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Abstract

Model merging aims to combine multiple expert models into a more capable single model,
offering benefits such as reduced storage and serving costs, improved generalization, and
support for decentralized model development. Despite its promise, previous studies have
primarily focused on merging a few small models. This leaves many unanswered questions
about the effect of scaling model size and how it interplays with other key factors—like the
base model quality and number of expert models— to affect the merged model’s performance.
This work systematically evaluates the utility of model merging at scale for transformer
based models to examine the impact of these different factors. We experiment with merging
fully fine-tuned models using four popular merging methods—Averaging, Task Arithmetic,
Dare-TIES, and TIES-Merging—across model sizes ranging from 1B to 64B parameters and
merging up to 8 different expert models. We evaluate the merged models on both held-in
tasks, i.e., the expert’s training tasks, and zero-shot generalization to unseen held-out tasks.
Our wide range of experiments provide several new insights about merging transformer based
models at scale and the interplay between different factors. First, we find that merging is
more effective when experts are created from strong base models, i.e., models with good
zero-shot performance, compared to pre-trained ones. Second, larger models perform better
when merged. Third merging consistently improves generalization capabilities. Notably,
when merging eight large expert models, the merged models often generalize better compared
to the multitask trained models. Fourth, we can better merge more expert models when
working with larger models. Fifth, different merging methods behave very similarly at larger
scales. Overall, our findings shed light on some interesting properties of model merging while
also highlighting some limitations.

1 Introduction

Model merging (Raffel, 2021) refers to the process of combining two or more constituent (expert) models
to produce a new, and potentially more powerful model. The appeal of this technique is rooted in several
benefits it can confer: first, it dramatically reduces storage and serving costs by reusing a single model across
tasks; second, it enables compositional combination of capabilities from expert models, which can improve
generalization to novel tasks; and third, merging supports decentralized and modular model development by
allowing multiple contributors to independently build models and later combine them together.

These characteristics have led to a great deal of recent efforts in developing cost-effective model merging
methods (Matena & Raffel, 2022b; Ilharco et al., 2022; Jin et al., 2022; Yadav et al., 2024b; Yang et al.,
2023; Yu et al., 2024d; Shah et al., 2023; Tam et al., 2023; Zhao et al., 2024), often using simple arithmetic
operations, such as averaging the parameters of the constituent models. However, most of these studies are
limited to small-scale experiments with relatively small models (typically < 7B parameters) and merging 2 or
3 experts (Yu et al., 2024a;c), and mainly focus on improving benchmark performance on held-in tasks that
the expert models were trained on (Yu et al., 2024a; Yadav et al., 2024b). Despite the promises that model
merging holds, the research community still lacks a comprehensive study to evaluate its effectiveness as we
scale the model size. Moreover, it is not clear how scale interplays with other factors like number of expert
models and base model quality to affect the merged model’s held-in performance and zero-shot generalization.
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Figure 1: Held-In performance results from our large scale model merging experiments conducted
over keys factors like base models, model sizes, merging methods, and number of experts being
merged. We present results for two base models, PaLM-2 and an instruction tuned version of it, PaLM-2-IT,
four different models sizes (1B, 8B, 24B, 64B), four merging methods (Averaging, Task Arithmetic, Dare-
TIES, and TIES-Merging), when merging either 2 or 8 expert models. We report the performance normalized
with the oracle expert’s performance which is denoted by the bold black circle of radius 1. We also present
the performance of multitask baseline train on the held-in tasks. We find merging expert models created
from the instruction tuned PaLM-2-IT model always performs better than merging PaLM-2 based experts.
Moreover, the gap between these model increase when we merge more experts. Larger experts (64B) merge
better and show the best held-in performance.

This is of paramount importance, as models are rapidly growing in size, and more open-weight models and
datasets are becoming available,1 driving the need for practical and scalable merging methods.

Our primary goal in this paper is to provide insight into the scalability of model merging for transformer
based models. Although some studies have explored merging at the 13B parameter scale (Huang et al., 2024a;
Yu et al., 2024d;b), they primarily leverage increased model size and combine only 2-3 models to attain
better performance on held-in tasks. As such, the interplay of factors like model size, base model quality,
number of constituent models—and their effect on both held-in and zero-shot generalization performance
(held-out)—remains largely unexplored. Hence, we aim to address the following four research questions (RQ)
for transformer based models:

RQ1: What is the effect of using pretrained vs. instruction-tuned base models for creating expert models
for merging?

RQ2: Does model merging perform better or worse as the model size increases?
RQ3: How does merging affect zero-shot generalization to held-out tasks, and how is this influenced by

model size?
RQ4: How many expert models can be merged without performance loss, and how does this depend on

model size?

To answer these question, we systematically evaluate the effectiveness of current state-of-the-art merging
methods through empirical experiments. Specifically, we utilize the PaLM-2 model (Anil et al., 2023) and its
instruction-tuned variant, PaLM-2-IT, while scaling the model sizes up to 64B parameters. We experiment
with four popular merging methods, namely, Averaging (Wortsman et al., 2022a; Choshen et al., 2022b),
Task Arithmetic (Ilharco et al., 2022), TIES-Merging (Yadav et al., 2024b), and Dare-TIES (Yu et al., 2024d).
We conduct a series of sensitivity and ablation experiments to understand the relative importance of several
factors like model size (1B, 8B, 24B, 64B parameters), base model quality (pretrained vs. instruction-tuned),
and number of constituent models (2, 4, 6, 8) being merged. Additionally, we consider two axes of evaluation

1As of writing Hugging Face hosts a plethora of community-contributed resources, with 1M+ models and 200K+ datasets.
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Figure 2: Merged experts created from big and strong base models generalize better than
multitask models. We find that for strong base models as we merge more experts (x-axis, →), the merged
model’s generalization performance (y-axis, ↑) monotonically increases to approach and eventually surpasses
multitask baseline. (yellow line). More details in Section 4.3.

using the T0 data collection (Sanh et al., 2021a): held-in evaluation with tasks the expert models were trained
on, and held-out, for zero-shot generalization to unseen tasks.

Our experiment results shed light on the promises of model merging and reveal interesting insights into the
behaviors of different factors at scale. First, we find that the model initialization plays a crucial role in
enhancing the performance of the merged model. Specifically, across all evaluation settings, using strong
zero-shot instruction-tuned base models to create expert models leads to improved performance compared
to using pretrained models (see §4.1). Second, larger models perform better when merged. This holds true
regardless of the base model used (instruction-tuned or not), number of models merged, or merging method
(see §4.2). Third, our results demonstrate that merging significantly enhances zero-shot generalization,
consistently improving the ability to adapt to new tasks. Notably, when using strong base models as the
number of merged experts increases, our merged model either matches or exceeds the performance of a
strong multi-task training baseline (see §4.3). Fourth, larger models are better at merging a larger number
of expert models (see §4.4). Finally, our numerous experiments identify specific settings where we expect
model merging to be much more useful. From this we provide general recommendations for practitioners (see
§4.7). Taken as a whole, our findings are a powerful testament to the potential of model merging at scale for
creating highly generalizable language models, which we hope will spur more fundamental research into the
development of practical and scalable merging methods.

2 Background

Model merging has emerged as a cost-effective method for developing improved models. Two common use
cases of merging are: (1) combining model checkpoints from different data versions, hyperparameters, or
training stages to enhance distributional robustness (Team et al., 2024; Dubey et al., 2024), and (2) combining
multiple expert models trained on different datasets to leverage their complementary capabilities. In both
scenarios, the expert models generally share a common architecture and a base model from which the expert
models are created via fine-tuning.

This work focuses on merging specialized, fine-tuned versions (experts) of a single base model to enhance
its capabilities. Each expert model is trained on distinct datasets covering different tasks, domains, and/or
capabilities. We refer to the tasks/datasets used for training the expert models as “held-in”, while those that
are new and unseen are called “held-out”. Our goal is to create a unified model that retains the individual
expert models’ capabilities on held-in tasks while improving zero-shot generalization on held-out tasks. This
merging approach provides a flexible, modular method for post-training large language models, facilitating
the addition of new features and capabilities to top-performing models.

2.1 Model Merging Methods

We denote the set of N expert tasks as t1, . . . , tN and the base model weights, representing the common ancestor
of all expert models as θbase. The weights of the corresponding specialized expert models, each obtained
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by fully fine-tuning the base model on a specific expert task, are denoted as θ1, ..., θN, respectively. We
focus on “open vocabulary" models which utilize natural language as input and output for both classification
and generation tasks, eliminating the need for task-specific classification heads making the merging process
simpler. Given this, model merging methods can be defined as a function M(.). This function takes
as input the base model, the set of N expert models, and potentially additional information, denoted
by Φ. This additional information may include activation statistics, Fisher matrices, or other method-
specific data. The output of the function is the merged model, represented by its parameters θm. Formally,
θm = M({θi}N

i=1, θbase, Φ), where Φ is method specific data.

Given our focus on studying model merging with large models, we select four merging methods based on
their popularity and simplicity. We only study merging methods that can scale to tens of billions of model
weight parameters and do not require any additional information to perform merging, i.e., Φ = {}, as these
techniques are efficient for even larger models. Other more complex methods that require computing fisher
matrices (Matena & Raffel, 2022a), backward passes (Yang et al., 2023), or additional information like model
activation (Jin et al., 2023) are skipped because of their computational complexities for large scale model
merging that we focus on in this work. Next, we describe the four selected model merging methods in detail.

2.1.1 Averaging

Parameter averaging (Choshen et al., 2022b; Wortsman et al., 2022a) is a well-established technique in
federated learning (McMahan et al., 2017) and recent applications extend its utility to merge models for
enhancing model robustness against out-of-distribution data (Wortsman et al., 2022b; Ramé et al., 2022a),
refine pre-trained models (Yu et al., 2024a), develop multimodal models (Sung et al., 2023), and create
multitask models by combining capabilities (Yadav et al., 2024b; Ilharco et al., 2022). Parameter averaging is
achieved by taking a mean of all the expert model weights together without using the base model which can
be formally described as, M({θi}N

i=1, θbase) = 1
N

∑N
i=1 θi.

2.1.2 Task Arithmetic

Task Arithmetic (Ilharco et al., 2022) introduces a novel concept of “task vectors" for model merging. For task
ti, the task vector is denoted as τi = θi − θbase which captures task-specific knowledge by quantifying the
difference between the fine-tuned expert parameters (θi) and the original base model parameters (θbase). A
scaling hyperparameter λ controls the contribution of the aggregated task-specific knowledge to the final model.
The merged model is then constructed by linearly combining the base model parameters with a scaled sum of all
task vectors. Formally, task arithmetic can be described as, M({θi}N

i=1, θbase; λ) = θbase +λ∗
∑N

i=1(θi −θbase).

2.1.3 TIES Merging

TIES-Merging (Yadav et al., 2024b) identifies two main challenges with model merging: ❶ during finetuning
expert models accumulate a lot of noise in the parameters, and ❷ different experts might want to change
the same parameter in different directions leading to interference/conflict between the expert models. They
demonstrate that both of these factors hurt model merging and propose a three steps process to remove
redundant parameters, followed by resolving sign conflicts, and finally aggregating only the parameters that
are not conflicting. Specifically, in TIES Merging they first zero out the values in each task vector that have
low magnitudes to obtain the trimmed task vector τ̂i for each task. Next, they chose the aggregate sign
(γm) for each parameter based on whether the parameter has a higher total magnitude in the positive or the
negative direction across all trimmed task vector, formally, γm = sgn(

∑N
i=1 τ̂i). Next, for each parameters p

the models whose sign matches the aggregate sign are averaged to obtain the merged task vector. Finally,
the merged model is obtained by scaling the merged task vector using a hyperparameter λ and then added
back to the base model as, θ

p
m = θbase + λ ∗ 1

|Ap|
∑

i∈Ap τ̂
p
i , where Ap = {i ∈ [N] | γ̂

p
i = γ

p
m}.

2.1.4 Dare Merging

Dare (Yu et al., 2024a) extends the idea of TIES merging by proposing to use a dropout-like pruning stage to
remove noise before merging. Specifically, a Bernoulli mask Mi with drop probability p is applied to each task
vector to obtain the pruned task vector τ̂i = (1 − Mi) ⊙ τi/(1 − p). This stochastic process randomly zeroes
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out elements within the task vector while preserving its expected value. These pruned task vectors are then
used along with either TIES Merging or Task Arithmetic. Due to the popularity of the Dare variant that uses
TIES Merging, we use that to represent the Dare method and call it Dare-TIES.

2.2 Challenges/Limitations

Model Merging has been utilized at a growing rate in practice as it has recently been applied to building
modern language models like Llama-3 (Dubey et al., 2024) and Gemma-2 (Team et al., 2024). However, most
formal studies on model merging have been performed with relatively small models. There are a few studies
that look at larger models with 7B and 13B parameters. However, those studies mostly focus on merging
2-3 models to improve benchmark numbers as opposed to better understanding how the size of the model
affects the model merging process and the resultant model. To motivate our work, we present some of the
limitations of the existing studies and highlight their difference with our work.

Most Studies on Small Models (< 7B parameters): Most existing model merging papers rarely use
large models (> 7B). For example past works (He et al., 2024; Daheim et al., 2023; Ortiz-Jimenez et al., 2024;
Jang et al., 2024), including methods like ModelSoup (Wortsman et al., 2022a), Task Arithmetic (Ilharco et al.,
2023) and TIES-Merging (Yadav et al., 2024b), RegMean (Jin et al., 2023), Fisher-Merging (Matena & Raffel,
2022a) Ada-Merging (Yang et al., 2023), MatS (Tam et al., 2024) perform experiments with model families
like CLIP (Radford et al., 2021), ViT (Dosovitskiy et al., 2021), T5 (Raffel et al., 2020a), DeBERTa (He
et al., 2021), Roberta (Liu et al., 2019), BERT (Devlin et al., 2018) with less than 1B parameters. Hence, it
is unclear how well model merging works for large models, what factors play an important role, the effect of
model size, number of tasks being merged, and its effect on both held-in performance and generalization of
the model. Some studies hypothesize that bigger models perform better when merged , however there are no
concrete large scale studies to thoroughly assess such claims at large scale.

Model Merging Studies with Large Models are Shallow: Some recent works like DARE (Yu et al.,
2024a), WIDEN (Yu et al., 2024c), Chat-Vector (Huang et al., 2024b) demonstrate merging results for larger
models with up to 13B parameters, however these studies have a few limitations: ❶ They primarily focus
on using model merging to improve model quality and hence their experiments do not provide concrete
insights on how model size interplays with merging, ❷ They only merge a maximum of two or three models
at once, ❸ They primarily focus on held-in tasks and do not provide any insights on the effect of merging on
a model’s generalization abilities. Other works like RewardSoup (Rame et al., 2024), WARM (Rame et al.,
2024), WARP (Ramé et al., 2024), FuseLLM (Wan et al., 2024a), FuseChat (Wan et al., 2024b) also work
with ∼ 7B sized models and focus on specific applications of model merging without providing any deeper
insight about how merging performance changes for large models.

Varied Evaluation Setups: Most previous works rarely share their experimental setup where both the
expert datasets and the objective vary. For example, RegMean (Jin et al., 2023), Task Arithmetic (Ilharco
et al., 2023), TIES (Yadav et al., 2024b), MaTS (Tam et al., 2024) uses GLUE tasks (Wang et al., 2018),
Vision tasks, T0 held-out, and T0 held-in (Sanh et al., 2021b) tasks respectively. Moreover, different works
evaluate for different use cases like intermediate task training in Fisher merging (Matena & Raffel, 2022a),
robustness in modelsoups (Wortsman et al., 2022a), and held-in performance for Dare (Yu et al., 2024a),
both held-in and held-out performance in TIES Merging (Yadav et al., 2024b). Given our focus on combining
model capabilities in the post training phase, we focus on evaluating on both held-in tasks and generalization
to unseen held-out tasks.

3 Large Scale Evaluation of Model Merging

In this work, we address the limitations mentioned above by systematically understanding the effect of various
factors like model size, base model quality, merging method, and the number of models being merged on both
the held-in and generalization performance of the merged model. Next, we describe our experimental design.
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Data: Sanh et al. (2021a) found that explicit multitask training of T5 (Raffel et al., 2020b) on a collection
of prompted datasets produces a model with strong zero-shot performance on unseen tasks. This has become
a common experimental setting for benchmarking zero-shot generalization (e.g. (Longpre et al., 2023; Jang
et al., 2023; Zhou et al., 2022; Chung et al., 2024; Muqeeth et al., 2024). Hence, we adopt the experimental
setting from the T0 mixture (Sanh et al., 2021a) which contains 8 held-in and 4 held-out task categories.
For each of these categories there are multiple datasets in the T0 mixture (Sanh et al., 2021b) and hence to
reduce evaluation costs, we select 2 datasets from each category based on the popularity and the train dataset
size. Specifically, the 8 held-in task categories (with a total of 16 datasets) include Multiple-choice QA,
Extractive QA, Closed-Book QA, Sentiment Analysis, Topic Classification, Structure-to-text, Summarization,
and Paraphrase Identification. Similary, the 4 held-out task categories (with a total of 7 datasets) are
Sentence Completion, Natural Language Inference, Coreference Resolution, and Word Sense Disambiguation.
For more details see Section A.

Expert Model Creation: Recognizing the significance of post-training for LLMs where models are typically
fully fine-tuned, we perform full fine-tuning to create our expert models to better mimic the post-training
setting. Moreover, in post-training phases it is common to first perform Instruction Tuning (IT) on the
model before moving on to other steps. Hence, we examine the effect of using strong instruction-tuned
base models on the process and outcome of model merging. Given this, we utilize the transformer based
PaLM-2 models (Anil et al., 2023) with sizes 1B, 8B, 24B, and 64B as our base models (θbase). To obtain the
instruction tuned base model, we further fine-tuned the PaLM-2 models on the FLAN-v2 dataset (Longpre
et al., 2023) while excluding the T0-mixture tasks (Sanh et al., 2021a). These instruction-tuned variants are
denoted as PaLM-2-IT. For each of the 2 base model types (non-IT vs IT) and 4 model sizes, we perform full
fine-tuning on the 8 held-in task categories resulting 64 specialized experts models which are then used further
in our experiments. Comprehensive details regarding hyper parameters and computational requirements are
provided in Appendix B.

Experimental Setting: Given our collection of expert models, for each merging experiment we select a
subset of expert models which we call the constituent models. We create a large merging experiment grid with
2 base models (PaLM-2 and PaLM-2-IT), 4 model sizes (1B, 8B, 24B, 64B), 4 Merging methods (Averaging, Task
Arithmetic, Dare-TIES, and TIES), the number of constituent models (2, 4, 6, 8), and 3 seeds to randomly
select the constituent tasks for the experiment resulting in a total of 384 merging experiments. These seeds
are shared across different experimental settings and control the different combinations of models that are
selected for merging . They ensure that the same tasks are selected across base models, model sizes and
merging methods to ensure fair comparison. For example, in an experiment we merged 2 expert models,
derived from the 64B PaLM-2 base model with the constituent models being MCQ and Summarization experts
while the same experiment with a different seed resulted in Closed Book QA and Sentiment Analysis experts
as the constituent models.

Evaluation: For each of the experiments above, we assess the merged model’s performance by evaluating it
on both the held-in tasks – i.e., the training tasks of the constituent expert models – and all 4 held-out task
categories. For example, if the constituent models are MCQ and Summarization experts, then for held-in
tasks we evaluate on the MCQ datasets (DREAM and Cosmos QA) and Summarization datasets (CNN Daily
Mail and XSum) resulting a total of 4 held-in evaluation datasets. Moreover, all merging experiments are
also evaluated on the 4 held-out tasks categories consisting of 7 datasets listed in Appendix A. There we
perform approximately ∼ 9000 model evaluations across all of our experiments.

Metric: Given that different datasets use different metrics, we normalize the performance metrics to
make them unitless so that they can be aggregated. Similar to Task Arithmetic (Ilharco et al., 2022) and
TIES-Merging (Yadav et al., 2024b), for held-in tasks, the merged model’s performance is normalized against
the corresponding task expert model’s performance. However, for held-out tasks, the normalization was
performed relative to the base model’s performance.

For example, say we have two held-in tasks t1, t2 and two held-out tasks t2 and t4. Now we train an expert
model on E1 and E2 on the tasks t1, t2 respectively. Next, we merge experts E1 and E2 to obtain the merged
model, M . Now, to evaluated M on the held-in tasks, we report the average normalized performance on
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Figure 3: Instruction-tuned models perform better when merged. PaLM-2-IT (•) consistently
outperforms PaLM-2 (•) as shown by the huge gap between the green point (•) being higher than red points
(•), across various merging methods, model sizes, and numbers of constituent models, indicating that stronger
instruction-tuned base models enhance the performance of merged models. The dashed lines denoted the
performance of the experts trained on the held-in tasks as defined in § 3. For more details see Section 4.1.

its held-in tasks (t1 and t2) as the average of acc(M,t1)
acc(E1,t1) and acc(M,t2)

acc(E2,t2) , where acc(E, t) means the accuracy
of expert model E on task t. For held-out tasks, the denominator is the performance of the model from
which the experts are created. Concretely, the held-out performance is the average of acc(M,t3)

acc(base,t3) + acc(M,t4)
acc(base,t4) ,

where base is the model from which experts are created. We denote this metric as normalized performance
throughout the paper. Importantly, we want to emphasise that this metric is relative, with a value of 1
indicating performance comparable to the reference model. Hence, for held-in tasks a value of 1 means
performance similar to the domain expert model while for held-out tasks it means performance is similar to the
base model. We mark this line in most of our figures and specify the models that are used for normalization.
Finally, to generate aggregated results, we compute the mean of normalized performance across all datasets
within each category, then across all categories and then over the three seeds.

4 Experimental Results

In this section, we explore the interplay between model size and key factors such as base model quality,
merging method, and the number of constituent (expert) model, along with their effect on both held-in
and zero-shot generalization (held-out) performance. Our findings are: ❶ Merging is more effective when
the constituent models are derived from instruction-tuned base models rather than pretrained ones (see
§4.1); ❷ Larger models perform better when merged (§4.2); ❸ Merging significantly improves zero-shot
generalization, with instruction-tuned models benefiting from increased constituent models, and larger model
sizes allowing the merged model to match or exceed multi-task training (§4.3); ❹ We can merge more models
effectively when using larger models (§4.4); and ❺ Different merging methods perform similarly when applied
to large-scale instruction-tuned models. Below, we outline the experimental setup and discuss these findings
in detail. Our full results along with the standard deviations can be found in Appendix C and Table 2, 3,4,5.

4.1 Instruction-Tuned Models Facilitate Perform Better When Merged

Experimental Setup: Prior works suggests a connection between good zero-shot models and effective
model merging. Wortsman et al. (2022a) demonstrate that averaging strong zero-shot models improves
out-of-distribution robustness. Ortiz-Jimenez et al. (2024) indicate that effective pretraining allows weight
disentanglement, and thus enhances merging. Yadav et al. (2024b); Ilharco et al. (2023) propose that
instruction tuned base models could aid in model merging, though this hypothesis remains largely untested.

To assess how base model quality affects the held-in performance of merged models, we perform merging exper-
iments with fully fine-tuned experts from PaLM-2 and PaLM-2-IT. We vary model sizes in {1B, 8B, 24B, 64B}
and the number of constituent models in {2, 4, 6, 8}. Held-in performance is measured over three trials
in which different combinations of models are selected in order to minimize the impact of selected expert
models and their data distributions on performance trends. A consistent seed is used to select the tasks
across different base models, model sizes, and merging methods to ensure fair task comparisons. We evaluate
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Figure 4: Bigger models merge better. On Held-In evaluations, we find that bigger models always
perform better compared to smaller models, barring a few outliers. We find that large instruction tuned
models like 64B PaLM-2-IT perform best when merged. For more details see Section 4.2.

four merging methods: averaging, task arithmetic, TIES, and Dare-TIES, and also compare against the
performance of task-specific expert models.

Findings: Our results, presented in Figure 3, indicate that PaLM-2-IT models denoted by green color (•),
consistently outperforms PaLM-2 models (•) across various merging methods (•,▲,♦, ⋆), model sizes (x-axis
→), and numbers of constituent models (subplots). This supports our hypothesis that for transformer based
LLMs stronger instruction-tuned base models enhance the performance of merged models. Similar to the
findings of Ortiz-Jimenez et al. (2024), we believe that for transformer based LLMs large-scale instruction
tuning further disentangles model weights, facilitating effective model merging and improving the base model’s
zero-shot performance.

4.2 Model Merging Becomes Performs Better With Bigger Models

Experimental Setup: In this section, we explore the effect of model size on the held-in performance of
merged models. We run experiments using different model sizes, base models, merging methods, and numbers
of constituent models. As in the previous experiment, we report the average results over three random seeds
and compare the performance of the merged models to that of the task-specific expert models.

Findings: Figure 4 illustrates how increasing base model size impacts merging effectiveness. As model
size grows (denoted by colors, ■, ■, ■, ■), merged model performance generally improves. This positive
trend is consistent across all base models (different subplots), merging methods (x-axis →), and numbers of
constituent models (subplots). For large instruction-tuned PaLM-2-IT models, the merged models perform
nearly as well as task-specific expert models denoted by dashed line. These results demonstrate that for
transformer based LLMs larger models facilitate merging. This suggests a promising approach for developing
adaptive, modular post-training recipes. If the remaining performance gap can be further reduced, model
merging could become a cost-effective alternative to multitask training. Our full results across all settings
with standard deviations are available in the Appendix C.

4.3 Merged Models at Scale Generalize Better

Experimental Setup: Expert models are created by fine-tuning our base model on specialized tasks, which
can lead to a decrease in its generalization capabilities. This raises the question: How well, if at all, can the
merged model generalize to held-out tasks? Ideally, the merged model should perform at least as well as the
base model on these tasks. To explore this, we evaluate the merged model’s performance on unseen tasks
across various model sizes, merging methods, and numbers of constituent models. Additionally, we compare
our merging approach to a traditional multitask baseline, where a single model is trained on a mixture of all
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Figure 5: Merged models at scale generalize better. We plot the held-out generalization of the merged
model for two merging methods. We also include the performance of base model (dashed line) and the
multitask baseline (yellow line) which trained on a mixture of held-in tasks. We find that the number of
constituent expert models (x-axis, →) had little effect on zero-shot generalization as shown in the left and
center plots. However, increasing model size significantly to 64B improved the merged model’s performance
over the base model (right plot). For more details see Section 4.3.

eight held-in task categories. As detailed in Section 3, we normalize the performance of both the merged and
multitask model against the base model to assess relative gains or losses in generalization abilities.

Findings: Figure 2 and Figure 5 show the zero-shot generalization performance of the merged model
using PaLM-2-IT and PaLM-2, respectively. Overall, we find that: ❶ The merged models outperform their
corresponding base models in zero-shot generalization to held-out tasks, as indicated by performance values
greater than 1 in most cases; ❷ This improvement is consistent across various model sizes (denoted by
subplot), base models (different figures), merging methods (different colors ■, ■), and numbers of constituent
models (on x-axis →), suggesting that merging for transformer based LLMs generally improves generalization;
❸ For weak base models (i.e., PaLM-2) illustrated in Figure 5, the number of constituent expert models had
little effect on zero-shot generalization (Left and Center plots). However, increasing model size significantly
improved the merged model’s performance over the base model (Right plot); ❹ In contrast, strong base
models (PaLM-2-IT) show a different trend, zero-shot generalization monotonically improves with the addition
of more expert models as shown in Figure 2. We hypothesize this positive correlation arises from reduced
model noise through the inclusion of multiple experts, resulting in better generalization; and ❺ Notably, for
transformer based LLMs the merged model outperforms the multitask baseline when combining more than
6 large instruction-tuned expert models (over 24B). This indicates that transformer based LLMs models
developed through merging can generalize even better than those trained on a multitask mixture, offering
a promising approach for developing highly capable language models. Our full results on other merging
methods and model size are available in Appendix C.

4.4 Bigger Model Sizes Can Merge More Experts

Experimental Setup: When creating multitask models, datasets for different tasks or domains are typically
combined. In contrast, model merging involves developing separate expert models for each task or domain
before combining them. Previous work has shown that merging multiple models can reduce the quality of the
resulting model (Yadav et al., 2024b; Ilharco et al., 2022). In this study, we experiment with merging up
to 8 expert models from various base models, model sizes, and merging methods to assess their impact on
successful merges.

Findings: Figure 6 shows the held-in and held-out performance of the merged models using Task Arithmetic
as the number of constituent models increases shown on x-axis. Results for other methods can be found in
Appendix C. Overall, we observe that: ❶ Unlike merging with PaLM-2, where held-in performance typically
declines with more model merges, merging with stronger zero-shot PaLM-2-IT initially drops slightly in
performance before stabilizing as number of constituent models increase. For example, merging eight 8B
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Figure 6: Bigger model sizes can merge more experts. We merge experts of various sizes created
from PaLM-2 and PaLM-2-IT models and plot the held-in (left) and held-out (right) performance of merged
models. While PaLM-2’s held-in performance degrades with more experts, PaLM-2-IT’s performance stabilizes
at a much higher level. Both PaLM-2 and PaLM-2-IT models consistently improve held-out generalization,
particularly at 24B and 64B scales with increasing expert count. For more details see Section 4.4.

PaLM-2 models decreases performance from 0.66 to 0.39 when increasing the number of experts from 2 to 8,
whereas PaLM-2-IT’s performance only slightly drops from 0.91 to 0.86; ❷ In the held-out evaluations, the
merged experts based on PaLM-2 models generally outperform the base PaLM-2 models by a small margin.
However, with larger model sizes (64B), the performance improvement increases significantly, achieving about
30 percentage relative improvement. We attribute this substantial gain to the base PaLM-2 model’s weak
zero-shot performance; and ❸ The merged models based on PaLM-2-IT show improved generalization over
PaLM-2-IT across all settings. Additionally, for the 24B and 64B models, we observe a consistent increase in
generalization capabilities with the addition of more constituent expert models.

4.5 Merging Methods Become Similar at Scale
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Figure 7: Different merging methods become
similar at scale. We plot the held-in and held-out
performances of merged 64B PaLM-2-IT models across
different merging methods and numbers of constituent
models. For more details see Section 4.5.

We find that all merging methods exhibit similar
performance when merging large instruction-tuned
transformer based models. This suggests that sim-
pler methods like Averaging, can be sufficient for
merging large strong expert models. Figure 7 shows
the held-in and held-out performance of the 64B ex-
perts derived from PaLM-2-IT. All merging methods
yield comparable results on both held-in and held-out
tasks for any number of constituent models (shown on
x-axis). We hypothesize that for transformer based
LLMs as the model size increases, expert models
are highly over-parameterized due to limited train-
ing data. Consequently, the subtle advantages of
certain merging techniques – such as highlighting
information via task vectors, resolving interference,
or pruning – which benefit smaller models, become
less relevant. This indicates a need for more practical
and scalable methods to improve merging at scale.

4.6 Merging Llama Based Models

Given the compute constraints, we focused on a single transformers based model family PaLM-2. However,
to assess the generality of some of our claims we performed experiments using the Llama-2 (Touvron et al.,
2023) based models. We use existing Llama-2 based fully finetuned models, specifically we work with the
WizardMath (Luo et al., 2023) and Code-Llama (Roziere et al., 2023a) models with 7B, 13B, and 70B
parameters available on huggingface. We merge the Code-llama and Wizardmath models using all the 4
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merging methods and present the results. The results in Table 1 show similar trends to what we observed
earlier in the paper: (1) As the model size increases the performance of the merged models gets closer to the
expert models on held-in tasks. (2) For large models the performance, different merging methods perform
very similar to each other. (3) Task Arithmetic, TIES, DARE-Ties typically perform better than averaging
for smaller scales. Given this we believe our claims generalize to most transformer based language models.

Table 1: Merging a coding and math expert models created from Llama-2 by performing full finetuning.

Size(↓) Model (↓) Un-Normalized Normalized

GSM8k MATH HumanEval GSM8k MATH HumanEval

7B

Llama-2 14.6 2.5 12.2 - - -
WizardMath 84.1 43.5 - - - -

Codellama-Instruct - - 34.8 - - -
Average 76.5 39.6 31.5 0.91 0.91 0.91

Task Arithmetic 79.1 40.4 32.7 0.94 0.93 0.94
TIES 80.3 41.2 33.1 0.95 0.95 0.95

DARE-TIES 79.7 40.8 33.2 0.95 0.94 0.95

13B

Llama-2 28.7 3.9 20.1 - - -
WizardMath 89.7 50.6 - - - -

Codellama-Instruct - - 42.7 - - -
Average 84.5 48.1 40.1 0.94 0.95 0.94

Task Arithmetic 88.4 48.6 41.4 0.99 0.96 0.97
TIES 87.8 49.4 41.9 0.98 0.98 0.98

DARE-TIES 87.3 49.1 42.1 0.97 0.97 0.99

70B

Llama-2 56.8 13.5 30.5 - - -
WizardMath 92.8 58.6 - - - -

Codellama-Instruct - - 67.2 - - -
Average 94.2 60.1 69.1 1.02 1.03 1.03

Task Arithmetic 94.4 60.2 69.5 1.02 1.03 1.03
TIES 94.4 60.3 69.4 1.02 1.03 1.03

DARE-TIES 94.3 60.2 69.4 1.02 1.03 1.03

4.7 Discussion and Takeaways

In this section, we summarize key insights from our study and provide practical recommendations for model
merging practitioners intending to use it for transformer based LLMs . Overall, we find that: ❶ Creating
expert models from the best available base model is always beneficial. The quality of the base model can be
gauged by its zero-shot generalization capabilities. For transformer based language models, we hypothesize
that better generalization leads to improved weight disentanglement (Ortiz-Jimenez et al., 2024) and a flatter
loss landscape, enhancing linear mode connectivity and facilitating model merging; ❷ Merged models often
underperform compared to task-specific expert models, indicating a potential loss in performance. Despite
this, specialized expert models generally outperform general-purpose multitask models (Liu et al., 2022;
Roziere et al., 2023b; Luo et al., 2023), suggesting that for transformer based LLMs the performance loss
may not be significant when compared to multitask models trained on specific tasks; and ❸ Our findings
indicate that for PaLM-2 models large-scale merging can accommodate more models and significantly improve
generalization, outperforming multitask training when a powerful zero-shot base model is employed. ❹
Surprisingly, we find that when working with transformer based large instruction tuned models, different
merging methods perform very similary. This implies that using simple merging methods like averaging
will result in models that are comparable in quality with the models obtained from more advanced merging
method. We hope our research inspires further fundamental studies on developing more practical and scalable
merging methods.
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5 Related Work

5.1 Loss Landscape and Weight Interpolation

While the loss function of a neural network is generally non-convex, recent work (Draxler et al., 2018; Freeman
& Bruna, 2016; Garipov et al., 2018; Jordan et al., 2023; Gueta et al., 2023) has demonstrated that the
parameter values from different training runs can sometimes be interpolated without increasing the loss
(i.e. they are mode-connected). Many methods (Kuditipudi et al., 2019; Tatro et al., 2020; Benton et al.,
2021) have explored finding these low-loss paths between models, focusing on simple (not necessarily linear)
interpolations. For example, Frankle et al. (2020) showed that if a part of the optimization trajectory is
shared between two neural networks then they can be interpolated without lowering accuracy. On the
other hand, Neyshabur et al. (2020) showed that naively interpolating two neural networks with completely
disjoint optimization trajectories can result in a catastrophic drop in their accuracies. Entezari et al. (2021)
hypothesized that if we account for the permutation symmetry of neural networks, then all neural networks of
a given architecture trained on the same dataset are linear mode connected. This assumption of the existence
of a low-loss "basin" in parameter space encompassing the models is critical for model merging (Ilharco et al.,
2023). Ainsworth et al. (2022); Singh & Jaggi (2020); Wang et al. (2020); Jordan et al. (2022); Peña et al.
(2023) therefore used techniques based on finding permutations (Wang et al., 2020; Ainsworth et al., 2022)
and optimal transport (Singh & Jaggi, 2020) to better align neural networks trained from scratch so that
they can be merged or interpolated without increasing the loss.

5.2 Model Merging

Section 2.1 discusses the merging methods that we use for our experiments, however, the popularity of model
merging has led to a ever-growing number of methods and applications of model merging (He et al., 2024;
Daheim et al., 2023; Yadav et al., 2023a;b; 2024b; Matena & Raffel, 2022a; Jin et al., 2023). Next, we
discuss some of these methods which were omitted due to large scale practical considerations. Tangent Task
Arithmetic (Ortiz-Jimenez et al., 2024) fine-tune models in the tangent space for better weight disentanglement
when using Task Arithmetic. Akiba et al. (2024) explore using evolutionary algorithms to choose which
layers to merge. SLERP (Shoemake, 1985) and Model Stock (Jang et al., 2024) consider the geometric
properties in weight space where SLERP performs spherical interpolation of model weights while Model
Stock approximates a center-close weight based on several FT models, utilizing their backbone as an anchor
point. Tang et al. (2023) train a mask that learns which parameters are important for the merged model. Ye
et al. (2023) train a gating network to predict a weight that is then used to compute a weighted average of
examples during inference. Yadav et al. (2024a) provides a comprehensive survey of methods that train a
router to route between the different models to merge. Moreover, other applications of model merging include
intermediate-task training (Ramé et al., 2022b; Choshen et al., 2022a;b), continual learning (Don-Yehiya
et al., 2022), model alignment (Rame et al., 2024; Ramé et al., 2024), merging pretrained models Yu et al.
(2024e), or merging models in different modalities (Sung et al., 2023).

6 Conclusions

This study conducted a systematic, large-scale empirical investigation of model merging for transformer based
language models like PaLM-2 and PaLM-2-IT , addressing the limitations of previous research confined to
small-scale models and limited merging scenarios. Through extensive experiments with PaLM-2 and PaLM-2-IT
models ranging from 1B to 64B parameters, we analyzed the impact of model size, base model quality, merging
method, and number of experts on both in-domain and out-of-domain generalization performance. Our
findings demonstrate that for these models , model merging effectively combines diverse expert knowledge
particularly with increasing model size and with instruction-tuned base models. We found that larger models
consistently perform better when merged and can merge more models with less performance degradation.
Importantly, for transformer based LLMs model merging led to enhanced generalization capabilities, with
large merged models surpassing the performance of multitask models on held-out tasks. These results show
that we can develop models that generalise well in a decentralized and modular manner.
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B Expert Training Details

In our research, we utilized two base models, namely PaLM-2 and PaLM-2-IT to create specialized expert
models. We train the PaLM-2model for an additional 60000 steps on the Flan-v2 dataset (Longpre et al.,
2023) to obtain the PaLM-2-IT model. We removed the T0 tasks from the flan mixture in order to training
experts on them in future. Many of these training jobs were early stopped due to convergence. We used
Sharded Adafactor (Shazeer & Stern, 2018) optimizer along with a cosine decay and a learning rate of 1e-4 for
1B, 24B, and 64B model sizes and 3e-5 for 8B model. We use a dropout value of 0.05. Following Chung et al.
(2024), we used an input length of 2048 and output length of 512. To create expert models we perform full
finetuning with the following hyperparameters. For training the experts model, for all model size, we train by
default for 2000 steps with a learning rate of 3e-5 and dropout of 0.05. For some task we adjust the number
of steps depending upon the convergence. For the purpose of evaluating classification tasks (Raffel et al.,
2020b), we perform rank classification. In this method, the model’s log probabilities for all potential label
strings are ranked. The model’s prediction is deemed accurate if the choice ranked highest aligns with the
correct answer. It should be noted that rank classification evaluation can accommodate both classification
tasks and multiple-choice tasks.

C Full Result Tables

In this section, we provide the result for the full grid of experiments that we performed. The results contain
information about any of the plots that are not provided in the main paper. Table 4 and 5 present the held-in
and held-out performance of PaLM-2 model across all model sizes, base models, merging methods, and the
number of experts being merged. Similarly, Table 2 and 3 present the held-in and held-out performance of
PaLM-2-IT model.

Table 2: The table reports the mean (std) of the normalized performance for the held-in tasks when merging
experts created from PaLM-2-IT base models.

Merging Method (↓) 1B 8B 24B 64B

# of Experts (→) 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Average 0.85(0.06) 0.78(0.05) 0.81(0.02) 0.83(0) 0.9(0.06) 0.82(0.05) 0.82(0.02) 0.85(0) 0.94(0.05) 0.84(0.08) 0.8(0.09) 0.77(0) 0.97(0.02) 0.91(0.01) 0.89(0.02) 0.93(0)
Task Arithmetic 0.91(0.08) 0.82(0.02) 0.84(0.01) 0.86(0) 0.95(0.06) 0.86(0.06) 0.85(0.02) 0.88(0) 0.96(0.06) 0.9(0.01) 0.91(0.01) 0.92(0) 1(0.06) 0.91(0.01) 0.9(0.01) 0.93(0)
Dare-TIES 0.9(0.06) 0.81(0.02) 0.83(0.02) 0.86(0) 0.93(0.03) 0.86(0.06) 0.84(0.03) 0.88(0) 0.94(0.05) 0.89(0.01) 0.87(0.03) 0.88(0) 0.97(0.02) 0.91(0.01) 0.89(0.02) 0.93(0)
TIES 0.89(0.05) 0.81(0.02) 0.82(0.02) 0.85(0) 0.93(0.02) 0.86(0.06) 0.84(0.03) 0.88(0) 0.95(0.04) 0.88(0.01) 0.86(0.04) 0.86(0) 0.97(0.02) 0.9(0.02) 0.89(0.02) 0.93(0)
Multitask 0.97(0.02) 0.96(0.01) 0.96(0.01) 0.96(0) 0.96(0.02) 0.96(0.01) 0.97(0) 0.96(0) 0.99(0.02) 0.97(0) 0.98(0) 0.98(0) 0.99(0.02) 0.98(0) 0.98(0) 0.99(0)

Table 3: The table reports mean (std) of the normalized performance on the held-out tasks when merging
experts created from PaLM-2-IT base models.

Merging Method (↓) 1B 8B 24B 64B

# of Experts (→) 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Average 0.99(0.04) 1(0.05) 1.04(0.02) 1.05(0) 1.03(0.02) 1.02(0.01) 1.03(0.02) 1.02(0) 1.05(0.03) 1.1(0.06) 1.11(0.08) 1.16(0) 1(0) 1.03(0.05) 1.06(0.06) 1.09(0)
Task Arithmetic 1.03(0.01) 1.03(0.02) 1.04(0.02) 1.05(0) 1.06(0.01) 1.05(0.01) 1.05(0.02) 1.03(0) 1.05(0.02) 1.1(0.06) 1.13(0.09) 1.18(0) 1(0) 1.03(0.05) 1.06(0.05) 1.09(0)
Dare-TIES 1.02(0.01) 1.03(0.02) 1.04(0.02) 1.05(0) 1.05(0.01) 1.04(0.01) 1.04(0.01) 1.03(0) 1.05(0.02) 1.1(0.06) 1.12(0.08) 1.17(0) 1(0) 1.03(0.05) 1.06(0.05) 1.09(0)
TIES 1.02(0.01) 1.03(0.02) 1.04(0.02) 1.05(0) 1.06(0.03) 1.05(0.01) 1.06(0.03) 1.04(0) 1.04(0.02) 1.09(0.06) 1.11(0.08) 1.16(0) 1(0) 1.03(0.05) 1.06(0.06) 1.1(0)
Multitask 1.11(0) 1.11(0) 1.11(0) 1.11(0) 1.12(0) 1.12(0) 1.12(0) 1.12(0) 1.18(0) 1.18(0) 1.18(0) 1.18(0) 1.05(0) 1.05(0) 1.05(0) 1.05(0)

Table 4: The table reports mean (std) of the normalized performance on the held-in tasks when merging
experts created from PaLM-2 base models.

Merging Method (↓) 1B 8B 24B 64B

# of Experts (→) 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Average 0.63(0.09) 0.44(0.08) 0.36(0.01) 0.26(0) 0.66(0.14) 0.53(0.14) 0.5(0.13) 0.32(0) 0.7(0.18) 0.48(0.08) 0.51(0.28) 0.27(0) 0.8(0.17) 0.74(0.09) 0.69(0.06) 0.67(0)
Task Arithmetic 0.66(0.04) 0.52(0.02) 0.44(0.02) 0.39(0) 0.68(0.16) 0.54(0.14) 0.54(0.12) 0.42(0) 0.72(0.18) 0.56(0.08) 0.6(0.24) 0.46(0) 0.8(0.17) 0.74(0.09) 0.69(0.06) 0.67(0)
Dare-TIES 0.65(0.03) 0.51(0.03) 0.42(0.03) 0.37(0) 0.66(0.15) 0.51(0.13) 0.51(0.12) 0.32(0) 0.67(0.17) 0.44(0.02) 0.51(0.28) 0.27(0) 0.8(0.17) 0.74(0.09) 0.69(0.06) 0.67(0)
TIES 0.66(0.06) 0.5(0.06) 0.41(0.01) 0.33(0) 0.67(0.17) 0.52(0.16) 0.48(0.17) 0.29(0) 0.68(0.22) 0.49(0.13) 0.52(0.27) 0.27(0) 0.8(0.18) 0.71(0.11) 0.65(0.1) 0.56(0)
Multitask 0.88(0.07) 0.88(0.04) 0.88(0.03) 0.87(0) 1.06(0.09) 1.04(0.04) 1.04(0.03) 1.06(0) 1.25(0.42) 1.15(0.2) 1.11(0.14) 1.2(0) 0.97(0.03) 0.96(0.01) 0.96(0) 0.96(0)
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Table 5: The table reports mean (std) of the normalized performance on the held-out tasks when merging
experts created from PaLM-2 base models.

Merging Method (↓) 1B 8B 24B 64B

# of Experts (→) 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Average 0.98(0.03) 1(0.05) 1.02(0.03) 1.04(0) 1.01(0.12) 0.97(0.09) 1.02(0.08) 0.98(0) 0.95(0.16) 0.85(0.03) 0.93(0.18) 0.83(0) 1.28(0.14) 1.24(0.11) 1.29(0.08) 1.25(0)
Task Arithmetic 1.01(0.01) 1.03(0.04) 1.05(0.03) 1.07(0) 1.06(0.06) 1.03(0.04) 1.04(0.06) 1(0) 1.05(0.08) 1.03(0.05) 1.1(0.03) 1.08(0) 1.29(0.14) 1.28(0.13) 1.36(0.02) 1.35(0)
Dare-TIES 0.99(0.02) 1.01(0.05) 1.04(0.03) 1.05(0) 1.02(0.09) 1(0.06) 1.05(0.06) 1.01(0) 0.97(0.15) 0.89(0.02) 0.99(0.15) 0.9(0) 1.28(0.13) 1.24(0.11) 1.28(0.07) 1.24(0)
TIES 1.05(0.06) 1.06(0.05) 1.03(0.02) 1.04(0) 1.07(0.08) 1.04(0.09) 1.02(0.05) 0.99(0) 1.01(0.12) 0.93(0.04) 0.98(0.14) 0.9(0) 1.31(0.19) 1.22(0.18) 1.24(0.14) 1.15(0)
Multitask 1.1(0) 1.1(0) 1.1(0) 1.1(0) 1.62(0) 1.62(0) 1.62(0) 1.62(0) 1.51(0) 1.51(0) 1.51(0) 1.51(0) 1.73(0) 1.73(0) 1.73(0) 1.72(0)
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