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ABSTRACT

Actor-critic (AC) methods have achieved state-of-the-art performance in many
challenging tasks. However, their convergence in most practical applications are
still poorly understood. Existing works mostly consider the uncommon double-
loop or two-timescale stepsize variants for the ease of analysis. We investigate the
practical yet more challenging single-sample single-timescale natural AC for solv-
ing the canonical linear quadratic regulator problem. Specifically, the actor and the
critic update only once with a single sample in each iteration using proportional
stepsizes. We prove that the single-sample single-timescale natural AC(NAC) can
attain an ϵ-optimal solution with a sample complexity of O(ϵ−2), which eluci-
dates on the practical efficiency of single-sample single-timescale NAC. We de-
velop a novel analysis framework that directly bounds the whole interconnected
iteration system without the conservative decoupling commonly adopted in previ-
ous analysis of AC and NAC. Our work presents the first finite-time analysis of
single-sample single-timescale NAC with a global optimality guarantee.

1 INTRODUCTION

Actor-critic (AC) methods achieved substantial success in solving many difficult reinforcement
learning (RL) problems (LeCun et al., 2015; Mnih et al., 2016; Silver et al., 2017). In addition
to a policy update, AC methods employ a parallel critic update to bootstrap the Q-value for policy
gradient estimation, which often enjoys reduced variance and fast convergence in training.

Despite the empirical success, theoretical analysis of AC in the most practical form remains chal-
lenging. Most existing works focus on either the double-loop setting or the two-timescale setting,
both of which are uncommon in practical implementations. In double-loop AC, the actor is updated
in the outer loop only after the critic takes sufficiently many steps to have an accurate estimation
of the Q-value in the inner loop (Yang et al., 2019; Kumar et al., 2019; Wang et al., 2019). Hence,
the convergence of critic is decoupled from that of the actor. The analysis is separated into a pol-
icy evaluation sub-problem in the inner loop and a perturbed gradient descent in the outer loop. In
two-timescale AC, the actor and the critic are updated simultaneously in each iteration using step-
sizes of different timescales. The actor stepsize (denotes by αt) is typically smaller than that of
the critic (denotes by βt), with their ratio goes to zero as the iteration number goes to infinity (i.e.,
limt→∞ αt/βt = 0). The two-timescale allows the critic to approximate the correct Q-value in an
asymptotic way. This design essentially decouples the analysis of the actor and the critic.

The aforementioned AC variants are considered mainly for the ease of analysis. In practice, the
single-timescale AC, where the actor and the critic are updated simultaneously using constantly
proportional stepsizes (i.e., with αt/βt = cα > 0), is more favorable due to its simplicity of im-
plementation and empirical sample efficiency (Schulman et al., 2015; Mnih et al., 2016). However,
its analysis is significantly more difficult than the other variants. To understand its finite-time con-
vergence, some recent works (Fu et al., 2020; Zhou & Lu, 2022) consider multi-sample variants of
single-timescale AC, where the critics are updated by the least square temporal difference (LSTD)
estimator rather than the TD(0) update. The idea is still to obtain an accurate policy gradient estima-
tion at each iteration by using sufficient samples (LSTD), and then follows the common perturbed
gradient analysis to guarantee the convergence of the actor, decoupling the convergence analysis of
the actor and the critic. In addition to the multi-sample settings, there are few attempts that analyzed
the single-sample single-timescale AC(NAC), and they only attest local convergence (Chen et al.,

1



Under review as a conference paper at ICLR 2023

2021; Olshevsky & Gharesifard, 2022). Besides, (Olshevsky & Gharesifard, 2022) only considers
the simple tabular case. We attempt to answer the more general yet more challenging question:

Can the single-sample single-timescale AC(NAC) find a global optimal policy, especially on the
general unbounded continuous state-action space with unbounded reward?

To this end, we make the first step to consider the classic Linear Quadratic Regulation (LQR), a fun-
damental continuous state-action space control problem that are commonly employed to study the
performance and the limits of RL algorithms (Fazel et al., 2018; Yang et al., 2019; Tu & Recht, 2018;
Duan et al., 2021). In particular, under the time-average cost, the single-sample single-timescale
AC(NAC) algorithm for solving LQR consists of three parallel updates in each iteration: the cost
estimator, the critic, and the actor. Unlike the aforementioned double-loop, two-timescale, or multi-
sample structures, there is no specialized design in single-sample single-timescale AC(NAC) that fa-
cilitates a decoupled analysis of its three interconnected updates. In fact, it is both conservative and
difficult to bound the three iterations separately. Moreover, the existing perturbed gradient analysis
can no longer be applied to establish the convergence of the actor either. To tackle these challenges
in analysis, we instead propose a novel framework to directly bound the overall interconnected iter-
ation system altogether, without resorting to conservative decoupled analysis. In particular, despite
the inaccurate estimation in all three updates, we prove the estimation errors diminish to zero if the
(constant) ratio of the stepsizes between the actor and the critic is below a threshold. The identified
threshold provides new insights into the practical choices of the stepsizes for single-timescale AC.

Overall, our contributions are summarized as follows:

• Our work furthers the theoretical understanding of AC(NAC) in its most practical form. We for the
first time show that the single-sample single-timescale NAC can provably find the ϵ-accurate global
optimum with a sample complexity of O(ϵ−2) for tasks with unbounded continuous state-action
space. The previous works consider either specialized algorithm variants (Fu et al., 2020; Zhou &
Lu, 2022), or more restricted settings with only local convergence guarantee (Chen et al., 2021;
Olshevsky & Gharesifard, 2022).

• We also contribute to the work of RL on continuous control task. It is novel that even with actor
updated by a roughly estimated gradient, the single-sample single-timescale NAC algorithm can still
find the global optimal policy for LQR, under general assumptions. Compared with all other model-
free RL algorithms for solving LQR (see related work 1.1), our work is the first one adopting the
simplest single-sample single-loop structure, which may serve as the first step towards understanding
the limits of AC(NAC) methods on continuous control task. In addition, compared with the state-
of-the-art double-loop AC for solving LQR (Yang et al., 2019), we improve the sample complexity
from O(ϵ−5) to O(ϵ−2). We also show the algorithm is much more sample-efficient empirically
compared to a few classic works in Section 5, which unveils the practical wisdom of AC(NAC)
algorithm.

• Technically, we provide a new proof framework that can establish the finite-time convergence
for single-timescale AC. In the finite-time analysis of double-loop AC (Yang et al., 2019) and two-
timescale AC (Wu et al., 2020), the previous techniques hinge on decoupling the analysis of actor
and critic, establishing the convergence of critic first and then the convergence of actor consequently.
The novelty of our proof framework is that we formulate the estimation errors of the time-average
cost, the critic, and the natural policy gradient into an interconnected iteration system and establish
the convergence for them simultaneously rather than separately. This proof framework may provide
new insights for finite-time analysis of other single-timescale algorithms.

1.1 RELATED WORK

In this section, we review the existing works that are most relevant to ours.

Actor-Critic methods. The first AC algorithm was proposed by Konda & Tsitsiklis (1999). Kakade
(2001) extended it to the natural AC algorithm. The asymptotic convergence of AC algorithms
has been well established in Kakade (2001); Bhatnagar et al. (2009); Castro & Meir (2010); Zhang
et al. (2020). Many recent works focused on the finite-time convergence of AC methods. Under
the double-loop setting, Yang et al. (2019) established the global convergence of AC methods for
solving LQR. Wang et al. (2019) studied the global convergence of AC methods with both the actor
and the critic being parameterized by neural networks. Kumar et al. (2019) studied the finite-time
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local convergence of a few AC variants with linear function approximation. Under the two-timescale
AC setting, Wu et al. (2020); Xu et al. (2020) established the finite-time convergence to a stationary
point at a sample complexity of O(ϵ−2.5). Under the single-timescale setting, all the related works
(Fu et al., 2020; Chen et al., 2021; Zhou & Lu, 2022; Olshevsky & Gharesifard, 2022) have been
reviewed in the Introduction.

RL algorithms for LQR. RL algorithms in the context of LQR have seen increased interest in
the recent years. These works can be mainly divided into two categories: model-based methods
(Dean et al., 2018; Mania et al., 2019; Cohen et al., 2019; Dean et al., 2020) and model-free meth-
ods. Our main interest lies in the model-free methods. Notably, Fazel et al. (2018) established the
first global convergence result for LQR under the policy gradient method using zeroth-order opti-
mization. Krauth et al. (2019) studied the convergence and sample complexity of the LSTD policy
iteration method under the LQR setting. On the subject of adopting AC to solve LQR, Yang et al.
(2019) provided the first finite-time analysis with convergence guarantee and sample complexity
under the double-loop setting. Zhou & Lu (2022) considered the multi-sample (LSTD) and single-
timescale setting. For the more practical yet challenging single-sample single-timescale AC, there
is no such theoretical guarantee so far, which is the focus of this paper.

Notation. Without other specification, for two sequences {xn} and {yn}, we write xn = O(yn)
if there exists an constant C such that xn ≤ Cyn. We use O(·) to further hide logarithm factors.
For any symmetric matrix M ∈ Rn×n, let svec(M) ∈ Rn(n+1)/2 denote the vectorization of the
upper triangular part of M and smat(·) denote its inverse such that smat(svec(M)) = M . Finally,
we denote by A⊗s B the symmetric Kronecker product of two matrices A and B.

2 PRELIMINARIES

In this section, we introduce the AC algorithm and provide the theoretical background of LQR.

2.1 ACTOR-CRITIC ALGORITHMS

We consider the reinforcement learning for the standard Markov Decision Process (MDP) defined by
(X ,U ,P, c), where X is the state space, U is the action space, P(xt+1|xt, ut) denotes the transition
kernel that the agent transits to state xt+1 after taking action ut at current state xt, and c(xt, ut) is
the running cost. A policy πθ(u|x) parameterized by θ is defined as a mapping from a given state to
a probability distribution over actions.

In this paper, we aim to find a policy πθ that minimizes the infinite-horizon time-average cost, which
is given by

θ∗ = argmin
θ

J(θ) := lim
T→∞

Eθ

∑T
t=0 c(xt, ut)

T
= E

x∼ρθ,u∼πθ

[c(x, u)], (1)

where ρθ denotes the stationary state distribution generated by policy πθ. In the time-average cost
setting, the state-action value (Q-value) of policy πθ is defined as

Qθ(x, u) = Eθ[

∞∑
t=0

(c(xt, ut)− J(θ))|x0 = x, u0 = u], (2)

which describes the accumulated differences between running costs and average cost for selecting
u in state x and thereafter following policy πθ (Sutton & Barto, 2018). Based on this definition, we
can use the policy gradient theorem (Sutton et al., 1999) to express the gradient of J(θ) with respect
to θ as

∇θJ(θ) = Ex∼ρθ,u∼πθ
[∇θ log πθ(u|x)Qθ(x, u)].

One can also choose to update the policy using the natural policy gradient (Kakade, 2001), which is
given by

∇N
θ J(θ) = F (θ)†∇θJ(θ). (3)

where

F (θ) = Ex∼ρθ,u∼πθ
[∇θ log πθ(u|x)∇θ log πθ(u|x)⊤]
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is the Fisher information matrix and F (θ)† denotes its Moore Penrose pseudoinverse.

Optimizing J(θ) in (1) with (3) requires evaluating the Q-value of the current policy πθ, which is
usually unknown. AC estimates both the Q-value and the policy. The critic update approximates
Q-value towards the actual value of the current policy πθ using temporal difference (TD) learning
(Sutton & Barto, 2018). The actor improves the policy to reduce the time-average cost J(θ) via
gradient descent. Note that the AC with natural policy gradient is also known as natural AC.

2.2 NATURAL ACTOR-CRITIC FOR LINEAR QUADRATIC REGULATOR

In this paper, we aim to demystify the convergence property of natural AC by focusing on the
infinite-horizon time-average linear quadratic regulator (LQR) problem:

minimize
{ut}

J({ut}) := lim
T→∞

1

T
E[

T∑
t=1

x⊤
t Qxt + u⊤

t Rut] (4)

subject to xt+1 = Axt +But + ϵt, (5)

where xt ∈ Rd is a state and ut ∈ Rk is a action; A ∈ Rd×d and B ∈ Rd×k are system matrices;
Q ∈ Sd×d and R ∈ Sk×k are performance matrices; ϵt ∼ N (0, D0) are i.i.d Gaussian random
variables with D0 > 0. From the optimal control theory (Anderson & Moore, 2007), the optimal
policy of (4) is a linear feedback of the state

ut = −K∗xt, (6)

where K∗ ∈ Rk×d is the optimal policy which can be uniquely found by solving an Algebraic
Riccati Equation (ARE) (Anderson & Moore, 2007) depending on A, B, Q, R. This means that
finding K⋆ using ARE relies on the complete model knowledge.

In the sequel, we pursue finding the optimal policy in a model-free way by using the natural AC
method, without knowing or estimating A,B,Q,R. The structure of the optimal policy in (6) allows
us to reformulate (4) as a static optimization problem over all feasible policy matrix K ∈ Rk×d. To
encourage exploration, we parameterize the policy as

{πK(·|x) = N (−Kx, σ2Ik),K ∈ Rk×d}, (7)

where σ > 0 is the standard deviation of the exploration noise. In other words, given a state xt,
the agent will take an action ut according to ut = −Kxt + σζt, where ζt ∼ N (0, Ik). As a
consequence, the closed-loop form of system (5) under policy (7) is given by

xt+1 = (A−BK)xt + ξt, (8)

where ξt = ϵt + σBζt ∼ N (0, Dσ) with Dσ = D0 + σ2BB⊤. Note that optimizing over the set of
stochastic policies (7) will lead to the same optimal K∗.

The set K of all stabilizing policies is given by

K :=
{
K ∈ Rk×d : ρ(A−BK) < 1

}
, (9)

where ρ(·) denotes the spectral radius. It is well known that if K ∈ K, the Markov chain in (8) yields
a stationary state distribution N (0, DK), where DK satisfies the following Lyapunov equation

DK = Dσ + (A−BK)DK(A−BK)⊤. (10)

Similarly, we define PK as the unique positive definite solution to

PK = Q+K⊤RK + (A−BK)⊤PK(A−BK). (11)

Based on DK and PK , the following lemma characterizes J(K) and its gradient ∇KJ(K).
Lemma 2.1. (Yang et al., 2019) For any K ∈ K, the time-average cost J(K) and its gradient
∇KJ(K) take the following forms

J(K) = Tr(PKDσ) + σ2Tr(R), (12a)
∇KJ(K) = 2EKDK , (12b)

where EK := (R+B⊤PKB)K −B⊤PKA.
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Then, the natural gradient of J(K) can be calculated as (Fazel et al., 2018; Yang et al., 2019)

∇N
KJ(K) = ∇KJ(K)D−1

K = EK , (13)

which eliminates the burden of estimating DK . Note that we omit the constant coefficient since it
can be absorbed by the stepsize.

Calculating the natural gradient ∇N
KJ(K) requires estimating PK , which depends on A,B,Q,R.

To estimate the gradient without the knowledge of the model, we instead directly utilize the Q-value.

Lemma 2.2. (Bradtke et al., 1994; Yang et al., 2019) For any K ∈ K, the Q-value QK(x, u) takes
the following form

QK(x, u) = (x⊤, u⊤)ΩK

(
x
u

)
− σ2Tr(R+ PKBB⊤)− Tr(PKDK), (14)

where

ΩK :=

[
Ω11

K Ω12
K

Ω21
K Ω22

K

]
:=

[
Q+A⊤PKA A⊤PKB
B⊤PKA R+B⊤PKB

]
. (15)

Clearly, if we can estimate ΩK , then Ek in (13) can be readily estimated by using Ω21
K and Ω22

K .

3 SINGLE-SAMPLE SINGLE-TIMESCALE NATURAL ACTOR-CRITIC

In this section, we describe the single-sample single-timescale natural AC algorithm for solving
LQR. In view of the structure of the Q-value given in (14), we define the following feature function

ϕ(x, u) = svec

[(
x
u

)(
x
u

)⊤
]
.

Then, we can parameterize the Q-estimator (critic) by

Q̂K(x, u;w, b) = ϕ(x, u)⊤w + b.

Using the TD(0) learning, the critic update follows by

ωt+1 = ωt + βt[(ct − J(K) + ϕ(xt+1, ut+1)
⊤ωt + b− ϕ(xt, ut)

⊤ωt − b)]ϕ(xt, ut), (16)

where βt is the stepsize of the critic and K denotes the policy under which the state-action pairs are
sampled. Note that the constant b is not required for updating the linear coefficient ω.

Taking the expectation of ωt+1 in (16) with respect to the stationary distribution, conditioned on ωt,
the expected subsequent critic can be written as

E[ωt+1|ωt] = ωt + βt(bK −AKωt), (17)

where

AK = E(x,u)[ϕ(x, u)(ϕ(x, u)− ϕ(x′, u′))⊤], bK = E(x,u)[(c(x, u)− J(K))ϕ(x, u)]. (18)

Note that for ease of exposition, we denote (x′, u′) as the next state-action pair after (x, u) and
abbreviate Ex∼ρK ,u∼πK(·|x) as E(x,u).

Given a policy πK , it is not hard to show that if the update in (17) has converged to some limiting
point ω∗

K , i.e., limt→∞ ωt = ω∗
K , ω∗

K must be the solution of AKω = bK .

Proposition 3.1. Suppose K ∈ K. Then the matrix AK defined in (18) is invertible and AKω = bK
has a unique solution ω∗

K that satisfies

ω∗
K = svec(ΩK). (19)

where ΩK is defined in (15).
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Combining (13), (15), and (19), we can express the natural gradient of J(K) using ω∗
K :

∇N
KJ(K) = Ω22

KK − Ω21
K = smat(ω∗

K)22K − smat(ω∗
K)21.

This allows us to estimate the natural policy gradient using the critic parameters ωt, and then update
the actor in a model-free manner

Kt+1 = Kt − αt
̂∇N
Kt

J(Kt), (20)

where αt is the actor stepsize and ̂∇N
Kt

J(Kt) is the natural gradient estimation depending on ωt:

̂∇N
Kt

J(Kt) = smat(ωt)
22Kt − smat(ωt)

21. (21)

Furthermore, we introduce a cost estimator ηt to estimate the time-average cost J(Kt). Combining
the critic update (16) and the actor update (20), the single-sample single-timescale natural AC for
solving LQR is listed below.

Algorithm 1 Single-Sample Single-timescale Natural Actor-Critic for Linear Quadratic Regulator

1: Input initialize actor parameter K0 ∈ K, critic parameter ω0, time-average cost η0, stepsizes
αt for actor, βt for critic, and γt for cost estimator.

2: for t = 0, 1, 2, · · · , T − 1 do
3: Sample xt from the stationary distribution ρKt .
4: Take action ut ∼ πKt(·|xt) and receive ct = c(xt, ut) and the next state x′

t.
5: Obtain u′

t ∼ πKt
(·|x′

t).
6: TD error calculation: δt = ct − ηt + ϕ(x′

t, u
′
t)

⊤ωt − ϕ(xt, ut)
⊤ωt

7: Cost estimator update: ηt+1 = ηt + γt(ct − ηt)
8: Critic update: ωt+1 = Πω̄(ωt + βtδtϕ(xt, ut))
9: Actor update: Kt+1 = Kt − αt(smat(ωt)

22Kt − smat(ωt)
21)

10: end for

Note that “single-sample” refers to the fact that only one sample is used to update the critic per actor
step. Line 3 of Algorithm 1 samples from the stationary distribution induced by the policy πKt ,
which is a mild requirement in the analysis of uniformly ergodic Markov chain, such as in the LQR
problem (Yang et al., 2019). It is only made to simplify the theoretical analysis. Indeed, as shown in
Tu & Recht (2018), when K ∈ K, (8) is geometrically β-mixing and thus its distribution converges
to the stationary distribution exponentially. In practice, one can run the Markov chain in (8) a
sufficient number of steps and sample one state from the last step. In addition, “single-timescale”
refers to the fact that the stepsizes for the critic and the actor updates are constantly proportional.

Since the update of the critic parameter in (16) requires the time-average cost J(Kt), Line 7 provides
an estimation of it. Besides, on top of (16), we additionally introduce a projection (Πω̄) in Line 8 to
keep the critic norm-bounded, which is common in the literature (Wu et al., 2020; Yang et al., 2019;
Xu et al., 2020). In our analysis, the projection is relaxed using its nonexpansive property.

4 MAIN THEORY

In this section, we establish the global convergence and analyze the finite-time performance of Al-
gorithm 1. All the proofs can be found in the Appendix A.

Before preceding, we make the following standard assumptions.
Assumption 4.1. There exists a constant K̄ > 0 such that ∥Kt∥ ≤ K̄ for all t.

The above assumes the uniform boundedness of the actor parameter (Konda & Tsitsiklis, 1999;
Karmakar & Bhatnagar, 2018; Barakat et al., 2022; Zhou & Lu, 2022). As can be seen from our
proof, it is only made to guarantee the boundedness of the feature functions, which is a standard
assumption in the literature of analyzing AC with linear function approximation (Xu et al., 2020;
Wu et al., 2020; Zhou & Lu, 2022).
Assumption 4.2. There exists a constant ρ ∈ (0, 1) such that ρ(A−BKt) ≤ ρ for all t.
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Assumption 4.2 is made to ensure the stability of the closed loop systems induced in each iteration
and thus ensure the existence of the stationary distribution corresponding to policy πKt

. In the
single-sample case, the estimation of the natural gradient of J(Kt) can be highly noisy and biased.
In general, it is difficult to obtain a theoretical guarantee for this condition. Nevertheless, we will
present numerical examples to support this assumption. Moreover, the assumption for the existence
of stationary distribution is common and has been widely used in Chen et al. (2021); Zhou & Lu
(2022); Olshevsky & Gharesifard (2022).

Under these two assumptions, we can now prove the convergence of Algorithm 1, which consists of
three estimators: ηt, ωt, and Kt.

Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold and choose αt =
cα√
1+t

, βt = γt =
1√
1+t

,
where cα is a small positive constant. With probability at least 1− 10−10, we have

1

T

T−1∑
t=0

E(ηt − J(Kt))
2 =O(

1√
T
),

1

T

T−1∑
t=0

E∥ωt − ω∗
Kt

∥2 =O(
1√
T
),

min
0≤t<T

E[J(Kt)− J(K∗)] =O(
1√
T
).

The theorem shows that the cost estimator, the critic, and the actor all converge at a sub-linear rate
of O(T− 1

2 ). Correspondingly, to obtain an ϵ-optimal policy, the required sample complexity is
O(ϵ−2). This order is consistent with the existing results on single-timescale AC (Fu et al., 2020;
Chen et al., 2021; Olshevsky & Gharesifard, 2022). Nevertheless, our result is the first finite-time
analysis of the single-sample single-timescale AC with a global optimality guarantee.

4.1 PROOF SKETCH

The main challenge in the finite-time analysis lies in that the estimation errors of the time-average
cost, the critic, and the natural policy gradient are strongly coupled. To overcome this issue, we view
the propagation of these errors as an interconnected system and analyze them comprehensively.
To see the merit of our analysis framework, we sketch the main proof steps of Theorem 4.3 in
the following. The supporting propositions and theorems mentioned below can be found in the
Appendix.

We define three measures A(T ), B(T ), C(T ) which denote the average values of the cost estimation
error, the critic error, and the square norm of the natural policy gradient, respectively:

A(T ) :=
1

T

T−1∑
t=0

Ey2t , B(T ) :=
1

T

T−1∑
t=0

E∥zt∥2, C(T ) :=
1

T

T−1∑
t=0

E∥EKt∥2, (22)

where yt := ηt − J(Kt) is the cost estimation error and zt := ωt − ω∗
t with ω∗

t := ω∗
Kt

is the critic
error. Note that EKt

= ∇N
Kt

J(Kt) is the natural policy gradient according to (13).

We first derive implicit (coupled) upper bounds for the cost estimation error yt, the critic error zt, and
the natural gradient EKt

, respectively. After that, we solve an interconnected system of inequalities
in terms of A(T ), B(T ), C(T ) to establish the finite-time convergence.

Step 1: Cost estimation error analysis. From the cost estimator update rule (Line 7 of Algorithm
1), we decompose the cost estimation error into:

y2t+1 =(1− 2γt)y
2
t + 2γtyt(ct − J(Kt)) + 2yt(J(Kt)− J(Kt+1))

+ [J(Kt)− J(Kt+1) + γt(ct − ηt)]
2. (23)

The second term on the right hand side of (23) is a noise term introduced by random sampling
of the state-action pairs, which reduces to 0 after taking the expectations. The third term is the
variation of the moving targets J(Kt) tracked by cost estimator. It is bounded by yt, zt, EKt utilizing
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the Lipschitz continuity of J(Kt) (Proposition A.6), the actor update rule (21), and the Cauchy-
Schwartz inequality. The last term reflects the variance in cost estimation, which is controlled by a
high probability bound of ct (Proposition A.4).

Step 2: Critic error analysis. By the critic update rule (Line 8 of Algorithm 1), we decompose the
squared error by (neglecting the projection for the time being)

∥zt+1∥2 =∥zt∥2 + 2βt⟨zt, h̄(ωt,Kt)⟩+ 2βtΛ(Ot, ωt,Kt) + 2βt⟨zt,∆h(Ot, ηt,Kt)⟩
+ 2⟨zt, ω∗

t − ω∗
t+1⟩+ ∥βt(h(Ot, ωt,Kt) + ∆h(Ot, ηt,Kt)) + (ω∗

t − ω∗
t+1)∥2, (24)

where the definitions of h, h̄,∆h,Λ, and Ot can be found in (27) in the Appendix. The second term
on the right hand side of (24) is bounded by −µ∥zt∥2, where µ is a lower bound of σmin(AKt

)
proved in Proposition A.8. The third term is a random noise introduced by sampling, which reduces
to 0 after taking expectation. The fourth term is caused by inaccurate cost and critic estimations,
which can be bounded by the norm of yt and zt. The fifth term tracks the difference between
the drifting critic targets. We control it by the Lipschitz continuity of the critic target established
in Proposition A.9. The last term reflects the variances of various estimations, which is bounded by
the diminishing βt.

Step 3: Natural gradient norm analysis. From the actor update rule (Line 9 of Algorithm 1) and
the almost smoothness property of LQR (Lemma A.11), we derive

2Tr(DKt+1E
⊤
Kt

EKt) =
1

αt
[J(Kt)− J(Kt+1)]− 2Tr(DKt+1(ÊKt − EKt)

⊤EKt)

+ αtTr(DKt+1Ê
⊤
Kt

(R+B⊤PKtB)ÊKt), (25)

where ÊKt denotes the estimation of the natural gradient EKt . The first term on the left hand
side of (25) can be considered as the scaled square norm of the natural gradient. The first term
on the right hand side compares the actor’s performances between consecutive updates, which is
bounded via Abel summation by parts. The second term evaluates the inaccurate natural gradient
estimation, which is then bounded by the critic error zt and the natural gradient EKt

. The last term
can be considered as the variance of the perturbed natural gradient update, which is controlled by
the diminishing stepsize.

Step 4: Interconnected iteration system analysis. Taking the expectation and summing (23), (24),
and (25) from 0 to T − 1, respectively, we obtain the following interconnected iteration system in
terms of A(T ), B(T ), C(T ):

A(T ) ≤O(
1√
T
) + bB(T ) + bC(T ),

B(T ) ≤O(
1√
T
) + d

√
A(T )B(T ) + eC(T ), (26)

C(T ) ≤O(
1√
T
) + g

√
B(T )C(T ),

where b, d, e, g are positive constants. By solving the above system of inequalities, we further prove
that if bd2 + bd2g2 + 2eg2 < 1, then A(T ), B(T ), C(T ) converge at a rate of O(T− 1

2 ). This
condition can be easily satisfied by choosing the stepsize ratio cα to be smaller than a threshold
defined in (52).

Step 5: Global convergence analysis. To prove the global optimality, we utilize the gradient dom-
ination condition of LQR (Lemma A.12),

J(K)− J(K∗) ≤ 1

σmin(R)
∥DK∗∥Tr(E⊤

KEK).

This property shows that the actor performance error can be bounded by the norm of the natural gra-
dient (that is, Tr(E⊤

KEK)). Since we have proved the average natural gradient norm C(T ) converges
to zero, summation over both sides of the above inequality yields

min
0≤t<T

E[J(Kt)− J(K∗)] =O(
1√
T
),

which is the convergence of the actor performance error. We thus complete the proof of Theorem 4.3.
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5 EXPERIMENTS

We provide two numerical examples to illustrate our theoretical results. The first example is a two-
dimensional system and the second example is a four-dimensional system (See Appendix D for the
system matrices and other settings). The performance of Algorithm 1 is shown in Figure 1, where
the left column corresponds to the first example and the right column to the second example. The
solid lines plot the mean values and the shaded regions denote the 95% confidence interval over 10
independent runs. Consistent with our theorem, Figure 1(a) shows that the cost estimation error, the
critic error, and the actor performance error all diminish at a rate of at least T− 1

2 . The convergence
also suggests that the intermediate closed-loop linear systems during iteration are uniformly stable.

We also compare Algorithm 1 with the zeroth-order method (Fazel et al., 2018) and the double-loop
AC algorithm proposed in (Yang et al., 2019) (listed in Algorithm 2 and Algorithm 3, respectively,
in Appendix D). We plotted the relative errors of the actor parameters for all three methods in Figure
1(b). Algorithm 1 demonstrates superior sample-efficiency compared to the other two algorithms,
which is well supported by our theoretical analysis.
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Figure 1: (a) Learning results of Algorithm 1. Here the cost estimation error refers to 1
T

∑T−1
t=0 (ηt−

J(Kt))
2, Critic error refers to 1

T

∑T−1
t=0 ∥ωt − ω∗

Kt
∥2, and the Actor performance error refers to

1
T

∑T−1
t=0 [J(Kt)− J(K∗)], corresponding to the conclusion in Theorem 4.3 empirically. (b) Com-

parison of Algorithm 1 with two other algorithms. The plots are the actor error ∥K −K∗∥F .

6 CONCLUSION AND DISCUSSION

In this paper, we establish the first finite-time global convergence analysis for the single-sample
single-timescale natural actor-critic method under the Linear Quadratic Regulation (LQR) setting.
Our work is the first one adopting the simplest single-sample single-timescale structure for solv-
ing LQR, which may serve as the first step towards understanding the limits of the AC(NAC) on
continuous control task. We provide a novel analysis framework that systematically establishes the
convergence of actor and critic simultaneously. Our framework can be extended to analyze other
single-timescale reinforcement learning algorithms.
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A PROOF OF MAIN THEOREMS

We choose stepsizes αt = cα√
1+t

, βt = γt = 1√
1+t

. Additional constant multipliers cβ , cγ can be
considered in a similar way. Before proceeding, we define the following notations for the ease of
presentation:

ω∗
t := ω∗

Kt
,

yt := ηt − J(Kt),

zt := ωt − ω∗
t ,

Ot := (xt, ut, x
′
t, u

′
t),

ÊKt :=
̂∇N
Kt

J(Kt), (27)

∆h(O, η,K) := [J(K)− η]ϕ(x, u),

h(O,ω,K) := [c(x, u)− J(K) + (ϕ(x′, u′)− ϕ(x, u))⊤ω]ϕ(x, u),

h̄(ω,K) := E(x,u)∼(ρK ,πK)[[c(x, u)− J(K) + (ϕ(x′, u′)− ϕ(x, u))⊤ω]ϕ(x, u)].

Λ(O,ω,K) := ⟨ω − ω∗
K , h(O,ω,K)− h̄(ω,K)⟩.

In the sequel, we establish implicit (coupled) upper bounds for the cost estimator, the critic, and the
actor in Theorem A.7, Theorem A.10, and Theorem A.13, respectively. Then we prove the main
Theorem 4.3 by solving an interconnected system of inequalities in Appendix A.4.

Before start, we define two notations which are frequently used in our proof.

Definition A.1. For any symmetric matrix M ∈ Sn, we define the vector svec(M) ∈ R 1
2 (n+1) as

svec(M) = (m11,
√
2m21, · · · ,

√
2mn1,m22,

√
2m32, · · · ,

√
2mn2, · · · ,mnn)

⊤.

We further define its inverse smat(·) such that

smat(svec(M)) = M.

A.1 COST ESTIMATION ERROR ANALYSIS

In this section, we establish an implicit upper bound for the cost estimator ηt, in terms of the critic
error and the natural gradient norm.

We first give an uniform upper bound for the covariance matrix DKt .

12
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Proposition A.2. (Upper bound for covariance matrix). Suppose that Assumption 4.2 holds. The
covariance matrix of the stationary distribution N (0, DKt

) induced by the Markov chain in (8) can
be upper bounded by

∥DKt
∥ ≤ c1

1− ( 1+ρ
2 )2

∥Dσ∥ for all t, (28)

where c1 is a constant.

Note that the distribution of state-action pair is unbounded so that the feature function is also un-
bounded. We can establish an upper bound for the tail probability of (x, u) by the Hansen-Wright
inequality, the proof of which can be found in Rudelson & Vershynin (2013).
Lemma A.3. (Hansen-Wright inequality). For any integer m > 0, let A be a matrix in Rm×m and
let η ∼ N (0, Im)be the standard Gaussian random variable in Rm. Then there exists an absolute
constant c̄ > 0 such that, for any θ ≥ 0, we have

P[|η⊤Aη − E(η⊤Aη)| > θ] ≤ 2e−c̄·min{θ2∥A∥−2
F ,θ∥A∥−1}.

With this lemma, we can provide an uniform upper bound for the cost under high probability.
Proposition A.4. (Upper bound for cost). With probability at least 1 − 10−10, for t =
0, 1, 2, · · · , T − 1, the cost satisfies

∥xt∥2 + ∥ut∥2 ≤ Ū ,

c(xt, ut) ≤ Ū ,

where

Ū =2c2(σmax(Q) + σmax(R) + 1)[σ2 + (1 + K̄2)
c1

1− ( 1+ρ
2 )2

∥Dσ∥]log(10) (29)

and c2 is a constant.

Hereafter, we use Ū as an upper bound for all cost c(xt, ut). As a consequence, we choose η0 ≤ Ū
so that we have ηt ≤ Ū for all t.
Lemma A.5. (Perturbation of PK). Suppose K ′ is a small perturbation of K in the sense that

∥K ′ −K∥ ≤ σmin(D0)

4
∥DK∥−1∥B∥−1(∥A−BK∥+ 1)−1. (30)

Then we have

∥PK′ − PK∥ ≤6σ−1
min(D0)∥DK∥∥K∥∥R∥(∥K∥∥B∥ · ∥A−BK∥+ ∥K∥∥B∥+ 1)∥K −K ′∥.

Proof. See Lemma 5.7 in Yang et al. (2019) for a detailed proof.

With the perturbation of PK , we are ready to prove the Lipschitz continuous of J(K).
Proposition A.6. (Local Lipschitz continuity of J(K)) Suppose Lemma A.5 holds, for any
Kt,Kt+1, we have

|J(Kt+1)− J(Kt)| ≤ l1∥Kt+1 −Kt∥,
where

l1 :=6c1dK̄σ−1
min(D0)

∥Dσ∥2

1− ( 1+ρ
2 )2

∥R∥(K̄∥B∥(∥A∥+ K̄∥B∥+ 1) + 1). (31)

Equipped with the above propositions and lemmas, we are able to bound the cost estimation error.
Theorem A.7. Suppose that Assumptions 4.1 and 4.2 hold and choose αt = cα√

1+t
, βt = γt =

1√
1+t

, where cα is a small positive constant. With probability at least 1− 10−10, we have

1

T

T−1∑
t=0

Ey2t ≤ (4l21(K̄ + 1)2ω̄2c2α + 3Ū2)
1√
T

+
l1cα
T

T−1∑
t=0

E∥zt∥2 +
l1cα
T

T−1∑
t=0

E∥EKt∥2. (32)
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Proof. From line 5 of Algorithm 1, we have

y2t+1 =(yt + J(Kt)− J(Kt+1) + γt(ct − ηt))
2

≤y2t + 2γtyt(ct − ηt) + 2yt(J(Kt)− J(Kt+1)) + 2(J(Kt)− J(Kt+1))
2 + 2γ2

t (ct − ηt)
2

=(1− 2γt)y
2
t + 2γtyt(ct − J(Kt)) + 2γ2

t (ct − ηt)
2 + 2yt(J(Kt)− J(Kt+1))

+ 2(J(Kt)− J(Kt+1))
2.

Taking expectation up to (xt, ut) for both sides, we have

E[y2t+1] ≤(1− 2γt)Ey2t + 2γtE[yt(ct − J(Kt))] + 2γ2
t E(ct − ηt)

2 + 2Eyt(J(Kt)− J(Kt+1))

+ 2E(J(Kt)− J(Kt+1))
2.

To compute E[yt(ct−J(Kt))], we use the notation vt to denote the vector (xt, ut) and v0:t to denote
the sequence (x0, u0), (x1, u1), · · · , (xt, ut). Hence, we have

E[yt(ct − J(Kt))] =Ev0:t [yt(ct − J(Kt))] = Ev0:t−1
Ev0:t [yt(ct − J(Kt))|v0:t−1]

Once we know v0:t−1, yt is not a random variable any more. Thus we get

Ev0:t−1
Ev0:t [yt(ct − J(Kt))|v0:t−1]

=Ev0:t−1
ytEv0:t [(ct − J(Kt))|v0:t−1]

=Ev0:t−1ytEvt [ct − J(Kt)|v0:t−1]

=0

Hereafter, we need to verify Lemma A.5 first and use the local Lipschitz continuous property of
J(K) provided by Proposition A.6 to bound the cost estimation error. Since we have

∥Kt+1 −Kt∥ = αt∥(smat(ωt)
22Kt − smat(ωt)

21)∥,

to satisfy (30), we choose

cα ≤
(1− ( 1+ρ

2 )2)σmin(D0)

4c1∥Dσ∥∥B∥(1 + ∥A∥+ K̄∥B∥)(K̄ + 1)ω̄
. (33)

Hence, according to the update rule, we have

∥Kt+1 −Kt∥ =αt∥(smat(ωt)
22Kt − smat(ωt)

21)∥

≤ cα
(1 + t)δ

(K̄∥smat(ωt)
22∥+ ∥smat(ωt)

21∥)

≤ cα
(1 + t)δ

(K̄∥ωt∥+ ∥ωt∥)

≤ cα
(1 + t)δ

(K̄ + 1)ω̄

≤
(1− ( 1+ρ

2 )2)σmin(D0)

4c1∥Dσ∥∥B∥(1 + ∥A∥+ K̄∥B∥)
1

(1 + t)δ

≤σmin(D0)

4
∥DKt∥−1∥B∥−1(∥A−BKt∥+ 1)−1, (34)

where the last inequality comes from (28). Thus Lemma A.5 holds for Algorithm 1. As a conse-
quence, Proposition A.6 is also guaranteed.

14



Under review as a conference paper at ICLR 2023

Combining the fact 2γtE[yt(ct − J(Kt))] = 0, we get

E[y2t+1] ≤(1− 2γt)Ey2t + 2Eyt(J(Kt)− J(Kt+1)) + 2E(J(Kt)− J(Kt+1))
2 + 2γ2

t E(ct − ηt)
2

≤(1− 2γt)Ey2t + 2E|yt||J(Kt)− J(Kt+1)|+ 2E(J(Kt)− J(Kt+1))
2 + 2γ2

t E(ct − ηt)
2

≤(1− 2γt)Ey2t + 2l1E|yt|∥Kt −Kt+1∥+ 2E(J(Kt)− J(Kt+1))
2 + 2γ2

t E(ct − ηt)
2

≤(1− 2γt)Ey2t + 2l1αtE|yt|∥ÊKt
∥+ 2E(J(Kt)− J(Kt+1))

2 + 2γ2
t E(ct − ηt)

2

≤(1− 2γt)Ey2t + 2l1αtE|yt|∥ÊKt
− EKt

+ EKt
∥+ 2E(J(Kt)− J(Kt+1))

2

+ 2γ2
t E(ct − ηt)

2

≤(1− 2γt)Ey2t + 2l1αtE[(2K̄2 + 2)|yt|∥zt∥+ |yt|∥EKt
∥] + 2E(J(Kt)− J(Kt+1))

2

+ 2γ2
t E(ct − ηt)

2

≤(1− 2γt)Ey2t + 2l1αtE[2(K̄2 + 1)2y2t + ∥zt∥2/2 + y2t /2 + ∥EKt
∥2/2]

+ 2E(J(Kt)− J(Kt+1))
2 + 2γ2

t E(ct − ηt)
2

≤(1− (2γt − 2l1αt(2(K̄
2 + 1)2 +

1

2
)))Ey2t + l1αtE∥zt∥2 + l1αtE∥EKt∥2

+ 2E(J(Kt)− J(Kt+1))
2 + 2γ2

t E(ct − ηt)
2,

where we use the fact that

∥ÊKt
− EKt

∥ ≤ 2(K̄ + 1)∥ωt − ω∗
t ∥.

Choose cα small enough such that

2l1cα(2(K̄
2 + 1)2 +

1

2
) ≤ 1. (35)

Then we get

γt ≥ 2l1αt(2(K̄
2 + 1)2 +

1

2
).

Thus we have

E[y2t+1] ≤(1− γt)Ey2t + l1αtE∥zt∥2 + l1αtE∥EKt
∥2 + 2E(J(Kt)− J(Kt+1))

2 + 2γ2
t E(ct − ηt)

2

Rearranging and summing from 0 to T − 1, we have
T−1∑
t=0

Ey2t ≤
T−1∑
t=0

1

γt
E(y2t − y2t+1)︸ ︷︷ ︸

I1

+

T−1∑
t=0

2

γt
E(J(Kt)− J(Kt+1))

2

︸ ︷︷ ︸
I2

+

T−1∑
t=0

2γtE(ct − ηt)
2

︸ ︷︷ ︸
I3

+ l1cα

T−1∑
t=0

E∥zt∥2 + l1cα

T−1∑
t=0

E∥EKt∥2.

In the sequel, we need to control I1, I2, I3 respectively. For I1, following Abel summation by parts,
we have

I1 =

T−1∑
t=0

1

γt
E(y2t − y2t+1)

=

T−1∑
t=1

(
1

γt
− 1

γt−1
)E(y2t ) +

1

γ0
E(y20)−

1

γT−1
E(y2T )

≤ Ū2
T−1∑
t=1

(
1

γt
− 1

γt−1
) +

1

γ0
Ū2

≤ Ū2

γT−1

= Ū2
√
T ,
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where we use the fact that |yt| ≤ Ū . For I2, we get

I2 =

T−1∑
t=0

2

γt
E(J(Kt)− J(Kt+1))

2

≤ 2l21(K̄ + 1)2ω̄2
T−1∑
t=0

1

γt
α2
t

= 2l21(K̄ + 1)2ω̄2c2α

T−1∑
t=0

1√
(1 + t)

≤ 4l21(K̄ + 1)2ω̄2c2α
√
T ,

where the last inequality is due to

T−1∑
t=0

1√
(1 + t)

≤
∫ T

0

t−
1
2 dt = 2

√
T .

For I3, we have

I3 =

T−1∑
t=0

γtE(ct − ηt)
2

≤
T−1∑
t=0

γtŪ
2

≤ 2Ū2
√
T .

where we use the fact 0 ≤ ct, ηt ≤ Ū derived by Proposition A.4.

Combining all terms together, we get

T−1∑
t=0

Ey2t ≤(4l21(K̄ + 1)2ω̄2c2α + 3Ū2)
√
T + l1cα

T−1∑
t=0

E∥zt∥2 + l1cα

T−1∑
t=0

E∥EKt
∥2.

Dividing by T , we have

1

T

T−1∑
t=0

Ey2t ≤ (4l21(K̄ + 1)2ω̄2c2α + 3Ū2)
1√
T

+
l1cα
T

T−1∑
t=0

E∥zt∥2 +
l1cα
T

T−1∑
t=0

E∥EKt∥2.

Thus we finish our proof.

A.2 CRITIC ERROR ANALYSIS

In this section, we derive an implicit bound for the critic error, in terms of the cost estimator error
and the natural gradient norm. First, we need the following propositions.

Proposition A.8. For all the Kt, there exists a constant µ > 0 such that

σmin(AKt
) ≥ µ.

Proposition A.9. (Lipschitz continuity of ω∗
t ) For any ω∗

t , ω
∗
t+1, we have

∥ω∗
t − ω∗

t+1∥ ≤ l2∥Kt −Kt+1∥, (36)

where

l2 =6c1d
3
2 K̄(∥A∥+ ∥B∥)2σ−1

min(D0)
∥Dσ∥∥R∥
1− ( 1+ρ

2 )2
(K̄∥B∥(∥A∥+ K̄∥B∥+ 1) + 1). (37)
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Theorem A.10. Suppose that Assumptions 4.1 and 4.2 hold and choose αt = cα√
1+t

, βt = γt =
1√
1+t

, where cα is a small positive constant. With probability at least 1− 10−10, we have

1

T

T−1∑
t=1

E∥zt∥2 ≤ 4

µ
(Ū4(1 + 2ω̄)2 + ω̄2 + l22c

2
3)

1√
T

+
l2cα
µT

T−1∑
t=0

E∥EKt
∥2

+
2

µ
Ū(

1

T

T−1∑
t=0

Ey2t )
1
2 (

1

T

T−1∑
t=0

E∥zt∥2)
1
2 . (38)

Proof. Since we have AKt
ω∗
t = bKt

, where bKt
= E(xt,ut)[(c(xt, ut)− J(Kt))ϕ(xt, ut)], we can

further get
∥ω∗

t ∥ = ∥A−1
Kt

bKt
∥

≤ 1

µ
Ū∥ϕ(xt, ut)∥

≤ 1

µ
Ū2,

where in the last inequality, we use the fact that

∥ϕ(x, u)∥ = ∥
(
x
u

)
(x⊤ u⊤)∥F

= ∥
(
x
u

)
(x⊤ u⊤)∥

≤ Tr(
(
x
u

)
(x⊤ u⊤))

= ∥x∥2 + ∥u∥2

≤ Ū .

Hence, we set

ω̄ =
1

µ
Ū2 (39)

such that all ω∗
t lie within this projection radius for all t.

From update rule of critic in Algorithm 1, we have
ωt+1 = Πω̄(ωt + βtδtϕ(xt, ut)),

which further implies
ωt+1 − ω∗

t+1 = Πω̄(ωt + βtδtϕ(xt, ut))− ω∗
t+1.

By applying 1-Lipschitz continuity of projection map, we have
∥ωt+1 − ω∗

t+1∥ =∥Πω̄(ωt + βtδtϕ(xt, ut))− ω∗
t+1∥

=∥Πω̄(ωt + βtδtϕ(xt, ut))−Πω̄(ω
∗
t+1)∥

≤∥ωt + βtδtϕ(xt, ut)− ω∗
t+1∥

=∥ωt − ω∗
t + βtδtϕ(st, at) + (ω∗

t − ω∗
t+1)∥.

This means
∥zt+1∥2 ≤∥zt + βtδtϕ(st, at) + (ω∗

t − ω∗
t+1)∥2

=∥zt + βt(h(Ot, ωt,Kt) + ∆h(Ot, ηt,Kt)) + (ω∗
t − ω∗

t+1)∥2

=∥zt∥2 + 2βt⟨zt, h(Ot, ωt,Kt)⟩+ 2βt⟨zt,∆h(Ot, ηt,Kt)⟩+ 2⟨zt, ω∗
t − ω∗

t+1⟩
+ ∥βt(h(Ot, ωt,Kt) + ∆h(Ot, ηt,Kt)) + (ω∗

t − ω∗
t+1)∥2

=∥zt∥2 + 2βt⟨zt, h̄(ωt,Kt)⟩+ 2βtΛ(Ot, ωt,Kt) + 2βt⟨zt,∆h(Ot, ηt,Kt)⟩
+ 2⟨zt, ω∗

t − ω∗
t+1⟩+ ∥βt(h(Ot, ωt,Kt) + ∆h(Ot, ηt,Kt)) + (ω∗

t − ω∗
t+1)∥2

≤∥zt∥2 + 2βt⟨zt, h̄(ωt,Kt)⟩+ 2βtΛ(Ot, ωt,Kt) + 2βt⟨zt,∆h(Ot, ηt,Kt)⟩
+ 2⟨zt, ω∗

t − ω∗
t+1⟩+ 2β2

t ∥h(Ot, ωt,Kt) + ∆h(Ot, ηt,Kt))∥2 + 2∥ω∗
t − ω∗

t+1∥2.
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From Proposition A.8, we know that σmin(AKt
) ≥ µ for all Kt. Then we have

⟨zt, h̄(ωt,Kt)⟩ = ⟨zt, bKt
−AKt

ωt⟩
= ⟨zt, bKt −AKtwt − (bKt −AKtω

∗
t )⟩

= ⟨zt,−AKt
zt⟩

= −z⊤t AKtzt

≤ −µ∥zt∥2,
where we use the fact AKω∗

Kt
− bKt = 0. Hence, we have

∥zt+1∥2 ≤(1− 2µβt)∥zt∥2 + 2βtΛ(Ot, ωt,Kt) + 2βt⟨zt,∆h(Ot, ηt,Kt)⟩+ 2⟨zt, ω∗
t − ω∗

t+1⟩
+ 2β2

t Ū
4(1 + ω̄)2 + 2∥ω∗

t − ω∗
t+1∥2,

where we use the fact that

∥h(Ot, ωt,Kt) + ∆h(Ot, ηt,Kt))∥
=∥(c(xt, ut)− ηt)ϕ(xt, ut) + (ϕ(x′

t, u
′
t)− ϕ(xt, ut))

⊤ωtϕ(xt, ut)∥
≤∥(c(xt, ut)− ηt)ϕ(xt, ut)∥+ ∥(ϕ(x′

t, u
′
t)− ϕ(xt, ut))

⊤ωtϕ(xt, ut)∥
≤Ū2 + 2Ū2ω̄

=Ū2(1 + 2ω̄).

Taking expectation up to (xt, ut) and noticing that

E[Λ(Ot, ωt,Kt)] = E
v0:t

[⟨ωt − ω∗
Kt

, h(Ot, ωt,Kt)− h̄(ωt,Kt)⟩]

= E
v0:t−1

E
v0:t

[⟨ωt − ω∗
Kt

, h(Ot, ωt,Kt)− h̄(ωt,Kt)⟩|v0:t−1]

= E
v0:t−1

⟨ωt − ω∗
Kt

,E
vt
[h(Ot, ωt,Kt)− h̄(ωt,Kt)|v0:t−1]⟩

= 0,

we get

E∥zt+1∥2 ≤(1− 2µβt)E∥zt∥2 + 2βtE⟨zt,∆h(Ot, ηt,Kt)⟩+ 2E⟨zt, ω∗
t − ω∗

t+1⟩
+ 2E∥ω∗

t − ω∗
t+1∥2 + 2Ū4(1 + 2ω̄)2β2

t . (40)

Therefore, using ∥∆h(Ot, ηt,Kt)∥ ≤ Ū |yt|, we can further rewrite (40) as

E∥zt+1∥2 ≤(1− 2µβt)E∥zt∥2 + 2E⟨zt, ω∗
t − ω∗

t+1⟩+ 2ŪβtE|yt|∥zt∥
+ 2β2

t Ū
4(1 + 2ω̄)2 + 2E∥ω∗

t − ω∗
t+1∥2.

Based on (36), we can rewrite the above inequality as

E∥zt+1∥2 ≤(1− 2µβt)E∥zt∥2 + 2ŪβtE|yt|∥zt∥+ 2l2E∥zt∥∥Kt −Kt+1∥
+ 2Ū4(1 + 2ω̄)2β2

t + 2l22E∥Kt −Kt+1∥2

≤(1− 2µβt)E∥zt∥2 + 2ŪβtE|yt|∥zt∥+ 2l2αtE∥zt∥∥ÊKt
∥

+ 2Ū4(1 + 2ω̄)2β2
t + 2l22E∥Kt −Kt+1∥2

≤(1− 2µβt)E∥zt∥2 + 2ŪβtE|yt|∥zt∥+ 2l2αtE∥zt∥∥ÊKt
− EKt

+ EKt
∥

+ 2Ū4(1 + 2ω̄)2β2
t + 2l22E∥Kt −Kt+1∥2

≤(1− 2µβt)E∥zt∥2 + 2l2αtE[∥zt∥∥ÊKt
− EKt

∥+ ∥zt∥∥EKt
∥]

+ 2ŪβtE|yt|∥zt∥+ 2Ū4(1 + 2ω̄)2β2
t + 2l22E∥Kt −Kt+1∥2

≤(1− 2µβt)E∥zt∥2 + 2l2αtE[2(K̄ + 1)∥zt∥2 +
∥zt∥2

2
+

∥EKt∥2

2
]

+ 2ŪβtE|yt|∥zt∥+ 2Ū4(1 + 2ω̄)2β2
t + 2l22E∥Kt −Kt+1∥2

≤(1− 2µβt)E∥zt∥2 + 2ŪβtE|yt|∥zt∥+ (4K̄ + 5)l2αtE∥zt∥2

+ l2αtE∥EKt
∥2 + 2(Ū4(1 + 2ω̄)2 + l22c

2
3)β

2
t (41)

18



Under review as a conference paper at ICLR 2023

where the second inequality is due to ∥Kt −Kt+1∥ ≤ c3
(1+t)δ

= c3βt from (34), where

c3 :=
(1− ( 1+ρ

2 )2)σmin(D0)

4c1∥Dσ∥∥B∥(1 + ∥A∥+ K̄∥B∥)
. (42)

Choose cα small enough such that

(4K̄ + 5)l2cα ≤ µ. (43)

Thus we can rewrite 41 as

E∥zt+1∥2 ≤(1− µβt)E∥zt∥2 + 2ŪβtE|yt|∥zt∥+ l2αtE∥EKt∥2

+ 2(Ū4(1 + 2ω̄)2 + l22c
2
3)β

2
t

Rearranging the inequality and summing from 0 to T − 1 yields

µ

T−1∑
t=1

E∥zt∥2 ≤
T−1∑
t=0

1

βt
E(∥zt∥2 − ∥zt+1∥2) + 2Ū

T−1∑
t=0

E|yt|∥zt∥+ l2cα

T−1∑
t=0

E∥EKt
∥2

+ 2(Ū4(1 + 2ω̄)2 + l22c
2
3)

T−1∑
t=0

βt

≤
T−1∑
t=0

1

βt
E(∥zt∥2 − ∥zt+1∥2)︸ ︷︷ ︸

I1

+2Ū

T−1∑
t=0

E|yt|∥zt∥︸ ︷︷ ︸
I2

+l2cα

T−1∑
t=0

E∥EKt∥2

+ 4(Ū4(1 + 2ω̄)2 + l22c
2
3)
√
T .

orc We need to control I1 and I2, respectively.

For term I1, from Abel summation by parts, we have

I1 =

T−1∑
t=0

1

βt
E(∥zt∥2 − ∥zt+1∥2)

=

T−1∑
t=1

(
1

βt
− 1

βt−1
)E∥zt∥2 +

1

β0
E∥z0∥2 −

1

βT−1
E∥zT ∥2

≤
T−1∑
t=1

(
1

βt
− 1

βt−1
)E∥zt∥2 +

1

β0
E∥z0∥2

≤4ω̄2(

T−1∑
t=1

(
1

βt
− 1

βt−1
) +

1

β0
)

=4ω̄2 1

βT−1

=4ω̄2
√
T .

For I2, from Cauchy-Schwartz inequality, we have

I2 =

T−1∑
t=0

E|yt|∥zt∥

≤
T−1∑
t=0

(Ey2t )
1
2 (E∥zt∥2)

1
2

≤(

T−1∑
t=0

Ey2t )
1
2 (

T−1∑
t=0

E∥zt∥2)
1
2 .
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Combining the upper bound of the above two items, we can get

T−1∑
t=1

E∥zt∥2 ≤ 4

µ
(Ū4(1 + 2ω̄)2 + ω̄2 + l22c

2
3)
√
T +

l2cα
µ

T−1∑
t=0

E∥EKt
∥2

+
2

µ
Ū(

T−1∑
t=0

Ey2t )
1
2 (

T−1∑
t=0

E∥zt∥2)
1
2 .

Dividing by T , we have

1

T

T−1∑
t=1

E∥zt∥2 ≤ 4

µ
(Ū4(1 + 2ω̄)2 + ω̄2 + l22c

2
3)

1√
T

+
l2cα
µT

T−1∑
t=0

E∥EKt∥2

+
2

µ
Ū(

1

T

T−1∑
t=0

Ey2t )
1
2 (

1

T

T−1∑
t=0

E∥zt∥2)
1
2 ,

which concludes he convergence of critic.

A.3 NATURAL GRADIENT NORM ANALYSIS

In this subsection, we derive an implicit bound for the natural gradient norm in terms of the the critic
error. Before proceeding, we need the following two lemmas, which characterize two important
properties of LQR system.

Lemma A.11. (Almost Smoothness). For any two stable policies K and K ′, J(K) and J(K ′)
satisfy:

J(K ′)− J(K) = −2Tr(DK′(K −K ′)⊤EK) + Tr(DK′(K −K ′)⊤(R+B⊤PKB)(K −K ′)).

Lemma A.12. (Gradient Domination). Let K∗ be an optimal policy. Suppose K has finite cost.
Then, it holds that

σmin(D0)∥R+B⊤PKB∥−1Tr(E⊤
KEK) ≤ J(K)− J(K∗) ≤ 1

σmin(R)
∥DK∗∥Tr(E⊤

KEK).

Theorem A.13. Suppose that Assumptions 4.1 and 4.2 hold and choose αt = cα√
1+t

, βt = γt =
1√
1+t

, where cα is a small positive constant. With probability at least 1− 10−10, we have

1

T

T−1∑
t=0

E∥EKt
∥2 ≤ (

Ū + 2c4c
2
α

2σmin(D0)cα
)

1√
T

+
c5(K̄ + 1)

σmin(D0)
(
1

T

T−1∑
t=0

E∥zt∥2)
1
2 (

1

T

T−1∑
t=0

E∥EKt
∥) 1

2 .

(44)

Proof. Combining the almost smoothness property, we get

J(Kt+1)− J(Kt)

=− 2Tr(DKt+1
(Kt −Kt+1)

⊤EKt
) + Tr(DKt+1

(Kt −Kt+1)
⊤(R+B⊤PKt

B)(Kt −Kt+1))

=− 2αtTr(DKt+1
Ê⊤

Kt
EKt

) + α2
t Tr(DKt+1

Ê⊤
Kt

(R+B⊤PKt
B)ÊKt

)

=− 2αtTr(DKt+1
(ÊKt

− EKt
)⊤EKt

)− 2αtTr(DKt+1
E⊤

Kt
EKt

)

+ α2
t Tr(DKt+1

Ê⊤
Kt

(R+B⊤PKt
B)ÊKt

).

By the similar trick to the proof of Proposition A.2, we can bound PKt by

∥PKt∥ ≤ ĉ1

1− ( 1+ρ
2 )2

∥Q+K⊤RK∥

≤ ĉ1(σmax(Q) + K̄2σmax(R))

1− ( 1+ρ
2 )2

,
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where ĉ1 is a constant. Hence we further have

Tr(DKt+1
Ê⊤

Kt
(R+B⊤PKt

B)ÊKt
)

≤d∥DKt+1
∥∥R+B⊤PKt

B∥∥ÊKt
∥2F

≤d(K̄ + 1)2ω̄2 c1∥Dσ∥
1− ( 1+ρ

2 )2
(σmax(R) + σ2

max(B)
ĉ1(σmax(Q) + K̄2σmax(R))

1− ( 1+ρ
2 )2

),

where we use ∥ÊKt∥F ≤ (K̄ + 1)ω̄. Hence we define c4 as follows

c4 :=d(K̄ + 1)2ω̄2 c1∥Dσ∥
1− ( 1+ρ

2 )2
(σmax(R) + σ2

max(B)
ĉ1(σmax(Q) + K̄2σmax(R))

1− ( 1+ρ
2 )2

). (45)

Then we get

J(Kt+1)− J(Kt)

≤− 2αtTr(DKt+1
(ÊKt

− EKt
)⊤EKt

)− 2αtTr(DKt+1
E⊤

Kt
EKt

) + c4α
2
t

≤αt
2c1d

3
2 ∥Dσ∥

1− ( 1+ρ
2 )2

∥EKt
∥∥ÊKt

− EKt
∥ − 2αtσmin(D0)∥EKt

∥2 + c4α
2
t

=c5αt∥EKt
∥∥ÊKt

− EKt
∥ − 2αtσmin(D0)∥EKt

∥2 + c4α
2
t ,

where

c5 :=
2c1d

3
2 ∥Dσ∥

1− ( 1+ρ
2 )2

. (46)

Taking expectation up to (xt, ut) and rearranging the above inequality, we have

E∥EKt
∥2 ≤ E[J(Kt)− J(Kt+1)]

2αtσmin(D0)
+

c5
2σmin(D0)

E∥EKt
∥∥ÊKt

− EKt
∥+ c4αt

2σmin(D0)
.

Summing over t from 0 to T − 1 gives
T−1∑
t=0

E∥EKt
∥2 ≤

T−1∑
t=0

E[J(Kt)− J(Kt+1)]

2αtσmin(D0)︸ ︷︷ ︸
I1

+
c5

2σmin(D0))

T−1∑
t=0

E∥EKt
∥∥ÊKt

− EKt
∥︸ ︷︷ ︸

I2

+
c4cα

σmin(D0)

√
T .

For term I1, using Abel summation by parts, we have
T−1∑
t=0

E[J(Kt)− J(Kt+1)]

2αtσmin(D0)

=
1

2σmin(D0)
(

T−1∑
t=1

(
1

αt
− 1

αt−1
)E[J(Kt)] +

1

α0
E[J(K0)]−

1

αT−1
E[J(KT )])

≤ Ū

2σmin(D0)
(

T−1∑
t=1

(
1

αt
− 1

αt−1
) +

1

α0
)

=
Ū

2σmin(D0)

1

αT−1

=
Ū

2cασmin(D0)

√
T .

For term I2, by Cauchy-Schwartz inequality, we have
T−1∑
t=0

E∥EKt
∥∥ÊKt

− EKt
∥ ≤ (

T−1∑
t=0

E∥EKt
∥2) 1

2 (

T−1∑
t=0

E∥ÊKt
− EKt

∥2) 1
2 .
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Combining the results of I1 and I2, we have
T−1∑
t=0

E∥EKt
∥2 ≤(

Ū + 2c4c
2
α

2σmin(D0)cα
)
√
T +

c5
2σmin(D0)

(

T−1∑
t=0

E∥EKt
∥2) 1

2 (

T−1∑
t=0

E∥ÊKt
− EKt

∥2) 1
2

≤(
Ū + 2c4c

2
α

2σmin(D0)cα
)
√
T +

c5(K̄ + 1)

σmin(D0)
(

T−1∑
t=0

E∥zt∥2)
1
2 (

T−1∑
t=0

E∥EKt∥)
1
2 .

Dividing by T , we get

1

T

T−1∑
t=0

E∥EKt
∥2 ≤ (

Ū + 2c4c
2
α

2σmin(D0)cα
)

1√
T

+
c5(K̄ + 1)

σmin(D0)
(
1

T

T−1∑
t=0

E∥zt∥2)
1
2 (

1

T

T−1∑
t=0

E∥EKt
∥) 1

2 .

Thus we conclude our proof.

A.4 INTERCONNECTED ITERATION SYSTEM ANALYSIS

From the definition in 22, we have

A(T ) =
1

T

T−1∑
t=0

Ey2t , B(T ) =
1

T

T−1∑
t=0

E∥zt∥2, C(T ) =
1

T

T−1∑
t=0

E∥EKt
∥2. (47)

In the following, we give an interconnected iteration system analysis with respect to A(T ), B(T )
and C(T ).
Theorem A.14. Combining (32), (38) and (44), we have

A(T ) = O(
1√
T
), B(T ) = O(

1√
T
), C(T ) = O(

1√
T
). (48)

Proof. From (32), (38) and (44), we have

A(T ) ≤(4l21(K̄ + 1)2ω̄2c2α + 3Ū2)
1√
T

+ l1cαB(T ) + l1cαC(T ),

B(T ) ≤ 4

µ
(Ū4(1 + 2ω̄)2 + ω̄2 + l22c

2
3)

1√
T

+
2

µ
Ū
√

A(T )B(T ) +
l2cα
µ

C(T ),

C(T ) ≤(
Ū + 2c4c

2
α

2σmin(D0)cα
)

1√
T

+
c5(K̄ + 1)

σmin(D0)

√
B(T )C(T ).

For simplicity, we denote

a =(4l21(K̄ + 1)2ω̄2c2α + 3Ū2)
1√
T
,

b =l1cα,

c =
4

µ
(Ū4(1 + 2ω̄)2 + ω̄2 + l22c

2
3)

1√
T
,

d =
2

µ
Ū,

e =
l2cα
µ

,

f =(
Ū + 2c4c

2
α

2σmin(D0)cα
)

1√
T
,

g =
c5(K̄ + 1)

σmin(D0)
.

Thus we further have
A(T ) ≤a+ bB(T ) + bC(T ), (49)

B(T ) ≤c+ d
√

A(T )B(T ) + eC(T ),

C(T ) ≤f + g
√
B(T )C(T ).
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Then we have

B(T ) ≤ c+
1

2
(d2A(T ) +B(T )) + eC(T ),

B(T ) ≤ 2c+ d2A(T ) + 2eC(T ). (50)

For C(T ), we get

C(T ) ≤ f +
1

2
(g2B(T ) + C(T )),

C(T ) ≤ 2f + g2B(T ) (51)

Combining 49, 50 and 51, we have

B(T ) ≤2c+ d2(a+ bB(T ) + b(2f + g2B(T ))) + 2e(2f + g2B(T ))

=2c+ ad2 + 2bd2f + 4ef + (bd2 + bd2g2 + 2eg2)B(T )

If bd2 + bd2g2 + 2eg2 < 1, we have

B(T ) ≤ 2c+ ad2 + 2bd2f + 4ef

1− bd2 − bd2g2 − 2eg2

Note that

bd2 + bd2g2 + 2eg2 =l1cα
4

µ2
Ū2 + l1cα

4

µ2
Ū2 c

2
5(K̄ + 1)2

σ2
min(D0)

+
2l2cα
µ

c25(K̄ + 1)2

σ2
min(D0)

=cα(l1
4

µ2
Ū2 + l1

4

µ2
Ū2 c

2
5(K̄ + 1)2

σ2
min(D0)

+
2l2c

2
5(K̄ + 1)2

µσ2
min(D0)

)

Thus we can achieve bd2 + bd2g2 + 2eg2 < 1 by choosing the stepsize ratio smaller than the
following threshold:

1/(l1
4

µ2
Ū2 + l1

4

µ2
Ū2 c

2
5(K̄ + 1)2

σ2
min(D0)

+
2l2c

2
5(K̄ + 1)2

µσ2
min(D0)

) (52)

Therefore, we get

B(T ) ≤2c+ ad2 + 2bd2f + 4ef

1− bd2 − bd2g2 − 2eg2
= O(

1√
T
),

C(T ) ≤2f + g2B(T ) = O(
1√
T
),

A(T ) ≤a+ bB(T ) + C(T ) = O(
1√
T
).

Thus we have

A(T ) = O(
1√
T
), B(T ) = O(

1√
T
), C(T ) = O(

1√
T
),

which concludes the proof.

A.5 GLOBAL CONVERGENCE ANALYSIS

Proof of Theorem 4.3

Proof. From gradient domination, we know that

E(J(Kt)− J(K∗)) ≤ 1

σmin(R)
∥DK∗∥E[Tr(E⊤

Kt
EKt)] ≤

d∥DK∗∥
σmin(R)

E∥EKt∥2. (53)

From the convergence of C(T ), we know that

1

T

T−1∑
t=0

E∥EKt
∥ = O(

1√
T
)
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Hence, we have

min
0≤t<T

d∥DK∗∥
σmin(R)

E∥EKt
∥2 ≤ d∥DK∗∥

σmin(R)

1

T

T−1∑
t=0

E∥EKt
∥2 = O(

1√
T
)

Therefore, from 53 we get

min
0≤t<T

E(J(Kt)− J(K∗)) = O(
1√
T
).

Thus we conclude the proof of Theorem 4.3.

B PROOF OF PROPOSITIONS

To establish the Proposition 3.1, we need the following lemma, the proof of which can be found in
Nagar (1959); Magnus (1978).
Lemma B.1. Let g ∼ N (0, In) be the standard Gaussian random variable in Rn and let M,N be
two symmetric matrices. Then we have

E[g⊤Mgg⊤Ng] = 2Tr(MN) + Tr(M)Tr(N).

Proof of Proposition 3.1:

Proof. This proposition is a slight modification of lemma 3.2 in Yang et al. (2019) and the proof is
inspired by the proof of this lemma.

For any state-action pair (x, u) ∈ Rd+k, we denote the successor state-action pair following policy
πK by (x′, u′). With this notation, as we defined in (7), we have

x′ = Ax+Bu+ ϵ, u′ = −Kx′ + σζ.

where ϵ ∼ N (0, D0) and ζ ∼ N (0, Ik). We further denote (x, u) and (x′, u′) by ϑ and ϑ′ respec-
tively. Therefore, we have

ϑ′ = Lϑ+ ε, (54)

where

L :=

[
A B

−KA −KB

]
=

[
Id
−K

]
[A B] , ε :=

[
ϵ

−Kϵ+ σζ

]
.

Therefore, by definition, we have ε ∼ N (0, D̃0) where

D̃0 =

[
D0 −D0K

⊤

−KD0 KD0K
⊤ + σ2Ik

]
.

Since for any two matrices M and N , it holds that ρ(MN) = ρ(NM). Then we get ρ(L) =
ρ(A − BK) < 1. Consequently, the Markov chain defined in (54) have a stationary distribution
N (0, D̃K) denoted by ρ̃K , where D̃K is the unique positive definite solution of the following Lya-
punov equation

D̃K = LD̃KL⊤ + D̃0 (55)

Meanwhile, from the fact that x ∼ N (0, DK) and u = −Kx+ σζ, by direct computation we have

D̃K =

[
DK −DKK⊤

−KDK KDKK⊤ + σ2Ik

]
=

[
0 0
0 σ2Ik

]
+

[
Id
−K

]
DK

[
Id
−K

]⊤
.

From the fact that ∥AB∥F ≤ ∥A∥F∥B∥ and ∥A∥ ≤ ∥A∥F, we have

∥D̃K∥ ≤ ∥D̃K∥F ≤ σ2k + ∥DK∥(d+ ∥K∥2F).
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Then we get

E(x,u)[ϕ(x, u)ϕ(x, u)
⊤] = Eϑ∼ρ̃K

[ϕ(ϑ)ϕ(ϑ)⊤].

Let M,N be any two symmetric matrices with appropriate dimension, we have

svec(M)⊤Eϑ∼ρ̃K
[ϕ(ϑ)ϕ(ϑ)⊤]svec(N)

= Eϑ∼ρ̃K
[svec(M)⊤ϕ(ϑ)ϕ(ϑ)⊤svec(N)]

= Eϑ∼ρ̃K
[⟨ϑϑ⊤,M⟩⟨ϑϑ⊤, N⟩]

= Eϑ∼ρ̃K
[ϑ⊤Mϑϑ⊤Nϑ]

= Eg∼N (0,Id+k)[g
⊤D̃

1/2
K MD̃

1/2
K gg⊤D̃

1/2
K ND̃

1/2
K g],

where D̃
1/2
K is the square root of D̃K . By applying Lemma B.1, we have

svec(M)⊤Eϑ∼ρ̃K
[ϕ(ϑ)ϕ(ϑ)⊤]svec(N)

=Eg∼N (0,Id+k)[g
⊤D̃

1/2
K MD̃

1/2
K gg⊤D̃

1/2
K ND̃

1/2
K g]

=2Tr(D̃1/2
K MD̃KND̃

1/2
K ) + Tr(D̃1/2

K MD̃
1/2
K )Tr(D̃1/2

K ND̃
1/2
K )

=2⟨M, D̃KND̃K⟩+ ⟨M, D̃K⟩⟨N, D̃K⟩
=svec(M)⊤(2D̃K ⊗s D̃K + svec(D̃K)svec(D̃K)⊤)svec(N),

where the last equality follows from the fact that

svec(
1

2
(NSM⊤ +MSN⊤)) = (M ⊗s N)svec(S).

for any two matrix M,N and a symmetric matrix S (Schacke, 2004). Thus we have

Eϑ∼ρ̃K
[ϕ(ϑ)ϕ(ϑ)⊤] = 2D̃K ⊗s D̃K + svec(D̃K)svec(D̃K)⊤. (56)

Similarly

ϕ(ϑ′) = svec[(Lϑ+ ε)(Lϑ+ ε)⊤]

= svec(Lϑϑ⊤L⊤ + Lϑε⊤ − εϑ⊤L⊤ + εε⊤).

Since ϵ is independent of ϑ, we get

Eϑ∼ρ̃K
[ϕ(ϑ)ϕ(ϑ′)⊤] = Eϑ∼ρ̃K

[ϕ(ϑ)svec(Lϑϑ⊤L⊤ + D̃0)].

By the same argument, we have

svec(M)⊤Eϑ∼ρ̃K
[ϕ(ϑ)ϕ(ϑ′)⊤]svec(N)

=Eϑ∼ρ̃K
[⟨ϑϑ⊤,M⟩⟨Lϑϑ⊤L⊤ + D̃0, N⟩]

=Eϑ∼ρ̃K
[ϑ⊤Mϑϑ⊤L⊤NLϑ] + ⟨M, D̃K⟩⟨D̃0, N⟩]

=Eg∈N (0,Id+k)[g
⊤D̃

1
2

KMD̃
1
2

Kgg⊤D̃
1
2

KL⊤NLD̃
1
2

Kg]

+ ⟨M, D̃K , ⟩⟨D̃0, N⟩]
=2Tr(MD̃KL⊤NLD̃K) + Tr(MD̃K)Tr(L⊤NLD̃K)

+ ⟨M, D̃K⟩⟨D̃0, N⟩
=2⟨M, D̃KL⊤NLD̃K⟩+ ⟨M, D̃K⟩⟨LD̃KL⊤, N⟩
+ ⟨M, D̃K⟩⟨D̃0, N⟩

=2⟨M, D̃KL⊤NLD̃K⟩+ ⟨M, D̃K⟩⟨D̃K , N⟩
=svec(M)⊤(2D̃KL⊤ ⊗s D̃KL⊤

+ svec(D̃K)svec(D̃K)⊤)svec(N),
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where we make use of the Lyapunov equation (55). Thus we get

Eϑ∼ρ̃K
[ϕ(ϑ)ϕ(ϑ′)⊤] = 2D̃KL⊤ ⊗s D̃KL⊤ + svec(D̃K)svec(D̃K)⊤. (57)

Therefore, combining (56) and (57), we have

AK = 2(D̃K ⊗s D̃K − D̃KL⊤ ⊗s D̃KL⊤)

= 2(D̃K ⊗s D̃K)(I − L⊤ ⊗s L
⊤),

where in the last equality we use the fact that

(A⊗s B)(C ⊗s D) =
1

2
(AC ⊗s BD +AD ⊗s BC)

for any matrices A,B,C,D. Since ρ(L) < 1, then I −L⊤ ⊗s L
⊤ is positive definite, which further

implies AK is invertible.

From Bellman equation of QK , we have

⟨ϕ(x, u), svec(ΩK)⟩ = c(x, u)− J(K) + ⟨E[ϕ(x′, u′)|x, u], svec(ΩK)⟩.
Multiply each side by ϕ(x, u) and take a expectation with respect to (x, u), we get

E[ϕ(x, u)(ϕ(x, u)−E[ϕ(x′, u′)|x, u])⊤]svec(ΩK) = E[ϕ(x, u)(c(x, u)− J(K))].

We further have

E[ϕ(x, u)(ϕ(x, u)− E[ϕ(x′, u′)|x, u])⊤]
=E[ϕ(x, u)(ϕ(x, u)− ϕ(x′, u′))⊤]

=AK ,

where the first equality comes from the low of total expectation and

E[ϕ(x, u)(c(x, u)− J(K))] = bK

Therefore, we get

AKsvec(ΩK) = bK ,

which implies ω∗
K = svec(ΩK). Thus we conclude our proof.

Proof of Proposition A.2:

Proof. Since DKt
satisfies the Lyapunov equation defined in (10), we have

DKt =

∞∑
k=0

(A−BKt)
kDσ((A−BKt)

⊤)k.

From Assumption 4.2, we know that ρ(A − BKt) ≤ ρ < 1. Thus for any ϵ > 0, there exists a
sub-multiplicative matrix norm ∥ · ∥∗ such that

∥A−BKt∥∗ ≤ ρ(A−BKt) + ϵ.

Choose ϵ = 1−ρ
2 , we get

∥A−BKt∥∗ ≤ 1 + ρ

2
< 1.

Therefore, we can bound the norm of DKt
by

∥DKt∥∗ ≤
∞∑
k=0

∥A−BKt∥2k∗ ∥Dσ∥∗

≤ ∥Dσ∥∗
∞∑
k=0

(
1 + ρ

2
)2k

≤ ∥Dσ∥∗
1

1− ( 1+ρ
2 )2

.
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Since all norms are equivalent on the finite dimensional Euclidean space, there exists a constant c1
satisfies

∥DKt
∥ ≤ c1

1− ( 1+ρ
2 )2

∥Dσ∥,

which concludes our proof.

Proof of Proposition A.4:

Proof. Since xt ∼ N (0, DKt
) and ut = −Ktxt + σζt, we denote the joint distribution of ϑt =

(xt, ut) by ρ̃Kt
= N (0, D̃Kt

) where

D̃Kt
=

[
DKt −DKtK

⊤
t

−KtDKt KtDKtK
⊤
t + σ2Ik

]
=

[
0 0
0 σ2Ik

]
+

[
Id

−Kt

]
DKt

[
Id

−Kt

]⊤
. (58)

Based on Lemma A.3, for (xt, ut) ∼ N (0, D̃Kt) with D̃Kt defined in (58), we obtain

P[|∥xt∥22 + ∥ut∥22 − Tr(D̃Kt
)| > θ] ≤ 2e−c̄·min{θ2∥D̃Kt∥

−2
F ,θ∥D̃Kt∥

−1}.

Choose θ = c2log(10)∥D̃Kt
∥ with c2 sufficiently large such that c̄c2 > 12 and θ2∥D̃Kt

∥−2
F >

θ∥D̃Kt
∥−1, where we make use of the fact that ∥D̃Kt

∥F is bounded. Hence we have the following
probability inequality

P[|∥xt∥22 + ∥ut∥22 − Tr(D̃Kt
)| ≤ c2log(10)∥D̃Kt

∥] ≥ 1− 2e−c̄c2log(10).

We define the following event

At = {|∥xt∥22 + ∥ut∥22 − Tr(D̃Kt
)| ≤ c2 log(10)∥D̃Kt

∥}.

Then we have P(At) ≥ 1− 2e−c̄c2log(10) ≥ 1− 2 · 10−12 ≥ 1− 10−11. We further define

Ā = ∩0≤t≤T−1At.

Thus we get P(Ā) ≥ 1− 10−10. In the sequel, we only consider the case when Ā holds. That is,
for any 0 ≤ t ≤ T − 1, we have

∥xt∥2 + ∥ut∥2 ≤ c2log(10)∥D̃Kt
∥+ tr(D̃Kt

)

≤ (c2log(10) + d+ k)∥D̃Kt∥
≤ 2c2log(10)∥D̃Kt

∥
≤ 2c2log(10)[σ

2k + (d+ ∥Kt∥2F)∥DKt
∥],

where the third inequality holds since we choose c2 large enough such that c2 log(10) ≥ d+ k and
the last inequality is due to the fact

∥D̃Kt
∥ ≤ σ2k + (d+ ∥Kt∥2F)∥DKt

∥.

From Assumption 4.1, we know that ∥Kt∥ ≤ K̄, so we have

∥xt∥2 + ∥ut∥2 ≤ 2c2log(10)[σ
2k + d(1 + K̄2)∥DKt∥]. (59)

From Proposition A.2, we know that

∥DKt
∥ ≤ c1

1− ( 1+ρ
2 )2

∥Dσ∥.

Substitute ∥DKt
∥ into (59), we get

∥xt∥2 + ∥ut∥2 ≤2c2log(10)[σ
2k + d(1 + K̄2)

c1

1− ( 1+ρ
2 )2

∥Dσ∥]. (60)
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Notice that c(x, u) = x⊤Qx+ u⊤Ru, combine with (60), we get

c(xt, ut) ≤σmax(Q)∥xt∥2 + σmax(R)∥ut∥2

≤2c2(σmax(Q) + σmax(R) + 1)[σ2k + d(1 + K̄2)
c1

1− ( 1+ρ
2 )2

∥Dσ∥]log(10)

:=Ū .

Thus we can use Ū as an upper bound to both c(x, u) and ∥xt∥2 + ∥ut∥2, which concludes the
proof.

Proof of Proposition A.6:

Proof.

|J(Kt+1)− J(Kt)|
=|Tr((PKt+1

− PKt
)Dσ)|

≤d∥Dσ∥∥PKt+1
− PKt

∥
≤6d∥Dσ∥σ−1

min(D0)∥DKt
∥∥Kt∥∥R∥(∥Kt∥∥B∥∥A−BKt∥+ ∥Kt∥∥B∥+ 1)∥Kt+1 −Kt∥

≤6c1dK̄σ−1
min(D0)

∥Dσ∥2

1− ( 1+ρ
2 )2

∥R∥(K̄∥B∥(∥A∥+ K̄∥B∥+ 1) + 1)∥Kt+1 −Kt∥

=l1∥Kt+1 −Kt∥,
where the second inequality is due to the perturbation of PK in Lemma A.5 and

l1 :=6c1dK̄σ−1
min(D0)

∥Dσ∥2

1− ( 1+ρ
2 )2

∥R∥(K̄∥B∥(∥A∥+ K̄∥B∥+ 1) + 1).

Thus we finish our proof.

Proof of Proposition A.8:

Proof. From Proposition 3.1, we know that

AKt
= 2(D̃Kt

⊗s D̃Kt
)(I − L⊤ ⊗s L

⊤).

By Assumption 4.2, we have ρ(L) = ρ(A−BKt) ≤ ρ < 1. Then we have

∥A−1
Kt

∥ =
1

2
∥(I − L⊤ ⊗s L

⊤)−1(D̃Kt
⊗s D̃Kt

)−1∥

≤ 1

2
∥(I − L⊤ ⊗s L

⊤)−1∥∥(D̃Kt
⊗s D̃Kt

)−1∥

≤ 1

2(1− ρ2)
∥D̃−1

Kt
∥2

=
1

2(1− ρ2)σ2
min(D̃Kt

)
.

To bound σmin(D̃Kt
), for any a ∈ Rd and b ∈ Rk, we have(

a⊤ b⊤
)
D̃Kt

(
a
b

)
=E(x,u)∼N (0,D̃Kt )

[
(
a⊤ b⊤

)(x
u

)(
x⊤ u⊤)(a

b

)
]

=E(x,u)∼N (0,D̃Kt )
[((a⊤ − b⊤Kt)x+ σb⊤ζ) · ((a⊤ − b⊤Kt)x+ σb⊤ζ)⊤]

=Ex∼N (0,DKt ),ζ∼N (0,Ik)[(a
⊤ − b⊤Kt)xx

⊤(a−K⊤
t b) + σ2b⊤ζζ⊤b]

≥σmin(DKt
)∥a−K⊤

t b∥2 + σ2∥b∥2.
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For ∥a−K⊤
t b∥2, we have

∥a−K⊤
t b∥2 ≥∥a∥2 + ∥K⊤

t b∥2 − 2∥a∥∥K⊤
t ∥∥b∥

≥∥a∥2 − 2K̄∥a∥∥b∥

≥∥a∥2 − 1

2
(∥a∥2 + 4K̄2∥b∥2)

=
1

2
∥a∥2 − 2K̄2∥b∥2.

Hence we get

(
a⊤ b⊤

)
D̃Kt

(
a
b

)
≥σmin(DKt

)∥a−K⊤
t b∥2 + σ2∥b∥2

≥σmin(DKt
)(
1

2
∥a∥2 − 2K̄2∥b∥2) + σ2∥b∥2

≥min{σmin(D0),
σ2

4K̄2
}(1

2
∥a∥2 − 2K̄2∥b∥2) + σ2∥b∥2

≥min{σmin(D0)

2
,
σ2

8K̄2
,
σ2

2
}(∥a∥2 + ∥b∥2).

Thus we have

σmin(D̃Kt
) ≥ min{σmin(D0)

2
,
σ2

8K̄2
,
σ2

2
} > 0,

which further implies

∥A−1
Kt

∥ ≤ 1

2(1− ρ2)σ2
min(D̃Kt

)

≤ 1

2(1− ρ2)(min{σmin(D0)
2 , σ2

8K̄2 ,
σ2

2 })2
.

We define

µ := 2(1− ρ2)(min{σmin(D0)

2
,
σ2

8K̄2
,
σ2

2
})2

such that we get

σmin(AKt
) ≥ µ,

which concludes the proof.

Proof of Proposition A.9:
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Proof.

∥ω∗
t − ω∗

t+1∥
=∥svec(ΩKt − ΩKt+1)∥
=∥ΩKt − ΩKt+1∥F

=∥
[
A⊤(PKt

− PKt+1
)A A⊤(PKt

− PKt+1
)B

B⊤(PKt
− PKt+1

)A B⊤(PKt
− PKt+1

)B

]
∥F

=∥A⊤(PKt − PKt+1)A∥F + ∥A⊤(PKt − PKt+1)B∥F

+ ∥B⊤(PKt
− PKt+1

)A∥F + ∥B⊤(PKt
− PKt+1

)B∥F

≤d
3
2 (∥A∥+ ∥B∥)2∥PKt

− PKt+1
∥

≤6d
3
2 (∥A∥+ ∥B∥)2σ−1

min(D0)∥DKt
∥∥Kt∥∥R∥·

(∥Kt∥∥B∥∥A−BKt∥+ ∥Kt∥∥B∥+ 1)∥Kt+1 −Kt∥

≤6c1d
3
2 (∥A∥+ ∥B∥)2σ−1

min(D0)
∥Dσ∥

1− ( 1+ρ
2 )2

K̄∥R∥·

(K̄∥B∥(∥A∥+ K̄∥B∥+ 1) + 1)∥Kt+1 −Kt∥
=l2∥Kt+1 −Kt∥,

where

l2 :=6c1d
3
2 K̄(∥A∥+ ∥B∥)2σ−1

min(D0)
∥Dσ∥∥R∥
1− ( 1+ρ

2 )2
· (K̄∥B∥(∥A∥+ K̄∥B∥+ 1) + 1). (61)

C PROOF OF AUXILIARY LEMMAS

The following lemmas are well known and have been established in several papers (Yang et al.,
2019; Fazel et al., 2018). We include the proof here only for completeness.

Proof of Lemma 2.1:

Proof. Since we focus on the family of linear-Gaussian policies defined in (7), we have

J(K) =E(x,u)[c(x, u)]

=E(x,u)[x
⊤Qx+ u⊤Ru]

=E(x,u)[x
⊤Qx+ (−Kx+ σζ)⊤R(−Kx+ σζ)]

=Ex∼ρK
Eζ∼Ik [x

⊤(Q+K⊤RK)x− σx⊤K⊤Rζ

−σζ⊤RKx+ σ2ζ⊤Rζ]

=Ex∼ρK
[x⊤(Q+K⊤RK)x] + σ2Tr(R)

=Tr((Q+K⊤RK)DK) + σ2Tr(R). (62)

Furthermore, for K ∈ Rk×d such that ρ(AB −K) < 1 and positive definite matrix S ∈ Rd×d, we
define the following two operators

ΓK(S) =
∑
t≥0

(A−BK)tS[(A−BK)t]⊤,

Γ⊤
K(S) =

∑
t≥0

[(A−BK)t]⊤S(A−BK)t. (63)

Hence, ΓK(S) and Γ⊤
K(S) satisfy Lyapunov equations

ΓK(S) = S + (A−BK)ΓK(S)(A−BK)⊤, (64)

Γ⊤
K(S) = S + (A−BK)⊤Γ⊤

K(S)(A−BK) (65)
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respectively. Therefore, for any positive definite matrices S1 and S2, we get

Tr(S1ΓK(S2)) =
∑
t≥0

Tr(S1(A−BK)tS2[(A−BK)t]⊤)

=
∑
t≥0

Tr([(A−BK)t]⊤S1(A−BK)tS2)

= Tr(Γ⊤
K(S1)S2).

Combining (10), (55), (64) and (65), we know that

DK = ΓK(Dσ), PK = Γ⊤
K(Q+K⊤RK). (66)

Thus (62) implies

J(K) = Tr((Q+K⊤RK)DK) + σ2Tr(R)

= Tr((Q+K⊤RK)ΓK(Dσ)) + σ2Tr(R)

= Tr(Γ⊤
K(Q+K⊤RK)Dσ) + σ2Tr(R)

= Tr(PKDσ) + σ2Tr(R).

It remains to establish the gradient of J(K). Based on (62), we have

∇KJ(K) =∇KTr((Q+K⊤RK)C))|C=DK
+∇KTr(CDK)|C=Q+K⊤RK ,

where we use C to denote that we compute the gradient with respect to K and then substitute the
expression of C. Hence we get

∇KJ(K) = 2RKDK +∇KTr(C0DK)|C0=Q+K⊤RK . (67)

Furthermore, we have

∇KTr(C0DK)

=∇KTr(C0ΓK(Dσ))

=∇KTr(C0Dσ + C0(A−BK)ΓK(Dσ)(A−BK)⊤)

=∇KTr(C0Dσ) +∇KTr((A−BK)⊤C0(A−BK)ΓK(Dσ))

=− 2B⊤C0(A−BK)ΓK(Dσ) +∇KTr(C1ΓK(Dσ))|C1=(A−BK)⊤C0(A−BK).

Then it reduces to compute ∇KTr(C1ΓK(Dσ))|C1=(A−BK)⊤C0(A−BK). Applying this iteration for
n times, we get

∇KTr(C0DK)

=− 2B⊤
n∑

t=0

Ct(A−BK)ΓK(Dσ)

+∇KTr(CnΓK(Dσ))|Cn=[(A−BK)n]⊤C0(A−BK)n . (68)

Meanwhile, by Lyapunov equation defined in (11), we have
∞∑
t=0

Ct =

∞∑
t=0

[(A−BK)t]⊤(Q+K⊤RK)(A−BK)t

=PK .

Since ρ(A−BK) < 1, we further get

lim
n→∞

Tr(CnΓK(Dσ))

≤ lim
n→∞

∥(Q+K⊤RK)∥ρ(A−BK)2nTr(ΓK(Dσ))

=0.
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Thus by letting n go to infinity in (68), we get

∇KTr(C0DK)|C0=Q+K⊤RK

=− 2B⊤PK(A−BK)ΓK(Dσ)

=− 2B⊤PK(A−BK)DK .

Hence, combining (67), we have

∇KJ(K) = 2RKDK − 2B⊤PK(A−BK)DK

= 2[(R+B⊤PKB)K −B⊤PKA]DK ,

which concludes our proof.

Proof of Lemma 2.2:

Proof. By definition, we have the state-value function as follows

Vθ(x) : =

∞∑
t=0

Eθ[(c(xt, ut)− J(θ))|x0 = x]

= Eu∼πθ(·|x)[Qθ(x, u)], (69)

Therefore, we have

VK(x) =

∞∑
t=0

E[c(xt, ut)− J(K)|x0 = x, ut = −Kxt + σζt]

=

∞∑
t=0

E{[x⊤
t (Q+K⊤RK)xt] + σ2Tr(R)− J(K)}. (70)

Combining the linear dynamic system in (8) and the form of (70), we see that VK(x) is a quadratic
function, which can be denoted by

VK(x) = x⊤PKx+ CK ,

where PK is defined in (11) and CK only depends on K. Moreover, by definition, we know that
Ex∼ρK

[VK(x)] = 0, which implies

Ex∼ρK
[x⊤PKx+ CK ] = Tr(PKDK) + CK = 0.

Thus we have CK = −Tr(PKDK). Hence, the expression of VK(x) is given by

VK(x) = x⊤PKx− Tr(PKDK).

Therefore, the action-value function QK(x, u) can be written as

Q(x, u) =c(x, u)− J(K) + E[VK(x′)|x, u]
=c(x, u)− J(K) + (Ax+Bu)⊤PK(Ax+Bu) + Tr(PKD0)− Tr(PKDK)

=x⊤Qx+ u⊤Ru+ (Ax+Bu)⊤PK(Ax+Bu)− σ2Tr(R+ PKBB⊤)− Tr(PKΣK).

Thus we finish the proof.

Proof of Lemma A.11:

Proof. By the definition of operator in (63) and (66), we have

x⊤PK′x

=x⊤Γ⊤
K′(Q+K ′⊤RK ′)x

=
∑
t≥0

x⊤[(A−BK ′)t]⊤(Q+K ′⊤RK ′)(A−BK ′)tx.
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Hereafter, we define (A−BK ′)tx = x′
t and u′

t = −K ′x′
t. Hence, we further have

x⊤PK′x =
∑
t≥0

x′⊤
t (Q+K ′⊤RK ′)x′

t

=
∑
t≥0

(x′⊤
t Qx′

t + u′⊤
t Ru′

t).

Therefore, we get

x⊤PK′x− x⊤PKx

=
∑
t≥0

[(x′⊤
t Qx′

t + u′⊤Ru′
t) + x′⊤

t PKx′
t − x′⊤

t PKx′
t]− x′⊤

0 PKx′
0

=
∑
t≥0

[(x′⊤
t Qx′

t + u′⊤Ru′
t) + x′⊤

t+1PKx′
t+1 − x′⊤

t PKx′
t]

=
∑
t≥0

[(x′⊤
t Qx′

t + u′⊤
t Ru′

t) + [(A−BK ′)x′
t]
⊤PK(A−BK ′)x′

t − x′
tPKx′

t]

=
∑
t≥0

{x′⊤
t [Q+ (K ′ −K +K)⊤R(K ′ −K +K)]x′

t

+ x′⊤
t [A−BK −B(K ′ −K)⊤PK [A−BK −B(K ′ −K)]x′

t − x′
tPKx′

t}

=
∑
t≥0

{2x⊤
t (K

′ −K)⊤[(R+B⊤PKB)K −B⊤PKA]x′
t

+ x′⊤
t (K ′ −K)⊤(R+B⊤PKB)(K ′ −K)x′

t}

=
∑
t≥0

[2x′⊤
t (K ′ −K)⊤EKx′

t + x′⊤
t (K ′ −K)⊤(R+B⊤PKB)(K ′ −K)x′

t].

Define

AK,K′(x) := 2x⊤(K ′ −K)⊤EKx+ x⊤(K ′ −K)⊤(R+B⊤PKB)(K ′ −K)x. (71)

Then, from the expression of J(K) in (12a), we have

J(K ′)− J(K)

=Ex∼N (0,Dσ)[x
⊤(PK′ − PK)x]

=Ex′
0∼N (0,Dσ)

∑
t≥0

AK,K′(xt)

=Ex′
0∼N (0,Dσ)

∑
t≥0

[2x′⊤
t (K ′ −K)⊤EKx′

t + x′⊤
t (K ′ −K)⊤(R+B⊤PKB)(K ′ −K)x′

t]

=Tr(2Ex′
0∼N (0,Dσ)[

∑
t≥0

x′⊤
t x′

t](K
′ −K)⊤EK)+

Tr(Ex′
0∼N (0,Dσ)[

∑
t≥0

x′⊤
t x′

t](K
′ −K)⊤(R+B⊤PKB)(K ′ −K))

=− 2Tr(DK′(K −K ′)⊤EK) + Tr(DK′(K −K ′)⊤(R+B⊤PKB)(K −K ′)).

where the last equation is due to the fact that

Ex′
0∼N (0,Dσ)[

∑
t≥0

x′
t(x

′
t)

⊤]

=Ex∼N (0,Dσ){
∑
t≥0

(A−BK ′)txx⊤[(A−BK ′)t]⊤}

=ΓK′(Dσ) = DK′ .

Hence, we finish our proof.
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Proof of Lemma A.12:

Proof. By definition of AK,K′ in (71), we have

AK,K′(x)

=2x⊤(K ′ −K)⊤EKx+ x⊤(K ′ −K)⊤(R+B⊤PKB)(K ′ −K)x

=Tr(xx⊤[K ′ −K + (R+B⊤PKB)−1EK ]⊤·
(R+B⊤PKB)[K ′ −K + (R+B⊤PKB)−1EK ])

− Tr(xx⊤E⊤
K(R+B⊤PKB)−1EK)

≥− Tr(xx⊤E⊤
K(R+B⊤PKB)−1EK),

where the equality is satisfied when K ′ = K − (R+B⊤PKB)−1EK . Therefore, we have

J(K)− J(K∗) = −Ex′
0∼N (0,Dσ)

∑
t≥0

AK,K∗(xt)

≤ Tr(DK∗E⊤
K(R+B⊤PKB)−1EK)

≤ ∥DK∗∥Tr(E⊤
K(R+B⊤PKB)−1EK)

≤ ∥DK∗∥∥(R+B⊤PKB)−1∥Tr(E⊤
KEK)

≤ 1

σmin(R)
∥DK∗∥Tr(E⊤

KEK).

Thus we complete the proof of upper bound.

It remains to establish the lower bound. Since the equality is attained at K ′ = K − (R +
B⊤PKB)−1EK , we choose this K ′ such that

J(K)− J(K∗) ≥ J(K)− J(K ′)

= −Ex′
0∼N (0,Dσ)[

∑
t≥0

AK,K′(x′
t)]

= Tr(DK′E⊤
K(R+B⊤PKB)−1EK)

≥ σmin(D0)∥R+B⊤PKB∥−1Tr(E⊤
KEK).

Overall, we have

σmin(D0)∥R+B⊤PKB∥−1Tr(E⊤
KEK) ≤ J(K)− J(K∗)

≤ 1

σmin(R)
∥DK∗∥Tr(E⊤

KEK),

which concludes our proof.

D EXPERIMENTAL DETAILS

Example D.1. Consider a two-dimensional system with

A =

[
0 1
1 0

]
,B =

[
0 1
1 0

]
,Q =

[
9 2
2 1

]
,R =

[
1 2
2 8

]
.

Example D.2. Consider a four-dimensional system with

A =

0.2 0.1 1 0
0.2 0.1 0.1 0
0 0.1 0.5 0
0 0 0 0.5

 ,B =

0.3 0 0
0.2 0 0.3
1 1 0.3
0.3 0.1 0.1

 ,

Q =

 1 0 0.2 0
0 1 0.1 0
0.2 0.1 1 0.1
0 0 0.1 1

 ,R =

[
1 0.1 1
0.1 1 0.5
1 0.5 2

]
.
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We compare our considered single-sample single-timescale AC with two other baseline algorithms
that have been analyzed in the state-of-the-art theoretical works: the zeroth-order method (Fazel
et al., 2018) (listed in Algorithm 2 on the next page) and the double loop AC (Yang et al., 2019)
(listed in Algorithm 3 on the next page).

For the considered single-sample single-timescale AC, we set for both examples αt =
0.005√
1+t

, βt =
0.01√
1+t

, γt = 0.1√
1+t

, σ = 1, T = 106. Note that multiplying small constants to these stepsizes does
not affect our theoretical results.

For the zeroth-order method proposed in Fazel et al. (2018), we set z = 5000, l = 20, r = 0.1,
stepsize η = 0.01 and iteration number J = 1000 for the first numerical example; while in the
second example, we set z = 20000, l = 50, r = 0.1, η = 0.01, J = 1000. We choose different
parameters based on the trade-off between better performance and fewer sample complexity.

For the double loop AC proposed in Yang et al. (2019), we set for both examples αt =
0.01√
1+t

, σ =

0.2, η = 0.05, inner-loop iteration number T = 500000 and outer-loop iteration number J = 100.
We note that the algorithm is fragile and sensitive to the practical choice of these parameters. More-
over, we found that it is difficult for the algorithm to converge without an accurate critic estimation in
the inner-loop. In our implementation, we have to set the inner-loop iteration number to T = 500000
to barely get the algorithm converge to the global optimum. This nevertheless demands a significant
amount of computation. Higher T iterations can yield more accurate critic estimation, and conse-
quently more stable convergence, but at a price of even longer running time. We run the outer-loop
for 100 times for each run of the algorithm. We run the whole algorithm 10 times independently to
get the results shown in Figure. With parallel computing implementation, it takes more than 2 weeks
on our desktop workstation (Intel Xeon(R) W-2225 CPU @ 4.10GHz × 8) to finish the computation.
In comparison, it takes about 0.5 hour to run the single-sample single-timescale AC and 5 hours for
the zeroth-order method.

Algorithm 2 Zeroth-order Natural Policy Gradient

Input: stabilizing policy gain K0 such that ρ(A − BK0) < 1, number of trajectories z, roll-out
length l, perturbation amplitude r, stepsize η
while updating current policy do

Gradient Estimation:
for i = 1, · · · , z do

Sample x0 from D
Simulate Kj for l steps starting from x0 and observe y0, · · · , yl−1 and c0, · · · , cl−1.
Draw Ui uniformly over matrices such that ∥Ui∥F = 1, and generate a policy Kj,Ui =
Kj + rUi.
Simulate Kj,Ui for l steps starting from x0 and observe c′0, · · · , c′l−1.
Calculate empirical estimates:

Ĵ i
Kj

=

l−1∑
t=0

ct, L̂i
Kj

=

l−1∑
t=0

yty
⊤
t , ĴKj,Ui

=

l−1∑
t=0

c′t.

end for
Return estimates:

∇̂J(Kj) =
1

z

z∑
i=1

ĴKj,Ui
− Ĵ i

Kj

r
Ui, L̂Kj

=
1

z

z∑
i=1

L̂i
Kj

.

Policy Update:
Kj+1 = Kj − η∇̂J(Kj)L̂Kj

−1
.

j = j + 1.
end while
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Algorithm 3 Double-loop Natural Actor-Critic

Input: Initial policy πK0
such that ρ(A−BK0) < 1, stepsize γ for policy update.

while updating current policy do
Gradient Estimation:
Initialize the primal and dual variables by v0 ∈ XΘ and ω0 ∈ XΩ, respectively.
Sample the initial state x0 ∈ Rd from stationary distribution ρKj

. Take action u0 ∼ πKj
(·|x0)

and obtain the reward c0 and the next state x1.
for i = 1, 2, · · · , T do

Take action ut according to policy πKj , observe the reward ct and the next state xt+1.
δt = v1t−1 − ct−1 + [ϕ(xt−1, ut−1)− ϕ(xt, ut)]

⊤v2t−1.
v1t = v1t−1 − αt[ω

1
t−1 + ϕ(xt−1, ut−1)

⊤ω2
t−1].

v2t = v2t−1 − αt[ϕ(xt−1, ut−1)− ϕ(xt, ut)] · ϕ(xt−1, ut−1)
⊤ω2

t−1.
ω1
t = (1− αt)ω

1
t + αt(v

1
t−1 − ct−1).

ω2
t = (1− αt)ω

2
t + αtδtϕ(xt−1, ut−1).

Project vt and ωt to v0 ∈ XΘ and ω0 ∈ XΩ.
end for
Return estimates:

v̂2 = (

T∑
t=1

αtv
2
t )/(

T∑
t=1

αt), Θ̂ = smat(v̂2).

Policy Update:
Kj+1 = Kj − η(Θ̂22Kj − Θ̂21).
j = j + 1.

end while
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