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Neural-network quantum states have shown great potential for the study of many-body quantum
systems. In statistical machine learning, transfer learning designates protocols reusing features of a
machine learning model trained for a problem to solve a possibly related but different problem. We
propose to evaluate the potential of transfer learning to improve the scalability of neural-network
quantum states. We devise and present physics-inspired transfer learning protocols, reusing the
features of neural-network quantum states learned for the computation of the ground state of a
small system for systems of larger sizes. We implement different protocols for restricted Boltzmann
machines on general-purpose graphics processing units. This implementation alone yields a speedup
over existing implementations on multi-core and distributed central processing units in comparable
settings. We empirically and comparatively evaluate the efficiency (time) and effectiveness (accu-
racy) of different transfer learning protocols as we scale the system size in different models and
different quantum phases. Namely, we consider both the transverse field Ising and Heisenberg XXZ
models in one dimension, and also in two dimensions for the latter, with system sizes up to 128 and
8× 8 spins. We empirically demonstrate that some of the transfer learning protocols that we have
devised can be far more effective and efficient than starting from neural-network quantum states
with randomly initialized parameters.

I. INTRODUCTION

Strongly interacting quantum systems are notoriously
hard to simulate because the size of their many-body
Hilbert vector space grows exponentially fast with the
number of particles, restricting exact diagonalization
methods to few particles in practice. However, over the
years, various advanced numerical methods have been de-
veloped to study these systems with an increasing degree
of success. Some of the most commonly used and success-
ful ones are quantum Monte Carlo methods [1, 2], ten-
sor network algorithms [3–6] (which stemmed from the
density matrix renormalization group [7]) and dynamical
mean-field theory [8–10]. Recently, a new class of tech-
niques in the family of variational quantum Monte Carlo
methods was introduced in the field and quickly came
to prominence: neural-network quantum states [11–14].
Starting with [11], it was shown that even simple neural
networks, such as restricted Boltzmann machines, can ac-
curately describe the ground state of a many-body quan-
tum system, reconstruct its state and its dynamics [15–
17]. This is why neural-network quantum states have
opened a new research direction that is widely explored
today even though, for some of the most challenging sys-
tems (like frustrated two-dimensional quantum systems),
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more established methods can provide lower ground state
energies [18].

It is now possible to use open-source code libraries,
such as NetKet [19], to implement neural-network quan-
tum states. NetKet is a Python framework implemented
in C++ with support for the Message Passing Interface
for distributed and parallel computing. At the same time,
the recent advances in machine learning are not only due
to better algorithms and packages, but also to the use
of graphical processing units (GPUs), which can signifi-
cantly speed up the computations at parity of hardware
cost.

A noticeable tool in the toolbox of machine learning
techniques is transfer learning [20]. Transfer learning
proposes to use a machine learning model trained for a
particular task to perform another, possibly related but
different, task. Here, we use transfer learning to scale the
quantum many-body system under study by transferring
the optimal neural-network quantum states parameters
obtained for an initial system to a similar system of larger
size. We study the efficiency and effectiveness of various,
physics-inspired, transfer learning protocols in different
quantum phases. By efficiency, we mean the time needed
to optimize the neural-network quantum states while the
effectiveness measures the accuracy of the state obtained.
A transfer learning protocol combining both good effi-
ciency and effectiveness as the system sizes grow provides
good scalability. We empirically demonstrate that some
of the transfer learning protocols that we have devised
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are far more effective and efficient than starting from a
neural-network quantum states with randomly initialized
parameters. Concurrently, we have ported the NetKet
implementation of the neural-network quantum states to
the TensorFlow machine learning platform [21]. Conse-
quently, our code can be readily used on general-purpose
graphics processing unit. This port immediately achieves
a significant performance speed-up over the NetKet code
running on a cluster of commodity servers at a compara-
ble cost of hardware.

The remainder of this paper is structured as follows. In
Sec. II, we summarize the neural-network quantum states
technique. We describe the models used in Sec. III. In
Sec. IV, we describe the transfer learning protocols pro-
posed for these models. In Sec. V, we explain how we
analyze the performances of our transfer learning pro-
tocol. We first introduce the observables analyzed in
Sec. V A, and the neural-network quantum states imple-
mentation in Sec. V B. Section VI is devoted to our re-
sults: Sec. VI A details the performance of our general-
purpose graphics processing unit over distributed cen-
tral processing units and Sec. VI B compares the per-
formances of different transfer learning protocols. We
briefly summarize our key results and conclude in Sec.
VII.

II. NEURAL-NETWORK QUANTUM STATES

We summarize here how the neural-network quantum
states are used to estimate the ground state of a quan-
tum many-body system. This is a standard optimization
problem based on the Ritz variational method [1]. Given
a Hamiltonian H, the expectation value of the energy in
any given state |ψ〉 is always greater than or equal to the
ground state energy E0, that is

E[ψ] =
〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E0. (1)

Therefore, in order to estimate the ground state energy
of H, we start with a trial wave function ψ(θ) that de-
pends on some parameters collectively labelled by θ and
minimize E[ψ(θ)] with respect to θ.

In this work, we use a particular type of neural net-
work, called a restricted Boltzmann machine (RBM), to
represent the wave function. It is a generative energy-
based probabilistic graphical model made of two layers.
The first one, called the visible layer x, consists of Lv
nodes and is in one-to-one correspondence with the con-
figuration space of the system. The second one, called the
hidden layer h, consists of an arbitrary number Lh = αLv
of nodes (the rational parameter α sets the ratio between
the numbers of nodes in the two layers).

In this work, following [11], we concentrate on spin
1/2 models, such as the transverse field Ising or the
anisotropic Heisenberg models. To describe such sys-
tems, binary values {+1,−1}, corresponding to the pro-

FIG. 1. The structure of a restricted Boltzmann machine with
Lv visible nodes and Lh hidden nodes. The visible layer con-
sists of visible nodes x1, . . . , xLv . The hidden layer consists
of hidden nodes h1, . . . , hLh . The connections between the
visible and hidden layer are given by the weight matrix W .
The biases for the visible and hidden layers are represented
by a1, . . . , aLv and b1, . . . , bLh , respectively.

jection of the spins along the z axis, are then assigned
to the visible nodes variables xj , which spans the entire
Hilbert space of the system. The same binary values are
used for the hidden nodes hi.

As shown in Fig.1, the structure of a restricted Boltz-
mann machine forms a bipartite graph in which the hid-
den and visible nodes are associated with a set of weights
W = {Wji} where the first and second index in the ma-
trix label, respectively, the nodes of the visible and hid-
den layers (e.g. i ∈ {1, . . . , Lh} and j ∈ {1, . . . , Lv}).
The neural network has also a visible bias vector a =
{aj} and a hidden bias vector b = {bi} which couple
to each node in their respective layer. In our work, all
the elements of W , a and b are taken as real numbers,
which is sufficient to represent the ground states of the
systems we are studying. Using the restricted Boltzmann
machine, the joint probability distribution of a configu-
ration of the visible layer x, and a configuration of the
hidden layer h, for given W , a and b, is given by

pRBM (x,h;W ,a, b) =
exp (a·x+ b·h+ x·Wh)

Z
(2)

where Wh is the vector obtained by applying the matrix
W onto h and Z normalizes the probability so that the
sum over all possible combinations of x and h is 1.

From Eq. (2), by integrating out the hidden layer, we
can compute the marginal distribution of the visible layer
pmRBM (x;W ,a, b):

pmRBM (x;W ,a, b) =
1

Z
exp (a · x) (3)

×
∏
i

2 cosh

∑
j

xjWji + bi

 .

As in [11], we use the marginal distribution provided by
the restricted Boltzmann machine to represent the prob-
ability of a given configuration x of the ground state
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with parameters θ = {W ,a, b}. Using the bra-ket quan-
tum notation, the (normalized to 1) trial wave function
|ψ(θ)〉 =

∑
x ψ(x;θ) |x〉 returned by the restricted Boltz-

mann machine is thus defined by ψ(x;θ) =
√
pψ(x;θ) =

〈x|ψ(θ)〉 where:

pψ(x;θ) = pmRBM (x;W ,a, b). (4)

Having real and positive coefficients ψ(x;θ), the trial
wave function |ψ(θ)〉 is well adapted to the models we
intend to study because their respective ground states
can be taken positive.

From Eqs. (1,2,4), the problem of estimating the
ground state energy becomes the problem of minimizing
the function E[ψ(θ)] = E(θ) given by

E(θ) =
〈ψ(θ)|H|ψ(θ)〉
〈ψ(θ)|ψ(θ)〉

=
∑
x

pψ(x;θ)Eloc(x;θ). (5)

Using the completeness relation
∑

x|x〉〈x|= 11, the local
energy Eloc is given by:

Eloc(x;θ) =
∑
x′

〈x | H | x′〉 ψ(x′;θ)

ψ(x;θ)
. (6)

The minimization of E(θ) uses a stochastic gradient
descent algorithm to iteratively update the parameters
θ. The value of E(θ) and its gradients are calculated by
taking samples from pψ(x;θ).

The sampling procedures rely on Gibbs sampling and
the Metropolis-Hastings algorithm. For Gibbs sampling,
starting from an initial visible configuration x, a hidden
configuration is generated by sampling from the condi-
tional probability p(h|x) given by

p(x|h) =
∏
i

sigmoid

2

∑
j

Wjixj + bi

hi

 , (7)

then from this hidden configuration, a new visible con-
figuration is generated by sampling from the conditional
probability p(h|x) given by

p(h|x) =
∏
j

sigmoid

[
2

(∑
i

Wjihi + aj

)
xi

]
. (8)

For the Metropolis-Hastings algorithm, starting from an
initial visible configuration x, we get a new visible con-
figuration x′ through an arbitrary strategy, and decide
to accept or reject it depending on the relative proba-
bility pmRBM (x′;θ)/pmRBM (x;θ). Gibbs sampling is typ-
ically much faster than the Metropolis-Hastings sam-
pling algorithm, as auto-correlation times in the sampling
are longer in the latter case. However, the Metropolis-
Hastings algorithm is much more suitable to impose con-
straints on the possible samples. For example, for cases
where the states are restricted to a fixed total magneti-
zation along the z axis (which means that the total num-
ber of up and down spins is fixed), a sampling algorithm

obeying such criterion can be readily implemented in the
Metropolis-Hastings algorithm by using spin exchanges
to propose new configurations.

III. MODELS ANALYZED

We conduct numerical experiments on two different
quantum models, namely the transverse field Ising and
Heisenberg XXZ models. Hereafter, we refer to the for-
mer as the Ising model and to the latter as the Heisenberg
model. They are described, respectively, by the Hamil-
tonians

HI = −JI
∑
〈l,m〉

σzl σ
z
m − h

∑
l

σxl (9)

and

HXXZ = −JXXZ
∑
〈l,m〉

(σxl σ
x
m + σyl σ

y
m + ∆σzl σ

z
m) , (10)

where the σ
x/y/z
l are operators acting on site l and cor-

responding to the respective Pauli matrices. For the
Ising model, we use the parameters JI for the spin
coupling strength and h for the transverse field, while
for the Heisenberg model we use JXXZ for the in-
plane spin coupling strength and ∆ for the dimension-
less anisotropy factor between the xy plane and z axis
coupling strengths. For both models, we consider open
boundary conditions, for which simplifications of the re-
stricted Boltzmann machine leveraging on translation in-
variance [11, 12] cannot be used.

For the Ising model, the spin coupling JI favors a ferro-
magnetic (F) ground state when positive and an antifer-
romagnetic (AF) one when negative. At the same time,
a strong magnetic field h favors spins that are aligned
paramagnetically, pointing along the x axis in the posi-
tive (h > 0) or negative (h < 0) direction. In the one-
dimensional model, a quantum phase transition occurs at
|JI/h|= 1. The ground state being ferromagnetic along
the z axis for JI > |h|, antiferromagnetic along z for
JI < −|h| and paramagnetic (PM) otherwise.

For the Heisenberg model, there is an exact mapping
between Hamiltonians with parameters (JXXZ ,∆) and
(−JXXZ ,−∆) and we will then keep JXXZ = 1. In one-
dimension, for JXXZ > 0, the ground state can be in
three different phases: ferromagnetic along z for ∆ > 1,
showing no magnetic order along z for |∆|< 1 (where
the model orders ferromagnetically in the xy-plane) and
antiferromagnetic along z for ∆ < −1. When ∆ = 1, the
model is isotropic.

An important difference between the Ising and Heisen-
berg models is that the latter preserves the total spin
along z, which commutes with HXXZ and is then a con-
served quantity, while, for the former, there is no such
conservation. In the following, we restrict our study of
the Heisenberg model to the sector where the total mag-
netization along z is zero. Then, if the system becomes
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}

}
}

}

FIG. 2. (Color online) Schematic representation of the
different transfer learning protocols used to scale up one-
dimensional systems. Lv, Lh, and L′v and L′h correspond to
the number of visible and hidden nodes for the base and target
networks, respectively. The different panels show how to con-
struct the target weight matrix W from the base weight ma-
trix W̃ by replicating the colored rows and filling the grey cells
with randoms entries. Panels (a), (b), and (c): (1, 2)−tiling,
(2, 2)−tiling, and (L, 2)−tiling respectively. Here the scal-
ing factor is 2. Panel (d) shows the (L, 4)−tiling used when
scaling up the network by a factor 4; See text for a detailed
explanation.

ferromagnetic along the z axis, its lowest-energy config-
uration will correspond to a symmetric superposition of
two states each composed of one spin-up domain and one
spin-down domain of equal sizes, separated by a single
domain wall exactly located in the middle of the system.

IV. TRANSFER LEARNING PROTOCOLS

In machine learning, transfer learning refers to the
reuse of the features of a machine learning model learned
for the resolution of a problem to initialize a machine
learning model used to solve another problem [20]. The
authors of [22] discuss the transferability of features be-
tween deep neural networks with the same architecture,
i.e. the same nodes and connections.

In our case, a many-body system is simulated by a
restricted Boltzmann machine. We consider the trans-

fer of parameters to networks having, however, different
architectures. With transfer learning, we aim to solve
a larger system problem using the solution of a smaller
one, although there are applications for the reverse. The
transfer learning approach is as follows: First, we train
a network using randomly initialized parameters to min-
imize the energy of a system. Following the terminology
in [22], we refer to this network as the base network. Sec-
ondly, after the base network has been trained, we copy
the parameters of the network to another larger system,
that is called the target network. Thirdly, we train the
target network using the transferred parameters as the
initialized parameters of the network. We call this pro-
cess the fine-tuning of the network. Lastly, we evaluate
the transfer learning protocol by comparing the perfor-
mance of the network trained with the transfer learning
protocol and the network trained from scratch with ran-
domly initialized parameters. The former is commonly
called the hot-start network while the latter is called the
cold-start network.

In this Paper, we devise different transfer learning pro-
tocols and comparatively evaluate their efficiency and ef-
fectiveness. To evaluate the efficiency, we compare the
times needed to reach an energy minimum. To eval-
uate the effectiveness, we probe the accuracy of the
wave function. Starting from a one dimensional sys-
tem of Lv spins, we increase the number of spins to
L′v = 2Lv, 3Lv, 4Lv, . . . at each iteration. We denote

the weights of the base network by W̃ji and the weights
of the target network by Wji. The transfer learning rule,

or protocol, is then specified by the mapping W̃ji →Wji.
Mathematically, there is a large number of possible ways
to transfer the weights from a smaller system to a larger
one, and it would not be possible, nor meaningful, to con-
sider all of them. Instead, we consider a transfer learning
protocol which we refer to as (k, p)−tiling where groups
of k weights calculated for a system at a certain size are
repeated p times to initialize the weights for a larger sys-
tem. Even if our transfer learning protocols only focus on
weight transfer, our simulations show that, after the fine-
tuning process, the bias values are generally negligible.
We have further checked that simulations with biases set
to zero and with variable biases yield very close results.

The different tilings that we used are detailed below
and depicted in Fig.2. Do note that each tiling is not just
performed over the same hidden nodes but is distributed
in equal parts over portions of the hidden nodes. By
doing so, all the hidden nodes of the target network re-
tain some knowledge acquired by the base network. This
was found to help the optimization process of the target
network.

• (1, 2)−tiling (see Fig.2(a)). We focus on doubling
the system (p = 2). The weights of the target net-

work are initialized with W2j−1,i = W2j,i = W̃j,i

for j ∈ [1, Lv/2], W2j−1,i+Lh
= W2j,i+Lh

= W̃j,i

for j ∈ [Lv/2 + 1, Lv], and a random value for all
the other terms. This protocol is expected to work
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well for paramagnetic or ferromagnetic phases,
however it may not be the ideal transfer learning
for a system in the antiferromagnetic phase. This
tiling indeed favors situations in which each site
is equivalent, e.g. considering the state |↑↑↑↑〉,
the doubling will give a bias towards the state
|↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑〉 (color online, spins in red are
“copied” from the base network). This could be
seen as favoring ferromagnetic correlations. We see
a similar effect in a ferromagnetic state where the
total magnetization along z is fixed to zero (|↑↑↓↓〉
to |↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓〉). If however the base network
represents an antiferromagnetic state |↑↓↑↓〉, then
the initialization of the target network would bias
towards the state |↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓〉 which has much
weaker antiferromagnetic correlations.

• (2, 2)−tiling (see Fig.2(b)). This protocol is similar
to the (1, 2)−tiling just described, but instead of
doubling a single spin, we double a pair of them
since k = 2. We use W4j−3,i = W4j−1,i = W̃2j−1,i
and W4j−2,i = W4j,i = W̃2j,i for j ∈ [1, Lv/4],

while W4j−3,i+Lh
= W4j−1,i+Lh

= W̃2j−1,i
and W4j−2,i+Lh

= W4j,i+Lh
= W̃2j,i for

j ∈ [Lv/4 + 1, Lv/2], and a random value for
all the other terms. This protocol is expected to
work better for antiferromagnetic phases compared
to the (1, 2)−tiling protocol, as unit cells of two
sites are copied, while still being effective for
ferromagnetic phases. A state |↑↓↑↓〉 would give
a bias towards the state |↑↓ ↑↓ ↑↓ ↑↓〉, which
preserves antiferromagnetic correlations. Similarly
in the ferromagnetic phase, a state |↑↑↑↑〉 would
bias towards the state |↑↑ ↑↑ ↑↑ ↑↑〉 and, in the
case of a zero magnetization ferromagnetic state,
|↑↑↓↓〉 would bias towards the state |↑↑ ↑↑ ↓↓ ↓↓〉,
which preserves ferromagnetic correlation.

• (L, p)−tiling (see Fig.2(c) for the (L, 2)-tiling and
Fig.2(d) for the (L, 4)-tiling). By setting k = Lv,

we transfer all the base network weights W̃j,i on
the first Lv visible nodes, and then repeat them
for the other (p − 1)Lv half on the visible layer
nodes but coupled to the other hidden nodes. We
stress here that the symbol L denotes the whole
visible nodes, L = Lv. More precisely, we match
Wj+ηLv,i+ηLh

= W̃j,i for j ∈ [1, Lv], i ∈ [1, Lh] and
η ∈ [0, p − 1]. This protocol could be favorable in
the antiferromagnetic phase because a state |↑↓↑↓〉
would give a bias towards the state |↑↓↑↓ ↑↓↑↓〉 and
in the ferromagnetic phase because a state |↑↑↑↑〉
would give a bias towards the state |↑↑↑↑ ↑↑↑↑〉.
However, for a ferromagnetic state where the sum
of spins is fixed to zero, the state |↑↑↓↓〉 would give
some bias towards |↑↑↓↓ ↑↑↓↓〉 which has weaker
ferromagnetic correlations.

Examples of the (1, 2), (2, 2), and (L, 2)−tiling proto-
cols are depicted in Fig. 2 (a,b,c), in the case where the
transfer is from Lv = 4 to L′v = 8 with α = 2. Figure
2(d) shows the (L, 4)−tiling from Lv = 4 to L′v = 16.

A natural generalization of (k, p)−tilings to lattices in
higher dimensions d > 1 are (k,p)-tilings where k and
p are d-dimensional vectors. In this case, each couple
(ka, pa) (1 ≤ a ≤ d) tells how many groups of weights
computed for a certain system size to consider and how
many times to repeat them to initialize the weights for
a larger system size along the a−th axis. Hereafter, for
simplicity, we consider the case of the isotropic transfer
learning protocol where ka = k and pa = p for all a.
Hence we will, once again, just refer to this transfer pro-
tocol as the (k, p)−tiling. The above mentioned protocols
may not be exhaustive, but as we will see later, they al-
ready give an interesting insight into the efficiency and
effectiveness of the transfer learning method.

V. PERFORMANCE EVALUATION

In this section, we describe the quantities we use to
evaluate the performance in Sec. V A and the implemen-
tation details of the neural-network quantum states and
its minimization procedure in Sec. V B.

To explore the different phases of the one-dimensional
Ising and Heisenberg models, we fixed h = 1 and JXXZ =
1 (the latter ensures that the ground state can be taken
as positive) and we have varied JI and ∆, concentrating
on three values, each corresponding to a different phase.

For the one-dimensional Ising model, we used JI = 2,
in the ferromagnetic phase (later referred to as Ising F),
JI = −2, in the antiferromagnetic one (Ising AF), and
JI = 0.5, in the paramagnetic phase (Ising PM). For
the one-dimensional Heisenberg model, we studied the
cases ∆ = 2, ferromagnetic along the z axis (Heis F),
∆ = −2, antiferromagnetic along the z axis (Heis AF)
and ∆ = −0.5, ferromagnetic in the xy plane but showing
no order along the z axis (Heis XY).

For the two-dimensional Heisenberg model, we concen-
trated on the case with ∆ = −1 and JXXZ = 1 which is,
through the previously mentioned mapping, equivalent
to the ∆ = 1, JXXZ = −1 isotropic antiferromagnetic
Heisenberg model.

In the following, we consider chains containing Lv =
{4, 8, 16, 32, 64, 128} spins for the one-dimensional Ising
and Heisenberg models and Lv = {2 × 2, 4 × 4, 8 × 8}
square lattices for the two-dimensional Heisenberg model.
As the minimization procedures that we use to compute
the ground state have random components, each estimate
of an observable is an average over 20 realizations of the
same calculation.
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A. Evaluation methods

We evaluate both the efficiency and the effectiveness of
the proposed transfer learning protocols and compare the
results to other readily available methods. For efficiency,
we refer to the time needed to reach the stopping criterion
of the minimization (see below for a description of this
criterion). We compare the time needed for the cold-
start with the time required by the hot-start plus the
time of the previous iterations. For instance, for a one-
dimensional system with Lv = 32, we compare the time
required by a cold-start for this size to the time needed
by a cold-start for Lv = 4 plus the time for hot-starts at
Lv = 8, Lv = 16 and finally Lv = 32.

For effectiveness, we refer to the quality of the repre-
sentation of the ground state by our ansatz. As energy
alone might not be a sufficient indicator of the quality of
the ground state, we also consider the spin-spin correla-
tor between two spins l and m, Czl,m = 〈σzl σzm〉. This is
computed by

Czl,m =
∑
x

p(x)〈x|σzl σzm|x〉, (11)

which is evaluated with Monte Carlo sampling over the
possible spin configurations x. From Eq. (11), it is pos-
sible to define correlators that are useful to identify fer-
romagnetic order, CFd , or anti-ferromagnetic order, CAd ,
which are respectively

CFd =
1

d− 1

d∑
l=2

Cz1,l (12)

and

CAd =
1

d− 1

d∑
l=2

(−1)l−1Cz1,l, (13)

where d is a range of distances between the two spins that
we consider, for instance, half the length of the spin chain.
As these correlators are specific for antiferromagnetic and
ferromagnetic orders along the z axis, we do not evaluate
these correlators in phases that do not show a magnetic
order along z.

The behavior of CFd is different in the ferromagnetic
phases of the Ising and Heisenberg models. For the Ising
model, we can expect CFd to be almost constant for all d.
On the contrary, for the Heisenberg model, as we work at
fixed zero magnetization, CFd should be almost constant
for d < Lv/2 and should then decrease towards zero for
d > Lv/2 (or vice versa) as the system is separated into
two ferromagnetic domains with opposite spins.

For one-dimensional Ising and Heisenberg model, the
results from neural-network quantum states calculations
for ground state energy and correlations are compared
to accurate matrix product states simulations [6]. For
the matrix product states simulations, we use both a
non-number conserving code for the Ising model and a

number conserving code for the Heisenberg model, with
a bond dimension D up to 1000 for most of the computa-
tions. For the two-dimensional Heisenberg model, with
JXXZ = 1,∆ = −1, the ground state energy is compared
to quantum Monte Carlo results [2] with β = 50.0, 20
bins and 100, 000 steps per bin. We use the mean rela-
tive error as the effectiveness metric of the ground state
energy and the correlations. Furthermore, we plot the
ferromagnetic correlator CFd and the antiferromagnetic
correlator CAd for a different range of distances d to eval-
uate the correlations qualitatively.

To quantify how much the parameters of the restricted
Boltzmann machine change during an optimization from
a hot start, we measure the transfer distance D between
the initial weights, denoted as W (init), of the target net-
work after transferring from the base network, and the
weights after fine-tuning the target network denoted as
W (final). This is defined by the mean absolute difference
between W (init) and W (final), that is

D(W (init),W (final)) =

Lv∑
j

Lh∑
i

|W (init)
i,j −W (final)

i,j |
LvLh

.

(14)

A small D means that the transfer gives already very
good parameters for the network, and little change is
needed, while a large D implies a less adequate transfer.

B. Details of the neural-network quantum states
implementation

The actual implementation of the neural-network
quantum states and its minimization relies on several
parameters and steps which we here present in greater
detail. The value of the parameters presented here is
determined from the literature or with a grid search.

The optimization process is done iteratively. In each
iteration, we take 104 samples to evaluate the energy
E(θ) and its gradients using the current parameters of
the restricted Boltzmann machine; then we update the
parameters of the restricted Boltzmann machine using a
gradient descent algorithm, for which, in our case, we
choose adaptive learning rate strategies RMSProp [23]
and Adam [24]. We set the initial learning rate to 0.001.
For the Ising model, the samples are obtained by a sin-
gle iteration Gibbs sampling. For the Heisenberg model,
we instead use a Metropolis-Hastings algorithm with ex-
change strategy, for which two random spins are ex-
changed to obtain a new configuration while keeping the
total number of spins up and of spin down invariant. This
strategy is used in the Heisenberg model to conserve the
total spin magnetization. The number of thermalization
steps is set to 10% of the number of Monte Carlo samples.

For the restricted Boltzmann machine, based on our
exploratory simulations, we found that α = 2 is a good
compromise considering the efficiency and effectiveness
trade-off. During transfer learning, or for cold-starts,
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we set some parameters of the restricted Boltzmann ma-
chine randomly. For the weight matrix W , we sample
the weight from a normal distribution N (0, 0.01) with
mean 0 and standard deviation 0.01, while the elements
of both biases a and b are initialized to zero based on [25]
and our exploratory experiments.

To halt the simulations, we use a dynamic stopping
criterion based on the zero-variance principle in quantum
Monte Carlo [1]. We compute the standard deviation of
Eloc(x):

σEloc
=

√∑
x

(Eloc(x,θ)− E(θ))
2
/
√
N (15)

where N is the number of configurations x considered,
while E(θ) and Eloc(x,θ) are given, respectively, in
Eq. (5) and Eq. (6), and we stop the simulation when
its ratio with the average energy, σEloc

/E(θ), is lower
than a threshold value εσ. If σEloc

/E(θ) does not reach
a value smaller than εσ, we stop the simulation after
εepoch epochs. In our evaluations, we take εσ = 0.005
and εepoch = 30000.

This stopping criterion is motivated by the fact that, if
the neural-network quantum states represents any eigen-
state of the Hamiltonian, then Eloc(x,θ) returns the en-
ergy of the eigenstate for any configuration x. Combining
this with the fact that the algorithm searches for the low-
est energy, if σEloc

is very small then the neural-network
quantum states should be a good representation of the
ground state. To compute the observables, we sample
over a certain number of configurations x taken from
pψ(x,θ) with 500 steps and 5000 steps for Gibbs sam-
pling and Metropolis-Hastings algorithm, respectively.
These values were determined by looking at the auto-
correlation times in our exploratory experiments.

VI. RESULTS

A. Efficiency of graphics processing unit

We implement the neural-network quantum states
code with the machine learning platform TensorFlow [21].
TensorFlow allows us to deploy and run the code on a
general-purpose graphics processing unit server, which
we then also compare to a parallel central processing
units implementation, for which we use the NetKet li-
brary [26]. For the NetKet library, all experiments in
this subsection run on machine with Ubuntu 16.04 op-
erating systems with two 1.8Ghz Intel© Xeon© Silver
4108 processors and equipped with 128GB DDR4 mem-
ory. For the TensorFlow implementation, at a compara-
ble hardware purchase price [27], all experiments in this
subsection run on NVIDIA GeForce GTX 1080 graphics
processing unit with 2560 CUDA cores and 8GB memory.
We implement the program using Python 2.7.15.

The efficiency of our TensorFlow implementation on a
general-purpose graphics processing unit server is higher

FIG. 3. (Color online) Computation time (t[s]) as a func-
tion of the number of spins (Lv) for various settings on one-
dimensional Ising model with JI = 1. The purple dash-dotted
line with diamonds shows the time using four central pro-
cessing units with NetKet. The red dashed line with trian-
gles shows the time using eight central processing units with
NetKet. The solid blue line with squares shows the time us-
ing sixteen central processing units with NetKet. The black
dotted line with circles shows the time using a graphics pro-
cessing unit with TensorFlow.

than that of the original NetKet implementation on a
multi-core server beyond a sufficiently large system size.
This is illustrated, for reference only, in Fig. 3. In this
case, we have considered a one-dimensional Ising model
with 8 to 128 spins at the quantum phase transition point
where JI = 1.0. For a system of 128 spins, the Tensor-
Flow implementation runs about 5 times faster than the
NetKet implementation.

B. Evaluation of transfer learning protocols

All experiments in this subsection run on an NVIDIA
DGX-1 server equipped with NVIDIA Tesla V100 graph-
ics processing units with 640 tensor cores, 5120 CUDA
cores, and 16GB memory. We first compare the effi-
ciency of different transfer learning protocol and cold-
start of Ising and Heisenberg model for three differ-
ent Hamiltonian parameters in Fig. 4. In particular in
Fig.4 (a,c,e) we show results for the Ising model, respec-
tively for JI = −2, 0.5, and 2, while in Fig.4 (b,d,f)
we show results for the Heisenberg model, respectively
with ∆ = −2, −0.5 and 2. The error bars represent the
interval of ±1 standard deviation from 20 realizations.
The error bars are used to evaluate the robustness of
the transfer learning protocol, e.g. a smaller error bars
corresponds to more consistent results between different
realizations.

In these panels, we show the time required to reach
the stopping criterion for each system size. With the
cold-start, at each system size we start from a randomly
initialized network, while for the other protocols, we use
the parameters for the system at half the size and use the
corresponding transfer learning protocol. We remind the
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FIG. 4. (Color online) The efficiency of different transfer
learning protocols. Each panel shows the simulation time
in seconds t[s] until the stopping criterion is reached as a
function of the number of spins (Lv). The left (a,c,e) and
right (b,d,f) columns panel corresponds to Ising and Heisen-
berg models, respectively. The different rows correspond to
the different parameters of the Hamiltonian (JI for the Ising
model and ∆ for the Heisenberg model) taking on values -2,
±0.5 and 2, respectively. The blue solid line with squares
shows the time for the cold-start. The red dashed line with
circles shows the time for the (L, 2)−tiling protocol, the black
dotted line with diamonds the time for the (2, 2)−tiling pro-
tocol, and the green dash-dotted line with triangles the time
for (1, 2)−tiling protocol. The error bars represent the inter-
val of ±1 standard deviation. In all figures, we take h = 1
(for Ising) and JXXZ = 1 (for Heisenberg).

reader that for the transfer learning protocols, the time
at size Lv that we report is given by the accumulation of
the time to obtain the state at size Lv/2 plus the time to
reach the stopping criterion at size Lv, while the initial
system size Lv = 4 is obtained from a cold-start.

For the Ising model, we observe that the (1, 2)−tiling
protocol reaches the stopping criterion in much longer
times in the antiferromagnetic phase, even slower than a
cold-start. The protocol is also not robust since we see
a large variance in the error bars. Such performance is
expected as the state in which the network is initialized
does not favor an antiferromagnetic order as discussed
in Sec. IV. In general, for the Ising model, i.e. for Fig.4
(a,c,e), we observe much better performance from the
(L, 2)−tiling, which also seems less sensitive to the phase
of the system. We also observe that transfer learning pro-
tocols are more robust in the paramagnetic phase since
the variance is very small.

For the Heisenberg model, we observe that the cold-
start is always more efficient than the other transfer
learning protocol, i.e. it reaches the stopping criterion
the fastest. However efficiency does not necessarily im-
ply effectiveness, and in fact, in this case the system is

FIG. 5. (Color online) Visualization of one realization of
the weight matrices for one-dimensional ferromagnetic Ising
model with 16 spins and JI = 2. The rows and columns
of the matrix corresponds to the visible (Lv) and the hid-
den (Lh) nodes of the restricted Boltzmann machine, respec-
tively. The left column panels (a), (c) and (e) show the initial

weights W (init) after transferring from weights for an 8 spins
chain with, respectively, the (1, 2)−tiling, (2, 2)−tiling and
(L, 2)−tiling protocols. The right column panels (b), (d) and

(f) show the weights W (final) after fine-tuning until stopping

criterion the initial weights W (init) in, respectively, panels
(a), (c) and (e). The transfer distances D for the (1, 2)−tiling,
(2, 2)−tiling and (L, 2)−tiling protocol are 0.01145, 0.01704,
and 0.00162, respectively.

trapped in a local minimum prematurely. However, as
we see later, this is not the case for the transfer learning
protocols. We see that (L, 2)−tiling protocol works effi-
ciently except in the ferromagnetic phase (e.g for ∆ = 2).
This is expected as the state in which the network is ini-
tialized does not favor a ferromagnetic order when the
magnetization is conserved, as discussed in Sec. IV. In-
stead, the (1, 2)−tiling and (2, 2)−tiling protocols are
more efficient in the ferromagnetic phase. Contrary to
the Ising model, we observe that the transfer learning
protocols are more robust in the ferromagnetic phase ex-
cept for the (L, 2)−tiling protocol.

We analyze the weights of the restricted Boltzmann
machine W and, in particular, evaluate how they change
when different transfer learning protocols are considered.
In Fig. 5 and Fig. 6, we consider one realization of the
Ising model for ferromagnetic phase with JI = 2 and
for antiferromagnetic phase with JI = −2, respectively,
until it reaches the stopping criterion. We depict the
value of Wj,i, for a transfer from Lv = 8 to 16 spins
where α = 2, hence j ∈ [1, 16] and i ∈ [1, 32]. The ini-
tial and final weights for the (1, 2)−tiling protocol are
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FIG. 6. (Color online) Same as Fig. 5 for the one-dimensional
antiferromagnetic Ising model with 16 spins and JI = -2. The
transfer distances D for the (1, 2)−tiling, (2, 2)−tiling and
(L, 2)−tiling protocol are 0.05423, 0.01858, and 0.00224, re-
spectively.

shown respectively in Fig. 5(a,b) and Fig. 6(a,b), for the
(2, 2)−tiling protocol in Fig. 5(c,d) and Fig. 6(c,d), and
for the (L, 2)−tiling protocol in Fig. 5(e,f) and Fig. 6(e,f).
From Fig. 5 and 6, we observe that the (L, 2)−tiling pro-
tocol generically is a more adequate transfer protocol for
Ising as it requires smaller changes in the weights to
reach the stopping criterion. This is particularly strik-
ing when comparing Fig.6(a,b), from the (1, 2)−tiling,
with Fig.6(e,f), from (L, 2)−tiling. The former requires
a significant change off all the weights (resulting in D ≈
0.054), while for the latter only some hidden nodes con-
nections to some visible nodes are enhanced (correspond-
ing to D ≈ 0.002, more than 25 times smaller than for the
(1, 2)−tiling). Qualitatively, we observe that the weight
matrices in Fig. 6 forms a checkerboard pattern which
resemble the alternating spins in the antiferromagnetic
phase. With the (1, 2)−tiling protocol, the checkerboard
pattern is destroyed, as seen in Fig. 6(a), and the network
tries to restore this pattern, as seen in Fig. 6(b), which
makes the transfer distance D bigger than with other
protocols. Quantitatively, the average transfer distances
D over 20 realizations for (1, 2)−tiling, (2, 2)−tiling, and
(L, 2)−tiling protocol from 64 to 128 spins in the an-
tiferromagnetic phase with JI = −2.0 are 6.5 × 10−3,
1.0 × 10−3 and 5.0 × 10−5 , while in the ferromagnetic
phase with JI = 2.0 they are 6.5 × 10−4, 9.6 × 10−4

and 5.0× 10−5, respectively [28] These results show that
the (L, 2)−tiling protocol is the most adequate transfer
learning protocol for the Ising model.

For the Heisenberg model, over the 20 realiza-
tions, the average transfer distances D for (1, 2)−tiling,

FIG. 7. (Color online) The relative error of the energy
(∆E/E0) compared to the matrix product states simulations
to measure the effectiveness of different transfer learning pro-
tocols. The evaluation is done on a one-dimensional system
with 128 spins transferred from the fine-tuned weights of the
most effective transfer learning protocol for 64 spins of the
respective system and parameters. We evaluate the effective-
ness at the iteration corresponding to the most efficient trans-
fer learning protocol to reach the stopping criterion. Panels
(a) and (b) correspond to the Ising and Heisenberg models,
respectively. In panel (a) we vary JI while in panel (b) we
vary ∆, and both take the values {−2,±0.5, 2}. The red full
bar, the black empty bar, and the green full bar show the rela-
tive error of the energy for the (L, 2)−tiling, (1, 2)−tiling, and
(2, 2)−tiling protocol, respectively. The error bars represent
the interval of the 9th percentile and the 91st percentile.

(2, 2)−tiling and (L, 2)−tiling protocol for 128 spins in
the antiferromagnetic phase with ∆ = −2 are 4.9×10−3,
4.5 × 10−3 and 2.7 × 10−4, while in the ferromagnetic
phase with ∆ = 2 they are 1.6 × 10−4, 2.0 × 10−4 and
4.3 × 10−4, respectively. These values confirm our pre-
vious results on the efficient evaluation of the Heisen-
berg model, showing that (1, 2)−tiling protocol is the
adequate transfer learning protocol for the ferromagnetic
phase while (L, 2)−tiling works best for the antiferro-
magnetic phase. We do not plot the visualization of the
weight matrices for the Heisenberg model as they show
patterns that are similar to those of the Ising model.

While efficiency is an important attribute of a numer-
ical method, effectiveness cannot be compromised, i.e.
the representation of the ground state needs to be ac-
curate. To evaluate the effectiveness, we consider the
accuracy of the energy of the ground state and of the
correlations generated. As a reference value, we take the
calculations from very accurate matrix product states al-
gorithm for the one-dimensional models. In Fig. 7(a),
we measure the effectiveness for the ground state energy
of the Ising model while in Fig. 7(b) we show the re-
sults from the Heisenberg model. In order to have a fair
comparison between the different transfer learning pro-
tocols, we have considered the same base network which
is the solution from the most effective protocol (i.e. the
protocol with the lowest energy and correlation among
others) for Lv = 64, for the three transfer learning pro-
tocols (1, 2)−tiling, (2, 2)−tiling, and (L, 2)−tiling pro-
tocol. We then use a fixed number of iterations which
is given by the stopping criterion of the fastest trans-
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fer learning protocol to reach the stopping criterion. We
observe trends that are similar to those found for the
efficiency evaluation. For the Ising model, in general,
the energy is more accurate with the (L, 2)−tiling pro-
tocol, especially in the paramagnetic phase, while the
(1, 2)−tiling protocol, as expected, is particularly inef-
fective in the antiferromagnetic phase. Furthermore, by
analyzing the error bars, we observe that the (1, 2)−tiling
protocol is less robust (has more variation from one re-
alization to the next) in the antiferromagnetic phase
whereas it is very robust in the paramagnetic phase. Sim-
ilarly, for the Heisenberg model, the energy is more accu-
rate with (L, 2)−tiling protocol except in the ferromag-
netic phase. In our experiments, we notice that with
(1, 2)−tiling and (2, 2)−tiling protocols, for the Heisen-
berg model with ∆ = −0.5 and −2.0, some realizations
fail to converge because of the state initialized by the
transfer that causes large gradients which result in the
optimization algorithm to drive the system towards high
energy states instead of minimizing the energy. These ex-
treme cases are not taken into account for the calculation
of the error bars presented in Fig. 7(b).

In Fig. 8, we measure the effectiveness in terms of the
correlation for one realization of the Ising and Heisenberg
models in antiferromagnetic and ferromagnetic phases by
plotting the correlators CAd and CFd as a function of the
distance d from 1 to 60. We observe in Fig. 8(b) that the
correlator for the (L, 2)−tiling protocol decays around
d ≈ 30. This ineffectiveness of (L, 2)−tiling protocol
is expected in this magnetization conserving case (see
Sec. IV) as we copied the configuration of a Lv = 64 sys-
tem which has a domain wall located around d ' 32. As
shown earlier, we observe in Fig. 8(c,d) that the (1, 2)-
tiling protocol performs worst for both models in the
antiferromagnetic phase. Figure 9 shows the zoomed-in
version of Fig. 8 to compare which transfer learning pro-
tocol performs the best. In general, for both Ising and
Heisenberg model, (L, 2)−tiling protocol’s line has the
closest value to the matrix product states simulations ex-
cept for the Heisenberg model in the ferromagnetic phase,
for which the (2, 2)−tiling protocol performs significantly
better. As seen from the previous evaluations, we note
that in this case also the error in energy is larger for the
(L, 2)−tiling protocol, and this transfer protocol is also
the least efficient.

Up to now, we have considered scenarios in which the
size of the system was doubled all the time. However, it
is also possible to use these transfer learning strategies
to increase the size of the system by other increments as,
for instance, a factor of 8. In Fig. 10, we consider several
scenarios to reach 128 spins in the one-dimensional Ising
model starting from 4 spins, i.e. transferring from 4 →
128, (4, 32)−tiling (black empty bar), 4 → 8 → 16 →
32 → 64 → 128 (blue full bar), 4 → 16 → 128 (green
empty bar), 4→ 32→ 128 (red full bar), 4→ 8→ 32→
128 (black full bar), 4 → 16 → 32 → 128 (blue empty
bar) and 4→ 16→ 64→ 128 (green full bar). In all these
steps, we have used the (L, p)−tiling protocol with p =

FIG. 8. (Color online) Effectiveness in terms of the correlation
between different transfer learning protocols. We evaluate the
ferromagnetic correlator (CF

d ) and antiferromagnetic correla-
tor (CA

d ) values for spins from distance d = 1 to d = 60 on
one realization. This evaluation is done for a one-dimensional
system with 128 spins in different phases transferred from
the fine-tuned weights of the most effective transfer learning
protocol for 64 spins of the respective system. We evaluate
the effectiveness at the iteration of the most efficient trans-
fer learning protocol to reach the stopping criterion. The left
(a,c) and right (b,d) column panels show the correlator val-
ues as a function of the distance for the Ising and Heisenberg
model, respectively. The first row panels (a,b) show CF

d for
ferromagnetic phases with JI = ∆ = 2, while the second
row panels (c,d) show CA

d for antiferromagnetic phases with
JI = ∆ = −2. The blue solid line, red dashed line, the green
dash-dotted line, and the black dotted line correspond to the
value from matrix product states simulations, (L, 2)−tiling,
(1, 2)−tiling, and (2, 2)−tiling protocols, respectively.

2, 4, 8 or 32, and we run the algorithm until the stopping
criterion is reached. We observe that a large increase in
the 4→ 128 scenario performs the worst in ferromagnetic
and antiferromagnetic phases. This is because the small
systems do not have enough knowledge of the correlations
to readily approximate the large system. Despite this, we
note that the 4 → 128 scenario is still better than from
a cold-start. As a reference, the average time for cold-
start in the antiferromagnetic phase is 291.706 seconds
which is about 8× slower than the 4 → 128 scenario.
Furthermore, the relative error of the energy of the 4→
128 scenario is 30% better than the cold-start.

We observe that there is a trade-off between efficiency
and effectiveness in the choice of the transfer learning
protocols. Doubling each time the size with five incre-
ments to reach Lv = 128 is an effective but not an ef-
ficient scenario. As an alternative, we can choose the
scenario 4→ 16→ 64→ 128 that is competitively effec-
tive but more efficient. If we aim for an efficient scenario,
then the scenario 4→ 32→ 128 is the most efficient but
not as effective. However, we observe that this depends
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FIG. 9. (Color online) This figure shows the zoomed-in ver-
sion of Fig. 8 to see the performance of each transfer learning
protocol clearer. See the caption of Fig. 8 for the complete
description of the figure.

on the phase. Scenario 4 → 32 → 128 is the most ef-
ficient and effective transfer in the ferromagnetic phase
but not in the antiferromagnetic one. In the paramag-
netic phase, all scenarios work similarly well. In terms of
the size of the increment, we observe that a big increase
in an early transfer is preferred to one in a later transfer.
For instance, the scenario 4→ 32→ 128 is more efficient
and effective than 4→ 16→ 128.

Our study is not confined to one-dimensional systems,
and the transfer learning can also be adopted, for in-
stance, in two-dimensional systems.

We thus consider the Heisenberg model with open
boundary conditions, ∆ = −1 and JXXZ = 1 and con-
sider sizes 2 × 2, 4 × 4 and 8 × 8. As mentioned ear-
lier, this is equivalent to the isotropic antiferromagnetic
Heisenberg model. In Fig. 11, we show the time needed
for the calculations for the different transfer learning pro-
tocols, panel (a), the error on the energy in the different
phases of systems with 4× 4 and 8× 8 spins, panel (b),
and the antiferromagnetic correlator (−1l)〈σzi∗σzi∗+l〉 as a
function of the distance between spins l for a system with
8 × 8 spins, panels (c,d). In particular, we have chosen
the position i∗ to be on the 4−th row and 5−th column
of the system (in the center) and we have taken the other
spins to be either on the diagonal, panel (c), or on the
same row, panel (d). We use the values from quantum
Monte Carlo simulations [2] as references. Similarly to
the one-dimensional case, we see that the (L, 2)−tiling
protocol is the most efficient and effective protocol fol-
lowed by (2, 2)−tiling and (1, 2)−tiling protocols in the
antiferromagnetic phase. We also observe that all the
transfer learning protocols are quite robust, since the er-
ror bars are relatively small, except for the time required
to reach the stopping criterion for the (1, 2)−tiling pro-
tocol.

FIG. 10. (Color online) The evaluation of different scenar-
ios for (L, p)−tiling protocols, where p = 2, 4, 8, 32. The
simulation is evaluated on one-dimensional Ising model at
different Hamiltonian parameters (JI) starting from 4 spins
to get to 128 spins until the stopping criterion. (a) shows
the efficiency of different scenarios in terms of time (t[s]).
(b) shows the effectiveness in terms of the relative error for
the energy (∆E/E0) with the matrix product states simula-
tion. (c) shows the effectiveness in terms of the relative error
for correlations (∆CF

60/C
F
60,0 for JI = 2 and ∆CA

60/C
A
60,0 for

JI = −2) with the matrix product states simulation. The
different scenarios are 4 → 128 (black empty bar), 4 → 8 →
16 → 32 → 64 → 128 (blue full bar), 4 → 16 → 128 (green
empty bar), 4→ 32→ 128 (red full bar), 4→ 8→ 32→ 128
(black full bar), 4 → 16 → 32 → 128 (blue empty bar), and
4→ 16→ 64→ 128 (green full bar). The error bars represent
the interval of the 9th percentile and the 91st percentile.

VII. CONCLUSIONS

We have proposed the idea of transfer learning for the
scalability of neural-network quantum states. Among a
multitude of candidates in the design space of transfer
learning protocols for the problem at hand, we devised
and presented a selected few that seem to be amenable
to physical interpretation. We comparatively evaluated
the performance of the different transfer learning proto-
cols with respect to the efficiency (speed) and the effec-
tiveness (accuracy) of neural-network quantum states in
different phases, for different models in both one and two
dimensions.

We have considered two prototypical models, the
transverse field Ising and the Heisenberg XXZ model.
The two models have similarities in the phases they man-
ifest but also have an important difference. Namely, the
space of configurations of the Heisenberg XXZ model is
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FIG. 11. (Color online) The evaluation of the efficiency and
the effectiveness of different transfer learning protocols in
a two-dimensional system. The evaluation is done on the
Heisenberg model with JXXZ = 1 and ∆ = −1. Panel (a)
shows the efficiency of different transfer learning protocols.
The panel shows the simulation time in seconds (t[s]) until
the stopping criterion as a function of the length

√
Lv = 4 or

8. The blue empty bars are for cold-start, red full bars are
for (L, 2)−tiling protocol, green full bars for (1, 2)−tiling pro-
tocol, and black empty bars for (2, 2)−tiling protocol. Panel
(b) shows the effectiveness of different transfer learning pro-
tocols in terms of the ground state energy. The panel shows
the mean relative error of different transfer learning protocols
for systems with 4 × 4 and 8 × 8 particles. To evaluate the
effectiveness, we use results from quantum Monte Carlo simu-
lations. Note that the error in energy for the 4×4 system has
been multiplied by 200 to make it clearer in the figure. Panels
(c,d) show the effectiveness of different transfer learning pro-
tocols in terms of the correlation for a 8×8 system. The panel
shows antiferromagnetic correlator (−1)l〈σz

i∗σ
z
i∗+l〉 where i∗ is

the site (4, 5) and l is the distance from this site either on the
diagonal, panel (c), or on the same row, panel (d). The solid
blue line corresponds to quantum Monte Carlo simulations,
the red dashed line corresponds to the (L, 2)−tiling protocol,
the green dash-dotted line corresponds to (1, 2)−tiling pro-
tocol and the black dotted line corresponds to (2, 2)−tiling
protocol.

reduced because it conserves the total magnetization and
we constrained it to a fixed total magnetization sector,
while all possible values of the magnetization are acces-
sible starting from any state for the Ising model. Be-
cause of this difference, each transfer learning protocol
performs differently in the two models.

The transfer learning protocol that we call
(L, 2)−tiling is the best performing protocol for
the transverse field Ising one-dimensional model and
is generally competitive for the Heisenberg XXZ one-
dimensional and two-dimensional model. The protocol
is less efficient and effective than other protocols that we

call (1, 2)−tiling and (2, 2)−tiling for the ferromagnetic
Heisenberg XXZ model due to the zero magnetization
constraint imposed on the system. We also investigated
scenarios other than doubling the size of the system. In
these cases, we observed that there is a trade-off between
efficiency and effectiveness between different jumping
scenarios. We found that, in general, larger increases
of system size at the beginning of the transfer learning
and smaller increases later are preferable. These obser-
vations suggest the need for further studies to precisely
characterize the physical principles that determine the
success of a given transfer learning protocol depending
on the system and state considered.

In summary, our empirical results demonstrate that
transfer learning for the scalability of neural-network
quantum states can bring two advantages: (i) efficiency
- it allows to reach a good approximation of the ground
state in shorter time compared to a cold-start, and (ii) ef-
fectiveness - it reduces the chances that the optimization
procedure remains trapped in a local minima far from
the ground state.

For the transfer learning to be productive, a tiling pro-
tocol that is adapted to the model and the phase that it
adopts must be chosen. If the patterns that are present
in the phase are not preserved in the transfer, the method
becomes inefficient and ineffective, as is the case for the
(1, 2)−tiling protocol in the antiferromagnetic phase. On
the contrary, transfer learning protocol that preserves
such patterns generally provide good scalability.

Our exploration of possible tiling protocol is of course
not exhaustive and other protocols could provide even
better scalability. We are currently investigating other
opportunities to leverage transfer learning for neural-
network quantum states. We are investigating trans-
fer learning between neural-network quantum states for
systems of equal size but different parameter regimes of
the same Hamiltonian as well as between neural-network
quantum states for systems with different Hamiltonians.
We are also considering transfer on restricted Boltzmann
machines with complex-valued weights and with symme-
tries such as translational invariance.
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