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Abstract

Robust reinforcement learning (RL) aims to find a policy that optimizes worst-case per-
formance in the face of uncertainties. In this paper, we focus on action robust RL with
the probabilistic policy execution uncertainty, in which, instead of always carrying out the
action specified by the policy, the agent will take the action specified by the policy with
probability 1 − ρ and an alternative adversarial action with probability ρ. We show the
existence of an optimal policy on the action robust MDPs with probabilistic policy execu-
tion uncertainty and provide the action robust Bellman optimality equation for its solution.
Based on that, we develop Action Robust Reinforcement Learning with Certificates (AR-
RLC) algorithm that achieves minimax optimal regret and sample complexity. Our results
highlight that action-robust RL shares the same sample complexity barriers as standard RL,
ensuring robust performance without additional complexity costs. Furthermore, we conduct
numerical experiments to validate our approach’s robustness, demonstrating that ARRLC
outperforms non-robust RL algorithms and converges faster than the other action robust
RL algorithms in the presence of action perturbations.

1 Introduction

Reinforcement learning (RL), a framework for solving control-theoretic problem that involves making deci-
sions over time under an unknown environment, has many applications in a variety of scenarios (Zhao et al.,
2018; Nazari et al., 2018; O’ Kelly et al., 2018; Liu et al., 2020). However, the solutions to standard RL meth-
ods are not inherently robust to uncertainties, perturbations, or structural changes in the environment, which
are frequently observed in real-world settings. A trustworthy reinforcement learning algorithm should be
competent in solving challenging real-world problems with robustness against perturbations and uncertain-
ties. Robust RL aims to improve the worst-case performance of algorithms deterministically or statistically
in the face of uncertainties in different MDP components, including observations/states (Zhang et al., 2020a;
Sun et al., 2022), actions (Tessler et al., 2019; Klima et al., 2019), transitions (Nilim & El Ghaoui, 2005;
Iyengar, 2005; Tamar et al., 2014; Wang & Zou, 2021), and rewards (Huang & Zhu, 2019; Lecarpentier &
Rachelson, 2019).
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In this paper, we consider action uncertainties, also called policy execution uncertainties, and probabilistic
uncertainty set proposed in Tessler et al. (2019). Robust RL against action uncertainties focuses on the
discrepancy between the actions generated by the RL agent and the conducted actions. Taking the robot
control as an example, such policy execution uncertainty may come from the actuator noise, limited power
range, or actuator failures in the real world. Taking the medication advice in healthcare as another example,
such policy execution uncertainty may come from the patient’s personal behaviors such as drug refusal,
forgotten medication, or overdose etc.

To deal with the policy execution uncertainty, robust RL methods (Pinto et al., 2017; Tessler et al., 2019)
adopt the adversarial training framework (Goodfellow et al., 2014; Madry et al., 2018) and assume an
adversary conducting adversarial attacks to mimic the naturalistic uncertainties. Training with an adversary
can be formulated as a zero-sum game between the adversary and the RL agent. However, these interesting
works do not provide theoretical guarantee on sample complexity or regret. In this paper, we aim to fill this
gap.

The approaches in Pinto et al. (2017) and Tessler et al. (2019) iteratively apply two stages: (i) given a fixed
adversary policy, it calculates the agent’s optimal policy; and (ii) update the adversary policy against the
updated agent’s policy. The repetition of stage (i) requires repeatedly solving MDP to find the optimal
policy, which is sample inefficient. Motivated by the recent theoretical works on transition probability
uncertainty that use the robust dynamic programming method Iyengar (2005) and achieve efficient sample
complexity Wang & Zou (2021); Panaganti & Kalathil (2022); Xu et al. (2023), we introduce the action robust
Bellman equations and design sample efficient algorithms based on the action robust Bellman equations. Our
methods simultaneously update the adversary policy and agent’s policy instead of updating one after another
is converged. Our major contributions are summarized as follows:

• We show that the robust problem can be solved by the iteration of the action robust Bellman
optimality equations. Motivated by this, we design two efficient algorithms.

• We develop a model-based algorithm, Action Robust Reinforcement Learning with Certificates (AR-
RLC), for episodic action robust MDPs, and show that it achieves minimax order optimal regret
and minimax order optimal sample complexity.

• We develop a model-free algorithm for episodic action robust MDPs, and analyze its regret and
sample complexity.

• We conduct numerical experiments to validate the robustness of our approach. In our experiments,
our robust algorithm achieves a much higher reward than the non-robust RL algorithm when being
tested with some action perturbations; and our ARRLC algorithm converges much faster than the
robust TD algorithm in (Klima et al., 2019).

2 Related work

We mostly focus on papers that are related to sample complexity bounds for the episodic RL and the two-
player zero-sum Markov game, and action robust RL, that are close related to our model. We remark that
there are also related settings, e.g., infinite-horizon discounted MDP (Li et al., 2020; He et al., 2021), robust
RL with other uncertainties (Iyengar, 2005; Lecarpentier & Rachelson, 2019; Zhang et al., 2020a; Wang &
Zou, 2021), robust offline RL (Guo et al., 2022; Shi & Chi, 2022), adversarial training with a generative RL
model (Zhou et al., 2021; Yang et al., 2022; Panaganti & Kalathil, 2022; Xu et al., 2023; Shi et al., 2023),
adversarial attacks on RL (Zhang et al., 2020b; Liu & Lai, 2021; Sun et al., 2021), etc. Most of robust RL
papers considered the robust MDP setting, which have been proposed to handle these problems by letting
the transition probability vary in an uncertainty (or ambiguity) set. Table 2 provides the sample complexity
comparisons of our result with that of the existing Robust MDP works.

Action robust RL. Pinto et al. (2017) introduces robust adversarial reinforcement learning to address the
generalization issues in reinforcement learning by training with a destabilizing adversary that applies distur-
bance forces to the system. Tessler et al. (2019) introduces two new criteria of robustness for reinforcement
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Algorithm Sample
complexity Uncertainty Sample from

(Yang et al., 2022) S2AH4(2+ρ)2

ρ2ϵ2

Transition
probability Generative environment

(Panaganti & Kalathil, 2022) S2AH4

ϵ2
Transition
probability Generative environment

(Xu et al., 2023) SAH5

ϵ2
Transition
probability Generative environment

(Wang & Zou, 2021) Asymptotic Transition
probability Online environment

This work SAH3

ϵ2
Policy execu-
tion Online environment

(Non-robust) Lower bound
(Zhang et al., 2020c)

SAH3

ϵ2 - -

Table 1: Sample complexity comparisons of previous results and our results, where S, A are the size of the
state space and action space, H is the length of the horizon, K is the number of episodes, ρ is the uncertainty
parameter, and ϵ is the level of suboptimality.

learning in the face of action uncertainty. We follow its probabilistic action robust MDP (PR-MDP) in which,
instead of the action specified by the policy, an alternative adversarial action is taken with probability ρ.
They generalize their policy iteration approach to deep reinforcement learning (DRL) and provide extensive
experiments. A similar uncertainty setting was presented in Klima et al. (2019), which extends temporal
difference (TD) learning algorithms by a new robust operator and shows that the new algorithms converge to
the optimal robust Q-function. However, no theoretical guarantee on sample complexity or regret is provided
in these works. We develop a minimax sample efficient algorithm and fill this gap.

Sample complexity bounds for the episodic RL. There is a rich literature on sample complexity
guarantees for episodic tabular RL, for example (Kearns & Singh, 2002; Strehl et al., 2006; Auer et al.,
2008; Azar et al., 2017; Dann et al., 2017; Jin et al., 2018; Dann et al., 2019; Simchowitz & Jamieson, 2019;
Zhang et al., 2020c; 2021). However, these methods can not be directly applied in action robust MDP
with small technical changes. Most relevant to our paper is the work about policy certificates (Dann et al.,
2019). The algorithm ORLC in Dann et al. (2019) calculate both the upper bound and lower bound of the
value functions, and outputs policy certificates that bound the sub-optimality and return of the policy. Our
proposed ARRLC shares a similar structure with ORLC, but we develop new adversarial trajectory sampling
and action robust value iteration method in ARRLC, and new techniques to bound the sum of variances so
that our algorithm suits for action robust MDPs.

Sample complexity bounds for the two-player zero-sum Markov game. Training with an adversary
can naturally be formulated as a zero-sum game between the adversary and the RL agent. Some sample
efficient algorithms for two-player zero-sum Markov game can be used to train the action robust RL agent.
The efficient multi-agent RL algorithms (Liu et al., 2021; Jin et al., 2021) can be used to solve the action
robust optimal policy but are not minimax optimal. They are a factor of A or H2 above the minimax lower
bound. Our algorithm ARRLC is minimax optimal.

3 Problem formulation

Tabular MDPs. We consider a tabular episodic MDP M = (S,A, H, P, R), where S is the state space
with |S| = S, A is the action space with |A| = A, H ∈ Z+ is the number of steps in each episode, P is the
transition matrix so that Ph(·|s, a) represents the probability distribution over states if action a is taken for
state s at step h ∈ [H], and Rh : S ×A → [0, 1] represents the reward function at the step h. In this paper,
the probability transition functions and the reward functions can be different at different steps.

The agent interacts with the MDP in episodes indexed by k. Each episode k is a trajectory
{sk

1 , ak
1 , rk

1 , · · · , sk
H , ak

H , rk
H} of H states sk

h ∈ S, actions ak
h ∈ A, and rewards rk

h ∈ [0, 1]. At each step

3



Published in Transactions on Machine Learning Research (08/2024)

h ∈ [H] of episode k, the agent observes the state sk
h and chooses an action ak

h. After receiving the action,
the environment generates a random reward rk

h ∈ [0, 1] derived from a distribution with mean Rh(sk
h, ak

h)
and next state sk

h+1 that is drawn from the distribution Ph(·|sk
h, ak

h). For notational simplicity, we assume
that the initial states sk

1 = s1 are deterministic in different episode k.

A (stochastic) Markov policy of the agent is a set of H maps π := {πh : S → ∆A}h∈[H], where ∆A denotes
the simplex over A. We use notation πh(a|s) to denote the probability of taking action a in state s under
stochastic policy π at step h. A deterministic policy is a policy that maps each state to a particular action.
Therefore, when it is clear from the context, we abuse the notation πh(s) for a deterministic policy π to
denote the action a which satisfies πh(a|s) = 1.

Action robust MDPs. In the action robust case, the policy execution is not accurate and lies in some
uncertainty set centered on the agent’s policy π. Denote the actual behavior policy by π̃ where π̃ ∈ Π(π)
and Π(π) is the uncertainty set of the policy execution. Denote the actual behavior action at episode k and
step h by ãk

h where ãk
h ∼ π̃k

h. Define the action robust value function of a policy π as the worst-case expected
accumulated reward over following any policy in the uncertainty set Π(π) centered on a fixed policy π:

V π
h (s) = min

π̃∈Π(π)
Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
. (1)

V π
h represents the action robust value function of policy π at step h. Similarly, define the action robust

Q-function of a policy π:

Qπ
h(s, a) = min

π̃∈Π(π)
Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a

]
. (2)

The goal of action robust RL is to find the optimal robust policy π∗ that maximizes the worst-case accumu-
lated reward: π∗ = arg maxπ V π

1 (s),∀s ∈ S. We also denote V π∗ and Qπ∗ by V ∗ and Q∗.

Probabilistic policy execution uncertainty set. We follow the setting of the probabilistic action ro-
bust MDP (PR-MDP) introduced in (Tessler et al., 2019) to construct the probabilistic policy execution
uncertainty set. For some 0 ≤ ρ ≤ 1, the policy execution uncertainty set is defined as:

Πρ(π) := {π̃ : ∀s,∀h,∃π′
h(·|s) ∈ ∆A such that π̃h(·|s) = (1− ρ)πh(·|s) + ρπ′

h(·|s)}. (3)

The policy execution uncertainty set can also be expressed as Πρ(π) = (1− ρ)π + ρ(∆A)S×H .

In this setting, an optimal probabilistic robust policy is optimal w.r.t. a scenario in which, with probability
at most ρ, an adversary takes control and performs the worst possible action. We call π′ as the adversarial
policy. For different agent’s policy π, the corresponding adversarial policy π′ that minimizes the cumulative
reward may be different.

Additional notations. We set ι = log(2SAHK/δ) for δ > 0. For simplicity of notation, we treat P as a
linear operator such that [PhV ](s, a) := Es′∼Ph(·|s,a)V (s′), and we define two additional operators D and V
as follows: [Dπh

Q](s) := Ea∼πh(·|s)Q(s, a) and

VPh
Vh+1(s, a) :=

∑
s′

Ph(s′|s, a) (Vh+1(s′)− [PhVh+1](s, a))2

= [Ph(Vh+1)2](s, a)− ([PhVh+1](s, a))2.

4 Existence of the optimal robust policy

For the standard tabular MDPs, when the state space, action space, and the horizon are all finite, there
always exists an optimal policy. In addition, if the reward functions and the transition probabilities are
known to the agent, the optimal policy can be solved by solving the Bellman optimality equation. In the
following theorem, we show that the optimal policy also always exists in action robust MDPs and can be
solved by the action robust Bellman optimality equation.
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Proposition 4.1 If the uncertainty set of the policy execution has the form in equation 3, the following
perfect duality holds for all s ∈ S and all h ∈ [H]:

max
π

min
π̃∈Πρ(π)

Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
= min

π̃∈Πρ(π)
max

π
Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
. (4)

There always exists a deterministic optimal robust policy π∗. The problem can be solved by the iteration of
the action robust Bellman optimality equation on h = H, · · · , 1. The action robust Bellman equation and
the action robust Bellman optimality equation are:

V π
h (s) = (1− ρ)[Dπh

Qπ
h](s) + ρ min

a∈A
Qπ

h(s, a),

Qπ
h(s, a) = Rh(s, a) + [PhV π

h+1](s, a),
V π

H+1(s) = 0, ∀s ∈ S.

(5)


V ∗

h (s) = (1− ρ) max
a∈A

Q∗
h(s, a) + ρ min

b∈A
Q∗

h(s, b),

Q∗
h(s, a) = Rh(s, a) + [PhV ∗

h+1](s, a),
V ∗

H+1(s) = 0, ∀s ∈ S.

(6)

We define

Cπ,π′,ρ
h (s) := Eπ̃

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s

]
. (7)

Since π̃h(·|s) = (1− ρ)πh(·|s) + ρπ′
h(·|s), minπ̃∈Πρ(π) is equivalent to minπ̃∈Πρ(π) when fixing π. The perfect

duality of the control problems in equation 4 is equivalent to maxπ minπ′ Cπ,π′,ρ
h (s) = minπ′ maxπ Cπ,π′,ρ

h (s).
We provide the detailed proof of the perfect duality and the existence of the optimal policy in Appendix B.
Our proposed model-based algorithm in Section 5 and model-free algorithm in Appendix D are based on
the action robust Bellman optimality equation. Using the iteration of the proposed action robust Bellman
equation to solve the robust problem can simultaneously update the adversary policy and agent policy and
avoid inefficient alternating updates.

5 Algorithm and main results

In this section, we introduce the proposed Action Robust Reinforcement Learning with Certificates (AR-
RLC) algorithm and provides its theoretical guarantee. The pseudo code is listed in Algorithm 1. Here, we
highlight the main idea of our algorithm. Algorithm 1 trains the agent in a clean (simulation) environment
and learns a policy that performs well when applied to a perturbed environment with probabilistic policy
execution uncertainty. To simulate the action perturbation, Algorithm 1 chooses an adversarial action with
probability ρ. To learn the agent’s optimal policy and the corresponding adversarial policy, Algorithm 1 com-
putes an optimistic estimate Q of Q∗ and a pessimistic estimate Q of Qπk . Algorithm 1 uses the optimistic
estimates to explore the possible optimal policy π and uses the pessimistic estimates to explore the possible
adversarial policy π. As shown later in Lemma 6.2, V ≥ V ∗ ≥ V π ≥ V holds with high probabilities. The
optimistic and pessimistic estimates V and V can provide policy certificates, which bounds the cumulative
rewards of the return policy πk and V − V bounds the sub-optimality of the return policy πk with high
probabilities. The policy certificates can give us some insights about the performance of πk in the perturbed
environment with probabilistic policy execution uncertainty.

5.1 Algorithm description

We now describe the proposed ARRLC algorithm in more details. In each episode, the ARRLC algorithm
can be decomposed into two parts.
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Algorithm 1 ARRLC (Action Robust Reinforcement Learning with Certificates)
1: Initialize V h(s) = H − h + 1, Qh(s, a) = H − h + 1, V h(s) = 0, Q

h
(s, a) = 0, r̂h(s, a), Nh(s, a) = 0 and

Nh(s, a, s′) = 0 for any state s ∈ S, any action a ∈ A and any step h ∈ [H]. V H+1(s) = V H+1(s) = 0
and QH+1(s, a) = Q

H+1(s, a) = 0 for any s and a. ∆ = H.
2: for episode k = 1, 2, . . . , K do
3: for step h = 1, 2, . . . , H do
4: Observe sk

h.
5: Set πk

h(s) = arg maxa Qh(s, a) , πk
h(s) = arg mina Q

h
(s, a), π̃k

h = (1− ρ)πk
h + ρπk

h.
6: Take action ak

h ∼ π̃k
h(·|sk

h).
7: Receive reward rk

h and observe sk
h+1.

8: Set Nh(sk
h, ak

h)← Nh(sk
h, ak

h) + 1, Nh(sk
h, ak

h, sk
h+1)← Nh(sk

h, ak
h, sk

h+1) + 1.
9: Set r̂k

h(sk
h, ak

h)← r̂k
h(sk

h, ak
h) + (rk

h − r̂k
h(sk

h, ak
h))/Nh(sk

h, ak
h).

10: Set P̂h(·|sk
h, ak

h) = Nh(sk
h, ak

h, ·)/Nh(sk
h, ak

h).
11: end for
12: Get policy πk with certificates Ik = [V 1(sk

1), V 1(sk
1)] and ϵk = |Ik| .

13: if ϵk < ∆ then
14: ∆← ϵk and πout ← πk.
15: end if
16: for step h = H, H − 1, . . . , 1 do
17: for each (s, a) ∈ S ×A with Nh(s, a) > 0 do

18: Set θh(s, a) =
√

2VP̂h
[(V h+1+V h+1)/2](s,a)ι

Nh(s,a) +
√

2r̂h(s,a)ι
Nh(s,a) + P̂h(V h+1−V

h+1)(s,a)
H + (24H2+7H+7)ι

3Nh(s,a) ,
19: Qh(s, a)← min{H − h + 1, r̂h(s, a) + P̂hV h+1(s, a) + θh(s, a)},
20: Q

h
(s, a)← max{0, r̂h(s, a) + P̂hV h+1(s, a)− θh(s, a)},

21: πk+1
h (s) = arg maxa Qh(s, a) , πk+1

h (s) = arg mina Q
h
(s, a),

22: V h(s)← (1− ρ)Qh(s, πk+1
h (s)) + ρQh(s, πk+1

h (s)),
23: V h(s)← (1− ρ)Q

h
(s, πk+1

h (s)) + ρQ
h
(s, πk+1

h (s)).
24: end for
25: end for
26: end for
27: Return πout

• Line 3-11 (Sample trajectory and update the model estimate): Simulates the action robust MDP,
executes the behavior policy π̃, collects samples, and updates the estimates of the rewards and the
transitions.

• Line 16-25 (Adversarial planning from the estimated model): Performs value iteration with bonus
to estimate the robust value functions using the empirical estimate of the transition P̂ , computes a
new policy π that is optimal respect to the estimated robust value functions, and computes a new
optimal adversarial policy π respect to the agent’s policy π.

At a high-level, this two-phase policy is standard in the majority of model-based RL algorithms (Azar
et al., 2017; Dann et al., 2019). Algorithm 1 shares similar structure with ORLC (Optimistic Reinforcement
Learning with Certificates) in Dann et al. (2019) but has some significant differences in line 5-6 and line
18-23. The first main difference is that the ARRLC algorithm simulates the probabilistic policy execution
uncertainty by choosing an adversarial action with probability ρ. The adversarial policy and the adversarial
actions are computed by the ARRLC algorithm. The second main difference is that the ARRLC algorithm
simultaneously plans the agent policy π and the adversarial policy π by the action robust Bellman optimality
equation.

These two main difference bring two main challenges in the design and analysis of our algorithm.
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(1) The ARRLC algorithm simultaneously plans the agent policy and the adversarial policy. However the
planned adversarial policy π is not necessarily the true optimal adversary policy towards the agent policy π
because of the estimation error of the value functions. We carefully design the bonus items and the update role
of the value functions so that V h(s) ≥ V ∗

h (s) ≥ V π
h (s) ≥ V h(s) and Qh(s, a) ≥ Q∗

h(s, a) ≥ Qπ
h(s, a) ≥ Q

h
(s, a)

hold for all s and a.

(2) A crucial step in many UCB-type algorithms based on Bernstein inequality is bounding the sum of
variance of estimated value function across the planning horizon. The behavior policies in these UCB-type
algorithms are deterministic. However, the behavior policy in our ARRLC algorithm is not deterministic
due to the simulation of the adversary’s behavior. The total variance is the weighted sum of the sum of
variance of estimated value function across two trajectories. Even if action π(sk

h) or π(sk
h) is not sampled at

state sk
h, it counts in the total variance. Thus, the sum of variance is no longer simply the variance of the

sum of rewards per episode, and new techniques are introduced. For example, the variance of V + V can be
connected to the variance of Cπk∗,πk,ρ, where πk∗ is the optimal policy towards the adversary policy πk with
πk∗

h (s) = arg maxπ C
π,πk,ρ
h (s) . Then the variance of Cπk∗,πk,ρ can be bounded via recursion on the sampled

trajectories.

5.2 Theoretical guarantee

We define the cumulative regret of the output policy πk at each episodes k as Regret(K) :=
∑K

k=1(V ∗
1 (sk

1)−
V πk

1 (sk
1)).

Theorem 5.1 For any δ ∈ (0, 1], letting ι = log(2SAHK/δ), then with probability at least 1−δ, Algorithm 1
achieves:

• V ∗
1 (s1)− V πout

1 (s1) ≤ ϵ, if the number of episodes K ≥ Ω(SAH3ι2/ϵ2 + S2AH3ι2/ϵ).

• Regret(K) =
∑K

k=1(V ∗
1 (sk

1)− V πk

1 (sk
1)) ≤ O(

√
SAH3Kι + S2AH3ι2).

For small ϵ ≤ H/S, the sample complexity scales as O(SAH3ι2/ϵ2). For the case with a large number
of episodes K ≥ S3AH3ι, the regret scales as O(

√
SAH3Kι). For the standard MDPs, the information-

theoretic sample complexity lower bound is Ω(SAH3/ϵ2) provided in Zhang et al. (2020c) and the regret
lower bound is Ω(

√
SAH3K) provided in Jin et al. (2018). When ρ = 0, the action robust MDPs is

equivalent to the standard MDPs. Thus, the information-theoretic sample complexity lower bound and the
regret lower bound of the action robust MDPs should have same dependency on S, A, H, K or ϵ. The lower
bounds show the optimality of our algorithm up to logarithmic factors. The action-robust reinforcement
learning maintains the same sample complexity barriers as traditional RL, which indicates that robustness
can be achieved without additional sample complexity overhead.

6 Proof sketch

In this section, we provide sketch of the proof, which will highlight our the main ideas of our proof. First,
we will show that V h(s) ≥ V ∗

h (s) ≥ V π
h (s) ≥ V h(s) hold for all s and a. The regret can be bounded by

V 1− V 1 and then be divided by four items, each of which can be bounded separately. The full proof can be
found in the appendix contained in the supplementary material.

We first introduce a few notations. We use Q
k

h,V k

h,Qk

h
,V k

h, Nk
h , P̂ k

h ,r̂k
h and θk

h to denote the values of
Qh,V h,Q

h
,V h, max{Nh, 1}, P̂h, rh and θh in the beginning of the k-th episode in Algorithm 1.

6.1 Proof of monotonicity

We define ER to be the event where∣∣r̂k
h(s, a)−Rh(s, a)

∣∣ ≤√2r̂k
h(s, a)ι

Nk
h (s, a)

+ 7ι

3(Nk
h (s, a))

(8)
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holds for all (s, a, h, k) ∈ S ×A× [H]× [K]. We also define EP V to be the event where

∣∣∣(P̂ k
h − Ph)V ∗

h+1(s, a)
∣∣∣ ≤

√
2VP̂ k

h
V ∗

h+1(s, a)ι
Nk

h (s, a)
+ 7Hι

3(Nk
h (s, a))

(9)

and

∣∣∣(P̂ k
h − Ph)V πk

h+1(s, a)
∣∣∣ ≤

√√√√2VP̂ k
h

V πk

h+1(s, a)ι
Nk

h (s, a)
+ 7Hι

3Nk
h (s, a)

(10)

hold for all (s, a, h, k) ∈ S ×A× [H]× [K].

Event ER means that the estimations of all reward functions stay in certain neighborhood of the true values.
Event EP V represents that the estimation of the value functions at the next step stay in some intervals. The
following lemma shows ER and EP V hold with high probability. The analysis will be done assuming the
successful event ER ∩ EP V holds in the rest of this section.

Lemma 6.1 P(ER ∩ EP V ) ≥ 1− 3δ.

Lemma 6.2 Conditioned on event ER ∩ EP V , V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥ Q∗
h(s, a) ≥

Qπk

h (s, a) ≥ Qk

h
(s, a) hold for all (s, a, h, k) ∈ S ×A× [H]× [K].

6.2 Regret analysis

We decompose the regret and analyze the different terms. Set Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ

h+1 (s,a)ι

Nk
h

(s,a) +
√

32
Nk

h
(s,a) +

46
√

SH4ι
Nk

h
(s,a) , where πk∗ is the optimal policy towards the adversary policy πk with πk∗

h (s) = arg maxπ C
π,πk,ρ
h (s).

We set

M1 =
K∑

k=1

H∑
h=1

[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)(sk

h)− P̂ k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)], (11)

M2 =
K∑

k=1

H∑
h=1

1
H

[Dπ̃k
h
Ph(V k

h+1 − V k
h+1)(sk

h)− Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)] (12)

M3 =
K∑

k=1

H∑
h=1

[P k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)− (V k

h+1 − V k
h+1)(sk

h+1)] (13)

M4 =
K∑

k=1

H∑
h=1

[
(SH + SH2)ι

Nk
h (sk

h, ak
h)

+Dπ̃k
h
Θk

h(sk
h)
]

(14)

Here M1 and M2 are the cumulative sample error from the random choices of the adversarial policy or agent’s
policy. M3 is the cumulative sample error from the randomness of Monte Carlo sampling of the next state.
M4 is the cumulative error from the bonus item θ. Lemma 6.3 shows that the regret can be bounded by
these four terms.

Lemma 6.3 With probability at least 1− (S + 5)δ,

Regret(K) ≤
K∑

k=1
(V k

1(sk
1)− V k

1(sk
1)) ≤ 21(M1 + M2 + M3 + M4). (15)

We now bound each of these four items separately.
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Lemma 6.4 With probability at least 1− δ, |M1| ≤ H
√

2HKι.

Lemma 6.5 With probability at least 1− δ, |M2| ≤
√

2HKι.

Lemma 6.6 With probability at least 1− δ, |M3| ≤ H
√

2HKι.

Lemma 6.7 With probability at least 1−2δ, |M4| ≤ 2S2AH3ι2+8
√

SAH2Kι+46S
3
2 AH3ι2+

√
24SAH3Kι+

6
√

SAH5ι.

Putting all together. By Lemmas 6.3, 6.4, 6.5, 6.6, and 6.7, we conclude that, with probability 1−(S+10)δ,

Regret(K) ≤O(
√

SAH3Kι + S2AH3ι2). (16)

By rescaling δ, log( 2SAHK
δ/(S+10) ) ≤ cι for some constant c and we finish the proof of regret. As

∑K
k=1(V k

1(sk
1)−

V k
1(sk

1)) ≤ O(
√

SAH3Kι + S2AH3ι2), we have that V ∗
1 (s1) − V πout

1 (s1) ≤ mink V
k

1(sk
1) − V k

1(sk
1) ≤

O(
√

SAH3

K ι + S2AH3ι2

K ) and we finish the proof of sample complexity.

7 Model-free method

Algorithm 2 Action Robust Q-learning with Hoeffding Confidence Bound (ARQ-H)
Set αt = H+1

H+t . Initialize V h(s) = H − h + 1, Qh(s, a) = H − h + 1, V h(s) = 0, Q
h
(s, a) = 0, r̂h(s, a),

Nh(s, a) = 0 for any state s ∈ S, any action a ∈ A and any step h ∈ [H]. V H+1(s) = V H+1(s) = 0 and
QH+1(s, a) = Q

H+1(s, a) = 0 for all s and a. ∆ = H. Initial policy π1
h(a|s) and π1

h(a|s) = 1/A for any
state s, action a and any step h ∈ [H].
for episode k = 1, 2, . . . , K do

for step h = 1, 2, . . . , H do
Observe sk

h.
Set ak

h = arg maxa Qh(sk
h, a) , ak

h = arg mina Q
h
(sk

h, a), π̃k
h(ak

h|sk
h) = 1− ρ and π̃k

h(ak
h|sk

h) = ρ.
Take action ak

h ∼ π̃k
h(·|sk

h).
Receive reward rk

h and observe sk
h+1.

Set t = Nh(sk
h, ak

h)← Nh(sk
h, ak

h) + 1; bt =
√

H3ι/t.
Qh(sk

h, ak
h)← (1− αt)Qh(sk

h, ak
h) + αt(rk

h + V h+1(sk
h+1) + bt),

Q
h
(sk

h, ak
h)← (1− αt)Qh

(sk
h, ak

h) + αt(rk
h + V h+1(sk

h+1)− bt).
Set πk+1

h (sk
h) = arg maxa Qh(sk

h, a), πk+1
h (sk

h) = arg mina Q
h
(sk+1

h , a).
V h(sk

h)← min{V h(sk
h), (1− ρ)Qh(sk

h, πk+1
h (sk

h)) + ρQh(sk
h, πk+1

h (sk
h))}.

V h(sk
h)← max{V h(sk

h), (1− ρ)Q
h
(sk

h, πk+1
h (sk

h)) + ρQ
h
(sk

h, πk+1
h (sk

h))}.
if V h(sk

h) > (1− ρ)Q
h
(sk

h, πk+1
h (sk

h)) + ρQ
h
(sk

h, πk+1
h (sk

h)) then
πk+1

h = πk
h.

end if
end for

end for
Return πk+1

In this section, we develop a model-free algorithm, called Action Robust Q-learning with Hoeffding confidence
bound (ARQ-H), and analyze its theoretical guarantee. The pseudo code is listed in Algorithm 2. Here,
we highlight the main idea of Algorithm 2. Algorithm 2 follows the same idea of Algorithm 1, which trains
the agent in a clean (simulation) environment and learns a policy that performs well when applied to a
perturbed environment with probabilistic policy execution uncertainty. To simulate the action perturbation,
Algorithm 2 chooses an adversarial action with probability ρ. To learn the agent’s optimal policy and the
corresponding adversarial policy, Algorithm 2 computes an optimistic estimate Q of Q∗ and a pessimistic
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estimate Q of Qπk . Algorithm 2 uses the optimistic estimates to explore the possible optimal policy π and
uses the pessimistic estimates to explore the possible adversarial policy π. The difference is that Algorithm 2
uses a model-free method to update Q and V values.

Here, we highlight the challenges of the model-free method compared with the model-based method. In the
model-based planning, we perform value iteration and the Q values, V values, agent policy π and adversarial
policy π are updated on all (s, a). However, in the model-free method, the Q values and V values are updated
only on (sk

h, ak
h) which are the samples on the trajectories. The variances of the Q values and V values in

model-free method are larger than the model-based method. Compared with the model-based method, the
update of the Q values and V values in the model-free method is slower and less stable.

To deal with this challenges, we design a special update rule of the output policy. In line 14-16, Algorithm 2
does not update the output policy until the lower bound on the value function of the new output policy is
improved. By this, the output policies are stably improved after every update. The adversary policy is still
updated at each episode.

We provide the regret and sample complexity bounds of Algorithm 2 in the following:

Theorem 7.1 For any δ ∈ (0, 1], letting ι = log(2SABHK/δ), then with probability at least 1 − δ, Algo-
rithm 2 achieves:

• V ∗
1 (s1)− V πout

1 (s1) ≤ ϵ, if the number of episodes K ≥ Ω(SAH5ι/ϵ2 + SAH2/ϵ).

• Regret(K) =
∑K

k=1(V ∗
1 (sk

1)− V πk

1 (sk
1)) ≤ O(

√
SAH5Kι + SAH2).

The detailed proof is provided in Appendix E. The model-free method is more computationally efficient than
the model-based method but is less sample efficient.

8 Simulation results

We use OpenAI gym framework (Brockman et al., 2016), and consider two different problems: Cliff Walking,
a toy text environment, and Inverted Pendulum, a control environment with the MuJoCo (Todorov et al.,
2012) physics simulator. We set H = 100. To demonstrate the robustness, the policy is learned in a clean
environment, and is then tested in the perturbed environment. Specifically, ρ is the uncertainty parameter
used during training. Then, during testing, we set a probability p such that after the agent takes an action,
with probability p, the action is chosen by an adversary. The adversary follows a fixed policy. A Monte-Carlo
method is used to evaluate the accumulated reward of the learned policy in the perturbed environment. We
take the average over 100 trajectories.

Inverted pendulum. The inverted pendulum experiment is a classic control problem in RL. An inverted
pendulum is attached by a pivot point to a cart, which is restricted to linear movement in a plane. The cart
can be pushed left or right, and the goal is to balance the inverted pendulum on the top of the cart by applying
forces on the cart. The observation space of InvertedPendulum-v4 has 4 dimensions: position of the cart
along the linear surface, vertical angle of the pole on the cart, linear velocity of the cart, angular velocity of
the pole on the cart. We ignore the position of the cart along the linear surface. The vertical angle of the pole
on the cart is discretized to 10 intervals between [− inf,−0.2,−0.1,−0.05,−0.025, 0, 0.025, 0.05, 0.1, 0.2, inf].
The linear velocity of the cart is discretized to 4 intervals between [− inf,−0.05, 0, 0.05, inf]. The angular
velocity of the pole on the cart is discretized to 4 intervals between [− inf,−0.05, 0, 0.05, inf]. A reward of
+1 is awarded for each time step that the inverted pendulum stand upright within a certain angle limit. The
fixed adversarial policy in the inverted pendulum environment is a force of 0.5 N in the left direction.

Cliff walking. The cliff walking experiment is a classic scenario proposed in Sutton & Barto (2018). The
game starts with the player at location [3, 0] of the 4× 12 grid world with the goal located at [3, 11]. A cliff
runs along [3, 1 − 10]. If the player moves to a cliff location, it returns to the start location and receives a
reward of −100. For every move which does not lead into the cliff, the agent receives a reward of −1. The
player makes moves until they reach the goal. The fixed adversarial policy in the cliff walking environment
is walking a step to the bottom.

10
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(a) p = 0.1, ρ = 0.2, Cliff Walking

(b) p = 0.2, ρ = 0.2, Cliff Walking

(c) p = 0.1, ρ = 0.2, Inverted Pendulum

(d) p = 0.2, ρ = 0.2, Inverted Pendulum

Figure 1: Evaluation returns during training. We plot the accumulated reward of each algorithms under
different p and different environment. We set ρ = 0.2 for our algorithm, which is the uncertainty parameter
used during training.

To show the robustness, we compare our algorithm with a non-robust RL algorithm that is ORLC (Optimistic
Reinforcement Learning with Certificates) in Dann et al. (2019). It can be seen that overall our ARRLC
algorithm achieves a much higher reward than the ORLC algorithm. This demonstrates the robustness of
our ARRLC algorithm to policy execution uncertainty. To show the efficiency, we compare our algorithm
with the robust TD algorithm in Klima et al. (2019), which can converge to the optimal robust policy but has
no theoretical guarantee on sample complexity or regret, the RARL algorithm in Pinto et al. (2017) and the
PR-PI algorithm in Tessler et al. (2019), which model the robust problem as a zero-sum game and alternating
update the agent policy and adversary policy. In our implementation, Pinto et al. (2017) fixes one policy and
updates another for 25 episodes, then alternatively updates another in the next 25 episodes. (Tessler et al.,
2019) does not alternate the updating until the current policy is converged. Figure 1 shows the efficiency of
our ARRLC algorithm. ARRLC algorithm is more stable than the other algorithms. Compared with our
model-free ARQ-H algorithm, the model-based ARRLC algorithm is more stable and more efficient. The
shaded areas shows the statistical variance, since the evaluated rewards are averaged over 100 trajectories.
Our robust algorithm ARRLC has lower variances compared with the others.
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We provide additional experimental results in Appendix A. In these additional experiments, we implement
the ablation study by setting different ρ and p and try different adversary policies in the testing environment.
We also perform cross-comparison experiments in which we use the learned worst-case policies to disturb
the different robust agents.

9 Conclusion and Discussion

In this paper, we have developed a novel approach for solving action robust RL problems with probabilistic
policy execution uncertainty. We have theoretically proved the sample complexity bound and the regret
bound of the algorithms. The upper bound of the sample complexity and the regret of proposed ARRLC
algorithm match the lower bound up to logarithmic factors, which shows the minimax optimality of our al-
gorithm. In addition, our results reveal that action-robust reinforcement learning maintains the same sample
complexity barriers as traditional RL. This finding underscores the efficiency of our approach, indicating that
robustness can be achieved without additional sample complexity overhead. Moreover, we have carried out
numerical experiments to validate our algorithm’s robustness and efficiency, revealing that ARRLC surpasses
non-robust algorithms and converges more rapidly than the robust TD algorithm when faced with action
perturbations.

The current theoretical guarantee on the sample complexity and regret of our algorithms are derived for
the tabular setting. In the future work, we will explore action robust RL in continuous state or action
space. Studying efficient action robust RL with function approximation is also an important direction to
pursue. For this purpose, two insights from our work might be useful: (1) The adversary policy and the
agent’s policy can be simultaneously updated to efficiently sample trajectories; (2) The adversary policies at
each episode do not necessarily need be the minimum over the actions, an approximation of the minimum
also works. Based on these insights, a policy-gradient method could potentially be designed to handle the
continuous action space. We could use policy gradient method, such like PPO, to find an approximation of
the adversary policy (the minimum over actions). In addition, similar to (Zhou et al., 2023), considering a
scalable uncertainty set is also an interesting direction.
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A Additional Numerical Results

A.1 Ablation study and more comparisons

In Section 8, we compared our algorithm with the robust TD algorithm in (Klima et al., 2019). Here, we
compare our algorithm with algorithms in (Pinto et al., 2017; Tessler et al., 2019). The method in (Tessler
et al., 2019) requires an MDP solver to solve the optimal adversarial policy when the agent policy is given
and the optimal agent policy when the adversarial policy is given. The white-box MDP solver requires
knowledge of the underline MDP so that there is no learning curve and sample complexity discussion in
(Tessler et al., 2019). Thus, we implement the algorithms in (Pinto et al., 2017; Tessler et al., 2019) with
a Q-learning MDP solver, and compared the final evaluation rewards and the learning curve. In addition,
we implement the ablation study by setting different ρ and p. In our experiments, the policy is learned in a
clean environment, and is then tested in the perturbed environment. ρ is the parameter in algorithm when
learning the robust policy. ρ can be considered as the agent’s guess about the probability of a disturbance
occurring. However, p is the probability that the perturb happens in the perturbed environment. In the
perturbed environment, with probability p, the action is perturbed by an adversarial action.

(a) p = 0.1, ρ = 0.1 (b) p = 0.2, ρ = 0.1 (c) p = 0.2, ρ = 0.2 (d) p = 0.2, ρ = 0.3

(e) p = 0.3, ρ = 0.3 (f) p = 0.3, ρ = 0.4 (g) p = 0.4, ρ = 0.4 (h) p = 0.5, ρ = 0.5

(i) p = 0.1, ρ = 0.1 (j) p = 0.2, ρ = 0.1 (k) p = 0.2, ρ = 0.2 (l) p = 0.2, ρ = 0.3

(m) p = 0.3, ρ = 0.3 (n) p = 0.3, ρ = 0.4 (o) p = 0.4, ρ = 0.4 (p) p = 0.5, ρ = 0.5

Figure 2: ARRLC vs. RARL (Pinto et al., 2017) vs. PR-PI (Tessler et al., 2019)

16



Published in Transactions on Machine Learning Research (08/2024)

In Figure 2, we show the learning curves under different p and ρ. In the legend, "Pinto 17" stands for the
algorithm RARL (Pinto et al., 2017) and "Tessler 19" stands for the algorithm PR-PI (Tessler et al., 2019).
It can be seen that our ARRLC algorithm converges faster than the other algorithms. This demonstrates
the efficiency of our ARRLC algorithm to learn optimal policy under policy execution uncertainty.

Figure 3: Ablation study on InvertedPendulum-v4 with fixed ρ.

In Figure 3, given the agents trained with fixed ρ (rho), we test the agents in different disturbed environments
with different p. In Figure 4, we compare the different agents trained with different ρ. The x-axis is the
different choice of ρ or p. The y-axis is the final evaluation rewards.

Figure 4: Ablation study on InvertedPendulum-v4 with fixed ρ.

A.2 Robustness to different adversary

In this section, we consider different adversary policies include both the fixed policy in the main page and
a random adversary policy. After the agent takes an action, with probability p, the random adversary will
uniformly randomly choose an adversary action to replace the agent’s action. In Figure 5 and Figure 6, "fix"
represents that the actions are perturbed by a fixed adversarial policy during the testing, "random" represents
that the actions are randomly perturbed during the testing, p is the action perturbation probability.

The theoretical guarantee on sample complexity and regret of our algorithm relies on the assumption of
known uncertainty parameter. However, in the experimental results shown in Figure 3, the parameter can
mismatch with the true disturb probability. In Figure 5, we test the mismatch of the uncertainty parameter
ρ and true uncertainty probability p. We train the agent with ρ = 0.2, but we use p = 0.1 in the test. The
proposed robust algorithm still outperforms the non-robust algorithm.

Since we do not know whether the fixed policy or the random policy is the strongest adversary policy against
the agent, a more direct comparison is to use the learned worst-case policy in different algorithms to do a
cross-comparison. We use the learned worst-case policies to disturb the different robust agents. We report
the final evaluation rewards in Table 2. We train our method in 2000 episodes and the approaches of Pinto
et al. (2017); Tessler et al. (2019) in 30000 episodes. We set that p = ρ = 0.2. The ARRLC agent performs
the best against three different adversaries and the ARRLC adversary impacts the most on three different
agents.
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(a) p = 0.1, ρ = 0.2, fix (b) p = 0.2, ρ = 0.2, fix (c) p = 0.1, ρ = 0.2, random (d) p = 0.2, ρ = 0.2, random

(e) p = 0.1, ρ = 0.2, fix (f) p = 0.2, ρ = 0.2, fix (g) p = 0.1, ρ = 0.2, random (h) p = 0.2, ρ = 0.2, random

Figure 5: ARRLC vs. ORLC.

(a) p = 0.1, ρ = 0.2, fix (b) p = 0.2, ρ = 0.2, fix (c) p = 0.1, ρ = 0.2, random (d) p = 0.2, ρ = 0.2, random

(e) p = 0.1, ρ = 0.2, fix (f) p = 0.2, ρ = 0.2, fix (g) p = 0.1, ρ = 0.2, random (h) p = 0.2, ρ = 0.2, random

Figure 6: ARRLC vs. Robust TD

Table 2: Final rewards under cross-comparison between ARRLC, PR-PI and RAPL

ARRLC Adversary RAPL Adversary PR-PI Adversary

ARRLC Agent 72.536 81.736 89.824
RAPL Agent 49.936 72.216 70.6
PR-PI Agent 52.788 63.784 86.648

We also show the performance of the non-robust approach orlc trained without action-failures, the non-robust
approach when trained against the worst adversary learned by ARRLC, and ARRLC against the worst
adversary learned by ARRLC. Figure 7 shows how much better ARRLC performs against the adversary
than the the non-robust approach, and how far is the performance of ARRLC from the optimal. We set
ρ = 0.2 and p = 0.2 in this experiment.
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Figure 7: Evaluation returns during training. We compare the performance of the non-robust approach orlc
trained without action-failures, the non-robust approach when trained against the worst adversary learned
by ARRLC, and ARRLC against the worst adversary learned by ARRLC.

B Proof of Proposition 4.1

The uncertainty set of the policy execution has the form in:

Πρ(π) := {π̃|∀s, π̃h(·|s) = (1− ρ)π(·|s) + ρπ′
h(·|s), π′

h(·|s) ∈ ∆A}. (17)

We define

Cπ,π′,ρ
h (s) := E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)
]

Dπ,π′,ρ
h (s, a) := E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′)
]

.

Robust Bellman Equation First we prove the action robust Bellman equation holds for any policy
π, state s action a and step h. From the definition of the robust value function in equation 1, we have
V π

H+1(s) = 0, ∀s ∈ S.

We prove the robust Bellman equation by building a policy π−. Here, policy π− is the optimal adversarial
policy towards the policy π.

At step H, we set π−
H(s) = arg mina∈A RH(s, a). We have

V π
H(s) = min

π′
Cπ,π′,ρ

H (s)

= (1− ρ)[DπH
RH ](s) + ρ min

π′
[Dπ′

H
RH ](s)

= (1− ρ)[DπH
Qπ

H ](s) + ρ min
a∈A

Qπ
H(s, a) = Cπ,π−,ρ

H (s),

(18)

as VH+1 = 0.

The robust Bellman equation holds at step H and minπ′
∑

s w(s)Cπ,π′,ρ
H (s) =

∑
s w(s) minπ′ Cπ,π′,ρ

H (s) =∑
s w(s)Cπ,π−,ρ

H (s) for any state s and any weighted function w : S → ∆S .

Suppose the robust Bellman equation holds at step h + 1 and minπ′
∑

s w(s)Cπ,π′,ρ
h+1 (s) =∑

s w(s) minπ′ Cπ,π′,ρ
h+1 (s) =

∑
s w(s)Cπ,π−,ρ

h+1 (s) for any state s and any weighted function w : S → ∆S .
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Now we prove the robust Bellman equation holds at step h. From the definition of the robust Q-function in
equation 2 and the form of uncertainty set, we have

Qπ
h(s, a) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′)
]

= min
π′

Dπ,π′,ρ
h (s, a)

=Rh(s, a) + min
π′
Es′∼Ph(·|s,a)C

π,π′,ρ
h+1 (s)

=Rh(s, a) +Es′∼Ph(·|s,a) min
π′

Cπ,π′,ρ
h+1 (s)

=Rh(s, a) + [PhV π
h+1](s, a).

(19)

We also have that Qπ
h(s, a) = Dπ,π−,ρ

h (s, a).

Recall that a (stochastic) Markov policy is a set of H maps π := {πh : S → ∆A}h∈[H]. From the definition
of the robust value function in equation 1 and the form of uncertainty set, we have

V π
h (s) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)
]

= min
π′

Cπ,π′,ρ
h (s)

= min
π′

h

min
{π′

h′ }H
h′=h+1

Cπ,π′,ρ
h (s)

≥(1− ρ) min
{π′

h′ }H
h′=h+1

Ea∼πh(·|s)D
π,π′,ρ
h (s, a) + ρ min

π′
h

min
{π′

h′ }H
h′=h+1

Ea∼π′
h

(·|s)D
π,π′,ρ
h (s, a)

≥(1− ρ)Ea∼πh(·|s) min
{π′

h′ }H
h′=h+1

Dπ,π′,ρ
h (s, a) + ρ min

π′
h

Ea∼π′
h

(·|s) min
{π′

h′ }H
h′=h+1

Dπ,π′,ρ
h (s, a)

=(1− ρ)[Dπh
Qπ

h](s) + ρ min
a∈A

Qπ
h(s, a).

(20)

We set π−
h (s) = arg mina∈A Qπ

h(s, a) = arg mina∈A Dπ,π−,ρ
h (s, a).

At step h, we have

V π
h (s) ≤Cπ,π−,ρ

h (s)

=(1− ρ)[Dπh
Dπ,π−,ρ

h ](s) + ρ min
a∈A

Dπ,π−,ρ
h (s, a)

=(1− ρ)[Dπh
Qπ

h](s) + ρ min
a∈A

Qπ
h(s, a),

(21)

where the last equation comes from the robust Bellman equation at step h + 1 and

Dπ,π−,ρ
h (s, a) = Rh(s, a) + [PhCπ,π−,ρ

h+1 ](s, a) = Rh(s, a) + [PhV π
h+1](s, a).

Thus, the robust Bellman equation holds at step h.

Then, we prove the commutability of the expectation and the minimization operations at step h.
For any weighted function w, we have minπ′

∑
s w(s)Cπ,π′,ρ

h (s) ≥
∑

s w(s) minπ′ Cπ,π′,ρ
h (s). Then,

minπ′
∑

s w(s)Cπ,π′,ρ
h (s) ≤

∑
s w(s)Cπ,π−,ρ

h (s) =
∑

s w(s) minπ′ Cπ,π′,ρ
h (s).

By induction on h = H, · · · , 1, we prove the robust Bellman equation.

Perfect Duality and Robust Bellman Optimality Equation We now prove that the perfect duality
holds and can be solved by the optimal robust Bellman equation.
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The control problem in the LHS of equation 4 is equivalent to

max
π

min
π̃∈Πρ(π)

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)
]

= max
π

min
π′

Cπ,π′,ρ
h (s). (22)

The control problem in the RHS of equation 4 is equivalent to

min
π̃∈Πρ(π)

max
π

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)
]

= min
π′

max
π

Cπ,π′,ρ
h (s). (23)

For step H, we have Cπ,π′,ρ
H (s) = [D((1−ρ)π+ρπ′)H

RH ](s) = (1 − ρ)[DπH
RH ](s) + ρ[Dπ′

H
RH ](s). Thus, we

have

max
π

min
π′

Cπ,π′,ρ
H (s) =(1− ρ) max

π
[DπH

RH ](s) + ρ min
π′

[Dπ′
H

RH ](s)

=(1− ρ) max
a∈A

RH(s, a) + ρ min
b∈A

RH(s, b),
(24)

and

min
π′

max
π

Cπ,π′,ρ
H (s) =(1− ρ) max

π
[DπH

RH ](s) + ρ min
π′

[Dπ′
H

RH ](s)

=(1− ρ) max
a∈A

RH(s, a) + ρ min
b∈A

RH(s, b).
(25)

At step H, the perfect duality holds for all s and there always exists an optimal robust policy π∗
H(s) =

arg maxa∈A Q∗
H(s, a) = arg maxa∈A RH(s, a) and its corresponding optimal adversarial policy π−

H(s) =
arg mina∈A RH(s, a) which are deterministic. The action robust Bellman optimality equation holds at step
H for any stats s and action a.

In addition, maxπ minπ′
∑

s w(s)Cπ,π′,ρ
H (s) =

∑
s w(s) maxπ minπ′ Cπ,π′,ρ

H (s) for any weighted function w :
S → ∆S . This can be shown as

max
π

min
π′

∑
s∈S

w(s)Cπ,π′,ρ
H (s)

=(1− ρ) max
π

∑
s∈S

w(s)[DπH
RH ](s) + ρ min

π′

∑
s∈S

w(s)[Dπ′
H

RH ](s)

=(1− ρ)
∑
s∈S

w(s) max
a∈A

RH(s, a) + ρ
∑
s∈S

w(s) min
b∈A

RH(s, b).

(26)

Suppose that at steps from h + 1 to H, the perfect duality holds for any s, the action robust Bellman
optimality equation holds for any state s and action a, there always exists an optimal robust policy π∗

h′ =
arg maxa∈A Q∗

h′(s, a) and its corresponding optimal adversarial policy π−
h′(s) = arg mina∈A Q∗

h′(s, a), ∀h′ ≥
h + 1, which is deterministic, and maxπ minπ′

∑
s w(s)Cπ,π′,ρ

h′ (s) =
∑

s w(s) maxπ minπ′ Cπ,π′,ρ
h′ (s) for any

state s, any weighted function w : S → ∆S and any h′ ≥ h + 1. We have V ∗
h′(s) = V π∗

h′ (s) = Cπ∗,π−,ρ
h′ (s) and

Q∗
h′(s, a) = Qπ∗

h′ (s, a) = Dπ∗,π−,ρ
h′ (s, a) for any state s and any h′ ≥ h + 1.

We first prove that the robust Bellman optimality equation holds at step h.

We have

Q∗
h(s, a) = max

π
min

π′
Dπ,π′,ρ

h (s, a)

= max
π

min
π′

(Rh(s, a) + [PhCπ,π′,ρ
h+1 ](s, a))

= Rh(s, a) + [Ph(max
π

min
π′

Cπ,π′,ρ
h+1 )](s, a)

= Rh(s, a) + [PhV ∗
h+1](s, a).

(27)
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and also Q∗
h(s, a) = Qπ∗

h (s, a) = Dπ∗,π−,ρ
h (s, a).

From the robust Bellman equation, we have

max
π

V π
h (s) = max

π

(
(1− ρ)[Dπh

Qπ
h](s) + ρ min

a∈A
Qπ

h(s, a)
)

≤(1− ρ) max
πh

max
{πh}H

h′=h+1

[Dπh
Qπ

h](s) + ρ max
{πh}H

h′=h+1

min
a∈A

Qπ
h(s, a)

≤(1− ρ) max
πh

max
{πh}H

h′=h+1

[Dπh
Qπ

h](s) + ρ min
a∈A

max
{πh}H

h′=h+1

Qπ
h(s, a)

≤(1− ρ) max
πh

[Dπh
Q∗

h](s) + ρ min
a∈A

Q∗
h(s, a)

=(1− ρ) max
a∈A

Q∗
h(s, a) + ρ min

a∈A
Q∗

h(s, a).

(28)

We set π∗
h(s) = maxa∈A Q∗

h(s, a). According to the robust bellman equation, we have

max
π

V π
h (s) ≥ V π∗

h (s) = (1− ρ)[Dπ∗
h
Qπ∗

h ](s) + ρ min
a∈A

Qπ∗

h (s, a)

= (1− ρ) max
a∈A

Qπ∗

h (s, a) + ρ min
a∈A

Qπ∗

h (s, a)

= (1− ρ) max
a∈A

Q∗
h(s, a) + ρ min

a∈A
Q∗

h(s, a).

(29)

Thus, the robust Bellman optimality equation holds at step h. There always exists an optimal robust policy
π∗

h = arg maxa∈A Q∗
h(s, a) and its corresponding optimal adversarial policy π−

h (s) = arg mina∈A Q∗
h(s, a)

that is deterministic so that Cπ∗,π−,ρ
h (s) = V ∗

h (s).

Then, we prove the commutability of the expectation, the minimization and the maximization operations at
step h.

In the proof of robust Bellman equation, we have shown that

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s) =

∑
s

w(s) min
π′

Cπ,π′,ρ
h (s)

for any policy π and any weighted function w. Hence

max
π

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s)

∑
s

= max
π

∑
s

w(s) min
π′

Cπ,π′,ρ
h (s).

First, we have
max

π

∑
s

w(s) min
π′

Cπ,π′,ρ
h (s) ≤

∑
s

w(s) max
π

min
π′

Cπ,π′,ρ
h (s).

Then, we can show

max
π

∑
s

w(s) min
π′

Cπ,π′,ρ
h (s) ≥

∑
s

w(s) min
π′

Cπ∗,π′,ρ
h (s)

=
∑

s

w(s)Cπ∗,π−,ρ
h (s)

=
∑

s

w(s) max
π

min
π′

Cπ,π′,ρ
h (s). (30)

In summary,
max

π
min

π′

∑
s

w(s)Cπ,π′,ρ
h (s)

∑
s

= w(s) max
π

min
π′

Cπ,π′,ρ
h (s).

We can show the perfect duality at step h by

max
π

min
π′

Cπ,π′,ρ
h (s) = Cπ∗,π−,ρ

h (s) = max
π

Cπ,π−,ρ
h (s) ≥ min

π′
max

π
Cπ,π′,ρ

h (s). (31)

By induction on h = H, · · · , 1, we prove Proposition 4.1.
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C Proof for Action Robust Reinforcement Learning with Certificates

In this section, we prove Theorem 5.1. Recall that we use Q
k

h,V k

h,Qk

h
,V k

h, Nk
h , P̂ k

h ,r̂k
h and θk

h to denote the
values of Qh,V h,Q

h
,V h, max{Nh, 1}, P̂h, rh and θh at the beginning of the k-th episode in Algorithm 1.

C.1 Proof of monotonicity

C.1.1 Proof of Lemma 6.1

When Nk
h (s, a) ≤ 1, equation 9, equation 10 and equation 8 hold trivially by the bound of the rewards and

value functions.

For every h ∈ [H] the empiric Bernstein inequality combined with a union bound argument, to take into
account that Nk

h (s, a) > 1 is a random number, leads to the following inequality w.p. 1−SAHδ (see Theorem
4 in (Maurer & Pontil, 2009))

∣∣∣(P̂ k
h − Ph)V ∗

h+1(s, a)
∣∣∣ ≤

√
2VP̂ k

h
V ∗

h+1(s, a)ι
Nk

h (s, a)
+ 7Hι

3(Nk
h (s, a))

, (32)

and

∣∣∣(P̂ k
h − Ph)V πk

h+1(s, a)
∣∣∣ ≤

√√√√2VP̂ k
h

V πk

h+1(s, a)ι
Nk

h (s, a)
+ 7Hι

3(Nk
h (s, a))

. (33)

Similarly, with Azuma’s inequality, w.p. 1− SAHδ

∣∣r̂k
h(s, a)−Rh(s, a)

∣∣ ≤√2V ar(rk
h(s, a))ι

Nk
h (s, a)

+ 7ι

3(Nk
h (s, a))

≤

√
2r̂k

h(s, a)ι
Nk

h (s, a)
+ 7ι

3(Nk
h (s, a))

, (34)

where V ar(rk
h(s, a)) is the empirical variance of Rh(s, a) computed by the Nk

h (s, a) samples and
V ar(rk

h(s, a)) ≤ r̂k
h(s, a) .

C.1.2 Proof of Lemma 6.2

We first prove that Q
k

h(s, a) ≥ Q∗
h(s, a) for all (s, a, h, k) ∈ S × A × [H] × [K], by backward induction

conditioned on the event ER ∩ EP V . Firstly, the conclusion holds for h = H + 1 because V H+1(s) =
V H+1(s) = 0 and QH+1(s, a) = Q

H+1(s, a) = 0 for all s and a. For h ∈ [H], assuming the conclusion holds
for h + 1, by Algorithm 1, we have

r̂k
h(s, a) + P̂ k

h V h+1(s, a) + θk
h(s, a)−Q∗

h(s, a)
=r̂k

h(s, a) + P̂ k
h V h+1(s, a) + θk

h(s, a)−Rh(s, a)− PhV ∗
h+1(s, a)

=r̂k
h(s, a)−Rh(s, a) + P̂ k

h

(
V h+1 − V ∗

h+1
)

(s, a) + (P̂ k
h − Ph)V ∗

h+1(s, a) + θk
h(s, a)

≥(P̂ k
h − Ph)V ∗

h+1(s, a) +

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+ 8H2ι

Nk
h (s, a)

≥

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+ 8H2ι

Nk
h (s, a)

−

√
2VP̂ k

h
V ∗

h+1(s, a)ι
Nk

h (s, a)
,

(35)
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where the first inequality comes from event ER, V h+1(s) ≥ V ∗
h+1(s) and the definition of θk

h(s, a) and the
last inequality from event EP V . By the relation of V -values in the step (h + 1),∣∣∣∣∣VP̂ k

h

(
V

k

h+1 + V k
h+1

2

)
(s, a)−VP̂ k

h
V ∗

h+1(s, a)
∣∣∣∣∣

≤
∣∣∣[P̂ k

h (V k

h+1 + V k
h+1)/2]2 − (P̂ k

h V ∗
h+1)2

∣∣∣ (s, a) +
∣∣∣P̂ k

h [(V k

h+1 + V k
h+1)/2]2 − P̂ k

h (V ∗
h+1)2

∣∣∣ (s, a)

≤4HP̂ k
h

∣∣∣(V k

h+1 + V k
h+1)/2− V ∗

h+1

∣∣∣ (s, a)

≤2HP̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

(36)

and √
2VP̂ k

h
V ∗

h+1(s, a)ι
Nk

h (s, a)

≤

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι + 4HP̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+

√√√√4HP̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+ 8H2ι

Nk
h (s, a)

.

(37)

Plugging equation 37 back into equation 35, we have r̂k
h(s, a) + P̂ k

h V h+1(s, a) + θk
h(s, a) ≥ Q∗

h(s, a). Thus,
Q

k

h(s, a) = min{H − h + 1, r̂k
h(s, a) + P̂ k

h V
k

h+1(s, a) + θk
h(s, a)} ≥ Q∗

h(s, a).

From the definition of V
k

h(s) and πk
h, we have

V
k

h(s) =(1− ρ)Qk

h(s, πk
h(s)) + ρQ

k

h(s, πk
h(s))

≥(1− ρ)Qk

h(s, π∗
h(s)) + ρQ∗

h(s, πk
h(s))

≥(1− ρ)Q∗
h(s, π∗

h(s)) + ρ min
a∈A

Q∗
h(s, a) = V ∗

h (s).
(38)

Similarly, we can prove that Qk

h
(s, a) ≤ Qπk

h (s, a) and V k
h(s) ≤ V πk

h (s).

r̂k
h(s, a) + P̂ k

h V h+1(s, a)− θk
h(s, a)−Qπk

h (s, a)

=r̂k
h(s, a) + P̂ k

h V h+1(s, a)− θk
h(s, a)−Rh(s, a)− PhV πk

h+1(s, a)

=r̂k
h(s, a)−Rh(s, a) + P̂ k

h

(
V h+1 − V πk

h+1

)
(s, a) + (P̂ k

h − Ph)V πk

h+1(s, a)− θk
h(s, a)

≤(P̂ k
h − Ph)V πk

h+1(s, a)−

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

−
P̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
− 8H2ι

Nk
h (s, a)

≤

√√√√2VP̂ k
h

V πk

h+1(s, a)ι
Nk

h (s, a)
−

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

−
P̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
− 8H2ι

Nk
h (s, a)

≤ 0,

(39)
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and
V k

h(s) =(1− ρ)Qk

h
(s, πk

h(s)) + ρQk

h
(s, πk

h(s))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρ min

a∈A
Qk

h
(s, a)

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρQk

h
(s, arg min

a∈A
Qπk

h (s, a))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρ min

a∈A
Qπk

h (s, a) = V πk

h (s).

(40)

C.2 Regret Analysis

C.2.1 Proof of Lemma 6.3

We consider the event ER ∩ EP V . The following analysis will be done assuming the successful event ER ∩
EP V holds. By Lemma 6.2, the regret can be bounded by Regret(K) :=

∑K
k=1(V ∗

1 (sk
1) − V πk

1 (sk
1)) ≤∑K

k=1(V k

1(sk
1)− V k

1(sk
1)).

By the update steps in Algorithm 1, we have

V
k

h(sk
h)− V k

h(sk
h)

=(1− ρ)Qk

h(sk
h, πk

h(sk
h)) + ρQ

k

h(sk
h, πk

h(sk
h))− (1− ρ)Qk

h
(sk

h, πk
h(sk

h))− ρQk

h
(sk

h, πk
h(sk

h))

≤[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h) + 2Dπ̃k
h
θh(sk

h)

=[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− [P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h) + 2Dπ̃k

h
θh(sk

h) + [P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

=[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− [P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h) + 2Dπ̃k

h
θh(sk

h)

+ [P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)− c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)

+ c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1) + c2(V k

h+1 − V k
h+1)(sk

h+1).
(41)

According to the definition of θh(s, a),

V
k

h(sk
h)− V k

h(sk
h)

=[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− [P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

+ [P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)− c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)

+ c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1) + c2(V k

h+1 − V k
h+1)(sk

h+1)

+ 2(1− ρ)

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ 2(1− ρ)

√
2r̂k

h(sk
h, πk

h(sk
h))ι

Nk
h (sk

h, πk
h(sk

h))

+ (1− ρ)P̂ k
h (V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))/H + 2(1− ρ)(24H2 + 7H + 7)ι
3Nk

h (sk
h, πk

h(sk
h)))

+ 2ρ

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ 2ρ

√
2r̂k

h(sk
h, πk

h(sk
h))ι

Nk
h (sk

h, πk
h(sk

h))

+ ρP̂ k
h (V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))/H + 2ρ(24H2 + 7H + 7)ι
3Nk

h (sk
h, πk

h(sk
h)))

.

(42)

We noticed that

Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h) = (1− ρ)P̂ k
h (V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h)) + ρP̂ k
h (V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h)). (43)
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We can reorganize the equation 42 to

V
k

h(sk
h)− V k

h(sk
h)

=(1 + 1/H)[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− (1 + 1/H)[P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

+ (1 + 1/H)[P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)− c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)︸ ︷︷ ︸

(a)

+ c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1) + c2(V k

h+1 − V k
h+1)(sk

h+1)

+ 2(1− ρ)

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))︸ ︷︷ ︸

(b1)

+2(1− ρ)

√
2r̂k

h(sk
h, πk

h(sk
h))ι

Nk
h (sk

h, πk
h(sk

h))

+ 2(1− ρ)(24H2 + 7H + 7)ι
3Nk

h (sk
h, πk

h(sk
h)))

+ 2ρ

√√√√2VP̂ k
h

[(V k

h+1 + V k
h+1)/2](sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))︸ ︷︷ ︸

(b2)

+ 2ρ

√
2r̂k

h(sk
h, πk

h(sk
h))ι

Nk
h (sk

h, πk
h(sk

h))
+ 2ρ(24H2 + 7H + 7)ι

3Nk
h (sk

h, πk
h(sk

h)))
.

(44)

Bound of the error of the empirical probability estimator (a) Here, we set c1 = 1 + 1/H. By
Bennett’s inequality, we have that w.p. 1− Sδ

|P̂ k
h (s′|s, a)− Ph(s′|s, a)| ≤

√
2Ph(s′|s, a)ι

Nk
h (s, a)

+ ι

3Nk
h (s, a)

(45)

holds for all s, a, h, k, s′.

Thus, we have that

(P̂ k
h − Ph)(V k

h+1 − V k
h+1)(s, a)

=
∑

s′

(P̂ k
h (s′|s, a)− Ph(s′|s, a))(V k

h+1(s′)− V k
h+1(s′))

≤
∑

s′

√
2Ph(s′|s, a)ι

Nk
h (s, a)

(V k

h+1(s′)− V k
h+1(s′)) + SHι

3Nk
h (s, a)

≤
∑

s′

(
Ph(s′|s, a)ι

H
+ H

2Nk
h (s, a)

)(
V

k

h+1(s′)− V k
h+1(s′)

)
+ SHι

3Nk
h (s, a)

≤Ph(V k

h+1 − V k
h+1)(s, a)/H + SH2

2Nk
h (s, a)

+ SHι

3Nk
h (s, a)

≤Ph(V k

h+1 − V k
h+1)(s, a)/H + SH2ι

Nk
h (s, a)

,

(46)

where the second inequality is due to AM-GM inequality.

Bound of the error of the empirical variance estimator (b1) & (b2) Here, we bound VP̂ k
h

[(V k

h+1 +
V k

h+1)/2](sk
h, ak

h).

Recall that Cπ,π′,ρ
h (s) = E

[∑H
h′=h Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
in Appendix B. Set πk∗ here is the

optimal policy towards the adversary policy πk with πk∗
h (s) = arg maxπ C

π,πk,ρ
h (s). Similar to the proof in
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Appendix C.1.2, we can show that V
k

h(s) ≥ C
πk∗,πk,ρ
h (s). We also have that C

πk∗,πk,ρ
h (s) = maxπ C

π,πk,ρ
h (s) ≥

C
πk,πk,ρ
h (s) ≥ V πk

h (s) ≥ V k
h(s) . For any (s, a, h, k) ∈ S ×A× [H]× [K], under event ER ∩ EP V ,

VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)−VPh

C
πk∗,πk,ρ
h+1 (s, a)

=P̂ k
h [(V k

h+1 + V k
h+1)/2]2(s, a)− [P̂ k

h (V k

h+1 + V k
h+1)/2]2(s, a)

− Ph(Cπk∗,πk,ρ
h+1 )2(s, a) + (PhC

πk∗,πk,ρ
h+1 )2(s, a)

≤[P̂ k
h (V k

h+1)2 − (P̂ k
h V k

h+1)2 − Ph(V k
h+1)2 + (PhV

k

h+1)2](s, a)

≤|(P̂ k
h − Ph)(V k

h+1)2|(s, a) + |(PhV k
h+1)2 − (P̂ k

h V k
h+1)2|(s, a)

+ Ph|(V
k

h+1)2 − (V k
h+1)2|(s, a) + |(PhV

k

h+1)2 − (PhV k
h+1)2|(s, a),

(47)

where the first inequality is due V
k

h(s) ≥ C
πk∗,πk,ρ
h (s) ≥ V k

h(s). The result of (Weissman et al., 2003)
combined with a union bound on Nk

h (s, a) ∈ [K] implies w.p 1− δ

∥P̂ k
h (·|s, a)− Ph(·|s, a)∥1 ≤

√
2Sι

Nk
h (s, a)

(48)

holds for all s, a, h, k.

These terms can be bounded separately by

|(P̂ k
h − Ph)(V k

h+1)2|(s, a) ≤ H2

√
2Sι

Nk
h (s, a)

,

|(PhV k
h+1)2 − (P̂ k

h V k
h+1)2|(s, a) ≤ 2H|(Ph − P̂ k

h )V k
h+1| ≤ 2H2

√
2Sι

Nk
h (s, a)

,

Ph|(V
k

h+1)2 − (V k
h+1)2|(s, a) ≤ 2HPh(V k

h+1 − V k
h+1)(s, a),

|(PhV
k

h+1)2 − (PhV k
h+1)2|(s, a) ≤ 2HPh(V k

h+1 − V k
h+1)(s, a),

(49)

where the first two inequality is due to equation 48. In addition, 3H2
√

2Sι
Nk

h
(s,a) ≤ 1 + 9SH4ι

2Nk
h

(s,a) . Thus, we
have

VP̂ k
h

[(V k

h+1 + V k
h+1)/2](s, a)−VPh

C
πk∗,πk,ρ
h+1 (s, a)

≤4HPh(V k

h+1 − V k
h+1)(s, a) + 3H2

√
2Sι

Nk
h (s, a)

≤4HPh(V k

h+1 − V k
h+1)(s, a) + 1 + 9SH4ι

2Nk
h (s, a)

.

(50)
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Then we have

(1− ρ)

√√√√VP̂ k
h

[(V k

h+1 + V k
h+1)/2](sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√√√√VP̂ k
h

[(V k

h+1 + V k
h+1)/2](sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

≤(1− ρ)

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ (1− ρ)

√√√√4HPh(V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√√√√4HPh(V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ (1− ρ)
√

1
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√
1

Nk
h (sk

h, πk
h(sk

h))

+ (1− ρ)
√

9SH4ι/2
Nk

h (sk
h, πk

h(sk
h))

+ ρ
√

9SH4ι/2
Nk

h (sk
h, πk

h(sk
h))

≤(1− ρ)

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ (1− ρ)
(

Ph(V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))
2
√

2H
+ 2

√
2H2ι

Nk
h (sk

h, πk
h(sk

h))

)

+ ρ

(
Ph(V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))
2
√

2H
+ 2

√
2H2ι

Nk
h (sk

h, πk
h(sk

h))

)

+ (1− ρ)
√

1
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√
1

Nk
h (sk

h, πk
h(sk

h))

+ (1− ρ)
√

9SH4ι/2
Nk

h (sk
h, πk

h(sk
h))

+ ρ
√

9SH4ι/2
Nk

h (sk
h, πk

h(sk
h))

=(1− ρ)

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+
Dπ̃k

h
Ph(V k

h+1 − V k
h+1)(sk

h)
2
√

2H
+ 2
√

2(1− ρ)H2ι

Nk
h (sk

h, πk
h(sk

h))
+ 2

√
2ρH2ι

Nk
h (sk

h, πk
h(sk

h))

+ (1− ρ)
√

1
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√
1

Nk
h (sk

h, πk
h(sk

h))

+ (1− ρ)
√

9SH4ι/2
Nk

h (sk
h, πk

h(sk
h))

+ ρ
√

9SH4ι/2
Nk

h (sk
h, πk

h(sk
h))

,

(51)

where the second inequality is due to AM-GM inequality.
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Recursing on h Plugging equation 46 and equation 51 into equation 44and setting c1 = 1 + 1/H and
c2 = (1 + 1/H)3 , we have

V
k

h(sk
h)− V k

h(sk
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− (1 + 1/H)[P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

+ (1/H + 1/H2)Ph(V k

h+1 − V k
h+1)(sk

h, ak
h) + (SH + SH2)ι

Nk
h (sk

h, ak
h)

+ c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1) + c2(V k

h+1 − V k
h+1)(sk

h+1)

+ 2(1− ρ)

√
2r̂k

h(sk
h, πk

h(sk
h))ι

Nk
h (sk

h, πk
h(sk

h))
+ 2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (sk

h, πk
h(sk

h)))

+ 2ρ

√
2r̂k

h(sk
h, πk

h(sk
h))ι

Nk
h (sk

h, πk
h(sk

h))
+ 2ρ(24H2 + 7H + 7)ι

3Nk
h (sk

h, πk
h(sk

h)))

+ (1− ρ)

√√√√8VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√√√√8VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

+
Dπ̃k

h
Ph(V k

h+1 − V k
h+1)(sk

h)
H

+ 8(1− ρ)H2ι

Nk
h (sk

h, πk
h(sk

h))
+ 8ρH2ι

Nk
h (sk

h, πk
h(sk

h))

+ (1− ρ)
√

8
Nk

h (sk
h, πk

h(sk
h))

+ ρ

√
8

Nk
h (sk

h, πk
h(sk

h))
+ 6(1− ρ)

√
SH4ι

Nk
h (sk

h, πk
h(sk

h))
+ 6ρ

√
SH4ι

Nk
h (sk

h, πk
h(sk

h))
.

(52)

We set Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ

h+1 (s,a)ι

Nk
h

(s,a) +
√

32
Nk

h
(s,a) + 46

√
SH4ι

Nk
h

(s,a) . Since rk
h(s, a) ≤ 1, by organizing the items,

we have that

V
k

h(sk
h)− V k

h(sk
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− (1 + 1/H)[P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

+ (1/H + 1/H2)Ph(V k

h+1 − V k
h+1)(sk

h, ak
h) + (SH + SH2)ι

Nk
h (sk

h, ak
h)

+ c1Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1) + c2(V k

h+1 − V k
h+1)(sk

h+1)

+
Dπ̃k

h
Ph(V k

h+1 − V k
h+1)(sk

h, πk
h(sk

h))
H

+Dπ̃k
h
Θk

h(sk
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− (1 + 1/H)[P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

+ 1
H

[Dπ̃k
h
Ph(V k

h+1 − V k
h+1)(sk

h)− Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)]

+ (1 + 3/H + 1/H2)Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1)

+ c2(V k

h+1 − V k
h+1)(sk

h+1) + (SH + SH2)ι
Nk

h (sk
h, ak

h)
+Dπ̃k

h
Θk

h(sk
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)](sk

h)− (1 + 1/H)[P̂ k
h (V k

h+1 − V k
h+1)](sk

h, ak
h)

+ 1
H

[Dπ̃k
h
Ph(V k

h+1 − V k
h+1)(sk

h)− Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)]

+ c2Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− c2(V k

h+1 − V k
h+1)(sk

h+1)

+ c2(V k

h+1 − V k
h+1)(sk

h+1) + (SH + SH2)ι
Nk

h (sk
h, ak

h)
+Dπ̃k

h
Θk

h(sk
h).

(53)
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By induction of equation 44 on h = 1, · · · , H and V
k

h+1 = V k
h+1 = 0, we have that

Regret(K) ≤ 21
K∑

k=1

H∑
h=1

(Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)(sk

h)− P̂ k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)

+ 1
H

[Dπ̃k
h
Ph(V k

h+1 − V k
h+1)(sk

h)− Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)]

+ Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)− (V k

h+1 − V k
h+1)(sk

h+1)

+ (SH + SH2)ι
Nk

h (sk
h, ak

h)
+Dπ̃k

h
Θk

h(sk
h)).

(54)

Here we use (1 + 1/H)3H < 21.

C.2.2 Proof of Lemma 6.4

Recall that M1 =
∑K

k=1
∑H

h=1[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)(sk

h)− P̂ k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)].

Since Eak
h

∼D
π̃k

h

[P̂ k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)] = Dπ̃k

h
P̂ k

h (V k

h+1 − V k
h+1)(sk

h), we have that Dπ̃k
h
P̂ k

h (V k

h+1 −

V k
h+1)(sk

h) − P̂ k
h (V k

h+1 − V k
h+1)(sk

h, ak
h) is a martingale difference sequence. By the Azuma-Hoeffding in-

equality, with probability 1− δ, we have∣∣∣∣∣
K∑

k=1

H∑
h=1

[Dπ̃k
h
P̂ k

h (V k

h+1 − V k
h+1)(sk

h)− P̂ k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)]
∣∣∣∣∣ ≤ H

√
2HKι. (55)

C.2.3 Proof of Lemma 6.5

Recall that M2 =
∑K

k=1
∑H

h=1
1
H [Dπ̃k

h
Ph(V k

h+1 − V k
h+1)(sk

h)− Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)].

Since Eak
h

∼D
π̃k

h

[Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)] = Dπ̃k

h
Ph(V k

h+1 − V k
h+1)(sk

h), we have that Dπ̃k
h
Ph(V k

h+1 −

V k
h+1)(sk

h) − Ph(V k

h+1 − V k
h+1)(sk

h, ak
h) is a martingale difference sequence. By the Azuma-Hoeffding in-

equality, with probability 1− δ, we have∣∣∣∣∣
K∑

k=1

H∑
h=1

[Dπ̃k
h
Ph(V k

h+1 − V k
h+1)(sk

h)− Ph(V k

h+1 − V k
h+1)(sk

h, ak
h)]
∣∣∣∣∣ ≤ H

√
2HKι. (56)

C.2.4 Proof of Lemma 6.6

Recall that M3 =
∑K

k=1
∑H

h=1(P k
h (V k

h+1 − V k
h+1)(sk

h, ak
h)− (V k

h+1 − V k
h+1)(sk

h+1)).

Let the one-hot vector 1̂k
h(·|sk

h, ak
h) to satisfy that 1̂k

h(sk
h+1|sk

h, ak
h) = 1 and 1̂k

h(s|sk
h, ak

h) = 0 for s ̸= sk
h+1.

Thus, [(P k
h − 1̂k

h)(V k

h+1 − V k
h+1)](sk

h, ak
h) is a martingale difference sequence. By the Azuma-Hoeffding

inequality, with probability 1− δ, we have∣∣∣∣∣
K∑

k=1

H∑
h=1

[(P k
h − 1̂k

h)(V k

h+1 − V k
h+1)](sk

h, ak
h)
∣∣∣∣∣ ≤ H

√
2HKι. (57)

C.2.5 Proof of Lemma 6.7

We bounded M4 =
∑K

k=1
∑H

h=1[ (SH+SH2)ι

Nk
h

(sk
h

,ak
h

) +Dπ̃k
h
Θk

h(sk
h)] by separately bounding the four items.
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Bound
∑K

k=1
∑H

h=1
(SH+SH2)ι

Nk
h

(sk
h

,ak
h

) We regroup the summands in a different way.

K∑
k=1

H∑
h=1

(SH + SH2)ι
Nk

h (sk
h, ak

h)
= (SH + SH2)ι

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

1
n
≤ (SH + SH2)SAHι2. (58)

Recall that Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ

h+1 (s,a)ι

Nk
h

(s,a) +
√

32
Nk

h
(s,a) + 46

√
SH4ι

Nk
h

(s,a) .

Bound
∑K

k=1
∑H

h=1[(1 − ρ)
√

32ι
Nk

h
(sk

h
,πk

h
(sk

h
)) + ρ

√
32ι

Nk
h

(sk
h

,πk
h

(sk
h

)) ] We regroup the summands in a different
way. For any policy π, we have

K∑
k=1

H∑
h=1

√
32ι

Nk
h (sk

h, π(sk
h))

=
H∑

h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

√
32ι

n
≤ 8H

√
SAKι. (59)

Bound
∑K

k=1
∑H

h=1[(1 − ρ) 46SH2ι
Nk

h
(sk

h
,πk

h
(sk

h
)) + ρ 46SH2ι

Nk
h

(sk
h

,πk
h

(sk
h

)) ] We regroup the summands in a different way.
For any policy π, we have

K∑
k=1

H∑
h=1

46
√

SH4ι

Nk
h (sk

h, π(sk
h))

= 46
√

SH4ι

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

1
n
≤ 46S

3
2 AH3ι2. (60)

Bound
∑K

k=1
∑H

h=1

[
(1− ρ)

√
8VPh

C
πk∗,πk,ρ

h+1 (sk
h

,πk
h

(sk
h

))ι

Nk
h

(sk
h

,πk
h

(sk
h

)) + ρ

√
8VPh

C
πk∗,πk,ρ

h+1 (sk
h

,πk
h

(sk
h

))ι

Nk
h

(sk
h

,πk
h

(sk
h

))

]
By Cauchy-

Schwarz inequality,

K∑
k=1

H∑
h=1

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

≤

√√√√ K∑
k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)) ·
K∑

k=1

H∑
h=1

ι

Nk
h (sk

h, πk
h(sk

h))

≤

√√√√SAHι2
K∑

k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)).

(61)

Similarly,

K∑
k=1

H∑
h=1

√√√√VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))ι
Nk

h (sk
h, πk

h(sk
h))

≤

√√√√SAHι2
K∑

k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)).

(62)

By (1− ρ)a2 + ρb2 ≥ ((1− ρ)a + ρb)2,

(1− ρ)

√√√√ K∑
k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)) + ρ

√√√√ K∑
k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))

≤

√√√√ K∑
k=1

H∑
h=1

[(1− ρ)VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)) + ρVPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))].

(63)
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Now we bound the total variance. Let Dπ̃k
h
Ph(s′|s) = (1− ρ)Ph(s′|s, πk

h(s) + ρPh(s′|s, πk
h(s)),

[Dπ̃k
h
PhVh+1](s) =

∑
s′

[(1− ρ)Ph(s′|s, πk
h(s)) + ρPh(s′|s, πk

h(s))]Vh+1(s′), (64)

and

V[D
π̃k

h
Ph]Vh+1(s) =

∑
s′

[(1− ρ)Ph(s′|s, πk
h(s)) + ρPh(s′|s, πk

h(s))][Vh+1(s′)]2

− [
∑

s′

(
(1− ρ)Ph(s′|s, πk

h(s)) + ρPh(s′|s, πk
h(s))

)
Vh+1(s′)]2.

(65)

We have that

V[D
π̃k

h
Ph]C

πk∗,πk,ρ
h+1 (sk

h)

=
∑

s′

[(1− ρ)Ph(s′|sk
h, πk

h(sk
h)) + ρPh(s′|sk

h, πk
h(sk

h))][Cπk∗,πk,ρ
h+1 (s′)]2

− [
∑

s′

(
(1− ρ)Ph(s′|sk

h, πk
h(sk

h)) + ρPh(s′|sk
h, πk

h(sk
h))
)

C
πk∗,πk,ρ
h+1 (s′)]2

≥(1− ρ)VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)) + ρVPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))

+ (1− ρ)[PhC
πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))]2 + ρPh[Cπk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h))]2

− [
∑

s′

(1− ρ)Ph(s′|sk
h, πk

h(sk
h))Cπk∗,πk,ρ

h+1 (s′) + ρPh(s′|sk
h, πk

h(sk
h))Cπk∗,πk,ρ

h+1 (s′)]2

≥(1− ρ)VPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)) + ρVPh
C

πk∗,πk,ρ
h+1 (sk

h, πk
h(sk

h)),

(66)

where the last inequality is due to (1− ρ)a2 + ρb2 ≥ ((1− ρ)a + ρb)2.

With probability 1− 2δ, we also have that

K∑
k=1

H∑
h=1

V[D
π̃k

h
Ph]C

πk∗,πk,ρ
h+1 (sk

h)

=
K∑

k=1

H∑
h=1

(
[Dπ̃k

h
Ph(Cπk∗,πk,ρ

h+1 )2](sk
h)−

(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1 ](sk

h)
)2)

=
K∑

k=1

H∑
h=1

(
[Dπ̃k

h
Ph(Cπk∗,πk,ρ

h+1 )2](sk
h)−

(
C

πk∗,πk,ρ
h+1 (sk

h+1)
)2)

+
K∑

k=1

H∑
h=1

((
C

πk∗,πk,ρ
h+1 (sk

h+1)
)2
−
(

[Dπ̃k
h
PhC

πk∗,πk,ρ
h+1 ](sk

h)
)2)

≤H2
√

2HKι +
K∑

k=1

H∑
h=1

(
(Cπk∗,πk,ρ

h (sk
h))2 −

(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1 ](sk

h)
)2)

−
K∑

k=1
(Cπk∗,πk,ρ

1 (sk
1))2

≤H2
√

2HKι + 2H

K∑
k=1

H∑
h=1
|Cπk∗,πk,ρ

h (sk
h)−Dπ̃k

h
PhC

πk∗,πk,ρ
h+1 (sk

h)|

≤H2
√

2HKι + 2H

K∑
k=1

(
C

πk∗,πk,ρ
1 (sk

1) +
H∑

h=1

(
C

πk∗,πk,ρ
h+1 (sk

h+1)−Dπ̃k
h
PhC

πk∗,πk,ρ
h+1 (sk

h, ak
h)
))

≤H2
√

2HKι + 2H2K + 2H2
√

2HKι

≤3H2K + 9H3ι/2,

(67)
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where the first inequality holds with probability 1 − δ by Azuma-Hoeffding inequality, the second inequal-
ity is due to the bound of V-values, the third inequality is due to Lemma 6.2 so that C

πk∗,πk,ρ
h (sk

h) ≥
Dπ̃k

h
D

πk∗,πk,ρ
h (sk

h) ≥ Dπ̃k
h
PhC

πk∗,πk,ρ
h+1 (sk

h), the fourth inequality holds with probability 1 − δ by Azuma-
Hoeffding inequality, and the last inequality holds with 2ab ≤ a2 + b2.

In summary, with probability at least 1− δ, we have
∑K

k=1
∑H

h=1VPh
V πk

h+1(sk
h, ak

h) ≤ (H2K + H3ι).

In summary,
∑K

k=1
∑H

h=1Dπ̃k
h
Θk

h(sk
h) ≤ 8

√
SAH2Kι + 46S

3
2 AH3ι2 +

√
24SAH3Kι2 + 36SAH5ι2 ≤

8
√

SAH2Kι + 46S
3
2 AH3ι2 +

√
24SAH3Kι + 6

√
SAH5ι.

D Model-free method

In this section, we develop a model-free algorithm and analyze its theoretical guarantee. We present the
proposed Action Robust Q-learning with UCB-Hoeffding (ARQ-H) algorithm show in Algorithm 2. Here,
we highlight the main idea of Algorithm 2. Algorithm 2 follows the same idea of Algorithm 1, which trains
the agent in a clean (simulation) environment and learns a policy that performs well when applied to a
perturbed environment with probabilistic policy execution uncertainty. To simulate the action perturbation,
Algorithm 2 chooses an adversarial action with probability ρ. To learn the agent’s optimal policy and the
corresponding adversarial policy, Algorithm 2 computes an optimistic estimate Q of Q∗ and a pessimistic
estimate Q of Qπk . Algorithm 2 uses the optimistic estimates to explore the possible optimal policy π and
uses the pessimistic estimates to explore the possible adversarial policy π. The difference is that Algorithm 2
uses a model-free method to update Q and V values.

Here, we highlight the challenges of the model-free planning compared with the model-based planing. In the
model-based planning, we performs value iteration and the Q values, V values, agent policy π and adversarial
policy π are updated on all (s, a). However, in the model-free method, the Q values, V values are updated
only on (sk

h, ak
h) which are the samples on the trajectories. Compared with the model-based planning, the

model-free planning is slower and less stable. We need to update the output policy carefully. In line 14-16,
Algorithm 2 does not update the output policy when the lower bound on the value function of the new policy
does not improve. By this, the output policies are stably updated.

E Proof for model-free algorithm

In this section, we prove Theorem 7.1. Recall that we use Q
k

h,V k

h,Qk

h
,V k

h and Nk
h to denote the values of

Qh,V h,Q
h
,V h and max{Nh, 1} at the beginning of the k-th episode.

Property of Learning Rate αt We refer the readers to the setting of the learning rate αt := H+1
H+t

and the Lemma 4.1 in (Jin et al., 2018). For notational convenience, define α0
t :=

∏t
j=1(1 − αt) and

αi
t := αi

∏t
j=i+1(1 − αt). Here, we introduce some useful properties of αi

t which were proved in (Jin et al.,
2018):
(1)

∑t
i=1 αi

t = 1 and α0
t = 0 for t ≥ 1;

(2)
∑t

i=1 αi
t = 0 and α0

t = 1 for t = 0;
(3) 1√

t
≤
∑t

i=1
αi

t√
t
≤ 2√

t
for every t ≥ 1;

(4)
∑t

i=1(αi
t)2 ≤ 2H

t for every t ≥ 1;
(5)

∑∞
t=i αi

t ≤ (1 + 1
H ) for every i ≥ 1.

Recursion on Q As shown in (Jin et al., 2018), at any (s, a, h, k) ∈ S × A × [H] × [K], let t = Nk
h (s, a)

and suppose (s, a) was previously taken by the agent at step h of episodes k1, k2, . . . , kt < k. By the update
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equations in Algorithm 2 and the definition of αi
t, we have

Q
k

h(s, a) = α0
t (H − h + 1) +

t∑
i=1

αi
t

(
rki

h + V
ki

h+1(ski

h+1) + bi

)
;

Qk

h
(s, a) =

t∑
i=1

αi
t

(
rki

h + V ki

h+1(ski

h+1)− bi

)
.

(68)

Thus,

(Qk

h −Q∗
h)(s, a) =α0

t (H − h + 1) +
t∑

i=1
αi

t

(
rki

h + V
ki

h+1(ski

h+1) + bi

)
−

(
α0

t Q∗
h(s, a) +

t∑
i=1

αi
t

(
Rh(s, a) + PhV ∗

h+1(s, a)
))

=α0
t (H − h + 1−Q∗

h(s, a)) +
t∑

i=1
αi

t

(
(V ki

h+1 − V ∗
h+1)(ski

h+1)
)

+
t∑

i=1
αi

t

(
(rki

h −Rh(s, a)) + V ∗
h+1(ski

h+1)− PhV ∗
h+1(s, a) + bi

)
,

(69)

and similarly

(Qk

h
−Qπk

h )(s, a) =
t∑

i=1
αi

t

(
rki

h + V ki

h+1(ski

h+1)− bi

)
−

(
α0

t Qπk

h (s, a) +
t∑

i=1
αi

t

(
Rh(s, a) + PhV πk

h+1(s, a)
))

=− α0
t Qπk

h (s, a) +
t∑

i=1
αi

t

(
[Ph(V ki

h+1 − V πk

h+1)](s, a)
)

+
t∑

i=1
αi

t

(
(rki

h −Rh(s, a)) + V ki

h+1(ski

h+1)− PhV ki

h+1(s, a)− bi

)
.

(70)

In addition, for any k′ ≤ k, let t′ = Nk′

h (s, a). Thus, (s, a) was previously taken by the agent at step h of
episodes k1, k2, . . . , kt′ < k′. We have

(Qk′

h
−Qπk

h )(s, a) =− α0
t Qπk

h (s, a) +
t′∑

i=1
αi

t′

(
[Ph(V ki

h+1 − V πk

h+1)](s, a)
)

+
t′∑

i=1
αi

t′

(
(rki

h −Rh(s, a)) + V ki

h+1(ski

h+1)− PhV ki

h+1(s, a)− bi

)
.

(71)

Confidence Bounds By the Azuma-Hoeffding inequality, with probability 1 − δ, we have that for all s,
a, h and t ≤ K,∣∣∣∣∣

t∑
i=1

αi
t

(
(rki

h −Rh(s, a)) + V ki

h+1(ski

h+1)− PhV ki

h+1(s, a)
)∣∣∣∣∣ ≤ H

√√√√ t∑
i=1

(αi
t)2ι/2 ≤

√
H3ι/t. (72)

At the same time, with probability 1− δ, we have that for all s, a, h and t ≤ K,∣∣∣∣∣
t∑

i=1
αi

t

(
(rki

h −Rh(s, a)) + V ∗
h+1(ski

h+1)− PhV ∗
h+1(s, a)

)∣∣∣∣∣ ≤√H3ι/t. (73)
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In addition, we have
√

H3ι/t ≤
∑t

i=1 αi
tbi ≤ 2

√
H3ι/t.

Monotonicity Now we prove that V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥ Q∗
h(s, a) ≥

Qπk

h (s, a) ≥ Qk

h
(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

At step H + 1, we have V
k

H+1(s) = V ∗
H+1(s) = V πk

H+1(s) = V k
H+1(s) = 0 and Q

k

H+1(s, a) = Q∗
H+1(s, a) =

Qπk

H+1(s, a) = Qk

H+1(s, a) = 0 for all (s, a, k) ∈ S ×A× [K].

Consider any step h ∈ [H] in any episode k ∈ [K], and suppose that the monotonicity is satisfied for all
previous episodes as well as all steps h′ ≥ h + 1 in the current episode, which is

V
k′

h′(s) ≥ V ∗
h′(s) ≥ V πk′

h′ (s) ≥ V k′

h′(s) ∀(k′, h′, s) ∈ [k − 1]× [H + 1]× S,

Q
k′

h′(s, a) ≥ Q∗
h′(s, a) ≥ Qπk′

h′ (s, a) ≥ Qk′

h′(s, a) ∀(k′, h′, s, a) ∈ [k − 1]× [H + 1]× S ×A,

V
k

h′(s) ≥ V ∗
h′(s) ≥ V πk

h′ (s) ≥ V k
h′(s) ∀h′ ≥ h + 1 and s ∈ S,

Q
k

h′(s, a) ≥ Q∗
h′(s, a) ≥ Qπk

h′ (s, a) ≥ Qk

h′(s, a) ∀h′ ≥ h + 1 and (s, a) ∈ S ×A.

(74)

We first show the monotonicity of Q values. We have

(Qk

h −Q∗
h)(s, a) ≥ α0

t (H − h + 1−Q∗
h(s, a)) +

t∑
i=1

αi
t

(
(V ki

h+1 − V ∗
h+1)(ski

h+1)
)
≥ 0, (75)

and, by to the update rule of V values (line 13) in Algorithm 2,

(Qk

h
−Qπk

h )(s, a) ≤− α0
t Qπk

h (s, a) +
t∑

i=1
αi

t

(
[Ph(V ki

h+1 − V πk

h+1)](s, a)
)

≤− α0
t Qπk

h (s, a) +
t∑

i=1
αi

t

(
[Ph(V k

h+1 − V πk

h+1)](s, a)
)
≤ 0.

(76)

In addition, for any k′ ≤ k,

(Qk′

h
−Qπk

h )(s, a) ≤− α0
t Qπk

h (s, a) +
t′∑

i=1
αi

t′

(
[Ph(V ki

h+1 − V πk

h+1)](s, a)
)

≤− α0
t Qπk

h (s, a) +
t′∑

i=1
αi

t′

(
[Ph(V k

h+1 − V πk

h+1)](s, a)
)
≤ 0.

(77)

Then, we show the monotonicity of V values. We have that

(1− ρ) max
a

Q
k

h(s, a) + ρQ
k

h(s, arg min
a

Qk

h
(s, a))

≥(1− ρ) max
a

Q
k

h(s, a) + ρQ∗
h(s, arg min

a
Qk

h
(s, a))

≥(1− ρ)Qk

h(s, π∗
h(s)) + ρ min

a∈A
Q∗

h(s, a)

≥(1− ρ)Q∗
h(s, π∗

h(s)) + ρ min
a∈A

Q∗
h(s, a) = V ∗

h (s).

(78)

By the update rule of V values (line 12) in Algorithm 2,

V
k

h(s) = min{V k−1
h (s), (1− ρ) max

a
Q

k

h(s, a) + ρQ
k

h(s, arg min
a

Qk

h
(s, a))} ≥ V ∗

h (s). (79)
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Here, we need use the update rule of policy π (line 11-16) in Algorithm 2. Define τ(k, h, s) := max{k′ :
k′ < k and V k′+1

h (s) = (1 − ρ)Qk′+1
h

(s, arg maxa Q
k′+1
h (s, a)) + ρ mina Qk′+1

h
(s, a)}, which denotes the last

episode (before the beginning of the episode k), in which the π and V was updated at (h, s). For notational
simplicity, we use τ to denote τ(k, h, s) here. After the end of episode τ and before the beginning of the
episode k, the agent policy π was not updated and V was not updated at (h, s), i.e. V k

h(s) = V τ+1
h (s) =

(1− ρ)Qτ+1
h

(s, πτ+1
h (s)) + ρ mina Qτ+1

h
(s, a) and πk

h(s) = πτ+1
h (s) = arg maxa Q

τ+1
h (s, a)). Thus,

V k
h(s) =(1− ρ)Qτ+1

h
(s, πτ+1

h (s)) + ρ min
a

Qτ+1
h

(s, a)

≤(1− ρ)Qπk

h (s, πτ+1
h (s)) + ρ min

a
Qτ+1

h
(s, a)

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρQτ+1

h
(s, arg min

a∈A
Qπk

h (s, a))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρ min

a∈A
Qπk

h (s, a) = V πk

h (s).

(80)

By induction from h = H + 1 to 1 and k = 1 to K, we can conclude that V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s)

and Q
k

h(s, a) ≥ Q∗
h(s, a) ≥ Qπk

h (s, a) ≥ Qk

h
(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

Regret Analysis According to the monotonicity, the regret can be bounded by

Regret(K) :=
K∑

k=1
(V ∗

1 (sk
1)− V πk

1 (sk
1)) ≤

K∑
k=1

(V k

1(sk
1)− V k

1(sk
1)). (81)

By the update rules in Algorithm 2, we have

V
k

h(sk
h)− V k

h(sk
h)

≤(1− ρ)Qk

h(sk
h, arg max

a
Q

k

h(sk
h, a)) + ρQ

k

h(sk
h, arg min

a
Qk

h
(sk

h, a))

− (1− ρ)Qk

h
(sk

h, arg max
a

Q
k

h(sk
h, a)) + ρQk

h
(sk

h, arg min
a

Qk

h
(sk

h, a))

=(1− ρ)[Qk

h −Qk

h
](sk

h, ak
h) + ρ[Qk

h −Qk

h
](sk

h, ak
h)

=[Qk

h −Qk

h
](sk

h, ak
h) + [Dπ̃k

h
(Qk

h −Qk

h
)](sk

h)− [Qk

h −Qk

h
](sk

h, ak
h).

(82)

Set nk
h = Nk

h (sk
h, ak

h) and where ki(sk
h, ak

h) is the episode in which (sk
h, ak

h) was taken at step h for the i-th time.
For notational simplicity, we set ϕk

h = V
k

h(sk
h)− V k

h(sk
h) and ξk

h = [Dπ̃k
h
(Qk

h −Qk

h
)](sk

h)− [Qk

h −Qk

h
](sk

h, ak
h).

According to the update rules,

ϕk
h =V

k

h(sk
h)− V k

h(sk
h)

≤α0
nk

h
(H − h + 1) +

nk
h∑

i=1
αi

nk
h

(
V

ki(sk
h,ak

h)
h+1 (ski(sk

h,ak
h)

h+1 )− V
ki(sk

h,ak
h)

h+1 (ski(sk
h,ak

h)
h+1 ) + 2bi

)
+ [Dπ̃k

h
(Qk

h −Qk

h
)](sk

h)− [Qk

h −Qk

h
](sk

h, ak
h)

=α0
nk

h
(H − h + 1) +

nk
h∑

i=1
αi

nk
h
(ϕki(sk

h,ak
h)

h+1 + 2bi) + ξk
h

≤α0
nk

h
(H − h + 1) +

nk
h∑

i=1
αi

nk
h
ϕ

ki(sk
h,ak

h)
h+1 + ξk

h + 4
√

H3ι/nk
h.

(83)

We add V
k

h(sk
h) − V k

h(sk
h) over k and regroup the summands in a different way. Note that for any episode

k, the term
∑nk

h
i=1 αi

nk
h

ϕ
ki(sk

h,ak
h)

h+1 takes all the prior episodes ki < k where (sk
h, ak

h) was taken into account. In
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other words, for any episode k′, the term ϕk′

h+1 appears in the summands at all posterior episodes k > k′

where (sk′

h , ak′

h ) was taken. The first time it appears we have nk
h = nk′

h + 1, and the second time it appears
we have nk

h = nk′

h + 2, and so on. Thus, we have

K∑
k=1

(V k

h(sk
h)− V k

h(sk
h))

≤
K∑

k=1
α0

nk
h
(H − h + 1) +

K∑
k=1

nk
h∑

i=1
αi

nk
h
ϕ

ki(sk
h,ak

h)
h+1 +

K∑
k=1

ξk
h +

K∑
k=1

4
√

H3ι/nk
h

=
K∑

k=1
α0

nk
h
(H − h + 1) +

K∑
k′=1

ϕk′

h+1

nK
h∑

t=nk′
h

+1

α
nk′

h
t +

K∑
k=1

ξk
h +

K∑
k=1

4
√

H3ι/nk
h

≤
K∑

k=1
α0

nk
h
(H − h + 1) + (1 + 1/H)

K∑
k=1

ϕk
h+1 +

K∑
k=1

ξk
h +

K∑
k=1

4
√

H3ι/nk
h

(84)

where the final inequality uses the property
∑∞

t=i αi
t ≤ (1 + 1

H ) for every i ≥ 1.

Taking the induction from h = 1 to H, we have

K∑
k=1

(V k

1(sk
1)− V k

1(sk
1))

≤3
H∑

h=1

K∑
k=1

α0
nk

h
(H − h + 1) + 3

H∑
h=1

K∑
k=1

ξk
h +

H∑
h=1

K∑
k=1

12
√

H3ι/nk
h

(85)

where we use the fact that (1 + 1/H)H < 3 and ϕk
H+1 = 0 for all k.

We bound the three items separately.

(1) We have
∑H

h=1
∑K

k=1 α0
nk

h

(H − h + 1) =
∑H

h=1
∑K

k=1 1[nk
h = 0](H − h + 1) ≤ SAH2.

(2) Similar to Lemma 6.4, by the Azuma-Hoeffding inequality, with probability 1 − δ, we have∑H
h=1

∑K
k=1 ξk

h ≤ H
√

2HKι.

(3) We have
∑H

h=1
∑K

k=1 12
√

H3ι/nk
h =

∑H
h=1

∑
(s,a)

∑NK
h (s,a)

n=1
√

H3ι/n ≤ H
√

2H3SAKι.

In summary,

Regret(K) =
K∑

k=1
(V ∗

1 (sk
1)− V πk

1 (sk
1)) ≤ O(

√
SAH5Kι + SAH2)

and

V ∗
1 (s1)− V πout

1 (s1) ≤V
K+1
1 (s1)− V K+1

1 (s1)

= min
k∈[K+1]

(V k

1(sk
1)− V k

1(sk
1))

≤O

(√
SAH5ι

K
+ SAH2

K

)
.

(86)
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