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Abstract
The rise of LLMs has increased concerns over
source tracing and copyright protection for
AIGC, highlighting the need for advanced
detection technologies. Passive detection
methods usually face high false positives, while
active watermarking techniques using logits
or sampling manipulation offer more effective
protection. Existing LLM watermarking methods,
though effective on unaltered content, suffer
significant performance drops when the text is
modified and could introduce biases that degrade
LLM performance in downstream tasks. These
methods fail to achieve an optimal tradeoff
between text quality and robustness, particularly
due to the lack of end-to-end optimization of
the encoder and decoder. In this paper, we
introduce a novel end-to-end logits perturbation
method for watermarking LLM-generated text.
By joint optimization, our approach achieves a
better balance between quality and robustness.
To address non-differentiable operations in the
end-to-end training pipeline, we introduce an
online-prompting technique that leverages the
on-the-fly LLM as a differentiable surrogate.
Our method achieves superior robustness, out-
performing distortion-free methods by 37–39%
under paraphrasing and 17.2% on average, while
maintaining text quality on par with the distortion-
free methods in terms of text perplexity and
downstream tasks. Our method can be easily gen-
eralized to different LLMs. Code is available at
https://github.com/KAHIMWONG/E2E
LLM WM.
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1. Introduction
Large Language Models (LLMs) like ChatGPT (Achiam
et al., 2023), Llama (Touvron et al., 2023; Dubey et al.,
2024), and OPT (Zhang et al., 2022) have greatly improved
the quality of AI-generated content (AIGC), broadening
their applications in fields such as translation (Hendy et al.,
2023), content creation (Ni et al., 2023), etc. However, such
a rapid expansion has also raised concerns about copyright
infringement, academic dishonesty, and unethical practices
(Augenstein et al., 2024). These issues highlight the urgent
need for reliable methods to distinguish between human-
written text and LLM-generated content, ensuring digital in-
tegrity and combating misinformation (Barrett et al., 2023).

Numerous approaches have been proposed to address LLM
ethical concerns by detecting LLM-generated content. Pas-
sive detection methods focus on identifying unique proper-
ties of generated text, often through training binary classi-
fiers (Bakhtin et al., 2019; Jawahar et al., 2020) or statistical
techniques like DetectGPT (Mitchell et al., 2023), which
compares a sentence’s log-probability to that of a perturbed
version. However, as LLMs improve and the gap between
generated and human-written text narrows, the effective-
ness of these methods declines dramatically. In contrast,
active detection methods, like embedding watermarks in
generated text, are proving to be more robust alternatives.
LLM watermarking methods fall into two main categories:
logits-based and sampling-based. Specifically, logits-based
methods (Kirchenbauer et al., 2023; Liu et al., 2024b; Huo
et al., 2024) randomly divide the vocabulary into “green”
and “red” lists by hashing preceding tokens as the seed.
Then, perturbations are introduced to the logits that favor
green list tokens in the generated text, and the proportion
of the “green” tokens is used to distinguish whether a text
is LLM-generated. Sampling-based methods (Kuditipudi
et al., 2024; Christ et al., 2024) rely on random bitstream
to guide token sampling, creating detectable correlations
in the text. Despite advancements, current watermarking
schemes experience significant performance degradation
with even slight text modifications. Additionally, existing
algorithms introduce logit biases or guide sampling through
random bitstream, which would result in semantic differ-
ences between watermarked and non-watermarked content,
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negatively impacting LLM performance on downstream
tasks, and limiting the practicality of these watermarking
techniques. Among logits-based methods, there is a growing
trend to replace the hashing schemes with trainable networks
for generating logit perturbations (Liu et al., 2024b; Huo
et al., 2024), and to substitute statistical decoding with train-
able decoders (Liu et al., 2024a), leveraging the flexibility of
neural network training to improve performance. However,
these existing approaches still fail to achieve an optimal
trade-off between text quality and robustness, primarily due
to the separate training of the encoder and decoder rather
than a joint, end-to-end optimization.

With this observation, we introduce a novel logits-based
end-to-end model, where lightweight encoder and decoder
networks are jointly optimized to enhance both detecting ro-
bustness and text quality. Note that building such an end-to-
end system is highly non-trivial because many involved mod-
ules, such as the complex text modification and the semantic
loss computation, are inherently non-differentiable. To re-
solve these challenges brought by the non-differentiability,
we introduce a novel online prompting technique that uti-
lizes the on-the-fly LLM as a differentiable surrogate. This
approach enables the model to effectively handle the above-
mentioned non-differentiable operations. Our framework is
LLM-agnostic, allowing any LLM to be used during train-
ing, and once trained, the model can be applied to other
LLMs without retraining.

Our key contributions are as follows:

• We present a novel logits-based end-to-end model for
LLM watermarking, improving detection robustness
and text quality through encoder-decoder joint opti-
mization.

• We introduce a new online prompting technique that
transforms non-differentiable operations, such as se-
mantic loss calculation and advanced online text modi-
fication, into differentiable operations by dynamically
prompting the on-the-fly LLM. This technique enables
seamless end-to-end training without external models.

• Extensive experiments show that our method achieves
superior robustness, outperforming distortion-free
methods by 37–39% under paraphrasing and 17.2%
on average, while maintaining text quality on par with
these distortion-free methods in terms of PPL and
downstream tasks. Notably, our method can be gener-
alized across LLMs without additional training.

The paper is organized as follows: Sec. 2 reviews related
works on LLM watermarking. Sec. 3 details our proposed
method. Sec. 4 presents experimental results demonstrating
the superior performance of our method. Finally, Sec. 5
concludes the paper.

2. Related Works on LLM Watermarking
Recent works on LLM watermarking can be classified into
two main categories: logits-based and sampling-based meth-
ods. Logits-based methods, as presented in KGW (Kirchen-
bauer et al., 2023), split the vocabulary into “green” and
“red” lists by hashing preceding tokens and biasing green list
logits to favor their selection, using the proportion of green
tokens to detect watermarks. Building on KGW, several
methods aim to improve the robustness, quality, or unforge-
ability of the watermarked text. KGW-R (Kirchenbauer
et al., 2024) explores different hashing schemes, while Uni-
gram (Zhao et al., 2024) uses a fixed red-green separation
to enhance editing resistance. SWEET (Lee et al., 2023)
selectively modifies logits at high-entropy tokens to im-
prove quality in low-entropy scenarios such as the code
generation. UPV (Liu et al., 2024a) employs an encoder
network to split lists and a detector network for classifi-
cation, enabling public detection. SIR (Liu et al., 2024b)
trains an encoder to apply context-aware biases for better
robustness, and TSW (Huo et al., 2024) uses two networks
to adaptively adjust watermark strength and list-splitting
ratio for a better balance between detectability and text qual-
ity. DiPmark (Wu et al., 2024) enhances selected token
probabilities by applying a distribution-preserving reweight
function. Sampling-based methods, such as EXP (Kudi-
tipudi et al., 2024), use a pseudo-random bitstream to guide
token selection through inverse sampling. This process pro-
duces watermarked text that aligns with the bit sequence
and makes detection accurate. EXP-Edit (Christ et al., 2024)
builds on the EXP method by introducing edit distance to
measure sequence alignment, enhancing robustness against
tampering. Unbiased (Zhao et al., 2024) employs inverse
sampling and permutation-based reweighting for watermark-
ing but relies on LLM API logits and generation prompts,
reducing its efficiency. Nevertheless, as will be shown, cur-
rent LLM watermarking methods suffer from significant
drops in detection performance when the text is modified
and can introduce biases that impair LLM performance,
such as the translation and the code generation.

3. Method
In this section, we detail our LLM watermarking solution,
which improves the balance between robustness and text
quality, compared to existing methods. We begin by outlin-
ing LLM and logits-based watermarking basics, followed
by the structure and objectives of our model and the online
prompting technique. Finally, we introduce a plug-and-play
converter for cross-LLM inference.

First, let us give a brief overview of the LLM workflow
and the logits-based method. Given a prompt Xprompt =
[x1, . . . ,xk], an LLM M generates tokens in an autoregres-
sive manner. At each time step t, M produces a proba-
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Figure 1. Overview of our end-to-end model, consisting of (a) watermarking via logits perturbation with encoder E; (b) simulating user
edits using the online text editor N ; and (c) detecting watermarked content through decoder D. The entire model is trained end-to-end
to optimize both the quality and detection accuracy of the watermarked content. In the inference phase, (d) a converter is deployed for
cross-LLM adaption. GSS is the abbreviation of the Gumbel-Softmax sampling.

bility distribution for the next token pM (xt|x1, . . . ,xt−1)
over vocabulary V = {t1, . . . , t|V|}, then the token xt

is sampled from pM (xt) . In this process, logits l(t) =

[l
(t)
1 , . . . , l

(t)
|V|] ∈ R|V| refer to the unnormalized output by

M before converting into probability

pM (xt = tk|x1, . . . ,xt−1) =
exp(l

(t)
k )∑|V|

i=1 exp(l
(t)
i )

. (1)

Once the stop criteria are satisfied, the user receives a gen-
erated response Xnwm. To embed a watermark into the
generated text, logits-based methods introduce a watermark
logits l(t)W at each generation step with a strength δ, resulting
in the perturbed logits: l̂(t) = l(t)+ δ · l(t)W . By adjusting the
logits to favor tokens in the green list, which is determined
by hashing preceding tokens, the method increases the prob-
abilities of sampling green-list tokens. Consequently, the
watermarked text Xwm contains a higher proportion of these
favored tokens, creating a detectable statistical cue that is
not present in human-written content.

We are now ready to present the details of our end-to-end
watermark method.

3.1. Model Overview

The architecture of our proposed method is depicted in
Fig. 1. At each time step t, the encoder E takes the
context C(t) = [xt−1−w, . . . ,xt−1] from a local window
W and the current logits l(t) from the on-the-fly LLM
M to generate the watermark logits l

(t)
W = E(C(t), l(t)).

The next token is then generated with the perturbed log-
its l̂(t) = l(t) + δ · l(t)W based on Gumbel-Softmax sam-
pling (GSS) to enable differentiable sampling for end-to-

end training. Once the stop criteria are reached, the en-
tire watermarked sequence Xwm is generated, and the on-
line text editor N augments the text to simulate user ed-
its, resulting in X̂wm = N(Xwm), which is then passed
to the decoder D to detect the presence of the watermark
m̂ = D(X̂wm) ∈ {0, 1}, where “0” indicates no water-
mark and “1” indicates the presence of the watermark. The
same prompt Xprompt is fed into the standard LLM pipeline
with M to generate the non-watermarked sample Xnwm for
D. The networks are jointly trained, with E updated via
backpropagation from D. After the model is trained, a con-
verter C is appended before both E and D for cross-LLM
inference.

3.2. Watermark Embedding

We illustrate the watermark embedding process of our
method, as shown in Fig. 1 (a) colored with light blue.
Similar to KGW, our approach embeds a watermark on
the generated text by biasing the original logits. Instead
of using context token hashing to determine the bias, we
employ a lightweight network E to implicitly learn water-
mark logits by minimizing the detection loss Ldec for D and
the semantic loss Lsem between Xwm and Xnwm. However,
constructing such an end-to-end pipeline poses challenges
due to the non-differentiable modules involved, including
the token sampling process, the online editing of Xwm, and
the computation of Lsem. To address this, we implement
several alternatives, including using GSS to replace the non-
differentiable sampling. Additionally, we propose an online
prompting technique to perform online editing of Xwm, as
well as extract semantic embeddings to compute Lsem by
dynamically prompting the on-the-fly LLM.
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Figure 2. Online prompting technique for (a) computing semantic loss and (b) on-the-fly text editing. The prompts are first converted into
the embeddings and then concatenated with the generated text Xwm and Xnwm.

We now formulate the data flow of the watermark embed-
ding process. At each time step t, the encoder E receives the
context C(t) and the current logits l(t) to generate the water-
mark logits l(t)W across the vocabulary V . The encoder con-
siders all possible token sequences S(t) = [S

(t)
1 , . . . ,S

(t)
|V|],

where each sequence is formed by S
(t)
i = [C(t), ti]. Never-

theless, due to the large size of V , processing all sequences
is computationally expensive. For efficiency, we focus on
the top-k logits tokens ti1 , . . . , tik , and form the top-k se-
quences S(t)

top-k = [S
(t)
i1
, . . . ,S

(t)
ik
], in which {i1, i2, . . . , ik}

is the index of the top-k logits tokens. A multilayer per-
ceptron (MLP) fmlp maps the input sequence S

(t)
top-k to the

watermark logits of the top-k tokens:

l
(t)
top-k = tanh(τt · fmlp(S

(t)
top-k)), (2)

where tanh bounds the output within [−1, 1] and the param-
eter τt adjusts the sharpness of tanh. As visualized by l

(t)
W

in Fig. 1 (a), with logits of token close to -1 belonging to the
“red” list and 1 indicating the “green” list. Except for the
top-k tokens, the watermark logits of the remaining tokens
(can be considered in the “grey” list) are padded with 0 to
form l

(t)
W .

By adding up watermark logits on the original logits with
strength δ, we obtain the perturbed logits l̂(t). Then, GSS
(Jang et al., 2017) is used to allow the sampling step dif-
ferentiable, mimicking the standard LLM sampling and
enabling end-to-end training. Specifically, Gumbel noise
gi = − log(− log(Ui)), where Ui ∼ Uniform(0, 1), is
added to each logit, yielding l̃

(t)
i = l̂

(t)
i + gi. The logits l̃(t)

are then passed through the softmax function:

pM (xt) =
exp((̂l(t) + g)/τg)∑V
i=1 exp((l̂

(t)
i + gi)/τg)

, (3)

where g is a vector of Gumbel noise with the same shape as
l̂(t) and τg controls the sharpness of the softmax. The next
token embedding is computed as xt = pT

ME, where E is

the token embedding matrix of V . The watermark signal is
embedded at each generation step until the stop criteria are
met and the watermarked sample Xwm is obtained.

3.3. Online Text Editing

As shown in Fig. 1 (b), the online text editor N (in light pur-
ple) is positioned between the encoder and decoder during
training to simulate user edits of watermarked content, en-
hancing detection robustness. We utilize the online prompt-
ing technique in Fig. 2 (a) to augment watermarked text by
dynamically prompting the online LLM M . This approach
effectively handles non-differentiable online text modifica-
tions, such as rewriting. Specifically, after generating wa-
termarked text Xwm, it is fed into N to produce X̂wm. The
editing prompt: Rewrite the following paragraph: [text]
. Now start to rewrite the above paragraph: instructs M to
generate an augmented version of the watermarked content,
where [text] is a placeholder for Xwm. Thus, N(Xwm)
is equivalent to M([Xepb,Xwm,Xepe]) in which Xepb and
Xepe denote the beginning and the end of the editing prompt.
In contrast to existing online text editing methods, such as
random token dropping/adding (Zhang et al., 2024), our
approach shows significantly improved robustness to un-
seen distortions due to the capabilities of the on-the-fly M
to perform more complex modification on the text (more
examples are provided in Appendix C.4). While external
paraphrasing models like Dipper (Krishna et al., 2023) are
available, differences in tokenizers between the LLM and
these models render the operation non-differentiable.

3.4. Watermark Detection

As shown in Fig. 1 (c), a lightweight network D (in green)
is used to classify whether a given text is watermarked or
not, allowing end-to-end training for more robust detection
compared to purely statistical methods. X̂wm (altered or
unaltered) and Xnwm are fed into D, which predicts whether
the text contains a watermark m̂ = D(X). For efficiency, D
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is built with LSTM layers and an MLP classification head.

3.5. Training Objectives

The entire end-to-end system is supervised with two ob-
jectives: detection loss Ldec and semantic loss Lsem. The
detection loss Ldec, which is computed using cross-entropy
between the prediction and the ground-truth label to detect
the watermark signal accurately. Additionally, to preserve
the capabilities of the original LLM, Lsem ensures that Xwm
retains the same semantics as Xnwm. Semantic loss can be
typically computed by the distance between embeddings
which are extracted from an external semantic model fsem,
such that enwm = fsem(Xnwm) and ewm = fsem(Xwm), and
the loss can be computed by

Lsem(enwm, ewm) = 1− ⟨enwm, ewm⟩
∥enwm∥2∥ewm∥2

. (4)

Still, extracting the embeddings enwm and ewm is non-
differentiable. Unless the online LLM M and the seman-
tic model fsem share the same tokenizer, the embedding
mapping between the two is not bijective, complicating
the transformation from M to the fsem domain. To ad-
dress the issue, we avoid external models for computing
semantics and instead prompt the on-the-fly LLM to ap-
proximate fsem. Fortunately, recent studies have shown
that LLMs can generate semantic embeddings with quality
comparable to dedicated semantic models using prompt en-
gineering, without the need for fine-tuning (Jiang et al.,
2023). We leverage this LLM ability to compute Lsem
directly, enabling end-to-end training and resolving non-
differentiability issues. As illustrated in Fig. 2 (b), Xwm
and Xnwm are generated in parallel at the generation phase,
and a prompt with an in-context learning example: This
sentence: “A jockey riding a horse.” means in one word:

“Equestrian”. This sentence: “[text]” means in one
word: “ guides the on-the-fly LLM to extract semantic em-
beddings. [text] is the placeholder for Xnwm or Xwm,
and the embeddings enwm = M([Xspb,Xnwm,Xspe]) and
ewm = M([Xspb,Xwm,Xspe]) are extracted, where Xspb
and Xspe are the beginning and the end of the above prompt.
Finally, Lsem is computed by the cosine distance between
the two embeddings as formulated in Eq. (4).

3.6. Cross-LLM Inference

Figure 3. Converter for cross-LLM Inference.

After training E∗
M0

and D∗
M0

on a specific LLM M0 using
the end-to-end pipeline, we consider the generalizability of
our method to other LLMs. Due to unique tokenizers and
embedding dimensions, E∗

M0
and D∗

M0
cannot be directly

applied to another LLM M1. To address this, we intro-
duce a converter C that transforms embeddings from M1

to M0, as located in Fig. 1 (d) and detailed in Fig. 3. This
process involves converting M1 embeddings to the text do-
main and then back to M0 embedding space. The converter
is positioned before E∗

M0
and D∗

M0
, enabling cross-LLM

watermark embedding and detection as E∗
M0

(CM1→M0
(S))

and D∗
M0

(CM1→M0
(X)), respectively. Our encoder accepts

a fixed number of context tokens, requiring careful token
management due to the variability in token segmentation
across different tokenizers. To ensure that the transformed
context tokens exceed the original length, we dilate the con-
text window W by a factor of 2 and then truncate the latest
context to maintain the appropriate length W .

Figure 4. Visualize the tokenization of OPT-1.3B (Zhang et al.,
2022), Llama2-7B (Touvron et al., 2023), NLLB-600M (Costa-
jussà et al., 2022), and BERT-base (Kenton & Toutanova, 2019)
tokenizers. Each single token is indicated with a color block
alternatively.

To analyze the applicability of converter C for cross-LLM
inference, we visualize the tokenization of 4 tokenizers in
Fig. 4, and observe that the tokenizers often decompose
sentences similarly. The converter C processes candidate
sequences S(t) (for the encoder) and sentence X (for the
decoder), which S(t) include the context C(t) and the next
token candidate ti. Analysis of the transformation reveals
that X and C(t), containing numbers of tokens, can tolerate
token variations. The transformed ti can result in three
outcomes: 1) merging with the preceding tokens (e.g., “der”
merges with “deco” to form “decoder”); 2) splitting into
sub-tokens (e.g., “jointly” becomes “joint” and “ly”); and
3) remaining unchanged. While the third outcome is ideal,
cases 1 and 2 may negatively impact performance of the
watermark model.

Table 1. Normalized Levenstein similarity between tokenized sen-
tences across 4 tokenizers.

Tokenizer OPT-1.3B Llama2-7B NLLB-600M BERT-base
OPT-1.3B 1.000 0.711 0.723 0.838
Llama2-7B - 1.000 0.730 0.681
NLLB-600M - - 1.000 0.721

To estimate the occurrence probability of cases 1 and 2,
we quantify the alignment using normalized Levenshtein
similarity between token lists for the same sentences across
tokenizers, as shown in Table 1. The average token align-
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Table 2. Performance of the LLM watermark methods. CL: Clean watermark sample; SS: Synonymous substitution; CP: Copy-paste
attack; PA: Paragraphing; PPL: text perplexity; ∆Unigram: Unigram vs. Ours; ∆DiPmark DiPmark vs. Ours; NWM: No watermark.

Method
OPT-1.3B Llama2-7B Qwen2.5-7B

Robustness (F1↑) Quality Robustness (F1↑) Quality Robustness (F1↑) Quality
CL SS CP PA PPL↓ CL SS CP PA PPL↓ CL SS CP PA PPL↓

NWM - - - - 10.484 - - - - 6.811 - - - - 8.921
KGW 1.000 0.990 0.983 0.880 13.173 1.000 0.970 0.846 0.858 8.658 1.000 0.983 0.975 0.832 11.419
Unigram 1.000 0.997 0.943 0.943 12.739 0.995 0.990 0.873 0.909 9.275 1.000 0.993 0.955 0.942 10.847
Unbiased 0.992 0.800 0.949 0.680 11.940 0.990 0.785 0.912 0.684 7.565 0.985 0.780 0.930 0.683 10.061
DiPmark 0.997 0.809 0.954 0.692 12.085 0.983 0.779 0.915 0.670 7.681 0.985 0.780 0.923 0.681 10.488
Ours 0.998 0.992 0.975 0.952 12.397 0.995 0.985 0.978 0.916 7.730 0.995 0.985 0.985 0.945 9.997
∆Unigram 0% -1% +3% +1% +3% 0% 0% +12% +1% +17% -1% -1% +3% 0% +8%
∆DiPmark 0% +23% +2% +38% -3% +1% +26% +7% +37% -1% +1% +26% +7% +39% +5%

ment probability is 73.4%. We find that given a large enough
number of candidates k, the converter can be effectively uti-
lized for cross-LLM inference 1.

4. Experiments
In this section, we present our experimental results. We be-
gin with the experimental setup, followed by a comparison
of watermark detection robustness and text quality against
SOTA methods. We then discuss the differences between
conventional KGW-type analytical watermarks and the pro-
posed neural-based watermarking approach, followed by
the ablation studies.

4.1. Experiment Settings

4.1.1. IMPLEMENTATION DETAILS

To train our end-to-end model, we choose OPT-1.3B as the
online LLM to reduce training cost. We use samples from
the WikiText-103 dataset (Merity et al., 2017) as prompts
for training and C4 (Raffel et al., 2020) for evaluation. The
context window is set to be W = 10, with the watermark
strength δ = 1.25 and k = 20 for the top-k watermark logits
empirically. We employ MGDA (Huo et al., 2024; Désidéri,
2012) to balance the detection and semantic objectives and
use the Adam optimizer with a fixed learning rate of 1e-4
training with 35k steps. All experiments are conducted on
one single NVIDIA RTX A6000 48G GPU. The evaluation
is performed based on the MarkLLM2 (Pan et al., 2024), an
open-source tool for benchmarking LLM watermark meth-
ods. For further training and evaluation details, please refer
to our code and Appendix C.

1Given k = 20, we calculate that the probability of more than
half of the candidate tokens being misaligned is 0.7% using the
binomial distribution.

2https://github.com/THU-BPM/MarkLLM

4.1.2. METRICS

Following the tradition of Pan et al. (2024); Zhang et al.
(2024), we benchmark LLM watermarking methods across
four key aspects: 1) Detection effectiveness of the human-
written and clean watermarked text, measured by the F1
scores at optimal thresholds; 2) Detection robustness, evalu-
ated by subjecting the watermarked text to 3 types of text
modifications; 3) Text quality, assessed using the text per-
plexity as well as performance on downstream tasks in-
cluding machine translation and code generation; and 4)
Efficiency of the watermarking model, evaluated by measur-
ing the time and GPU memory overhead for text generation
and watermark detection presented in Appendix E.

4.1.3. COMPETITORS

We compare our method with the SOTA logits-based meth-
ods: KGW (Kirchenbauer et al., 2023), SIR (Liu et al.,
2024b), and Unigram (Zhao et al., 2024), as well as
distortion-free methods: Unbiased (Hu et al., 2024) and
DiPmark (Wu et al., 2024). A comparison involve more
competitors is presented in Appendix A.1.

4.2. Robustness Quality Benchmarking

Table 2 compares the robustness and quality of five methods
across three LLMs, with Unigram and DiPmark serving as
the strong baselines. The performance gap (∆) is presented
at the bottom of the table. We use the first 30 tokens from
the C4 dataset (Raffel et al., 2020) as prompts, and generate
200 clean watermarked tokens as a watermark sample, with
original human-written text serving as non-watermarked
samples. Robustness is evaluated under edited conditions
(SS, CP, PA in Table 2), while text quality is assessed using
PPL with Llama2-13B as the oracle. Unbiased relies on
prompts and LLM API access which constraints absent in
our method and other baselines, making it less efficient. No-
tably, our model is trained exclusively on OPT-1.3B and
employs the converter (see Sec. 3.6) for cross-LLM infer-
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Table 3. Performance of our method on extra LLMs. CL: Clean
sample; SS: Synonymous substitution; CP: Copy-paste attack; PA:
Paragraphing; PPL: text perplexity; NWM: No watermark.

LLM
Robustness (F1↑) Quality

CL SS CP PA PPL↓
Ours Ours NWM

Mixtral-7B 0.990 0.970 0.987 0.916 10.219 8.711
Llama3-8B 0.998 0.990 0.990 0.934 7.256 5.964
Llama3.2-3B 0.997 0.995 0.993 0.947 7.599 6.301

Table 4. Downstream tasks performance. The best result is in bold,
and the second-best is underlined. NWM: No watermark.

Metric NWM KGW Unigram Unbiased DiPmark Ours
Machine translation task with NLLB-600M

BLEU↑ 31.789 26.325 26.057 28.949 28.942 31.062
Code generation task with Starcoder

pass@1↑ 43.0 22.0 33.0 36.0 36.0 34.0

ence. Our method outperforms all baselines in robustness
and quality across most scenarios, with minor degradations
(1–3%) in a few cases, achieving an average F1 score of
0.975 across all scenarios. Our method achieves an aver-
age robustness improvement of 17.3% over DiPmark, with
notable gains of 37–39% under paraphrasing, while main-
taining comparable PPL scores. Compared to Unigram, our
approach shows a 1.5% average robustness gain, peaking at
12% under copy-paste attacks for Llama2-7B, and reduces
PPL by over 9% on average. These results highlight that our
method effectively delivers watermark resilience while pre-
serving LLM output quality, making it a practical solution
for real-world applications.

To further validate the LLM-agnostic generalizability of
our method, we conduct experiments on three additional
LLMs, with the results shown in Table 3. Our approach
consistently achieves a high F1 score (≥ 0.99) on clean
watermarked samples across all LLMs, demonstrating its
stability and reliability. Moreover, it maintains strong ro-
bustness against all editing types, yielding an average F1
score of 0.969. In terms of text quality, our method in-
troduce only a moderate increase in PPL, approximately
1.2× that of non-watermarked baselines. These zero-shot
results highlight the effectiveness of our approach without
necessitating LLM-specific tuning, underscoring its broad
applicability across diverse LLM architectures.

As shown in Table 4, we evaluate the impact of watermark-
ing on downstream applications including machine trans-
lation (MT) and code generation (CG). Specifically, we
assess translation performance using the WMT16 German-
English benchmark with NLLB-600M and code generation
using the HumanEval benchmark with Starcoder. For MT,

Figure 5. The trade-off between F1 score after text editing and
PPL. (a) paraphrasing and (b) copy-paste attack.

measured by BLEU score, our method achieves the high-
est score, 31.062, outperforming the second-best approach
(Unbiased, 28.949) by 7.3% and significantly exceeding
KGW and Unigram. In CG, evaluated by pass@1, our ap-
proach attains a competitive score of 34.0, closely trailing
the distortion-free methods (DiPmark and Unbiased both
36.0) while surpassing Unigram and KGW. Notably, our
approach exhibits exceptional robustness against distortion-
free methods while achieving comparable quality, further
demonstrating our superiority.

The strength parameter δ in logits-based methods is a crit-
ical factor in balancing robustness and quality. To system-
atically evaluate this trade-off, we conduct experiments
assessing watermark resilience against paraphrasing and
the copy-paste attack while measuring PPL. Watermarked
text is generated under varying δ values3. The results, pre-
sented in Fig. 5, demonstrate the superior performance of
our method in achieving an optimal balance between ro-
bustness and quality. At a PPL threshold of 8, where the
non-watermarked baseline has a PPL of 6.8, our approach
improves robustness by 18.16% under paraphrasing and
20.42% under copy-paste edits, surpassing the second-best
method, Unigarm. In contrast, existing approaches such
as KGW, Unigram, and SIR exhibit significant text qual-
ity degradation, with PPL values increasing by two to three
times compared to the default δ while offering only marginal
robustness improvements. These results highlight the ef-
fectiveness of our method in preserving text quality while
achieving substantial robustness against text modifications.

Additional quantitative results are presented in Appendix A.

4.3. Comparsion to KGW-type Methods

We justify our proposed neural-based method by comparing
to the KGW-type approaches, highlighting that our method
offers guarantees analogous to provable p-values, which are

3Each method is tested at its default strength, as well as one
lower and one higher setting: KGW and Unigram: {1, 2, 5}; SIR:
{0.5, 1, 2}; Ours: {0.75, 1.25, 1.5}
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Figure 6. Correlation between the cumulative perturbed logits and
the neural decoder logits of (a) Llama2-7B and (b) Qwen2.5-7B
watermark samples.

Figure 7. ROC curves for watermark detection under (a) paraphras-
ing and (b) copy-paste attack.

essential for text forensics.

Red-Green List Retrieval. Although our method does not
explicitly rely on the p-value to determine the presence of
the watermark, we allow for forensic analysis by retrieving
the logits perturbation, which serves as the counterpart to
the red-green list in KGW, for each token in a given sen-
tence. Specifically, given an input sequence [x1, . . . ,xn],
tokenization is performed using the proposed converter. The
retrieval is achieved by first obtaining the output distribu-
tion of M at each step for [xw, . . . ,xn] and subsequently
reconstructing S

(t)
top k for each step t. The logits perturbation

are then sequentially derived as l(t)top k = E(S
(t)
top k). Our wa-

termarked samples colored with retrieval logits perturbation
are visualized in Appendix B.1, this retrieval process enables
the classification of tokens into green and red lists, thereby
enhancing the interpretability of our watermark signal.

Statistical Decoder vs. Neural Decoder. Our method en-
ables the retrieval of logits perturbation for a given sentence,
allowing us to visualize the relationship between cumulative
perturbed logits and neural decoder logits in Fig. 6. The
analysis shows a strong positive correlation, where neu-
ral decoder logits increase as cumulative perturbed logits
rise across the two LLMs. Additionally, the neural decoder
outperforms the statistical decoder, likely due to the joint op-
timization process, which allows it to capture latent features

that enhance detection performance. The detection perfor-
mance of our statistical and neural decoder is presented in
the Appendix B.2.

False Positive Thresholding. Our model uses a neural
decoder to generate a scalar confidence score for watermark
detection. Similar to KGW-type methods, both employ a
fixed threshold to detect watermarks, enabling adjustments
to control false positive rates. Fig. 7 shows ROC curves
under various text modifications, demonstrating the model’s
ability to manage false positive rates effectively. FPR across
more LLMs is shown in Appendix A.5.

4.4. Ablation study

Table 5. Effect on different settings of our method. CL: Clean
watermark sample; CP: Copy-paste attack; PA: Paragraphing; PPL:
text perplexity; LD: log diversity.

Llama2-7B

Setting Robustness Quality
CL PA CP PPL↓ LD↑

w/o Lsem 0.995 0.960 0.982 9.561 8.165
w/o N 0.992 0.867 0.952 7.820 7.788
δ=.75, k=20 0.960 0.854 0.958 7.057 7.694
δ=.75, k=40 0.957 0.832 0.957 7.278 8.253
δ=1., k=20 0.983 0.898 0.980 7.518 8.016
δ=1., k=40 0.980 0.884 0.978 7.981 7.995
δ=1.25, k=40 0.992 0.931 0.983 8.346 8.003
δ=1.5, k=20 0.995 0.962 0.992 8.566 7.771
δ=1.25, k=20 0.995 0.916 0.978 7.730 7.594

The ablation study in Table 5 evaluates the impact of key
components and hyperparameters on model performance.
Removing the semantic loss Lsem degrades text quality, in-
creasing PPL by 23.6% while retaining strong robustness.
Disabling the online editor N significantly weakens resis-
tance to text edits, with F1 scores dropping by 5.7% for
paraphrasing and 2.7% for the copy-paste attack. Our model
enables users to balance quality metrics flexibly by adjusting
the top-k logits tokens without retraining. Increasing k from
20 to 40 enhances log diversity but results in a slight increase
in perplexity. Adjusting δ reveals a clear trade-off between
robustness and text quality. Lowering δ to 0.75 reduces F1
scores for paraphrasing to 0.854 but achieves the lowest
PPL at 7.057. Conversely, increasing δ improves robustness,
with F1 scores peaking at 0.962 for paraphrasing and 0.992
for the copy-paste attack at δ = 1.5, though at the cost of
higher PPL, a 21.3% increase compared to δ = 0.75. The
optimal balance is achieved at δ = 1.25, where F1 scores
for paraphrasing remain high at 0.916 while maintaining a
moderate PPL of 7.730.

5. Conclusion
We introduce a novel logits-based end-to-end model, where
encoder and decoder networks are jointly optimized to im-
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prove detection robustness and text quality. We overcome
the non-differentiability of the online text editor and se-
mantic loss computation by using a novel online-prompting
technique that leverages the on-the-fly LLM as a differen-
tiable surrogate. Our method can be easily generalized to
different LLMs.
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A. More Quantitative Results
A.1. More Competitors

Table 6. Overall performance of the LLM watermark methods. CL: Clean watermark sample; SS: Synonymous substitution; CP: Copy-
paste attack; PA: Paragraphing. Detection Performance is evaluated on Llama2-7B. PPL: Text perplexity with Llama2-13B; MT: Machine
translation with NLLB-600M; CG: Code generation with Starcoder. The best is in bold, and the second-best is underlined.

Method F1↑ PPL↓ BLEU↑ pass@1↑
CL SS CP PA Avg. Qlt MT CG

KGW (δ=2) 1.000 0.980 0.824 0.878 0.920 8.658 26.325 22.0
Unigram (δ=2) 0.997 0.985 0.864 0.885 0.933 9.275 26.057 33.0
SWEET (δ=2) 0.997 0.959 0.952 0.817 0.931 8.522 27.916 36.0
SIR (δ=1) 0.982 0.945 0.810 0.879 0.904 8.566 27.557 30.0
TSW 1.000 0.964 0.913 0.849 0.932 8.466 28.355 32.0
Unbiased 0.990 0.785 0.912 0.684 0.843 7.565 28.949 36.0
DiPmark 0.983 0.779 0.915 0.670 0.837 7.681 28.942 36.0
Ours (δ=1.25, k=20) 0.995 0.985 0.978 0.916 0.969 7.730 31.062 34.0

We compare our method with extra three logits-based methods: SWEET (Lee et al., 2023), SIR (Liu et al., 2024b), and
TSW (Huo et al., 2024). Table 6 presents the detection performance and text quality across different watermark methods. In
terms of robustness, our method outperforms all competitors, achieving the highest average F1 score of 0.969, surpassing
the second-best method, Unigram by 3.9%. Our method demonstrates exceptional resilience against the copy-paste and
paraphrasing attacks, achieving 0.978 and 0.916, respectively, outperforming the strongest baseline (Unigram) in each
cases by 13.2% and 3.5%. Furthermore, our method achieves the highest BLEU score of 31.062, exceeding the next-best
approach (Unbiased, 28.949) by 7.3%, and attains a competitive pass@1 score of 34.0, outperforming Unigram by 3.0%.
In contrast, methods (such as KGW and Unigram) exhibit strong robustness generally cost of increased PPL (8.658 and
9.275, respectively), whereas our method maintains a lower PPL pf 7.730, improving output quality by 16.7% compared
to Unigram. These results highlight the effectiveness of our approach in achieving superior watermark robustness while
preserving high text quality across diverse tasks.

A.2. Effect on Sentence Length

Figure 8. Detection performance (F1↑) on watermark sentences with various length.

Fig. 8 presents the F1 score of various watermarking methods across different sentence lengths for three LLMs: OPT-1.3B,
Llama2-7B, and Qwen2.5-7B. The results demonstrate that across all methods, F1 scores generally improve as sentence
length increases, indicating enhanced watermark detectability in longer text. Our method consistently achieves strong
performance across all models and sentence lengths. Notably, for shorter sentences (length ≤ 50), our method attains higher
F1 scores compared to other baselines, specially with an average improvement of 8% over DiPmark and Unbiased. For
longer sentences (length ≥ 100), all methods converge toward near-optimal F1 scores (≈ 1.00).
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Figure 9. Detection performance (F1↑) on various LLM temperatures.

A.3. Effect on LLM Temperature

Fig. 9 presents the F1 scores of different watermark methods across various LLM temperatures under clean and edited
conditions, including synonymous substitution, copy-paste attack, and paraphrasing. The rightmost subfigure (e) reports the
average F1 score across all conditions, highlighting overall robustness. Our method consistently outperforms all baselines,
achieving an average F1 score of 0.976, which surpasses KGW and Unigram (both 0.930) by 4.9% and significantly
outperforms Unbiased (0.841) and DiPmark (0.832) by 16.1% and 17.3%, respectively. Under clean conditions (a), all
methods perform well, but our approach maintains a slight edge in stability across different temperatures. In synonymous
substitution (b) and the copy-paste attack (c), our method demonstrates superior robustness, maintaining F1 scores near 1.0
while competing approaches experience noticeable declines. For paraphrasing (d), where detection is most challenging,
our method exhibits a substantial advantage, outperforming the strongest baseline by over 7%. Lowering the temperature
makes the LLM more deterministic, increasing the likelihood of sampling high-logit tokens. Since our model perturbs the
top-logits, a lower temperature favors selecting tokens from our red/green lists over those in the grey list (see Section 3.2),
thereby improving performance.

A.4. Effect on LLM Sampling Strategy

Table 7. Detection performance (F1↑) of the LLM watermark methods with multinomial sampling and beam search. CL: Clean watermark
sample; SS: Synonymous substitution; CP: Copy-paste attack; PA; Paragraphing. Detection Performance is evaluated on Llama2-7B. The
best is in bold, and the second-best is underlined.

Method Multinomial sampling Beam search (num beams=5)
CL SS PA CP CL SS PA CP

KGW (δ=2) 1.000 0.980 0.878 0.824 1.000 0.998 0.940 0.975
Unigram (δ=2) 0.997 0.985 0.885 0.864 1.000 1.000 0.954 0.939
SIR (δ=1) 0.982 0.945 0.879 0.810 0.992 0.977 0.912 0.790
Ours (δ=1.25, k=20) 0.997 0.985 0.916 0.978 0.997 0.995 0.962 0.995

Table 7 presents the performance of different watermarking methods under multinomial sampling and beam search
(num beams = 5). Our method achieves the best overall performance, demonstrating superior robustness in most scenarios.
Under multinomial sampling, it outperforms all baselines in PA and CP, achieving F1 scores of 0.916 and 0.978, respectively,
which are 3.5% and 13.2% higher than the second-best method (Unigram). For beam search, our method maintains strong
robustness, achieving the highest F1 scores for PA (0.962) and CP (0.995), surpassing KGW by 2.3% and 2.1%, respectively.
In contrast, while KGW and Unigram perform well under clean conditions (CL), with both achieving F1 scores of 1.000,
they lag behind our method in edited scenarios. For instance, under CP with multinomial sampling, our method improves
robustness by 13.5% compared to KGW. These results highlight the effectiveness of our approach in handling both clean
and challenging text modifications, achieving a robust balance between accuracy and consistency.
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Table 8. Best F1 FPR on clean watermark samples.

LLM Best F1 FPR↓
OPT-1.3B 0.00
Llama2-7B 0.03
Qwen2.5-7B 0.01
Mistral-7B 0.01
Llama3-8B 0.01
Llama3.2-3B 0.01
Avg. 0.01

A.5. False Positive Rate on Clean Watermark Sentence

We present the best F1 FPR for various LLMs of our method in Table 8. Notably, OPT-1.3B achieves an FPR of 0.00,
Llama2-7B is at 0.03, and all other models (Qwen2.5-7B, Mistral-7B, Llama3-8B, and Llama3.2-3B) consistently achieve
an FPR of 0.01. With an average FPR of just 0.01, our method demonstrates exceptionally low false positive rates across
different LLMs.

A.6. Statistically Significant Improvement

Table 9. Paired t-test results comparing our model with competitors. Detection Performance is evaluated on Llama2-7B. PPL: Text
perplexity with Llama2-13B. Mean Diff. represents the difference between our model and each competitor’s mean performance. All
p-values below 0.05 indicate statistically significant improvements.

Method PA(F1↑)-Trials Mean ± Std Mean Diff. p-value
KGW (δ=2) 0.818 0.798 0.844 0.828 0.835 0.824 ± 0.018 0.087 2.12× 10−4

Unigram (δ=2) 0.910 0.899 0.892 0.906 0.882 0.898 ± 0.011 0.014 3.80× 10−2

Ours (δ=1.25, k=20) 0.918 0.908 0.909 0.906 0.917 0.912 ± 0.005 - -
Method CP(F1↑)-Trials Mean ± Std Mean Diff. p-value
KGW (δ=2) 0.843 0.832 0.845 0.847 0.839 0.841 ± 0.006 0.119 5.51× 10−6

Unigram (δ=2) 0.864 0.900 0.859 0.861 0.866 0.870 ± 0.017 0.091 3.23× 10−4

Ours (δ=1.25, k=20) 0.968 0.960 0.964 0.967 0.942 0.960 ± 0.011 - -
Method PPL↓-Trials Mean ± Std Mean Diff. p-value
KGW (δ=2) 8.656 8.678 8.800 8.730 8.409 8.655 ± 0.148 -1.014 1.07× 10−4

Unigram (δ=2) 8.871 8.832 8.918 9.155 9.092 8.973 ± 0.142 -1.333 3.82× 10−6

Ours (δ=1.25, k=20) 7.626 7.620 7.544 7.773 7.642 7.641 ± 0.083 - -

To validate the statistical significance of our model’s improvements, we conducted robustness and quality experiments
using a paired t-test in Table 9. Specifically, we performed five trials to evaluate robustness against paraphrasing (PP) and
copy-paste (CP) attacks, as well as the perplexity (PPL) of watermarked text. All trials were conducted using the same set
of prompts, with multinomial sampling (same seed across methods in the same trial for consistency), resulting in diverse
outcomes across the five trials. The watermark strength parameters (δ) for KGW, Unigram, and our method were set to 2,
2, and 1.25, respectively, while the k-value for our method was set to 20. The results, shown in Table 9, indicate that our
model achieves statistically significant improvements in both robustness and quality compared to the competitors. This is
supported by p-values consistently below the 0.05 threshold.
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B. Watermark Analysis
B.1. Watermark Sample

Figure 10. Visualizing three pairs of sentences comparing outputs from the original LLM (NWM) and the watermarked text (WM) of our
method using the same prompt. Prompts are highlighted in gold, tokens are colored by the output values of the watermark encoder, and
tokens outside the top-k logits are shown in grey.

Fig. 10 presents three pairs of non-watermarked and watermarked samples generated from the same prompt of our method.
The tokens are colored based on the output values retrieved from the watermark encoder. The watermarked samples maintain
high quality while featuring a greater proportion of green-list tokens compared to red-list tokens. The ratios between
NWM/WM texts are not similar at all, the NWM texts have red/green token counts of 69:53, 61:65, and 74:75 (ratios 1.30,
0.94, and 0.99). In contrast, the WM texts show counts of 42:83, 50:99, and 53:79 (ratios 0.51, 0.51, and 0.67). This is
achieved by increasing the probabilities of green-list tokens during the generation process.

B.2. Source of Robustness

We argue that robustness arises from two factors:

1. Watermark Decoder: By retrieving the red-green token lists with our watermark encoder (see Sec. 4.3), we can
statistically compute token ratios that provide guarantees similar to provable p-values (analogous to KGW), which is
critical for text forensics. As shown in Table 10, although our neural decoder—benefiting from end-to-end optimization
with a noise layer—generally outperforms the statistical decoder, the latter remains competitive with strong baselines.
At a fixed 1% FPR, the statistical decoder achieves a TPR of 0.96 in CP and a TPR of 0.65 in PA, compared to KGW’s
0.81 (CP) and 0.50 (PA) as well as Unigram’s 0.56 (CP) and 0.61 (PA). Since statistical decoder based solely on the
red/green partition, and our neural decoder outperformed the statistical one, demonstrating that end-to-end training
with a noise layer enhances robustness.

2. Red/Green Partition: We measure the KL divergence (KLD) between token distributions of watermark (WM) and
non-watermark (NWM) sentences (see Fig. 11) to evaluate the context independence (CI) of our partition. A purely CI
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Table 10. Detection performance of our neural decoder and statistical decoder.

Method 1%FPR TPR↑ Best F1↑
CL SS CP PA CL SS CP PA

KGW (δ = 2) 1.00 0.94 0.81 0.50 1.00 0.96 0.92 0.82
Unigram (δ = 2) 1.00 0.98 0.56 0.61 1.00 0.98 0.85 0.92
Ours (Neural Decoder, δ = 1.25, k = 20) 0.99 0.96 0.96 0.75 1.00 0.98 0.97 0.92
Ours (Statistical Decoder, δ = 1.25, k = 20) 0.95 0.91 0.96 0.65 0.97 0.96 0.97 0.85

partition (e.g., Unigram) shows high KLD due to token biases, while our method achieves a KLD of 0.12—about half
of Unigram’s 0.21 and above KGW’s 0.03—indicating a balance between context-dependent (CD) and CI schemes.
Our ablation study on context size after paraphrasing is shown in Table 11. Our adaptive partition lets the encoder use
strong CD features when available and fall back to a CI approach when necessary, which is crucial for our robustness.

Table 11. Detection Performance under different context size.
Context Size 1%FPR TPR↑ (PA)
2 0.69
4 0.76
8 0.79
10 0.80

B.3. Risk of Watermark Theft

Acquisition of Different Watermarks. It is NOT necessary to retrain the entire network from scratch for each user-specific
watermark. The proposed end-to-end framework is flexible enough to inject key-driven randomness at multiple stages
(input, model parameters, or output). In practice, one can fine-tune (FT) and apply key-conditioned post-processing without
retraining. Different watermarks can be guaranteed by incorporating a key-driven bias logit lB ∈ {−1, 1}|V| (of vocabulary
size) into the final watermark logits via l̂ = l + δ · (lW + lB), which lB is only applied to the top-k logits. Since lB is
derived from a unique key, statistical analysis demonstrates that each item in the clipped output remains unchanged with
probability 0.5 and changes with probability 0.5 (assuming each i item, l(i)W ∼ Uniform({−1, 1}), l(i)B ∼ Uniform({−1, 1})
and all items are independent). The number of mismatches between watermarks generated using different keys follows a
binomial distribution Bin(k, 0.5), implying that the probability of obtaining identical watermarks is negligibly small. E.g.
k = 20, the probability of identical watermark is 0.520 = 9.54× 10−7.

Table 12. 1%FPR TPR↓ of watermark theft on datasets Dolly CW and MMW BookReports.

Method Dolly CW MMW BookReports
KGW 0.45 0.59
KGW (Diff. key) 0.10 0.16
Unigram 0.22 0.04
Unigram (Diff. key) 0.11 0.15
Ours (CD score) 0.13 0.16
Ours (CI score) 0.55 0.56
Ours (CI score, FT w/ lB 5k steps) 0.19 0.12

We conduct a spoof attack (Jovanović et al., 2024) with 2,000 queries per method to evaluate resistance against watermark
theft (lower TPR is better) in Table 12. Our method is more vulnerable with CI scoring (0.55 and 0.56 for the two datasets),
but FT w/ reduces the TPR to 0.19 and 0.12, which is comparable to using different keys in KGW and Unigram.

Meanwhile, as shown in Table 13, our FT model shows performance comparable to the original checkpoint. Notably, the
PPL improves from 7.73 to 7.28 but the TPR drops from 0.75 to 0.53 in the PA case.
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Table 13. Overall performance of our finetune model with logtis bias.

Method 1%FPR TPR↑ PPL↓ BLEU↑ pass@1↑
CL SS CP PA Qlt MT CG

Ours 0.99 0.97 0.98 0.75 7.73 31.06 34.00
Ours (FT) 1.00 0.98 0.99 0.53 7.28 30.94 32.00

B.4. γ of the Red-Green Split

Table 14. Statistics of γ on different corpus.

Hugging Face Dataset Mean ± Std
xsum 0.38 ± 0.11
StackOverflow-QA-C-Language-40k 0.43 ± 0.11
ML-ArXiv-Papers 0.40 ± 0.13
mimic-cxr-dataset 0.40 ± 0.12
finance-alpaca 0.41 ± 0.11

Different from KGW, the ratio of green tokens in the red-green partition γ is not deterministic, but train by the watermark
encoder, which could be vary with different context. We show the statistics of γ in Table 14, and find that our method
achieves an average γ of 0.4 across datasets with diverse topics.

B.5. Token Distribution Bias

Figure 11. Token distribution and KD divergence (lower the better) between non-watermark/watermark sentences of our method in
different settings as well as the SOTA competitors.

We further examine the effect of watermark strength δ on token distribution, as depicted in Fig. 11. With the default setting
of δ = 1.25, our model introduces less token bias compared to Unigram and SIR, while achieving superior robustness,
as shown in Table 6. However, although our method outperforms KGW in robustness, it introduces a greater token bias.
We argue that this highlights an inherent trade-off between robustness and token bias. Reducing δ to 0.75 reduces the KL
divergence by 50% compared to the default setting, but comes at the expense of reduced robustness.
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C. Training and Evaluation Details
C.1. Model Training Details

Table 15. Hyperparameters of the end-to-end model training.

Item Value
Learning rate 1e-4
Batch size 8
Training step 35k
Encoder context size w 10
On-the-fly LLM OPT-1.3B
Top-k candidate 20
Prompt tokens 30
Gumbel-softmax temperature τg 0.1
Probability of activating N 0.5
Sharpness of tanh, τt 1000
Maximum generated tokens 100
Watermark strength δ 1
Weight of Ldec 10
Weight of Lsem 1

We trained our end-to-end model on a single NVIDIA RTX A6000 48GB GPU for 35k steps, completing the training in
approximately 5 days with a GPU memory usage of 21.96GB. The hyperparameters used during training are detailed in
Table 15. If GPU memory is limited, the batch size and maximum generated tokens can be reduced, or a smaller LLM, such
as OPT-125M, can be used. While the training phase takes longer compared to existing training-based models like SIR,
UPV, and TSW, this is due to the introduction of the entire LLM (with frozen parameters) in the training process. Despite
the longer training time, we developed an efficient converter for cross-LLM inference, ensuring that the computational cost
during inference remains low.

Differentiability. It is important to clarify that all prompts and generated text remain in the embedding domain throughout
the training process. In our proposed online prompting, the prompt is first converted into the embedding domain and
then concatenated with Xwm or Xnwm. This ensures the entire process is differentiable, as we avoid the text-embedding
transformation, which is the primary source of non-differentiability.

Training Strategy. To ensure stability and promote convergence in our end-to-end model, we adapt two training strategies:
the Multiple-Gradient Descent Algorithm (Huo et al., 2024; Désidéri, 2012) and Curriculum Learning (Bengio et al., 2009).

1. Multiple-Gradient Descent Algorithm. The detection loss Ldec and the semantic loss Lsem are inherently conflicting:
reducing one often increases the other (Huo et al., 2024). We apply MGDA to resolve this multi-objective optimization,
which is proven to converge to a Pareto stationary solution (Désidéri, 2012).

2. Curriculum Learning. Training is divided into three progressive stages to move from easy to hard:

• Stage 1 (< 10k steps): optimize only the detection objective.
• Stage 2 (10k–20k steps): optimize both detection and semantic objectives jointly.
• Stage 3 (> 20k steps): activate the noise layer for online paraphrasing together with the two objectives.

This curriculum schedule enhances training stability and accelerates convergence.

C.2. Training Stability

To assess training stability, we train our end-to-end model from scratch using three different seeds (5k steps each) and show
the loss history and performance metrics in Fig. 12. We find that our models with different seeds converge in terms of
detection loss and accuracy as the training process continues.
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Figure 12. Training history of our model with three different seeds (63, 64, and 65).

Table 16. Editing configurations used in robustness evaluation.

Edit Description Parameters
Synonym substitute Using BERT-large (Devlin, 2018)

to select synonyms that fit the
context.

Replace ratio: 0.5

Paraphrasing Paraphrasing the text while
maintaining the original meaning
with the deep paraphrase model
Dipper(Krishna et al., 2023).

Lex diversity: 60
Order diversity: 0

Copy-paste Concatenating the watermarked
text after the human-written text
creates a mix with only parts of the
watermarked text.

Watermark segment ratio: 25%

C.3. Editing Configuration

We compare the robustness of watermark methods across 3 types of editing. The setting of all edits strictly followed the
open-source studies, MARKLLM4 and SIR5. For transparency, we provide a detailed description in Table 16, parameter
setting for each text editing.

C.4. Examples of online text modification

Although our training pipeline primarily uses only paraphrasing for text editing, we demonstrate the potential of online text
modification when integrating the LLM into the proposed end-to-end training framework. By leveraging online prompting
techniques, more advanced editing can be achieved. Table 17 provides examples of three more common editing types:
random token drop, synonym substitution, and copy-paste attack, along with their corresponding prompts, original texts, and
edited outputs.

4https://github.com/THU-BPM/MarkLLM
5https://github.com/THU-BPM/Robust Watermark
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Table 17. Examples of online text modification.
Editing Type Prompt Original text Revised text
Random Drop Tokens Please randomly drop some words

from the below given text:
In a significant leap forward for
artificial intelligence (AI) technol-
ogy, researchers at NeuralNet In-
novations have developed an ad-
vanced algorithm that promises
to enhance decision-making ca-
pabilities in AI systems, poten-
tially revolutionizing industries
from healthcare to autonomous
vehicles.

In leap forward for AI technol-
ogy, researchers at NeuralNet In-
novations developed advanced al-
gorithm that promises enhance
decision-making capabilities in
systems, potentially revolutioniz-
ing industries from healthcare to
autonomous vehicles.

Synonym Substitute Please randomly select some
words from the below given text
and substitute them with their
synonyms:

Mental health is a critical compo-
nent of overall well-being and has
a significant impact on individu-
als’ ability to function effectively
in their daily lives, including at
work. Employers play a vital role
in promoting mental health by
creating supportive environments
that encourage open communica-
tion, reduce stigma, and provide
resources for employees.

Mental health is an essential el-
ement of general well-being and
has a substantial influence on in-
dividuals’ capacity to operate effi-
ciently in their everyday lives, in-
cluding at work. Employers play
a crucial role in advancing mental
health by establishing supportive
atmospheres that encourage can-
did communication, diminish prej-
udice, and offer assets for staff.

Copy-paste Please randomly copy the below
given text and paste to the pro-
vided human-written text to form
the new text:

Climate change is one of the
most pressing environmental is-
sues of our time, posing signifi-
cant threats to biodiversity world-
wide.

Global warming is a critical is-
sue that affects various aspects
of our planet. Climate change
is one of the most pressing en-
vironmental issues of our time,
posing significant threats to bio-
diversity worldwide. It leads to
melting ice caps, rising sea lev-
els, and more frequent natural dis-
asters. These changes have pro-
found impacts on both human so-
cieties and wildlife. ...

Paragraphing Rewrite the following paragraph: We introduce a novel logits-
based end-to-end model, where
encoder and decoder networks are
jointly optimized to improve de-
tection robustness and text qual-
ity. Constructing such a system
is challenging due to the non-
differentiability of key modules,
such as the online text editor and
semantic loss computation.

We propose a novel logits-based
end-to-end model that jointly op-
timizes encoder and decoder net-
works to enhance detection robust-
ness and text quality. Developing
this system poses significant chal-
lenges, particularly due to the non-
differentiability of critical compo-
nents, including the online text ed-
itor and semantic loss computa-
tion.

20



An End-to-End Model for Logits-Based Large Language Models Watermarking

D. Comparison with Post-Generation Watermarking Methods
Post-generation watermarking methods, such as AWT (Abdelnabi & Fritz, 2021) and REMARK-LLM (Zhang et al., 2024),
embed watermarks after the text has been fully generated. These approaches rely on a language model to rephrase the
generated text, embedding a watermark signal while preserving the semantic meaning of the original sentences. However,
post-generation methods have notable limitations. They do not fully leverage the capabilities of the original LLM and are
more susceptible to out-of-distribution (OOD) issues. For instance, models trained on datasets like HC3, a natural language
question-answering corpus, often struggle with OOD inputs, such as code, leading to reduced performance on tasks like code
generation (e.g., lower code passing scores). In contrast, logits-based methods, including ours, embed watermarks during
the generation process by sampling tokens directly from a perturbed distribution. This approach minimally constrains the
LLM, allowing it to retain its natural understanding of language while maintaining broad compatibility across diverse tasks.

E. Watermark Efficiency

Table 18. Time and memory consumption for generation and detection with a 200-token sample of our method.

LLM Setting Generation Detection
Time↓ (s) Memory↓ (GB) Time↓ (s) Memory↓ (GB)

OPT-1.3B w/o watermark 2.557 5.900 0.003 0.008
OPT-1.3B w/ watermark 2.769 5.900 0.003 0.008
Llama2-7B w/o watermark 5.204 15.793 0.005 0.008
Llama2-7B w/ watermark 8.362 15.793 0.005 0.008

In Table 18, we assess the computational time overhead and GPU memory usage of our method. For OPT-1.3B, the
lightweight encoder design results in only an 8.3% increase in generation time for watermarked text, with no change in
maximum GPU memory usage since the encoder is invoked after each token generation. For Llama2-7B, our method
increases the generation time by 60.6%, mainly due to the embedding transformation from Llama2-7B to OPT-1.3B, as the
tokenizer cannot be accelerated by the GPU and is called at each step. The time overhead for watermark embedding can be
mitigated through parallel tokenization, reducing the time complexity by up to 1/k. In terms of watermark detection, our
decoder operates efficiently, requiring only negligible time and memory consumption.

Table 19. Detection time (s) on a single NVIDIA A6000 GPU for a 200-token sample.

Method Detection Time↓ (s)
KGW 0.3
EXP-Edit 80
Unbiased 3.4
Ours 0.005

Moreover, our watermark detection is extremely efficient. As shown in Table 19, with Llama2-7B using a single NVIDIA
A6000 GPU, our method requires only 0.005 seconds per watermarked sample (200 tokens), compared to 0.3 seconds for
KGW, 3.4 seconds for Unbiased, and 80 seconds for EXP-Edit. Overall, our method is 16,000 times faster than EXP-Edit
and 680 times faster than Unbiased, making it highly suitable for scalable watermarking systems.
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