm, as shown
in Algorithm 1. Initially, the encoding tree T assumes no
communities, and each node v ∈ V is assigned to its own
cluster (line 2). At this point, the 2D MrSE associated with
T equals the 1D MrSE and represents the intrinsic struc-
tural information within G′. Subsequently, the minimum
2D MrSE can be achieved by greedily and repeatedly merg-
ing the two tree nodes in T that would result in the largest
|∆MrSE| until no further merge can lead to a ∆MrSE < 0
(lines 3 - 17). The algorithm outputs an optimized T , associ-
ated with the minimum 2D MrSE. At this time, T encodes
reliable structures within G′ while eliminating the noisy
ones. Specifically, P , the set of the tree nodes of height one,
forms a partition of V that reveals the communities in G′.
Figures 1(a) and 1(b) visualize the 2D MrSE minimization
process. We also provide a more detailed visualization in
Appendix C. In addition, we note that higher-dimensional
(such as 3D) MrSE minimization can be realized by repeat-
edly applying our 2D MrSE minimization algorithm and
consolidating the identified communities into nodes.

1Meanwhile, we note that some tasks instead require conceal-
ing the essential structures within graphs, i.e., maximizing MrSE.
One such example is community structure deception [Liu et al.,
2019]. We defer the investigation of MrSE maximization algo-
rithms to the future as they typically require task-specific design.

Time Complexity. The multi-relational random surfing in
line 1 costs O(|E′|) [Ng et al., 2011]. The construction of
initial T in line 2 takes O(|V |). The while loop in lines
3 - 17 takes O(|V ||E′|). The overall time complexity of
Algorithm 1 is thus O(|V ||E′|).

Hierarchical 2D MrSE Minimization. Additionally, we
note that hierarchical graph partitioning can be integrated to
expedite the algorithm. Inspired by the hierarchical 2D SE
minimization [Cao et al., 2024], we introduce a hierarchical
2D MrSE minimization algorithm (Appendix D) that takes
O(n3). Hyperparameter n is the size of the subgraph under
consideration at each iteration and can be set to o(|V |).

Algorithm 1: 2D MrSE minimization
Input: Multi-relational graph G′ = (V,E′, R)
Output: An optimal encoding tree T of height 2

1 Acquire the node and relation stationary distributions x′
and y from multi-relational random surfing on G′

2 Initialize T , s.t. for each node v ∈ V , add two nodes α
and α− to T . α is a leaf node of T and Tα = {v}. α−

is the parent of α and h(α−) = 1
3 while True do
4 P ← (α|α ∈ T , h(α) = 1)
5 ∆MrSE←∞
6 for αi ∈ P do
7 for αj ∈ P, j > i do
8 if there are edges between Tαi

and Tαj

then
9 ∆MrSEij ← Eq. (7), w/o actually

merging αi and αj

10 if ∆MrSEij < ∆MrSE then
11 ∆MrSE = ∆MrSEij

12 αo1 = αi

13 αo2 = αj

14 if ∆MrSE < 0 then
15 MERGE(αo1 , αo2)

16 else
17 Break

18 return T

4 EXPERIMENTS

We show that the proposed random surfing-based SE (de-
noted as RSSE for simplicity) approximates the original SE.
Moreover, we show that as compared to SE, MrSE provides
a better metric for multi-relational graph structures. We ex-
periment on synthetic graphs (Section 4.1) as well as tasks
that involve real-world multi-relational graphs, namely node
clustering (Section 4.2) and social event detection (Section



4.3). Our code is publicly available 2.

4.1 SIMULATION EXPERIMENTS

We conduct a study on single- and multi-relational synthetic
graphs generated using the Barabasi-Albert (BA) model
[Albert and Barabási, 2002]. The BA model incorporates
two important general concepts that exist widely in real-
world networks: growth, i.e., the network increases over
time, and preferential attachment, i.e., the more connected
a node is, the more likely it is to receive new links. We
proceed to describe our graph generation process.

Synthetic data. To generate single-relational graphs, we
adopt the BA graph generator from PyG 3. To regulate graph
sparsity, edges are randomly dropped out to align with the
desired sparsity level. To generate multi-relational graphs,
we create multiple BA graphs of identical sizes and then
concatenate them along the relation axis. Note that the BA
graphs associated with each relation are generated indepen-
dently, assuming no correlations between the relations.

Experiment setup. The calculation of 1D SE, RSSE, and
MrSE follow Definition 2.2, Equation (2), and Definition
3.2, respectively. The calculation of the minimum 2D SE
and RSSE follow the 2D SE minimization algorithm in [Li
and Pan, 2016], while the calculation of the minimum MrSE
follows the proposed 2D MrSE minimization algorithm
(Algorithm 1). Note that SE, RSSE, and the 2D SE mini-
mization algorithm are metrics and algorithms designed for
single-relational graphs. To apply them on a multi-relational
graph G′, we preprocess G′ by ignoring the heterogeneity
in its relations and mapping G′ into a single-relational graph
G, as visualized by Figures 1 (a) and 1 (c).

Compare random surfing-based SE to original SE. Fig-
ure 2 presents the 1D and the minimum 2D (denoted as 2D in
the legend for simplicity) SE and RSSE of single-relational
graphs with varying sizes and sparsities. In Figure 2 (a), the
1D SE and RSSE values increase with the graph size. This
means larger graphs contain more structural information.
In addition, the minimum 2D SE value also increases with
the graph size, indicating that larger graphs contain more
noise (this noise refers to the structural information that
the optimal encoding tree, derived from the 2D SE mini-
mization process, struggles to interpret). Meanwhile, the
1D RSSE values closely match the 1D SE values, and the
minimum 2D RSSE values closely align with the minimum
2D SE values. This alignment suggests that our proposed
random surfing-based method is a reliable approximation of
the original SE. Likewise, Figure 2 (b) suggests that denser
graphs encompass greater structural information and are
more noisy. In addition, our proposed random surfing-based
method effectively approximates the original SE, except for

2https://github.com/YuweiCao-UIC/MrSE.git
3https://pyg.org/

(a)

(b)

Figure 2: The 1D and 2D SE and RSSE of single-relational
graphs with varying sizes (a) and sparsities (b).

very sparse (sparsity > 98%) graphs. When the graph is
sparse, both 1D and minimum 2D RSSE are higher than that
of the original SE. This is caused by the imagined edges and
the teleportation matrix introduced during the stochasticity
and primitivity adjustments (detailed in Section 3.2).

Decode multi-relational graph structural information.
We compare the effectiveness of MrSE, RSSE, and SE
in decoding the structural information of multi-relational
graphs. For each multi-relational graph G′, we measure
∆MrSE = (1D MrSE − minimum 2D MrSE)/1D MrSE,
which represents the fraction of the structural information
within G′ that successfully decoded by minimizing 2D
MrSE. The larger ∆MrSE is, the more effective MrSE is
at deciphering the structure of G′. We measure ∆SE and
∆RSSE in similar manners, except that the heterogeneity
in the relations of G′ is ignored, and 2D SE minimization
[Li and Pan, 2016] instead of our proposed 2D MrSE mini-
mization algorithm is applied. Figures 3(a), 3(b), and 3(a)
present the ∆SE, ∆RSSE, and ∆MrSE of multi-relational
graphs with varying sizes, total number of relations, and
sparsities, respectively. We can tell that as the graph size
and total number of relations increase, ∆SE, ∆RSSE, and
∆MrSE show a declining pattern, while they exhibit an
ascending trend with sparsity. This suggests that graphs
that are larger, denser, and contain more complex relations
are more difficult to decipher. Moreover, it is evident that
∆MrSE consistently surpasses ∆SE and ∆RSSE, despite
the changes in graph size, total number of relations, and
sparsity. This suggests that our proposed MrSE, compared
to SE and RSSE, offers a more effective tool for measuring
and decoding the structural information in multi-relational
graphs.

https://github.com/YuweiCao-UIC/MrSE.git
https://pyg.org/
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Figure 3: The ∆SE, ∆RSSE, and ∆MrSE of multi-relational graphs with varying sizes (a), the total number of relations (b),
and sparsities (c).

Table 1: Statistics of the node clustering datasets. For IMDB,
M, A, and D denote movie, actor, and director; for DBLP, A,
P, T, and C denote author, paper, term, and conference; for
ACM, P, C, A, S, and T denote paper, cite, author, subject,
and term.

Dataset |V | R |E′| Sparsity (%) |Y |

ACM 3,025

P-C-P 5,335 99.88

3P-A-P 13,374 99.71
P-S-P 1,107,032 75.80
P-T-P 4,573,785 <0.01

DBLP 4,057
A-P-A 3,528 99.96

4A-P-T-P-A 3,519,757 57.22
A-P-C-P-A 2,498,219 69.64

IMDB 4,278 M-A-M 40,540 99.56 3M-D-M 6,584 99.93

4.2 MULTI-RELATIONAL NODE CLUSTERING

Unsupervised node clustering is an essential task in graph
analysis. In this section, we evaluate our proposed MrSE on
multi-relational graph node clustering.

Datasets. Following previous multi-relational graph embed-
ding studies [Park et al., 2020], we evaluate on IMDB [Fu
et al., 2020], DBLP [Fu et al., 2020], and ACM [Lv et al.,
2021]. IMDB is a movie dataset. The movies are divided
into three classes (action, comedy, drama) according to their
genre. Movie features correspond to the bag-of-words rep-
resentations of plots. DBLP is a publication dataset con-
taining authors that are labeled according to their research
areas (database, data mining, machine learning, information
retrieval). Author features are the bag-of-words representa-
tions of keywords. ACM is a publication dataset containing
papers divided into three classes (database, wireless com-
munication, and data mining). Paper features correspond to
the bag-of-words representations of keywords. Following
[Park et al., 2020], the multi-relational edges are inferred via
intermediate nodes (e.g., for IMDB, the ‘M-A-M’ edges are
inferred via actor nodes, and the ‘M-D-M’ edges are inferred
via director nodes). Table 2 shows the data statistics.

Baselines. We compare the proposed MrSE to SE [Li
and Pan, 2016] and RSSE. We further compare to a deep
learning-based spectral clustering method, i.e., SpectralNet

[Shaham et al., 2018]. We also consider random walk-based
methods, including node2vec [Grover and Leskovec, 2016],
which learns node embeddings with random walks and skip-
gram, and metapath2vec [Dong et al., 2017], which per-
forms metapath-based random walk. In addition, we com-
pared to GNN-based methods, including DGI [Veličković
et al., 2019], which maximizes global-local mutual informa-
tion; DMGI [Park et al., 2020], which is the multi-relational
counterpart of DGI; DMoN [Tsitsulin et al., 2023], which
maximizes graph modularity [Newman, 2006]. We addi-
tionally perform k-means clustering using node features to
gauge their informativeness. All methods are unsupervised.
Among them, metapath2vec, DMGI, and MrSE explore the
heterogeneity of relations. Note that the GNN-based meth-
ods, i.e., DGI, DMGI, and DMoN, leverage node features in
addition to graph structure, which gives them an extra edge
over methods that rely solely on graph structure.

Metrics. Following [Park et al., 2020, Tsitsulin et al., 2023],
we report normalized mutual information (NMI). We further
report adjusted rand index (ARI), and unsupervised cluster-
ing accuracy (ACC, in Appendix G), which are commonly
adopted clustering metrics.

Experiment setup. To evaluate single-relational methods
including SpecturalNet, DMoN, DGI, SE, and RSSE, we
preprocess the multi-relational datasets by mapping them
into single-relational ones. Additionally, following [Park
et al., 2020], we explore leveraging heterogeneous relations
with the single-relational embedding methods, i.e., Spec-
turalNet, DMoN, and DGI. Specifically, we obtain the final
node embedding by averaging the node embeddings ob-
tained from single-relational graphs that correspond to each
relation. For node2vec and metapath2vec, we extend the
graphs to contain the intermediate nodes (e.g., the actor and
director nodes for IMDB). For k-means, we set the number
of clusters to the ground truth, i.e., 3, 4, 3 for ACM, DBLP,
and IMDB, respectively. Similarly, for the representation-
learning models including node2vec, metapath2vec, DGI,
and DMGI, we perform k-means clustering after learning
representations, setting the number of clusters to the ground
truth to obtain final community predictions. We implement
SE, RSSE, and MrSE using Python. For SpectralNet, we



use the source code provided by the authors 4. For the rest
models, we leverage the implementations from the PyG
package. We repeat all experiments 5 times and average re-
sults across runs. The method-specific hyperparameters are
decided according to the original papers and are provided in
Appendix F.

Node clustering results. Table 2 presents the node cluster-
ing results. MrSE outperforms all baselines in both NMI and
ARI on the ACM and DBLP datasets. On the IMDB dataset,
MrSE achieves the highest NMI but falls short in terms of
ARI. These results highlight the strong capability of MrSE
in identifying communities within multi-relational graphs.
This is particularly noteworthy given that certain methods,
i.e., the GNN-based ones, utilize graph structure and node
features, whereas MrSE relies exclusively on graph struc-
ture.

For the ACM dataset, which contains extremely dense rela-
tions (e.g., ‘P-T-P’), single-relational methods show near-
zero results or fail to run. Addressing the heterogeneity
of relations, either by averaging per-relation embeddings,
introducing metapaths, or applying distinct weights to rela-
tions, results in a substantial performance boost. E.g., DGI
with G′, X input outperforms DGI with G,X input, metap-
ath2vec outperforms node2vec, and MrSE outperforms SE
and RSSE. For the DBLP and IMDB datasets, the strategy
of averaging per-relation embeddings proves to be less ef-
fective in handling heterogeneous relations, as evidenced by
the lower performance of DGI with G′, X input compared
to DGI with G,X input. Somewhat surprisingly, DMGI
performs worse than DGI with G′, X input on all three
datasets, suggesting that weighting per-relation embeddings
with attention is less effective than simply averaging them.

In addition, we observe that SE and RSSE resemble each
other across datasets and metrics, showing that RSSE ef-
fectively approximates SE. Moreover, MrSE consistently
outperforms SE and RSSE by large margins, indicating that
MrSE offers a better metric for interpreting the structural
information within multi-relational graphs.

4.3 SOCIAL EVENT DETECTION

We note that the proposed MrSE, serving as the multi-
relational counterpart to SE, can enhance the extensive appli-
cations of SE by tackling heterogeneous relations. One such
application is social event detection, which is commonly
formalized as extracting clusters of co-related messages
from streams of social media messages. [Cao et al., 2024]
achieves SOTA social event detection performance using 2D
SE minimization. However, it overlooks the heterogeneity
of message correlations. In this section, we explore social
event detection using the proposed 2D MrSE minimization
and observe the performance changes resulting from the

4https://github.com/shaham-lab/SpectralNet

Table 2: Node clustering results (%). ‘/’ indicates that Spec-
tralNet fails to run on ACM.

Method Input ACM DBLP IMDB
NMI ARI NMI ARI NMI ARI

k-means X 25.80 16.32 20.65 7.37 3.59 0.00

DMoN G, X 0.00 0.00 38.23 6.50 4.53 0.61
DGI G, X 0.32 0.01 33.38 12.85 7.70 9.07

SpectralNet G / / 39.09 8.44 3.83 0.69
node2vec G 0.09 0.03 27.04 15.90 2.75 3.01

SE G 3.16 3.16 39.10 41.84 8.82 0.17
RSSE (ours) G 3.56 3.66 39.12 41.06 8.82 0.18

DMoN G′, X 21.10 8.82 15.99 6.84 1.27 0.47
DGI G′, X 47.03 43.66 34.29 29.79 0.44 0.00

DMGI G′, X 25.53 20.50 1.43 1.21 0.63 0.45

SpectralNet G′ / / 36.58 30.88 1.16 0.15
metapath2vec G′ 47.51 42.90 45.56 36.76 5.34 5.10
MrSE (ours) G′ 48.36 55.80 49.26 55.78 13.68 0.19

Table 3: Social event detection results (%), averaged over
all blocks.

Dataset Metric HISEvent RSSE (ours) MrSE (ours)

Event2012 NMI 82.94 83.01 84.17
ARI 63.15 63.10 64.17

Event2018 NMI 76.08 75.82 76.64
ARI 60.25 59.39 60.91

introduction of heterogeneous message correlations.

Datasets. We experiment on two large, public Twit-
ter datasets, i.e., Event2012 [McMinn et al., 2013] and
Event2018 [Mazoyer et al., 2020]. Within Event2012, there
are 68,841 English tweets associated with 503 events, span-
ning a four-week period. Event2018 consists of 64,516
French tweets discussing 257 events and occurring over a
23-day period. We adopt the data splits of [Cao et al., 2024]
to evaluate under the open-set settings, which assumes the
events happen over time and splits the datasets into day-wise
message blocks. Data statistics are in Appendix H.

Baselines. We compare to HISEvent [Cao et al., 2024],
which is the current SOTA of social event detection. It be-
gins by constructing message graphs, where nodes represent
messages and correlated messages are connected (these cor-
relations may arise from shared senders, mentioned users,
hashtags, named entities, or similar natural language se-
mantics. Such heterogeneity is ignored). Subsequently, it
partitions the message graphs using 2D SE minimization to
extract social events, which are represented by clusters of
messages. Note that we omit the direct comparison with var-
ious social event detectors that HISEvent has outperformed,
including ones that leverage GNN [Cao et al., 2021, Ren
et al., 2022, Peng et al., 2022, Ren et al., 2023], betweenness
centrality [Liu et al., 2020], TF-IDF [Bafna et al., 2016],
LDA [Blei et al., 2003], etc.

Metrics. Following previous social event detection studies
[Cao et al., 2024], we report NMI and ARI.

Experiment setup. For HISEvent, we use the source code

https://github.com/shaham-lab/SpectralNet


provided by the authors 5. To evaluate RSSE, we simply
replace the SE in HISEvent with RSSE. To evaluate MrSE,
we make two changes: first, we explore the heterogeneity of
message correlations and construct multi-relational message
graphs (detailed in Appendix I); second, we replace the 2D
SE minimization in HISEvent with the proposed 2D MrSE
minimization. For all three methods, we adopt the same
hyperparameters as specified in the HISEvent paper.

Social event detection results. Table 3 presents the social
event detection results. MrSE demonstrates superior perfor-
mance compared to HISEvent across datasets and metrics.
This suggests that by delving into heterogeneous message
correlations, the proposed MrSE enhances the efficacy of
social event detection in comparison to HISEvent, which
relies on the original SE and overlooks the heterogeneity
in message correlations. Furthermore, RSSE performs com-
parably to HISEvent, which utilizes SE. This suggests that
RSSE and SE can be used interchangeably.

5 CONCLUSION

In this study, we propose MrSE, the first metric of multi-
relational graph structural information. We begin by reex-
amining the original definition of SE from the viewpoint
of random surfing. Subsequently, the definition of MrSE
is derived from random surfing on multi-relational graphs.
Additionally, we introduce a 2D MrSE minimization algo-
rithm designed to unveil communities within these complex
graphs. Results from experiments on both synthetic and
real-world graphs, including movie, publication, and social
message networks, demonstrate that the proposed MrSE is a
powerful metric for assessing and unraveling the structural
information within multi-relational graphs. MrSE exhibits
strong performance in two tasks, namely multi-relational
node clustering and social event detection.
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Notation Description
G = (V,E) Single-relational graph with node set V

and edge set E
A A ∈ R|V |×|V |

+ , the adjacency matrix of G
Ã Transition probability matrix of random surfing
B Ã after primitivity adjustment
E Teleportation matrix
x The stationary distribution of random surfing

G′ = (V,E′, R) Multi-relational graph with node set V ,
heterogeneous edge set E′, and relation set R

A′ A′ ∈ R|V |×|V |×|R|
+ , the adjacency matrix of G′

V;R Node and relation transition probability matrices
of multi-relational random surfing

E Multi-relational teleportation matrix
x′; y Node and relation stationary distributions of

multi-relational random surfing
T Encoding tree

α, λ, γ ∈ T Node, root node, leaf node in T
α− The parent of α

Tα, Tλ, Tγ ∈ V Node sets ⊆ V that associate with α, λ, γ
h(α); Height of α
h(T ); Height of T

gα Summation of the degrees of the cut edges of Tα

vol(Tα); vol(Tλ) Volume of Tα; Volume of Tλ, i.e., V
P A partition of V

HT (G) The structural entropy (SE) of G relative to T
H(k)(G) The k-dimensional SE of G
HT (G′) The multi-relational structural entropy (MrSE)

of G′ relative to T
H(k)(G′) The k-dimensional MrSE of G′

p→α The probability of entering community Tα

during random surfing
pα The probability of being in community Tα

during random surfing
p′→α The probability of entering community Tα

during multi-relational random surfing
p′α The probability of being in community Tα

during multi-relational random surfing

Table 4: Glossary of Notations.

A NOTATIONS

Table 4 summarizes the main notations used in this paper.

B EXAMPLES OF 2D SE MINIMIZATION

We provide examples of single-relational graph, encoding
trees, and the 2D SE minimization process in Figure 4.

Note that an encoding tree is essentially a description of
a graph’s structure. For a graph G, the encoding tree of
height 1 is unique, containing one root node and |V | leaf
nodes, each corresponds to a node in G. In this way, the
encoding tree of height 1 simply describes the fact that G
has |V | nodes, and makes no assumptions about higher-
order structures, such as communities. Figure 4 (b) shows
an example of an encoding tree of height 1. On the other
hand, an encoding tree of height 2 has an intermediate layer
between the root node and the leaf nodes. This intermediate
layer describes the 2nd-order structures, i.e., communities
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Figure 4: Examples of single-relational graph, encoding tree, and 2D SE minimization. (a) is a single-relational graph G.
(b) is the encoding tree of height 1, which encodes the 1st-order structures, i.e., nodes, in G. (c) - (e) demonstrate how 2D
SE minimization detects the 2nd-order structures, i.e., communities, in G. Initially, each node in G is assigned to its own
cluster. P in (c) shows the initial clusters. Following the vanilla greedy 2D SE minimization algorithm Li and Pan [2016], at
each step, any two clusters that would reduce SE the most are merged. Eventually, the optimal encoding tree of height 2, as
shown in (e), is associated with the minimum possible SE value, and encodes the communities, in G. P in (e) shows the
detected communities.

in the graph. Since there are different ways to partition the
nodes in G, a G can have many encoding trees of height
2. In the task of community detection, the goal is to find
the optimal encoding tree of height 2, i.e., the one that is
associated with the minimized SE. Figures 4 (c) - (e) show
examples of encoding trees of height 2, among which (e) is
the optimal one.

Figures 4 (c) - (e) illustrate community detection through
2D SE minimization. Initially, each node in G is assigned to
its own cluster. P in (c) shows the initial clusters. Following
the vanilla greedy 2D SE minimization algorithm Li and Pan
[2016], at each step, any two clusters that would reduce SE
the most are merged. Eventually, the optimal encoding tree
of height 2, as shown in (e), is associated with the minimum
possible SE value, and encodes the communities, in G. P
in (e) shows the detected communities.

C EXAMPLES OF 2D MRSE
MINIMIZATION

We provide examples of multi-relational graph, encoding
trees, and the 2D MrSE minimization process in Figure 5.

As an example of multi-relational random surfing, consider
G′ and A′ as shown in Figure 5 (a) and (b). At each step
of the multi-relational surfing on G′, the surfer follows A′

to randomly and jointly decide which neighboring node to
visit as well as which relation to use. E.g., assume that the

surfer is at node v1. Through relation R1, they can choose
to visit v2 or v5, as A

′

2,1,R1
= 1 and A

′

5,1,R1
= 1. Similarly,

through R2, they can choose to visit v2 or v5, as A
′

2,1,R2
= 1

and A
′

5,1,R2
= 1. Finally, through R3, the surfer can choose

to visit v3, as A
′

3,1,R3
= 1. In this manner, the surfer takes

an infinite long random walk on G′.

The 2D MrSE minimization process is similar to the 2D
SE minimization, shown in Figure 4. The distinction is that
the proposed MrSE, instead of SE, is utilized to determine
which two clusters to merge at each step.

D HIERARCHICAL 2D MRSE
MINIMIZATION

Inspired by how Cao et al. [2024] hierarchically minimizes
2D SE, we propose to speed up Algorithm 1 with hierarchi-
cal graph partitioning. Algorithm 2 shows our hierarchical
2D MrSE minimization algorithm. Instead of simultane-
ously considering the entire G′, Algorithm 2 minimizes
the MrSE of one subgraph of size n at a time (lines 5-13).
After minimizing the MrSE values for all subgraphs, the
process continues by treating the clusters formed in the last
iteration as nodes to be merged in the subsequent iteration
(lines 3-4). Such a process terminates after all nodes are
considered simultaneously (lines 14-15). If, at some point,
it becomes impossible to merge nodes within any subgraph,
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Figure 5: Examples of multi-relational graph, encoding tree, and 2D MrSE minimization. (a) is a multi-relational graph G′.
(b) is the adjacency tensor of G′. (c) is the encoding tree of height 1, which encodes the 1st-order structures, i.e., nodes, in G′.
(d) - (f) demonstrate how 2D MrSE minimization detects the 2nd-order structures, i.e., communities, in G′. Initially, each
node in G′ is assigned to its own cluster. P in (d) shows the initial clusters. Following our proposed 2D MrSE minimization
algorithm (Algorithm 1), at each step, any two clusters that would reduce MrSE the most are merged. Eventually, the
optimal encoding tree of height 2, as shown in (f), is associated with the minimum possible MrSE value, and encodes the
communities, in G′. P in (f) shows the detected communities.

we augment the parameter n to encompass a greater num-
ber of nodes within the same subgraph (lines 16-17). This
adjustment allows for the possibility of merging additional
nodes.

The overall running time complexity of Algorithm 2 is re-
duced from O(|V ||E′|) to O(|Vg||E

′

g|) < O(n3), where
|Vg| = n is the size of one subgraph and |E′

g| < n2 is the
number of edges in one subgraph.

E DERIVATION OF EQUATION (7)

Based on Equation (5), merging αo1 and αo2 into αn only
affects the MrSE values associated with αo1 , αo2 , αn, and
their children. We denote the children of αo1 , αo2 , and αn as
Γ1 = {γ|γ ∈ T , γ− = αo1}, Γ2 = {γ|γ ∈ T , γ− = αo2},
and Γ3 = {γ|γ ∈ T , γ− = αn} = Γ1 ∪ Γ2, respectively.

We have

∆MrSEαo1
,αo2

= MrSEnew −MrSEold

= −p′→αn
log p′αn

−
∑
γ∈Γ3

x′
Tγ

log
x′Tγ

p′αn︸ ︷︷ ︸
1⃝

+ p′→αo1
log p′αo1

+
∑
γ∈Γ1

x′Tγ
log

x′Tγ

p′αo1︸ ︷︷ ︸
2⃝

+ p′→αo2
log p′αo2

+
∑
γ∈Γ2

x′Tγ
log

x′Tγ

p′αo2︸ ︷︷ ︸
3⃝

.

(8)

Further, we have

1⃝+ 2⃝+ 3⃝ = −p′αo1
log

p′αo1

p′αn

− p′αo2
log

p′αo2

p′αn

. (9)

Plugging Equation (9) into Equation (8) concludes the
derivation of Equation (7).



Algorithm 2: Hierarchical 2D MrSE minimization.
Input: Multi-relational graph G′ = (V,E′, R),

sub-graph size n
Output: An optimal encoding tree T of height 2

1 Initialize T , s.t. for each node v ∈ V , add two nodes,
i.e., α and α−, to T . α is a leaf node of T and
Tα = {v}. α− is the parent of α and h(α−) = 1

2 while True do
3 P ← (α|α ∈ T , h(α) = 1)
4 {Pg} ← consecutively remove the first

min(n, size of the remaining part of P) clusters
from P that form a set Pg

5 for Pg ∈ {Pg} do
6 // minimize the MrSE of one subgraph
7 Vg ← all graph nodes v ∈ V that are associated

with the clusters in Pg

8 E
′

g ← {e ∈ E′, both endpoints of e ∈ Vg}
9 G

′

g ← (Vg, E
′

g, R)

10 Tg ← construct a new encoding tree that
contains Pg and the leaf tree nodes of T that
are associated with Pg

11 T ′

g ← run 2D MrSE minimization (Algorithm
1) on G

′

g , with the initial encoding tree set to
Tg

12 P ′

g ← (α|α ∈ T ′

g , h(α) = 1)

13 Update T with P ′

g

14 if |{Pg}| = 1 then
15 Break

16 if P is the same as at the end of last iteration then
17 n← 2n

18 return T

F NODE CLUSTERING EXPERIMENTAL
SETTING

We adopt a consistent embedding dimension of 64 for all
embedding-based methods. For SpectralNet, we adopt a
three-layer architecture of [512, 256, 64]. For node2vec and
metapath2vec, we set the walk length to 100, context size
to 7, walks per node to 5, number of negative samples to
5, and number of workers to 6. For all methods based on
deep learning, we configure the learning rate to be 0.001
and the number of training epochs to be 200, incorporating
an early stopping mechanism with patience of 50 epochs.
Given the high density of the ACM and DBLP datasets,
we adopt hierarchical 2D minimization (Algorithm 2) for
MrSE. This approach is faster compared to the standard 2D
minimization (Algorithm 1) when applied to dense graphs.
Similarly, for SE and RSSE, we apply the hierarchical 2D
minimization proposed by Cao et al. [2024] instead of the
vanilla 2D minimization in Li and Pan [2016] for the ACM

Table 5: Node clustering ACC (%). ‘/’ indicates that Spec-
tralNet fails to run on ACM.

Method Input ACM DBLP IMDB

k-means X 31.97 28.52 28.94

DMoN G, X 35.07 6.48 3.62
DGI G, X 35.37 50.70 48.50

SpectralNet G / 11.98 19.10
node2vec G 35.21 48.73 42.24

SE G 44.29 68.66 6.57
RSSE (ours) G 44.33 68.05 6.59

DMoN G′, X 16.73 17.18 9.16
DGI G′, X 71.57 54.47 35.25

DMGI G′, X 55.64 31.23 37.82

SpectralNet G′ / 45.45 5.80
metapath2vec G′ 69.72 66.84 44.09
MrSE (ours) G′ 77.72 72.70 6.81

and DBLP datasets. We set the sub-graph size n to 800 and
100 for the ACM and DBLP datasets, respectively.

G NODE CLUSTERING ACC

Table 5 presents the node clustering ACC. Our proposed
MrSE scores the highest on the ACM and DBLP datasets,
outperforming strong baselines including those that lever-
age node features in addition to graph structure. The MrSE
shows suboptimal performance when applied to the ex-
tremely sparse IMDB dataset, likely due to the loss of
structural information resulting from the stochasticity adjust-
ments. Furthermore, MrSE proves to be a more effective tool
in deciphering the community structures of multi-relational
graphs compared to SE. This is evident as MrSE outper-
forms SE on two of three datasets and performs comparably
with SE on the third dataset. Meanwhile, some methods
with relatively low NMI and ARI achieve high ACC. We
believe that this is related to the setting of the expected num-
ber of clusters for these methods. Specifically, as discussed
in Section 4.2, for representation-learning models includ-
ing node2vec, metapath2vec, DGI, and DMGI, we perform
k-means clustering after learning representations, setting
the number of clusters to the ground truth to obtain final
community predictions. We observed that the ACC scores
of these methods are sensitive to changes in the number of
clusters, while the NMI scores are relatively more stable.
For instance, altering the number of clusters to 50 causes
the ACC of DGI (G′, X) to drop from 71.57% to 13.42%
and its NMI from 47.03% to 34.74%. Similarly, the ACC
of metapath2vec decreases from 69.72% to 18.94%, and its
NMI from 47.51% to 29.13%.



Table 6: Statistics of the social event detection datasets. M,
U, UM, H, N, and S denote message, sender, user mention,
hashtag, named entity, and semantic, respectively. ‘com-
bine’ indicates the single-relational edges reduced from the
multi-relational ones. The statistics are presented in terms
of averages. Detailed data splits can be found in Cao et al.
[2024].

Dataset |G′| |V | R Sparsity |Y |

Event2012
(avg.) 21 2,314

M-U-M >99.99

37

M-UM-M 99.85
M-H-M 99.60
M-N-M 96.17
M-S-M 97.32
combine 93.98

Event2018
(avg.) 16 3,137

M-U-M 99.88

25

M-UM-M 99.45
M-H-M 98.05
M-N-M 98.05
M-S-M 98.79
combine 94.76

H SOCIAL EVENT DETECTION DATA
STATISTICS

Table 6 shows the statistics of the social event detection
data. Given that all compared methods are unsupervised and
exclusively utilize the test data, we limit our presentation of
statistics to the test sets in Table 6.

I MULTI-RELATIONAL MESSAGE
GRAPH CONSTRUCTION

We create multi-relational message graphs by distinguish-
ing message correlations stemming from shared senders,
mentioned users, hashtags, named entities, and similar natu-
ral language semantics. To achieve this, individual single-
relational graphs are constructed for each correlation type.
Additionally, a combined graph is formed by consolidating
various correlation types into a unified representation. In
this consolidation, multiple edges of different correlation
types between the same pair of nodes are reduced into a
single edge. Following this, all individual single-relational
graphs are concatenated along the relation axis, completing
the construction of a multi-relational message graph.
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