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Abstract

Latent dynamical systems have been widely used to characterize the dynamics of
neural population activity in the brain. However, these models typically ignore the
fact that the brain contains multiple cell types. This limits their ability to capture
the functional roles of distinct cell classes, and to predict the effects of cell-specific
perturbations on neural activity or behavior. To overcome these limitations, we
introduce the “cell-type dynamical systems” (CTDS) model. This model extends
latent linear dynamical systems to contain distinct latent variables for each cell
class, with biologically inspired constraints on both dynamics and emissions. To
illustrate our approach, we consider neural recordings with distinct excitatory
(E) and inhibitory (I) populations. The CTDS model defines separate latents for
both cell types, and constrains the dynamics so that E (I) latents have a strictly
positive (negative) effects on other latents. We applied CTDS to recordings from rat
frontal orienting fields (FOF) and anterior dorsal striatum (ADS) during an auditory
decision-making task. The model achieved higher accuracy than a standard linear
dynamical system (LDS), and revealed that the animal’s choice can be decoded
from both E and I latents and thus is not restricted to a single cell-class. We also
performed in-silico optogenetic perturbation experiments in the FOF and ADS,
and found that CTDS was able to replicate the experimentally observed effects
of different perturbations on behavior, whereas a standard LDS model—which
does not differentiate between cell types—did not. Crucially, our model allowed
us to understand the effects of these perturbations by revealing the dynamics of
different cell-specific latents. Finally, CTDS can also be used to identify cell types
for neurons whose class labels are unknown in electrophysiological recordings.
These results illustrate the power of the CTDS model to provide more accurate and
more biologically interpretable descriptions of neural population dynamics and
their relationship to behavior.

1 Introduction

Advancements in neural recording technologies have made it possible to record from hundreds of
neurons simultaneously [32–34]. Understanding the dynamics of these high-dimensional populations
and their relationship to complex behavior is a fundamental goal of computational neuroscience.
Dynamical systems have proven to be extremely useful in this pursuit [20, 3, 11, 12]. Latent dynamical
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systems model neural activity as arising from a low-dimensional latent state, and describe how the
activity evolves as a function of time in this low-dimensional space.

However, while latent dynamical systems provide parsimonious descriptions of neural activity, they
fail to capture key functional and biological properties of real neural circuits. In particular, they
ignore the fact that neural circuits consist of multiple cell types. Standard models describe the activity
of all neurons as arising from the same set of latent variables, without any differences among cell
types or constraints on the interactions between them. This prevents latent dynamical systems from
shedding light on the functional roles of distinct cell classes [27, 36, 28, 26]. Furthermore, it prevents
them from accurately describing optogenetic perturbation experiments, in which specific cell classes
within a neural circuit are perturbed. This severely limits the usefulness of classic latent dynamical
systems models for identifying the causal effects of neural activity on behavior [15, 24].

To overcome these limitations, we introduce the “cell-type dynamical systems” (CTDS) model. This
model extends latent linear dynamical system (LDS) models by assigning a unique set of latent
variables to control the activity of each cell class, while also imposing constraints on the model
parameters that dictate the sign of interactions between different cell types. Here we focus on
networks with two distinct cell types: excitatory (E) and inhibitory (I) neurons. Standard analyses
would characterize the dominant modes of network activity without considering the distinct roles
played by E and I cells. By contrast, the CTDS model defines separate latents for E and I cells,
and constrains the dynamics matrix so that E and I latents have a positive or negative (respectively)
effect on the other latents. Additionally, we also constrain the mapping from the latent space to the
observation space to be non-negative, thus projecting Dale’s law from the dynamics to the observation
space. Our model also easily extends to multi-region settings, and allows us to explicitly constrain
the types of cells (e.g., E cells) making long range projections.

We first demonstrate an equivalence between CTDS models with E and I cells and low-rank recurrent
neural networks composed of E and I neurons (EI-RNN), both theoretically and using simulations.
EI-RNNs [13, 31, 29] are widely studied as proxies of neural circuits, thus this equivalence validates
the utility of our model for understanding neural circuits. Next, we apply CTDS to recordings from rat
frontal orienting fields (FOF) and anterior dorsal striatum (ADS) during an auditory decision-making
task [4]. We show that CTDS predicts neural activity better on held out trials than a standard LDS
model; a multi-region CTDS with distinct latents for FOF and ADS furthermore outperforms CTDS
with no regional constraints. We show that the latents extracted from both E and I populations encode
the animal’s choice, revealing that choice information is not restricted to a single cell class, consistent
with recent findings [23]. Additionally, we show that a classifier trained on the inferred latent states
during training trials predicts the animal’s behavioral choice well during test trials.

Next, we use CTDS to perform in-silico optogenetic perturbation experiments modeled after those
performed in vivo. In these experiments, one class of neurons (E or I) in a single brain region is
perturbed during a portion of each trial. Remarkably, we find that the CTDS model—despite not being
trained on perturbation data—can accurately predict the effects of different perturbations on behavior.
Moreover, CTDS allows us to visualize the effects of these perturbations on the underlying dynamics
of different regions, providing precise insights into the roles of distinct regions and cell-types. A
standard LDS, however, is unable to replicate experimentally observed findings during the same set
of perturbations due to the lack of cell information and appropriate structural constraints. Finally,
we show that CTDS can be used to identify the cell class of neurons whose type is unknown in
experimental recordings. While in previous analyses we assumed that the identity of neurons were
known, cell-type information is often not known in neurophysiology experiments. We developed an
approach to infer the identities of unknown cells using CTDS, and find that CTDS is indeed able to
infer cell-types of upto 50% of unidentified neurons using recordings from the FOF and ADS. This is
an exciting application of our model as tagging cell-types can be challenging during the course of
real-world experiments. Overall, our findings underscore that CTDS provides a versatile tool to study
the effects of perturbations on neural dynamics, as well to infer cell identities.

2 Cell-type latent linear dynamical systems (CTDS)

2.1 Background: LDS models

A latent linear dynamical system (LDS) model describes the firing activity of a population of N
neurons at time t, yt ∈ RN , as arising from a low-dimensional latent state xt ∈ RD. This state
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Figure 1: A. Graphical model of a Cell-Type latent Dynamical System (CTDS). Red and blue circles
represent the observed activity, yt, of excitatory and inhibitory neurons respectively at time t. The
color of the latents xt reflects the cell-type they govern. ut is any input to the system at the time
t. B. Latent dynamics, A, obeys Dale’s law, such that the columns of A are either non-negative or
non-positive corresponding to E and I latents. C. Distinct sets of latents govern the activity of E and
I neurons. The emission matrix, C, is also constrained to be non-negative such that the Dale’s law
constraint in the latent space is reflected to the neural activity space.

evolves according to linear dynamics and under the influence of any external input ut ∈ RM :

xt+1 = Axt +But +wt; wt ∈ N (0, Q) (1)

Here, A ∈ RD×D captures dynamics in the latent space, B ∈ RD×M captures the influence of the
external input, while Q ∈ RD×D is the noise covariance. The observed activity is then a linear
transformation of this latent state such that

yt = Cxt + vt, vt ∈ N (0, R) (2)

Here, C ∈ RN×D is called the emission matrix, and R ∈ RN×N is the observation noise covariance.

2.2 The CTDS model

To disentangle the roles of distinct cell types in a population, we modify the standard LDS model in
two ways: (1) we define a distinct set of latent variables for the activity of each cell class; and (2) we
constrain the dynamics to obey functional properties of these cell types. We refer to the resulting
models as Cell-Type latent linear Dynamical Systems (CTDS) 1. Here we focus on the setting of
excitatory (E) and inhibitory (I) cell types, as schematized in Fig. 1. We use distinct sets of latents for
E and I neurons, xe

t ∈ RDe and xi
t ∈ RDi respectively, such that De +Di = D (shown in Fig. 1C).

As a result, the emission matrix C is block-diagonal with blocks of shape Ne×De and Ni×Di—the
first block maps the E latents to the Ne excitatory neurons, and the second block maps the I latents to
the Ni inhibitory neurons. Note that we constrain these blocks to be non-negative, thus ensuring that
an increase or decrease in a given latent maps to an increased or decreased firing rate (respectively)
in neurons of the associated cell type.

Next, to ensure consistency with Dale’s law—E neurons excite and I neurons inhibit—we constrain
the sign of the columns of the dynamics matrix A so that columns associated with E latents are
non-negative and columns associated with I latents are non-positive (Fig. 1B). (Note we do not
apply this constraint to the diagonal elements of A; this allows individual latents to have positive
auto-correlation and evolve smoothly in time, regardless of cell type).

1Code available here.
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2.3 Multi-region CTDS

Given simultaneously recorded neural activity from multiple brain regions, we often want to un-
derstand the computations performed by each region as well as the interactions between regions.
To do so, following existing work on multi-region modeling [12], we extend our model to multiple
regions such that each region has its own set of latents. For example, if we have K regions such that
xk
t ∈ RDk is the latent vector for region k, this latent state evolves as follows:

xk
t = Akkx

k
t−1 +

∑
j ̸=k

Ajkx
j
t−1 +But + ϵt, (3)

where Akk ∈ RDk×Dk captures the within-region dynamics of the kth region, while Ajk ∈ RDj×Dk

models the inter-region communication from region j to region k. Since we are interested in cell-type
specific information, we further assume separate latents for distinct cell types within a region such
that xk

t = [xk,e
t ,xk,i

t ]. The within-region dynamics Akk obeys Dale’s law, similar to the single-region
model. Furthermore, since long range connections in the cortex are generally known to be excitatory
[30], we can also constrain the inter-region communication matrix Ajk to have non-negative columns
corresponding to the E latents of region j, and zero for the I latents. Finally, to ensure that cell-
type specific and region-specific latents only control their respective neurons, the emission matrix
C ∈ RN×KD is non-negative and block diagonal. Mathematically, we can write the activity of E and
I cell classes in region k as follows:

yk,e
t = Ck,exk,e

t + vk,e
t , vk,e

t ∈ N (0, Rk,e) (4)

yk,i
t = Ck,ixk,i

t + vk,i
t , vk,i

t ∈ N (0, Rk,i). (5)

2.4 Inference procedure

In order to infer the parameters of a CTDS model, we maximize the expected log-likelihood of
observed data under the model using the Expectation Maximization (EM) algorithm [6]. We will
describe inference for the single-region model for simplicity, which can easily be extended to the
multi-region variant. We want to infer the model parameters, Θ = {A,B,C,Q,R}, given N trials
of observed data {yn

1:Tn
}Nn=1 where n represents the trial index.

In the Expectation step, we perform standard Kalman filtering and smoothing, to learn posterior
distributions of the latent states P (xn

t | yn,Θ), and P (xn
t ,x

n
t+1 | yn

1:Tn
,Θ) ∀t ∈ {1, Tn}. In the

Maximization step, we learn the model parameters given the computed expectations of the latent
states. Specifically, we optimize the following expression

LCD(Θ) = −1

2

N∑
n=1

(
E
[ Tn−1∑

t=1

logN (xn
t+1;Axn

t +Bun
t , Q) +

Tn∑
t=1

logN (yn
t ;Cxn

t , R)
])

(6)

for {A,B,C,Q,R}, such that A and C obey their respective structural constraints. As a result,
unlike a standard LDS, we no more have closed form updates for the model parameters. We instead
solve two quadratic programs under the constraints on A and C separately:

max
A,B

−1

2

N∑
n=1

(
E
[ Tn−1∑

t=1

logN (xn
t+1;Axn

t +Bun
t , Q)

])
s.t. A obeys Dale’s law (7)

max
C

−1

2

N∑
n=1

(
E
[ Tn∑

t=1

logN (yn
t ;Cxn

t , R)
])

s.t. C >= 0 and block-diagonal (8)

We alternate between optimizing A,B,C and the noise matrices {Q,R}, which have closed form
expressions once {A,B,C} are fixed. Overall, we alternate between the expectation and maximiza-
tion steps until the log-likelihood converges. We use the MOSEK solver [2] with CVXPY [7, 1] to
perform the quadratic optimizations for the constrained matrices {A,C}.

3 Relationship to E-I recurrent neural networks

Recurrent neural networks (RNNs) are widely used to study neural dynamics in the brain [21, 25,
8, 13, 31]. An important line of work has focused on RNNs with excitatory and inhibitory units,
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which mirror the functional organization of real neural circuits [10, 13, 24, 31, 29]. However, such
models are often hard to analyze or interpret. Here we show that CTDS provides a natural bridge
between EI-RNNs and latent dynamical systems, in which neural activity is explained in terms of
a low-dimensional latent variable. Our work thus also provides an explicit connection to low-rank
RNNs, which have been shown to account for a wide variety of tasks and datasets [22, 8, 35], but
which have not to our knowledge been equipped with distinct cell types. Specifically, we show that
under certain conditions a low-rank EI-RNN is formally equivalent to a CTDS, and we derive the
mapping from one model class to the other.

Let yt ∈ RN be the activity generated by a linear RNN containing N neurons, such that:

yt+1 = Jyt + ηt, ηt ∼ N (0, P ), (9)

where J ∈ RN×N obeys Dale’s law, with non-negative columns for E cells and non-positive columns
for I cells, and P ∈ RN×N is the noise covariance. Let’s further assume Ne number of E cells, and
Ni number of I cells. For simplicity, we will focus here on the noiseless case, P = 0; we discuss the
noisy case in the supplement (sec. A1).

We can further write the activity of the E and I cells separately as follows:

ye
t+1 = Jeey

e
t + Jeiy

i
t, yi

t+1 = Jiiy
i
t + Jiey

e
t (10)

where Jee and Jie represent blocks of J that contain outgoing weights from E cells and are thus
non-negative, Jii and Jei are blocks of outgoing weights from I cells and contain non-positive
elements. Let’s define a new matrix J+ which contains the absolute values of J such that:

J+ =

[
Jee J+

ei

Jie J+
ii

]
(11)

Here, J+
ii and J+

ie contain absolute values of the all-negative matrices Jii and Jie, respectively.
Mapping this RNN to a CTDS with E and I cells requires that the top and bottom sub-matrices of J+

have low-rank non-negative matrix factorization (NNMF) solutions:[
Jee J+

ei

]
= U1V

⊤
1 ;

[
Jie J+

ii

]
= U2V

⊤
2 (12)

where U1 ∈ RNe×K1 , V1 ∈ RN×K1 and U2 ∈ RNi×K2 , V2 ∈ RN×K2 . Thus, J+ can be written as:

J+ = UV ⊤ =

[
U1 0
0 U2

] [
V ⊤
1

V ⊤
2

]
(13)

where U, V ∈ RN×(K1+K2) are non-negative matrices. If we make the rows of V corresponding
to I cells negative, and call this new matrix Vdale, we obtain J = UV ⊤

dale. This EI-RNN can then be
equivalently be written as a CTDS of rank at most K1 +K2 as follows [35]:

xt = V ⊤
daleUxt−1 (14)

yt = Uxt, (15)

with the emissions C = U , and latent dynamics A = V ⊤
daleU . Both C and A obey the required

constraints: C is non-negative and block diagonal, and A obeys Dale’s law. Hence, in summary,
a linear EI-RNN can be mapped to a CTDS if the excitatory and inhibitory rows of the absolute
connectivity matrix, J+, have low-rank NNMF solutions. In the case of non-zero noise in the
EI-RNN, it is still possible to find a mapping to a cell-type LDS model, however that requires further
constraints on the connectivity and noise structure of the RNN (see sec. A1).

We also generated activity from E-I networks whose connectivity J obeys the above constraints,
and show that CTDS recovers the connectivity accurately—with smaller error than a standard LDS
using the same amount of data (see sec. A2). Finally, when fitting CTDS models to real data, we use
insights from this equivalence to initialize them. In particular, we first learn a J matrix that obeys
Dale’s law by solving a contrained regression problem given the data {y1:T }:

yt+1 = Jyt + vt; s.t J obeys Dale’s law (16)

We apply NNMF as discussed earlier on the absolute values of the learned J per eq. 13, and thus
initialize C = U , A = V ⊤

daleU .

5



4 Application to rodent decision-making data

Next, we applied the CTDS model to neural data collected from rats trained to perform an auditory
decision-making task [4]. On each trial, animals heard randomly timed clicks from the left and
the right, and were rewarded for selecting the side with more clicks (Fig. 2A). Neuropixel probes
were used to record simultaneous neural activity from two regions known to be involved in evidence
accumulation: the frontal orienting fields (FOF) and the anterior dorsal striatum (ADS) [14, 37].
Previous work has shown that individual neurons in FOF and ADS exhibit side selectivity in this task,
with activity ramping upwards for stimuli on the cell’s preferred side [14, 37]. However, to carefully
understand the causal role of each region during evidence accumulation (e.g., whether regions carry
out different aspects of the task), it is important to disentangle the roles of different cell types in each
region. We point out that prior work has analyzed the two regions independently, while here we also
study communication between them.

4.1 Model fitting details

We fitted a standard LDS and the CTDS model to zero-centered firing rates of 109 active neurons
recorded in FOF and ADS regions of a single rat. These neurons were filtered to have a minimum
firing rate of 1Hz during the (∼1s) stimulus period. We used 50ms bins to obtain firing rates from
the spiking activity of neurons, and zero-centered the response of each neuron across trials. We had
access to 353 trials for this animal. To fit CTDS models, we labeled neurons as E or I using both
anatomical information about the two regions as well a clustering of spike width histograms (see
sec. A3). Additionally, since we had data from two regions, we used region identity and also fit
multi-region CTDS models. Thus, we also added region-specific constraints on the dynamics matrix
of this model—within-region dynamics obeyed Dale’s law. Since ADS is a sub-cortical region and
the pathway from ADS to FOF is multi-synaptic, we did not put any constraints on cross-region
communication from ADS to FOF. However, we restricted communication from FOF to ADS to be
excitatory (as discussed in subsec. 2.3).

We used 80% of 353 trials to fit our models, the remaining 20% trials were held out. The models
also received a 2-dimensional input at every time point, containing the number of left and right clicks
played between the previous and current time points. We initialized CTDS models using the NNMF
initialization process described in sec. 3. For all models, we used 10 initialization seeds and picked
the best seed based on training log-likelihood. Finally, we varied the number of dimensions in the
latent space of the models, and for simplicity used the same number of latents for each cell type (note
that ADS has inhibitory neurons only, so we only used I latents for this region when fitting CTDS
models).

4.2 Both cell types encode choice information

We found that CTDS and its multi-region variant outperformed LDS models in log-likelihood of
held-out trials. Fig. 2B shows test log-likelihood as a function of the number of latents available
to each cell-type. This result confirms that adding E-I structure to latent linear dynamical systems
allows the model to capture neural data well, while also providing additional interpretability. For
each model class, we also trained a logistic regression classifier to predict the animal’s choice from
the last time-step of the latent state. Fig. 2C shows the choice prediction accuracy of the classifier
corresponding to each model on test trials (for D = 6 per population). We observe that all models
are able to predict choice well (and far above chance, i.e. 50%).

Next, we analyzed a fitted multi-region CTDS model to draw scientific insights about the roles of the
two regions and cell types. We chose the model with 6 dimensions per cell-type for interpretability,
resulting in overall 18 latents across the two regions and cell-types (E and I for FOF, I for ADS). In
Fig. 2D, we show the recovered dynamics matrix—our results reveal cross-region communications
between FOF and ADS in both directions and suggesting that the regions are recurrently connected
during evidence accumulation tasks.

Finally, we plotted the top two PCs of the inferred latent states for FOF and ADS in Fig. 2E, with left
and right choice trials colored distinctly. We found that both E and I latents in the FOF encoded the
animal’s choice, with their trajectories separating out for left and right choices in opposite directions.
This is consistent with recent work from Najafi et al. [23], which showed that both excitatory and
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Figure 2: CTDS applied to decision-making task in rodents. A. “Poisson clicks” auditory decision-
making task [4] B. Log-likelihood on held out trials as a function of the number of latents per
cell-type, for three different model classes. LDS (gray), CTDS with no region structure (dashed
black), multi-region CTDS (solid black). C. Choice accuracy (between 0–1) on test trials using
classifiers trained on latents inferred from the three models (with six latents per cell-type). Dotted
line represents chance performance. Error bars show one standard deviation across 10 different
sampled latent states. D. Recovered dynamics matrix, A, using a multi-region CTDS with 6 latents
per cell-type. The within-region dynamics matrix in both regions (top left: FOF, bottom right: ADS,
note that ADS has inhibitory neurons) obey Dale’s law, with columns being either excitatory only
or inhibitory only (we zeroed out the diagonal for visualization). E. Latent state trajectories plotted
along their top two PCs colored distinctly for left (coral) and right (teal) choice trials. (Left) E and I
latents in FOF, and (right) I latents in ADS. The trajectories are well-separated for left and right trials.

inhibitory neurons are equally selective to choice. We also find that ADS latents encode choice
information. Thus, CTDS enabled us to disentangle and understand the dynamics underlying distinct
classes of cells and regions.

4.3 In-silico optogenetic perturbation experiments

By dissociating dynamics underlying each cell-type, CTDS models allow us to study cell-specific
optogenetic perturbations. These experiments involve activating or silencing a targeted class of
neurons in the brain to causally establish links between neural circuits and observed behavior. We
can perform in-silico perturbation experiments in CTDS models by perturbing latents corresponding
to a particular cell class, and consequently study the effects of these perturbations on both neural
population dynamics and behavior of the animal.

During the clicks task, previous work by Hanks et al. [14] has shown that silencing excitatory neurons
in FOF during the the first half of the trial does not affect the animal’s behavior. However inactivation
during the second half produces biased choices and reduced task accuracy. Furthermore, Yartsev et al.
[37] have shown that inactivating inhibitory ADS neurons results in behavior deficits during both
early and late halves of the trial.

To investigate the circuit-level origins of these effects, we conducted in-silico perturbations using our
multi-region CTDS model from Fig. 2 (with 6 latent variables per cell type), which was modeled
after in-vivo perturbations. Importantly, the model was trained only on unperturbed data and did not
see perturbed trials during training.

We provided the model with inputs representing left and right clicks per time bin, generated using
Poisson processes. Next, we simulated perturbed data by clamping the cell-specific latents in either
region to a negative value during the first or second half of the trial. This effectively suppressed the
activity of the corresponding cell class (the strength of the inactivation was determined through a
parameter search, see Sec. A4). In total, we generated 200 perturbed trials with equal left and right
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Figure 3: In-silico perturbations using fitted multi-region CTDS and LDS models. A. The right y-axis
displays the experimentally observed ipsilateral bias from in-vivo perturbations performed by [14]
The left y-axis shows the behavioral bias predicted by the CTDS and LDS models when silencing
FOF E neurons during the early and late halves of a trial, relative to the correct choice for that trial.
For the LDS model, 50% of FOF latents were randomly silenced, as this model does not distinguish
cell types. B. Similar to A, but with ADS I neurons silenced during the early and late halves of trials.
Separate y-axes are used because the magnitude of model inactivation was not tuned to match the
experimental bias, though the relative bias changes are well captured by the CTDS model. Error bars
on the left y-axes represent one standard error across 10 different sampled latents from the fitted
models, while those on the right y-axis show one standard error across all animals.
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Figure 4: Latent states of fitted CTDS during FOF perturbations. A. (Top) Trial-averaged unperturbed
FOF latents, with E latents in red and I latents in blue. (Bottom) Trial-averaged unperturbed ADS
latents. B. (Top) FOF latents and (bottom) ADS latents, both trial-averaged, when FOF E latents
are silenced during the early half of trials. C. (Top) FOF latents and (bottom) ADS latents, both
trial-averaged, with FOF E latents silenced during the later half of trials.

click conditions. We then predicted the choices on these perturbed trials using the classifier that had
been previously trained on the unperturbed data.

Remarkably, we found that the perturbed CTDS model produced the same pattern of deficits in FOF
as observed in previous experimental work [14](Fig. 3A). Early-half perturbations produced low bias
in both the CTDS model and in real animal experiments. On the contrary, late-half perturbations
indeed resulted in biased animal behavior, with high ipsilateral bias reported from both the model and
the experimental results [14]. We also performed in-silico perturbations in the ADS by inactivating I
latents during either early half or later half of the trial. Excitingly, we were again able to replicate
experimental findings ( Fig. 3B). Behavioral bias was high when inactivating ADS during both early
half and late half, suggesting that animal behavior changes due to perturbations during both halves
of a trial. These results demonstrate that the CTDS model successfully replicates the findings from
optogenetic inactivation experiments.
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Figure 5: Latent states of fitted CTDS during ADS perturbations. A. (Top) Trial-averaged unperturbed
FOF latents, with E latents in red and I latents in blue. (Bottom) Trial-averaged unperturbed ADS
latents. B. (Top) FOF latents and (bottom) ADS latents, both trial-averaged, when ADS latents
are silenced during the early half of trials. C. (Top) FOF latents and (bottom) ADS latents, both
trial-averaged, with ADS silenced during the later half of trials.

This motivated us to further use CTDS to visualize changes in the underlying dynamics and to
understand the differential effects of inactivations in FOF and ADS. We visualized the unperturbed
latent states averaged across trials, and compared them with the perturbed latent states during the early
and late phases of the same trials. We see in Fig. 4B (top) that FOF latents recovered quickly after
inactivations during early half of the trial (presumably using information from ADS, Fig. 4B (bottom)),
and as a result we did not observe behavior deficits in this case. However, silencing FOF during
later half of the trial caused the latent states of FOF to shrink, resulting in the observed behavioral
deficits. Next, when perturbing ADS (Fig. 5B&C), the latent dynamics changed significantly during
both early and late stage inactivations explaining the behavioral deficits observed during inactivation
in ADS. Thus, these results suggest that ADS is crucially involved during the task throughout, and
perturbing this region results in loss of choice information in both regions, ultimately resulting in
biased animal behavior.

For comparison, we also trained a multi-region LDS model on the same dataset, again with D = 6
latents per region. This model had no explicit representation of cell-types, but it did contain distinct
latents for each brain region. We attempted to replicate the perturbation experiments in this model
by clamping three of the six latents in each region to a negative value (just as we did with CTDS,
although in this case the latents had no explicit assignment to distinct cell types). As before, we
then used the perturbed model activity to predict choice using a classifier trained on unperturbed
trials. This model accurately captured behavior on unperturbed trials (Fig. 2C shows error between
model predictions and animal behavior). However, it notably failed to capture the pattern of deficits
observed in perturbed trials (Fig. 3A&B). In particular, perturbations in ADS during both halves of a
trial resulted in a small behavioral bias, similar to early half FOF perturbations (also see subsec. A5
for latent state visualizations). This is distinct from experimental results, which observed biased
behavior during ADS perturbations but not during early-half FOF perturbations. This shows that
standard LDS did not accurately capture the functional contributions of different cell-types to neural
population dynamics. These results underscore the importance of cell-type models for understanding
perturbation experiments, and for uncovering the contributions of different cell types to population
dynamics.

5 Inferring cell-type information of unknown neurons

Classifying neurons into cell-types facilitates scientific discovery, provides a nuanced view of neural
circuits engaged in tasks, and is also crucial for analyses of diseases [38]. However, identifying
cell-types is challenging. For example, spike width is commonly used to classify putative excitatory
or inhibitory neurons, but many neurons exhibit intermediate spike widths, and thus cannot be
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confidently assigned to one class or the other. Previous work has used linear dynamical systems to
cluster neurons based on cell-identity [5, 16]. Here we describe a method for using the CTDS model
to infer cell-types from neural activity for a subset of neurons in a recording.

Our proposed method involves first fitting the CTDS model using only neurons with known cell
type. Then, we run an altered version of the M-step, in which we select for each neuron which set of
latents best describe its activity (e.g., E latents or I latents). Specifically, for an unknown k-th neuron,
assuming diagonal observation noise R, we solve the following two regression problems:

min
Ck

N∑
n=1

E
[
yn,k
t − Ckxe

t − vk
t

]
, min

Ck

N∑
n=1

E
[
yn,k
t − Ckxi

t − vk
t

]
s.t Ck >= 0 (17)

Here Ck ∈ RD, where D is the latent dimensionality of each cell-type. This step is repeated within
each M step during fitting for each unknown neuron. We then pick the Ck that resulted in minimum
regression error in the end, thus obtaining the identity of the neuron.

To test our method, we masked between 5 − 50 neurons (equal number of E and I cells) from the
FOF-ADS data, and inferred their identities while fitting a multi-region CTDS (D = 6 latents per
cell-type). Fig. 6 shows that we were indeed able to infer cell identities well above chance, thus
demonstrating the usefulness of CTDS for inferring of cell identities.

6 Conclusions and discussion

We have developed a novel framework for disentangling the roles of distinct cell-types in neural
circuits. In particular, we extended linear dynamical systems to incorporate cell-type specific
information. We focused on excitatory and inhibitory cell classes, with latents constrained to interact
in accordance with Dale’s law.

We have also derived a theoretical equivalence between linear RNNs with an E-I structure and our
model. Cell-type dynamical systems thus bridge a gap between interpretable state-space models and
mechanistic models of recurrent computation. We extended CTDS to incorporate multiple regions,
resulting in multi-region CTDS models. Application of our model to decision-making data from
rodents revealed that including E-I structure in latent linear dynamical systems improved their ability
to capture neural activity, and allowed us to understand roles of distinct cell classes, In particular, in
line with Najafi et al. [23], we found that both E and I neurons encode choice information.

Crucially, CTDS allowed us to replicate optogenetic perturbation experiments in the FOF and ADS
[14, 37], due to the separation of latents based on cell types. Our model predicted the same changes
in behavior as observed in experimental studies, and also allowed us to visualize and understand the
effects of these perturbation on the dynamics of different cell-typess. This is particularly exciting as a
standard LDS was unable to capture the same causal effects. We also developed an approach using
CTDS to infer the cell-type information of neurons using their activity.

Our current model assumes linear dynamics, however the core idea of separating latents into cell types
is applicable to non-linear systems as well [17, 18] and should be explored in future work. Future
studies should explore this extension to better capture the complexity of neural systems. Additionally,
our model focuses primarily on populations containing two broad cell classes: excitatory and
inhibitory neurons. However, neural populations can be subdivided into more fine-grained cell types,
and we aim for our model to be applicable to studying these more specific cell types in the future.

Overall, we believe that CTDS can be broadly useful for several applications, and can serve as a
helpful tool to obtain a nuanced view of the dynamics underlying different populations of neurons in
the brain.
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A Appendix

A1 Relationship between a noisy EI-RNN and a CTDS

In sec. 3, we showed that in the case of no noise, it is possible to map a linear RNN with E-I structure
to a CTDS under certain conditions on the connectivity of the RNN. Here, we discuss the conditions
under which a noisy EI-RNN maps to a CTDS.

Following sec. 3, let us assume the following linear RNN with N neurons:

yt+1 = Jyt + ηt; ηt ∼ N (0, P ) (A1)

We know from sec. 3 that for this RNN to map to a CTDS, J = UV ⊤, where U and V are low
rank matrices such that U is non-negative block diagonal and V obeys Dale’s law. As a result, in
the noiseless case, the CTDS that captures this model will have emission C = U , and the dynamics
A = V ⊤U .

In the noisy case, let’s look at the joint distribution of the first two consecutive observations in a linear
RNN model: [

y1

y2

]
= N

([
Jy0

J2y0

]
;

[
P JP

PJ⊤ JPJ⊤ + P

])
(A2)

Next, we can also write the joint distribution of observations in any LDS model:[
y1

y2

]
= N

([
CAx0

CA2x0

]
;

[
CQC⊤ +R CAQC⊤

CQAC⊤ CAQA⊤C⊤ + CQC⊤ +R

])
(A3)

Now, if C = U and A = V ⊤U , the means of the observations in both settings match already.
However, we need to compute the noise terms Q and R, so that the resultant CTDS maps to a noisy
EI-RNN.

Following the joint distributions of observations in an RNN and an LDS, the following three expres-
sions should hold true:

P = CQC⊤ +R (A4)

JP = CAQC⊤ (A5)

JPJ⊤ + P = CAQA⊤C⊤ + CQC⊤ +R (A6)
(A7)

Let’s start with the second expression: JP = CAQC⊤. Since C = U and A = V ⊤U , we obtain:

JP = UV ⊤UQU⊤ (A8)

UV ⊤P = UV ⊤UQU⊤ (A9)

Q = U†PU†⊤ (A10)

Since U is low-rank, not all of the covariance of P will be captured by Q. Thus, R should capture
the remaining noise:

R = (I − UU⊤)(I − UU⊤)⊤P (I − UU⊤)(I − UU⊤)⊤ (A11)

Thus, JP = CAQC⊤ is now satisfied.

However, we also want:

P = CQC⊤ +R = UQU⊤ +R (A12)

Thus, for a linear RNN to be perfectly captured by a CTDS, the eigenvectors of P should either be
aligned to the space spanned by U or to the space orthogonal to it.

Finally, the third remaining equation has stricter implications:

JPJ⊤ = CAQA⊤C⊤ (A13)

(UV ⊤)P (V U⊤) = UV ⊤UQU⊤V U⊤ (A14)
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Figure A1: Simulations with an E-I network. A Schematic of an E-I RNN, with red units representing
excitatory cells and blue units representing inhibitory cells. Example generated activity from 10
randomly selected neurons. B. Top shows the true connectivity matrix J , while the bottom plot shows
the J recovered using a CTDS. C. Root mean squared error between true and recovered J using
a standard LDS and a CTDS model, each of latent state dimensionality 4. We fitted them to data
from two E-I networks with 100 and 200 units each. The shaded region represents 95% confidence
interval.

UQU⊤ is low-rank and thus cannot capture P entirely—it only captures covariance in the subspace
spanned by U . Hence, for the LHS and RHS to be equal, we need U and V ⊤ to have aligned
subspaces so that the effect of projecting P on V ⊤ results in the same covariance as that on the RHS.

So, in summary, we are able to find a restricted linear low-rank RNN that can be perfectly captured by
a CTDS. Specifically, we want the connectivity J to be expressible as UV ⊤, with rank D. Here, V
should be in the column-space of U and obey Dale’s law, while U should be positive block diagonal.
Finally, we require that the noise covariance P has eigenvectors either completely aligned with the U
subspace or entirely orthogonal to this subspace. In such a case, we have an CTDS that perfectly
captures the activity of the RNN with the following parameters:

C = U, A = V ⊤U (A15)

Q = U†PU†⊤ (A16)

R = (I − UU⊤)(I − UU⊤)⊤P (I − UU⊤)(I − UU⊤)⊤ (A17)

A2 Simulations with an E-I RNN

In order to illustrate the mapping between an EI-RNN and a CTDS, we generated simulated activity
from two E-I networks with 100 and 200 units respectively. The connectivity matrix, J , had a
non-negative rank of 2 for each of the sub-matrices formed using the excitatory and inhibitory rows.
In each case, the connectivity matrix J was constrained to obey Dale’s law, and was normalized to
have eigenvalues less than 1. We set the noise matrix P in accordance with sec. A1.

We then generated 10 trials of 1000 time steps each from each network (Fig. A1 A), and fitted both
standard LDS and CTDS models of latent-space dimensionality 4 to the generated activity.

We initialized both models randomly, and computed recovered connectivity matrices post-fitting as
follows:

J = CAΣ∞C⊤ (CΣ∞C⊤ +R
)−1

(A18)

We solve the lyapunov equation Σt = AΣt−1A
⊤ + Q to obtain Σ∞. As shown in Fig. A1C, we

found that the CTDS model recovers the connectivity matrix in both settings accurately, while a
standard LDS does much worse in terms of root mean squared error. Fig. A1B shows the true and
recovered connectivity matrices.

A3 Assigning cell-types to neurons in FOF and ADS

In this section, we discuss how we assigned cell-types to neurons in ADS and FOF. The ADS is
a part of the striatum which is known to have primarily inhibitory neurons [9], hence we assumed
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Figure A3: Latent states of fitted LDS during ADS perturbations. A. (Top) Trial-averaged unperturbed
FOF latents, with randomly selected E (red) and I (blue) latents. (Bottom) Trial-averaged unperturbed
ADS latents. B. (Top) FOF latents and (bottom) ADS latents, both trial-averaged, when ADS latents
are silenced during the early half of trials. C. (Top) FOF latents and (bottom) ADS latents, both
trial-averaged, with ADS silenced during the later half of trials.

all ADS neurons to be I cells. To identify cell types in the FOF, we constructed a histogram of the
average spike widths of neurons in FOF. We found this to be a bimodal distribution (Fig. A2, and
thus we labeled the neurons that had spike width less than 0.4ms as inhibitory and the remaining as
excitatory. This is also consistent with the known distribution of neuronal cell types in this region
(20% inhibitory, 80% excitatory).

A4 Inactivation strength during in-silico perturbation experiments

As discussed in sec. 4.3, we performed in-silico optogenetic perturbation experiments in a fitted
CTDS model by clamping latents corresponding to E cells in FOF, and those corresponding to I cells
in ADS. In order to choose the inactivation strength for clamping the latent states, we varied the
magnitude of the latents between [−1, 10] during the perturbation time steps (either the first half of a
trial, or the later half of trial). Since the model was fit on neural data that was processed to have a
mean firing rate of 0Hz for every neuron, to ensure that clamping of latents indeed resulted in the
inactivation of the corresponding neurons, we wanted their median firing rate to be negative. Hence,
we chose the inactivation magnitude that resulted in a median firing rate of at least −1Hz across all
neurons being perturbed. This resulted in an inactivation strength of −2 for FOF E latents, and −4
for ADS I latents (Fig. 3 shows results for these values). We did not tune the inactivation strength
to match the ipsilateral bias from the experimental works [14, 37], as different studies used distinct
inactivation techniques.
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A5 LDS Latent space visualization during in-silico perturbations

Finally, we also visualized the latent trajectories of a standard multi-region LDS model when
performing in-silico perturbations (Fig. A3). Here, we inactivated ADS latents during either early half
or late half of trials. While in a multi-region CTDS model, inactivations in ADS derailed the latent
dynamics entirely (Fig. 5), we found that in a standard LDS the latent trajectories recovered quickly
after perturbations during both halves of trials (Fig. A3). This is likely because CTDS constrained
the connectivity between neurons and regions based on structural constraints in the brain, while the
LDS did not have any such constraints. As a result, CTDS is able to accurately capture the dynamical
effects of perturbation experiments, while LDS is unable to provide an accurate representation of
underlying brain dynamics.

A6 Compute requirements and code

Finally, we trained these models on 2.8 GHz Intel Cascade Lake with 8 CPU cores, and developed
our code on top of [19].
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paper’s contributions and scope?
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: We do not have any theorems or lemmas, as this is not a theory paper.
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4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided details of all parameters, hyperparameters and other model-
ing details in the paper and the supplement combined.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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or cloud provider, including relevant memory and storage.
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Justification: This paper adheres to the NeurIPS code of conduct.

Guidelines:
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Answer: [NA]
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necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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• The answer NA means that the paper does not use existing assets.
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• If this information is not available online, the authors are encouraged to reach out to
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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23


	Introduction
	Cell-type latent linear dynamical systems (CTDS)
	Background: LDS models
	The CTDS model 
	Multi-region CTDS
	Inference procedure

	Relationship to E-I recurrent neural networks
	Application to rodent decision-making data
	Model fitting details
	Both cell types encode choice information
	In-silico optogenetic perturbation experiments

	Inferring cell-type information of unknown neurons
	Conclusions and discussion
	Acknowledgements
	Appendix
	Relationship between a noisy EI-RNN and a CTDS
	Simulations with an E-I RNN
	Assigning cell-types to neurons in FOF and ADS
	Inactivation strength during in-silico perturbation experiments
	LDS Latent space visualization during in-silico perturbations
	Compute requirements and code

