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Abstract
The rapid deployment of autonomous AI agents
creates urgent challenges in the areas of autho-
rization, accountability, and access control in task
delegation. This position paper argues that au-
thenticated and auditable delegation of authority
to AI agents is a critical component of mitigating
practical risks and unlocking the value of agents.
To support this argument, we examine how ex-
isting web authentication and authorization pro-
tocols, as well as natural language interfaces to
common access control mechanisms, can be ex-
tended to enable secure authenticated delegation
of authority to AI agents. By extending OAuth 2.0
and OpenID Connect with agent-specific creden-
tials and using transparent translation of natural
language permissions into robust scoping rules
across diverse interaction modalities, we outline
how authenticated delegation can be achieved to
enable clear chains of accountability while main-
taining compatibility with established authentica-
tion and web infrastructure for immediate com-
patibility. This work contributes to ensuring that
agentic AI systems perform only appropriate ac-
tions. It argues for prioritizing delegation infras-
tructure as a key component of AI agent gover-
nance and provides a roadmap for achieving this.

1. Introduction
This position paper argues that when AI agents interact
with third parties—such as digital services, other AI
agents, or humans—those parties must be able to verify
both the principal delegating authority to the agent and
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the precise scope of that delegation.

Agentic AI systems (or ‘agents’) are useful for their ability
to interact with other actors on a user’s behalf and accom-
plish complex tasks autonomously, including by interacting
with a variety of external digital tools and services (Nakano
et al., 2021; Lieberman, 1997; Fourney et al., 2024). For ex-
ample, AI agents prompted to book travel arrangements for
a holiday may browse the web for recommendations, search
for flights via APIs, or message an airline agent in natu-
ral language via chat services to arrange a booking. Such
communications could even extend to AI agent negotiations
(Abdelnabi et al., 2023) and other multi-agent contexts.

Many risks exist for AI agents, including challenges from
prompt injection attacks (Perez & Ribeiro, 2022; Liu et al.,
2023), risks to contextual confidence (Jain et al., 2023), risks
from not communicating properties of AI agents to third
parties (Chan et al., 2024a), unreliability of distinguishing
humans online (Adler et al., 2024), challenges with human
in the loop (European Commission, 2021; Gabriel et al.,
2024), and other challenges arising from incomplete gov-
ernance and transparency (Shavit et al., 2023; Reuel et al.,
2024; South et al., 2023). To address these, the world needs
ways to explicitly delegate authority to agents, transparently
identify those agents as AI, and enforce human-centered
choices around security and permission for these agents.

This work has three key contributions. First, section 2 builds
upon the existing literature to argue why authenticated
delegation is important for AI agents and what risks it
could mitigate. Second, section 3 directly addresses this
need, outlining how to extend existing authentication and
authorization protocols to enable authenticated delega-
tion for AI agents, examining the role OpenID Connect
and OAuth 2.0 could play in enabling a pragmatic, robust,
and extensible implementation. Third, section 4 explores
the role of agentic access control and outlines a method
for expressing flexible, natural language permissions for
agents and transforming them into auditable, fine-grained
access control rules, that can operate across agent modalities
(e.g., web requests, computer use, or language interfaces).
Further, this work provides example use cases of the frame-
work in Appendix E and a legal analysis of the implications
of this work in Subsection 5.3.
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Figure 1. Conceptual overview of a verifiable delegation creden-
tial for AI agents. Users issue delegation credentials that include:
the AI system’s unique identity and properties, delegated per-
missions with contextual scope restrictions, user metadata, and
cryptographic signatures for verifiability. These credentials enable
secure, trustworthy interactions between AI agents and third-party
services, ensuring traceability and appropriate delegation of au-
thority.

2. Why authenticated delegation is important
Authenticated delegation is the process of instructing an AI
system to perform a task that requires access to tools, the
web, or computer environments in such a way that third
parties can verify that (a) the interacting entity is an AI
agent, (b) that the AI agent is acting on behalf of a specific
human user, and (c) that the AI agent has been granted the
necessary permissions to perform specific actions.

We distinguish three key concepts: authentication confirms
an entity’s identity; authorization determines the permis-
sible actions and resource accesses that the authenticated
identity is allowed to perform, defining the scope and limita-
tions of delegated activity; and auditability allows all parties
to inspect and verify that claims, credentials, and attributes
remain unaltered, supporting trustworthy authentication and
authorization decisions.

Verifying the properties of interacting entities will be rele-
vant whenever a context exists where an AI agent could act
on behalf of a human user, especially where the agent can
take consequential actions. This remains true whether the AI
system is run locally or provided by an AI vendor—as harm
can occur in both—and must be able to operate across vari-
ous digital contexts and with AI models of heterogeneous
capabilities.

At a high level, authenticated delegation involves a human
user creating a digital authorization that a specific AI agent
can use to access a digital service (or interact with another
AI agent) on behalf of the user, which can be verified by
the corresponding service or agent for its authenticity. Such
authorization can include additional information, such as
unique identifiers for the agent instance, permissions on

what the agent is allowed to do, and other information (e.g.,
the capabilities and failure modes of the agent or information
about the human user).

In practice, this approach does not need to be substantially
different from existing authentication and authorization
mechanisms used today, such as how a calendar applica-
tion is authorized to access a user’s calendar data and scan it
for upcoming events. However, AI agents’ autonomous and
highly capable nature means more care is needed in how we
manage delegation. As such, let us examine the use cases
for authenticated delegation in more detail.

2.1. Arguments for authenticated delegation

Authenticated delegation opens avenues for AI agents to
accelerate complex tasks, automate workflows, and seam-
lessly interface with digital services on behalf of human
users. However, granting such agency also entails risks
around scope misalignment, resource abuse, or a breakdown
of clear accountability.

Securing tool use and web access A key aspect of AI
agent deployment is the ability to use tools or access exter-
nal services. For simple tasks such as asking an agent to
search the web for information, write and execute code, or
generate an image, this is straightforward and does not re-
quire additional authorization or individual-specific security
mechanisms. However, to unlock use cases such as inter-
acting with personal or organizational accounts, accessing
sensitive personal information, or interacting with conse-
quential infrastructure, more robust delegation frameworks
are needed.

Example: Consider an AI agent booking a holiday. Search-
ing the web for information may not need authorization, but
how could that agent access a user’s calendar or make a
purchase? For calendars, users are used to the expected flow
of granting access to applications to access their calendar
data. This would be no different for an AI agent (and would
be naively supported in the solution outlined in section 3)–
indeed, limited OAuth 2.0 support is enabled in some agent
tools such as OpenAI GPT actions. Now consider a flight
purchase. You could provide your credit card details in the
context window for the agent and prompt it to follow the
budget, but this introduces a variety of security concerns and
is dependent on the underlying reliability of the AI system
to not take unexpected actions or be vulnerable to attacks or
jailbreaks. Instead, an AI agent should be authenticated and
authorized to make a purchase on specific booking services,
where credit cards are stored securely, and where explicit
spending limits can be enforced.

Communicating limitations and restricting scope Cur-
rent approaches to limiting the scope of AI agents are limited
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and one-sided. A user can provide a strong prompt to an
agent to limit its actions, but this comes with a variety of
failure modes (Liu et al., 2023). Access to tools or websites
can be blocked, but the granularity of these control systems
is limited. An AI system deployer could implement further
controls, such as monitoring and blocking specific actions
or website subdomains when agentic functionality occurs,
but doesn’t communicate these limitations to the service the
agent is interacting with. A more detailed examination of
how this could be designed across web, API, and natural
language access modalities is available in section 4.

Example: An AI agent is used by a physician to provide di-
agnostic recommendations in a telemedicine portal, logging
in with basic credentials that do not specify its limitations.
The portal assumes full physician capabilities, granting the
agent access to all patient records, including a video with
a voice recording from a specialist. The agent, being text-
only and unable to process video, generates a diagnosis
based solely on the text data. Trusting the incomplete rec-
ommendation, the physician risks making a misinformed
treatment decision. If the agent’s limitations were explicitly
communicated via authenticated delegation, the portal could
have flagged the need for a human review of the multimedia
content, avoiding a potentially harmful oversight.

Verification in multi-agent communication When AI
agents communicate to collaborate on tasks or facili-
tate interactions, ensuring mutual authentication becomes
paramount. Securing communication channels is not
enough; agents must also verify that they authentically rep-
resent the users or organizations they claim to represent.
Mutual authentication ensures that agents can trust each
other’s intentions, capabilities, and authority, which pre-
vents impersonation, unauthorized actions, and potential
misuse.

Example: Two AI agents—one representing a hospital and
the other an insurance company—collaborate to process a
patient’s claim. Without mutual authentication, a third-party
malicious agent could impersonate the hospital, submitting
fraudulent claims, or the insurance agent could reject valid
claims out of concern over authenticity.

Protecting human spaces online As AI agents grow in-
creasingly adept at mimicking human behavior—crafting
text, creating personas, and even replicating nuanced human
interactions—it becomes harder to maintain digital environ-
ments genuinely inhabited by real people. This challenge
drives the need for safe, human-only online spaces where au-
thenticity is preserved (Adler et al., 2024). However, many
AI agents act as useful proxies, assistants, or representa-
tives for human users who cannot, or prefer not to, engage
directly. Authenticated delegation enables these spaces to
be selectively accessible to AI agents, while still ensuring

that the AI agents are linked to verified human principals.
This tool is also more granular than simple bot detection,
user-agent restrictions, or robots.txt limitations.

Example: Some websites wish to block ‘bots’ or restrict
access to specific uses (based on age, nationality, etc). By
design, any such restriction will also block AI agents. In-
stead, platforms could explicitly allow AI agents to access
their services in controlled ways by leveraging authenticated
delegation. This approach would ensure that AI agents act
transparently on behalf of verified human users. For in-
stance, an agent could access a user’s social media account
to retrieve information about friends and help draft an email,
all while maintaining compliance with platform policies and
ensuring accountability.

Supporting contextual integrity Contextual integrity ad-
dresses adherence to context-specific norms and privacy,
which include actors (who is involved in the information
flow), attributes (what information is shared), transmission
principles (under what conditions information is shared),
and social context (the broader cultural, institutional, or sit-
uational environment shaping these norms) (Ghalebikesabi
et al., 2024; Zhan et al., 2022; Fan et al., 2024; Nissenbaum,
2004). Contextual integrity offers a perspective for reason-
ing about how AI agents can act in ways that are contextually
appropriate, transparent, and aligned with societal norms
and the expectations of their human delegators (Bagdasarian
et al., 2024; Ghalebikesabi et al., 2024; Bloom & Emery,
2022). This includes exploring which decisions can rea-
sonably be made autonomously by the AI and under what
conditions human oversight or intervention might be neces-
sary (e.g., when is human-in-the-loop required and who is
responsible).

Example: An AI assistant with authenticated delegation
can be issued distinct credentials for separate contexts (e.g.,
an enterprise-context assistant and a personal one). By en-
forcing these scoped credentials, services can ensure that the
assistant adheres to contextual integrity and rejects actions
that cross boundaries, such as using information from work
documents to complete personal forms.

2.2. Background

Authenticated delegation can address various challenges,
from the traceability of AI outcomes to limitations on what
spaces can be accessed and actions taken by AI systems. The
overarching aim of identification and credentialing systems
is to facilitate secure online environments and authenticated
access to services. To this end, various protocols and stan-
dards have been developed, tailored to both human users
and AI systems, to uphold these goals in different contexts.

Subsection A.1 outlines existing literature and tools for
identifying AI, their content, and other humans users (e.g.,
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tools for verifying human identity online, tools for proving
personhood, and tools for tracking AI system outputs, wa-
termarking, frontier AI access control, and AI identifiers).

In addition, Subsection A.2 outlines existing literature and
tools for documenting AI systems and the data that create
them, a useful precursor to identification and credentialing
for AI agents.

For a discussion of the governance of AI agents and danger-
ous capability management (an issue we do not address here
but could benefit from authentication and authorization), see
Subsection A.3.

Comparisons to Model Context Protocol and GPT Oper-
ator One example of an AI-centric protocol is the Model
Context Protocol (MCP) (Anthropic, 2024) from Anthropic,
which enables secure, structured interactions between AI
systems and external tools or data sources. MCP aims to
enhance the contextual relevance of AI outputs by estab-
lishing a standardized framework for connecting models to
resources to facilitate applications like retrieving live data,
interacting with APIs, and executing tasks in real-time.

While a useful standard, it does not fully address the needs of
authorized delegation, enabling only system communication
and basic access controls rather than broader authentication
and identity management. LangChain’s Agent Protocol /
LangGraph Platform extends this idea to enable multi-agent
interoperability.

OpenAI’s Operator takes a different approach, operating a
web browser to interact with the web. This allows users to
log in but stores login credentials as cookies in the browser,
an insecure approach that limits the user’s ability to revoke
access, control permissions, and audit the actions of the
operator post-hoc.

Prototype Implementations and Emerging Standards:
Recently–including in response to early pre-prints of this
work–a blossoming ecosystem of prototype implementa-
tions has emerged, exploring authentication and autho-
rization tools for AI agents. Many of these efforts are
centered around the Model Context Protocol (MCP) from
Anthropic or Agent-to-Agent Authentication (A2A) from
Google. These prototypes primarily focus on authentication
and basic scoped authorization, with limited exploration
of robust agent identifiers. Furthermore, they often rely
on standard one-time browser-based approval flows, which
may not scale effectively with the increasing number of
agent-tool interactions.

How authenticated delegation combines these solutions
This argument suggests that authenticated delegation com-
bines and extends existing approaches—AI agent IDs and
credentials, proof-of-personhood and identity verification

for human users, and content provenance and watermarking
methods—to form a cohesive framework. This approach
inherits well-established practices for identity management
while introducing explicit scoping and metadata for AI
agents. This integration allows for granular, enforceable
permission sets, clearer accountability chains, and richer
context signals (like a model’s certifications or limitations)
to be attached to each delegated action, with a more ro-
bustly verifiable construction than a simple agent ID system
card. In effect, authenticated delegation complements ex-
isting standards and enhances their reliability by anchoring
the actions of AI agents to verifiable human principals and
recognized AI-specific credentials, creating a unified foun-
dation for safe and accountable AI interactions. To this end,
section 3 introduces a concrete framework with additional
security guarantees to package these elements together in a
robustly verifiable way.

3. Extending OpenID Connect for identifying
and authenticating AI agents

To support the argument of section 2, this section pro-
poses a concrete technical framework building on existing
internet-scale authentication protocols to introduce mech-
anisms for delegating authority from users to AI agents
and describes a token-based authentication framework that
leverages OpenID Connect and OAuth 2.0.

3.1. OAuth2.0 and OpenID-Connect

While new frameworks for AI system identification are
emerging, there are valuable lessons to be learned from exist-
ing internet-scale authorization and authentication protocols.
In particular, the OAuth 2.0 protocol (Hardt, 2012) and its
extensions provide battle-tested patterns for delegated au-
thorization and identity verification that could inform the
development of AI agent credential systems.

OAuth 2.0 emerged from the need for users to provide autho-
rization to one service to access resources located in another
service, based on the RESTful paradigm (Fielding, 2000).
A key requirement underlying OAuth 2.0 is the ability for
access to be continually granted even if later the user is
absent (e.g., offline).

The wide deployment and popularity of the OAuth 2.0 pro-
tocol enabled new features and extensions to be added. One
successful extension—namely the OpenID-Connect proto-
col (OIDC) (Sakimura et al., 2014)—is the addition of flows
dealing with the user authentication. The service dealing
with authentication is referred to as the OpenID Provider
(OP). A key addition introduced by OpenID-Connect is the
ID-token, which carries information about the human user
that can be retrieved from the OP (i.e., by presenting ID-
token). Here a merchant (as the Relying Party) would input

4



Authenticated Delegation for AI Agents

the ID-token to the relevant token-validation endpoint at the
OP in order to obtain more information about the user. We
believe this capability may be extended to address the case
of AI agents.

Another extension of the OAuth 2.0 protocol that enables a
user to manage multiple resources distributed across many
Resource Servers is the User-Managed Access (UMA) pro-
tocol (Hardjono et al., 2015). The UMA model may fit use
cases where the human user possesses multiple AI Agents
and where a single point of policy or rule configuration is
desirable (Hardjono, 2019). Here, the AI Agents can be
viewed as distributed resource servers owned by the user.
Using the UMA Authorization Server, the user can set policy
at one location and automatically propagate these policies
to the multiplicity of AI Agents.

3.2. Delegation of authority from the user to the AI
agent

Given that the OAuth 2.0 protocol is an authorization pro-
tocol, it is worthwhile considering reusing the OAuth 2.0
patterns to establish a new mechanism for the human user
to delegate specific tasks to the AI Agent. In other words,
the human user authorizes the AI Agent to carry out certain
limited-scope tasks on behalf of the user.

In this proposed extension, the human user must first au-
thenticates with the OpenID Provider (OP) to demonstrate
their identity. The user then ‘registers’ the AI Agent to the
OP so that external entities who later seek to obtain further
information about the AI Agent can do so to the OP. Regis-
tration could be done automatically in the background when
an agent is created through a vendor (such as creating a new
assistant instance with OpenAI).

Existing OAuth 2.0 client registration protocols can be cus-
tomized to enable the user to register the AI Agent to the
OpenID Provider and designate the AI Agent as a delegate
or surrogate of the human user.

Next, the human user can issue a new delegation token that
authorizes the AI Agent to carry out tasks on behalf of the
user. Here, the term ‘authorize’ is utilized to explicitly call
out the fact that the AI Agent is owned (driven) by a human
delegator. For details on what could be included in the
delegation and agent ID tokens, see Subsection B.1.

Both the user ID-token and the AI Agent delegation to-
ken can be referenced from within (or even copied into) a
W3C Verified Credentials (VC) data structure (Sporny et al.,
2022). This enables the AI Agent to wield the VC in its
interactions with other entities (e.g., other services or other
AI Agents), and have the benefit that both tokens would be
verifiable at the standard OP.

It is worth noting that these delegation and authentication ex-

changes could alternatively be implemented using W3C VC
issuance and delegation mechanisms. In such a scenario, a
W3C VC could generate an OpenID-compatible credential,
enabling seamless interfacing with OpenID systems. While
this integration highlights the interoperability between W3C
VC and OpenID ecosystems, further exploration and formal-
ization of this process are beyond the scope of this paper
and left as future work. See Subsection B.2 for more details.

Client
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User

OP

OAuth2.0
(UMA)

AI Agent1 AI Agent2 ... AI Agentn

(AS)

(RS1) (RS2) (RSn)

1

2

3

4

Figure 2. Integration of OpenID Connect (OIDC) and User-
Managed Access (UMA) protocols for establishing delegated au-
thority from human users to AI Agents. The diagram illustrates
the authentication flow where a human user first authenticates to
an OpenID Provider (OP) (1 & 2), registers their AI Agent (3), and
issues a delegation token (4). This token empowers the AI Agent
to perform authorized tasks on behalf of the user. The verification
of both the user’s ID token and the AI Agent’s delegation token can
be performed through the standard OpenID Provider, leveraging
existing OAuth 2.0 patterns while incorporating new delegation
mechanisms for AI Agent authorization.

4. Defining scope and permissions for AI
agents

Authenticated delegation is inherently tied to robust scoping
mechanisms. Users must be able to specify their permissions
and instructions clearly and unambiguously. This directly
conflicts with the extremely large possible action space AI
agents can perform.

While much work in reliability and alignment focuses on en-
suring that AI agents follow instructions correctly, the risks
of misinstruction, prompt injection attacks, and reduced se-
curity auditability make pure natural language prompts an
incomplete scoping, permission, and security tool.

4.1. Combining structured permissions, natural
language, and user oversight

Resource scoping as a foundation. We argue that the
most broadly applicable strategy for access management
connected to authenticated delegation is to enforce resource

5



Authenticated Delegation for AI Agents

scoping with structured permissions. The brittleness of
natural language mechanisms makes them unsuitable for
production-level usage of AI agents, especially when se-
curity or compliance is a concern. In contrast, structured
permissions are unambiguous and deterministic, providing
verifiable guarantees against unauthorized access. Focusing
on resource scoping also significantly reduces the overhead
of specifying every authorized task in detail. To an extent,
agents could attempt to represent task-scoping instructions
in the form of resource scoping, using domain knowledge
of the contexts in which they operate. Since resources are
generally discrete and can be classified, enumerated, and
grouped into domains, controlling resource access implic-
itly prevents many potential tasks that would require out-of-
scope resources. Additionally, structured resource scoping
has several advantages:

• It does not depend on how a user delegates tasks—
be it via a script, an AI agent, or a more traditional
workflow;

• It is compatible with existing non-AI access control
systems, which focus on machine-readable permissions
for resources (e.g., databases or URLs);

• It is suitable for structured logging and version control,
which simplifies auditing and compliance reporting.

Though users may supplement resource scoping task con-
straints written in natural language, the core resource-based
policies provide a safety net that is largely immune to ambi-
guities in language or model vulnerabilities. In other words,
even if an LLM or another AI agent is tricked or misaligned,
its ability to execute harmful actions is constrained by the
underlying resource permissions.

Connecting to natural language. While robust and au-
ditable, structured resource scoping alone lacks ease of use
and flexibility. To address this, the instructions for the
LLM (or a separate scoping prompt) can flexibly express
the scoping limitations that should be applied. These natural
language scopes can be converted to a structured scoping
format by the agent or an AI system in the corresponding
environment (which has more detailed knowledge of the rel-
evant resource profiles). Examples of conversion between
natural language and structured permissions include Subra-
maniam & Krishnan (2024), which generates PostgreSQL
restrictions, and Jayasundara et al. (2024), which uses re-
trieval to generate custom JSON policies.

A similar process could also be performed for different
environments and digital services an agent interacts with,
allowing a flexible set of permission instructions to be ap-
plied across a wide range of services and contexts (which is
important given the broad action space of AI agents).

Bringing a human in the loop. The key final step is
validating these structured access controls via the human
delegator. Authorization workflows present an opportunity
for users to briefly review and approve structured access
control limitations for different systems. For instance, in
Wright (2024) LLM agents agree on structured information
(in this case, meeting dates) which are then confirmed by
human users.

Combining into a hybrid implementation. Bringing
these elements together into an implementation is relatively
straightforward. An LLM assists in converting high-level,
natural language resource constraints into formal, structured
rules that users can subsequently review and approve. For
example:

1. A user writes: “Allow the agent to read and write to
the directories about ‘projectAlpha‘, but do not grant it
access to the folders with financial folders;”

2. The LLM translates this requirement into a policy
definition, either in a universal permission language
(e.g., XACML) or in the specific permission language
used by the resource (e.g., SQL access policies for
databases). In this specific case, the LLM enumer-
ates “projectAlpha” resources while explicitly denying
access to “financials2023;”

3. The user reviews, corrects if necessary, and finalizes
the policy.

While many specific details of such a workflow need to be
addressed, such as intermediate validation checks and the
evaluation of the robustness of LLM translation into struc-
tured languages, we leave these specifics to future work.

Focusing on structured, unambiguous resource constraints
is the most reliable way to ensure that an AI agent remains
within authorized bounds in a given environment. While
there is still room for higher-level (often natural language)
task constraints, these should be treated as guidance towards
the primary enforcement mechanism. Indeed, while natural
language can adequately address the extremely large pos-
sible space of agent actions, its transformation into access
controls grounds the limitations on agent actions into finite
auditable controls. Structured resource scoping reduces the
reliance on model alignment alone, decreases the risk of
adversarial prompt injections, and simplifies the integra-
tion with well-established security mechanisms. Combining
this approach with well-designed authentication flows and
helping the user interpret the generated policies can reduce
the chances of human errors, enhance accountability, and
improve the robustness of authenticated delegation.

Appendix C provides a more detailed discussion of extend-
ing scoping, outlining the background of structured per-
mission languages and authentication flow dynamics and
explaining how natural language can be mapped to task and
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resource scoping across modalities.

5. Discussion
5.1. Limitations in the technical proposal

The technical proposal builds on existing technologies to
address the unique challenges of AI agent delegation but
comes with a range of limitations.

As detailed in Subsection D.1, relying on OIDC introduces
repeated sign-in overhead, centralizes privacy risk with
providers, and can be overly complex when simpler alterna-
tives like W3C Verifiable Credentials or GNAP exist.

Meanwhile, as described in Subsection D.2, natural lan-
guage scoping risks unreliable policy translations, opens
new LLM-based attack surfaces, suffers from contextual
drift, and in some cases relies on third parties for correct
enforcement.

5.2. Can model vendors provide this?

Model vendors (e.g., OpenAI, Anthropic, Google) can pro-
vide tooling to share which user is being represented when
an AI system accesses a digital service and the intended
scope or permissions. This is encouraged. However, current
approaches to sharing such information are insufficient from
a security and verifiability perspective, such as including
the information in the user-agent string of the AI system
or writing the information into API calls made by the AI
system. Instead, these services could act as an OpenID
Provider (or partner with one) for the AI system without any
change to the user experience; alternatively, if they prefer a
different instantiation of the authenticated delegation frame-
work, they could provide W3C verifiable credentials paired
with robust, unique IDs for AI agents and users.

Implementing authenticated delegation is also feasible when
AI systems and agents are self-hosted or deployed on cus-
tom infrastructure. This includes leveraging internal identity
management infrastructure for human users and incorporat-
ing custom permission controls. Such systems can operate
internally within an organization to ensure AI system usage
aligns with identity and access management (IAM) policies
and delegation frameworks across various technology stacks
and modalities.

5.3. Legal grounding for authenticated delegation

The law of agency addresses circumstances in which one
party, the principal, authorizes another party, the (human)
agent, to act on their behalf (Garner, 2019). At its core,
agency law determines when a principal may be held liable
for the acts of their agent, ensuring that third parties are not
unfairly disadvantaged by having to ascertain who holds

ultimate responsibility.

A key result of agency law is to instill trust and confidence
in market transactions: by providing clear rules about liabil-
ity and authority, agency law reduces uncertainty and con-
tributes to more efficient market operations (Posner, 2019;
Williamson, 1975; Casadesus-Masanell & Spulber, 2005).

One central concept in agency law is that of “apparent au-
thority,” extensively discussed in the Restatement (Third)
of Agency (American Law Institute, 2006). Under this doc-
trine, a principal can be held responsible for acts that a
reasonable third party perceives the agent to be authorized
to perform, even if the principal never granted that authority
explicitly. This principle also helps maintain market sta-
bility: third parties need not investigate every aspect of an
agent’s credentials or verify each claim of authority before
proceeding with a transaction as long as the agent appears to
be acting on behalf of the principal in a reasonable manner.

It remains uncertain how established agency doctrines will
adapt to AI agents that can learn, self-modify, or operate au-
tonomously (Balkin, 2015; Adler et al., 2024). Traditional
notions of intent, consent, and observable authority are diffi-
cult to apply to current autonomous systems. In response to
these uncertainties, the authenticated delegation framework
offers a model in which each delegation of authority is veri-
fiable. Rather than relying on appearances, this framework
enables third parties to automatically confirm that an AI
agent is indeed authorized to act on behalf of a principal.
In doing so, it reduces the need to rely on apparent author-
ity doctrines and diminishes the risk of misattribution of
actions.

A recent controversy involving Air Canada illustrates how
these principles might play out in practice (Civil Resolution
Tribunal (British Columbia), 2024). In this instance, the
airline argued that it could not be held liable for information
provided by its online chatbot. Implicitly, this suggests treat-
ing the chatbot as if it were separate from the airline—akin
to an independent entity. Yet, in the judge’s view, the chat-
bot exists as part of Air Canada’s digital infrastructure and
so the company was responsible for the information it pro-
vided. Under conventional principles of law and equity, the
chatbot’s outputs, even if generated autonomously, form
part of the information the airline holds out to the public.
The airline’s attempt to evade responsibility runs counter
to the principle that a firm must stand behind the repre-
sentations it makes, whether through humans or machines.
This case underscores that companies may be liable for the
actions of their AI agents, a view also held by many schol-
ars (Adler et al., 2024). From a broader perspective, this
case also highlights the growing need for robust technologi-
cal and legal mechanisms—like the authenticated delegation
framework—that can delineate responsibility and authority
in AI-mediated interactions, ultimately protecting consumer
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trust and market stability.

Beyond agency law, existing legal frameworks for electronic
transactions, like the Uniform Electronic Transactions Act
(UETA), provide some guidance. The UETA is a uniform
law adopted by 49 U.S. states to help accommodate the
realities of e-commerce by recognizing that electronic com-
munications and automated processes can play substantive
roles in forming and executing agreements (Greenwood,
2024; National Conference of Commissioners on Uniform
State Laws). Under UETA, parties are encouraged to adopt
agreed-upon security procedures and error-detection proto-
cols to ensure that the electronic records genuinely reflect
the intended agreements. If one party fails to follow these
procedures and an error that would have been detected goes
unnoticed, the other party may be permitted to avoid the con-
sequences of that error. Similarly, if an individual errs while
interacting with an electronic agent and the system offers
no reasonable correction mechanism, UETA contemplates
relief for that individual under defined conditions.

These provisions reflect an understanding that trust in digital
commerce requires more than just a willingness to be bound
by electronic contracts; it also demands reliable methods
for verifying authority, correcting mistakes, and ensuring
that automated processes faithfully implement the intended
instructions of the principal. The authenticated delegation
framework aligns well with these goals. Integrating a ver-
ifiable chain of authority into interactions with AI agents
provides the digital equivalent of an agreed-upon security
procedure. In doing so, it can reduce misunderstandings
and disputes about whether an AI-driven process was acting
within the scope of its authority.

A critical element of both trust and accountability in AI-
augmented systems lies in maintaining meaningful human
oversight, often termed the “human-in-the-loop” require-
ment. The EU AI Act, for example, emphasizes the im-
portance of maintaining human involvement in high-risk
AI decisions to ensure ethical, transparent, and accountable
outcomes (European Commission, 2021). The authenticated
delegation framework supports this principle by making the
human role in agent workflows explicit. Rather than delegat-
ing authority to an AI system behind opaque layers of code,
third parties can firmly establish when, how, and under what
conditions the AI is authorized to act. This allows humans
to step in to verify decisions, correct errors, and ensure that
automated actions remain aligned with overarching legal
and ethical standards.

Strengthening the legal underpinnings, adopting frameworks
for authenticated delegation, and integrating human over-
sight at critical junctures are all steps toward ensuring that
emerging AI systems enhance market efficiency and main-
tain core values of trust, fairness, and accountability. Further
empirical and doctrinal analysis could deepen this conversa-

tion, drawing on works that examine the real-world imple-
mentation of human-in-the-loop mechanisms (Mosqueira-
Rey et al., 2023).

6. Alternative Views
A range of alternative views exist regarding the necessity
and practicality of authenticated delegation for AI agents.
One argument is that its complexity introduces unneces-
sary friction, potentially stifling innovation and discourag-
ing adoption in rapidly evolving AI ecosystems. Another
argument is that relying on OAuth 2.0 and OpenID Con-
nect could further entrench large identity providers, raising
surveillance and data monopolization issues. Additionally,
the reliability of translating natural language permissions
into structured access controls is questionable, as errors in
interpretation or adversarial manipulation could undermine
security rather than enhance it. There are also concerns
about scalability, as implementing robust delegation work-
flows across diverse organizations, AI vendors, and dynamic
use cases may prove impractical, leading smaller developers
or institutions to favor more lightweight, ad hoc solutions.
These alternative views suggest that while authenticated
delegation provides a structured approach to AI governance,
alternative models–such as decentralized identity frame-
works, more flexible permission systems, or human-in-the-
loop oversight without rigid delegation tokens–may better
balance security, usability, and autonomy in AI-agent in-
teractions. That said, we argue that perfect should not be
the enemy of good: authenticated delegation has several
real-world benefits that would immediately improve the reli-
ability and trustworthiness of agentic systems. Introducing
authenticated delegation systems, even if imperfect, would
provide concrete security benefits, start the conversation
on the optimal way to manage permissions, and lay the
groundwork for further refinements.

7. Conclusion
This position paper argues the immediate need for authenti-
cated delegation to AI agents, addressing urgent challenges
around authorization, accountability, identity verification,
and access control management in digital spaces. By extend-
ing existing OAuth 2.0 and OpenID Connect protocols with
AI-specific credentials and delegation mechanisms, we pro-
pose a framework that enables secure delegation of author-
ity from users to AI agents while maintaining clear chains
of accountability. The proposed token-based framework—
comprising user ID tokens, agent-ID tokens, and delegation
tokens—provides a robust foundation for verifying agent
identities, controlling permissions, and maintaining audit
trails while supporting granular and robust scope limita-
tions generated in response to natural language instructions.
Our argument is supported by a detailed discussion of how
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established internet-scale authentication (e.g., OpenID Con-
nect and W3C VCs) and access management protocols (e.g.,
XACML) can be adapted to address the unique challenges
of AI agent delegation while preserving compatibility with
current systems, as illustrated through real-world use cases
in areas like automated negotiations and web service interac-
tions. As AI agents become more prevalent in digital spaces,
frameworks like this will be essential for ensuring they oper-
ate within appropriate bounds while remaining accountable
to their human principles. Looking ahead, key research di-
rections include developing standardized scope definitions
for common AI agent tasks, exploring privacy-preserving
delegation mechanisms, and creating tools to help service
providers implement and manage agent authentication poli-
cies, ultimately working toward ensuring AI systems can
be safely and productively integrated into existing digital
infrastructure.

Impact Statement
The rapid emergence of AI agents presents a critical moment
for designing accountability and safety into agent infrastruc-
ture. As these agents increasingly handle critical tasks and
interact with a wide range of systems and stakeholders,
robust mechanisms are needed to validate their identities,
verify their permissions, and trace their actions become
paramount.
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A. Extended Background
A.1. Comparisons to other AI identifiers

To verify human identity online, a large body of
work exists ranging from simple authentication such as
OAuth 2.0 (Hardt, 2012) to more complex digital identity
frameworks as W3C’s Verifiable Credentials (Sporny et al.,
2024b), decentralized identifiers (Sporny et al., 2024a), and
the European Union Digital Identity’s privacy-preserving
digital wallets (Wallet, 2024). To privately prove per-
sonhood, a number of systems have been developed to
distinguish human users from bots, including proof-of-
personhood systems designed to counter automated Sybil
attacks (Borge et al., 2017), simple turing tests such as
CAPTCHAs (Von Ahn et al., 2003), and more robust cre-
dentials (Adler et al., 2024). More generally, the goal of
‘know-your-customer’ for users and granular access permis-
sions (identity and access management, IAM) are common-
place on the internet.

Similarly, many websites seek to broadly limit access to
bots on their services, and may do so through the use of
robots.txt bans. This is important since the widespread pres-
ence of bots or unauthenticated AI agents can lead to abuse
and harm, but is often done at the ‘user-agent’ level (for
example, banning all ‘GPTBot’ user agents (Longpre et al.,
2024)).

To track and verify the output of AI systems, watermarking
techniques (Liu et al., 2024; Wang et al., 2021) and content
provenance measures (C2PA, 2023) have emerged as po-
tential solutions for determining the origin of AI-generated
content. However, these approaches face reliability chal-
lenges (Saberi et al., 2024) and are insufficient for estab-
lishing comprehensive accountability or safety when using
AI agents. The inherent limitations of current verification
methods highlight the need for more robust frameworks
that can track not just content creation but also the broader
implications of AI system deployment and interaction.

For managing access to sensitive AI capabilities themselves,
researchers have proposed ‘know-your-customer’ schemes
for compute providers (Egan & Heim, 2023; O’Brien et al.,
2023), while commercial platforms implement API tokens
and access controls (OpenAI, 2023). These developments
reflect a growing recognition that AI systems need robust
mechanisms to prove their authenticity and permissions
when accessing external services (Buterin, 2023), particu-
larly as they become more integrated into critical infrastruc-
ture and decision-making processes.

To identify specific instances of AI agents, recent work has
proposed identifiers and verification approaches discussed
above (Chan et al., 2024b;a). This is important and criti-
cal work, which we build upon to extend to authenticated
delegation of AI agents using existing authentication and

permission protocols to enable AI agents to act on behalf of
users in a controlled manner. In turn, these identifiers and
delegation mechanisms can help create spaces that do not
just gatekeep to human users but also enable AI agents to
act on behalf of users with auditability and accountability.

A.2. Documentation, safety, and governance of agentic
AI systems

Documenting AI systems and the data that create them
has been a critical area of research and practice. Early
frameworks established foundational approaches including
datasheets (Gebru et al., 2021), model cards (Mitchell et al.,
2019), and data statements (Bender & Friedman, 2018), with
popular implementations emerging (Paullada et al., 2021).
Although each of these approaches has proven valuable, they
face challenges in adequately addressing concerns around
bias (Buolamwini & Gebru, 2018), privacy, and copyright.
Recent work has highlighted the need for documentation
of AI agents to understand their capabilities and limitations
(Chan et al., 2024b), moving beyond static system descrip-
tions to capture dynamic behaviors and interaction patterns.
As AI systems become increasingly agentic, new frame-
works are needed to document their evolving capabilities,
decision-making processes, and potential risks (Bommasani
et al., 2022).

A.3. Governance of agentic AI systems

Recent work has explored runtimes for validating and revers-
ing agent actions (Patil et al., 2024) and protocols for struc-
tured communication between language models (Marro,
2024). Researchers are also evaluating frontier models
specifically for capabilities that could enable deceptive be-
havior (Phuong et al., 2024; Fang et al., 2024), while others
advocate for tracking prior incidents (Wei & Heim, 2024)
and establishing broader safeguards for AI agent interac-
tions. Governance of AI agents is a rapidly evolving area
of research and practice (Reuel et al., 2024; Kolt, 2024),
with increasing attention being paid to the development of
frameworks that can ensure responsible deployment and
operation of autonomous systems.

B. Technical Details
B.1. Token-based authentication framework

Extending the existing OIDC framework, we can provide
all relevant AI agent attributes and metadata of delegation
in a set of identity-related tokens.

• User’s ID-token: This is the existing ID-token data
structure that is issued/signed by the OpenID Provider
(OP) service. It is intended to represent information
regarding the human user, and is no different to those
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used in everyday login experiences.

• Agent-ID token: This carries the relevant information
about that AI agent issued as an OAuth2.0 Native
Client (meaning the owner of the AI Agent controls all
keying material and secret parameters) and allows the
corresponding service to verify any claims about the
AI agent and its information. This token can include a
range of additional information, from a unique identi-
fier for the agent to a richer and more detailed agent ID
token containing system documentation, capabilities
or limitation metadata, relationship attributes to other
AI systems, or other system characteristics. See Chan
et al. (2024b) for further discussion of what an agent
ID could entail.

• Delegation Token: This newly introduced token explic-
itly authorizes an AI agent to act on the user’s behalf.
The delegation token is issued and signed by the human
delegator and carries references to (e.g., hash of) the
corresponding user’s ID token and the agent’s Agent-
ID token, allowing it to be verified by any service that
trusts the OP. Further, any relevant information about
the nature of the delegation can be shared. For example,
sharing the summarized goal of the agent and its scope
limitations could assist a third party in guiding the AI
agent to useful endpoints and interaction paradigms.
The delegation token should specify validity condi-
tions, such as expiration time or revocation endpoints,
and be digitally signed by the user to prevent forg-
eries and ensure that the user knowingly granted the AI
agent the listed privileges. In addition, the token may
carry supplemental metadata—for example, logging
or audit URLs—allowing service providers to record
interactions, monitor delegated actions, and respond
appropriately to anomalies. By verifying that the del-
egation token references a valid user ID-token and a
properly issued agent ID-token, remote services can
confirm the authenticity and scope of the AI agent’s
authority before granting access.

B.2. Using verifiable credentials as an alternative

The W3C Verifiable Credentials (VC) standard (Sporny
et al., 2022) offers a versatile alternative—and sometimes
complement—to existing OpenID Connect (OIDC) flows
for conveying identity and delegation data. Under a VC-
based approach, an issuer (such as an organization or indi-
vidual) can sign a credential that attests to various claims
about a subject, which might be a user, an AI agent, or any
other entity needing verifiable, tamper-evident attributes.
Because VCs are not bound to a particular transport proto-
col, they can be presented and verified in a decentralized
or peer-to-peer manner without always relying on a single
identity provider. This contrasts with OIDC, which gener-

ally depends on a central OpenID Provider (OP) to mint and
validate tokens.

A key benefit of VCs is their privacy-enhancing potential.
Rather than disclosing all attributes or relying on a single
identity provider, users, and AI agents can share only the
subset of claims strictly necessary for a given interaction.
This “selective disclosure” capability can mitigate concerns
around centralized logging or cross-platform correlation
inherent in OIDC-based architectures, especially when in-
teractions span multiple domains or organizations.

Nonetheless, replacing OIDC entirely with a purely VC-
based model does come with trade-offs. OIDC already
enjoys a robust ecosystem of libraries and deployments
that provide well-tested support for issues like token re-
fresh, revocation, and audience restriction. VCs, while
powerful, require additional work to replicate these flows
at scale—particularly if each verification call demands a
new signature check or interaction with a blockchain or
distributed ledger. In many enterprise environments, stake-
holders may prefer to incorporate VCs into existing SSO or
multi-factor authentication frameworks, rather than adopt a
fully decentralized identity infrastructure upfront.

In practice, hybrid solutions often prove the most pragmatic.
A user or AI agent could store and manage VCs encoding
rich attributes or regulatory endorsements, while still lever-
aging OIDC tokens to bootstrap compatibility with existing
authentication or authorization endpoints. For instance, an
Agent-ID token could embed a VC carrying detailed meta-
data on its behavioral, property, context, and relationship
attributes. Service providers integrating with OIDC get the
familiar token-based handshake, while still retaining the
option to parse the embedded VC for an additional layer
of trust and context. Examples such as OID4VC support
this (Yasuda et al., 2022).

B.3. Federated OpenID Providers for Agent Mutual
Authentication

One of the key goals of AI Agents is the ability for an
agent to interact with existing web services as well as other
AI Agents (AI Systems). To enable secure interactions,
AI Agents must perform mutual authentication and verify
each others’ credentials, including Agent-ID tokens and
delegation tokens.

The authentication flow begins when agent A1 presents
its Verifiable Credential to agent A2. The VC contains
claims that must be validated through the respective OpenID
Provider, including the user’s ID-token and the Agent-ID
token. Since the APIs at OP1 are protected, A2 must au-
thenticate itself using its own Agent-ID token previously
issued by OP2 in its home domain. This cross-domain veri-
fication is achieved through federation, where OP1 validates
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A2’s credentials by communicating with OP2. While the
figure demonstrates authentication from A1’s perspective,
the process is mutual, ensuring both agents can verify each
other’s delegated authorities and credentials through their
respective OpenID Providers.

B.4. Identification of AI Systems and AI Agents

One of the challenges facing the deployment of AI technolo-
gies is the need to establish identification mechanisms for
instances of AI systems, including AI Agents (Chan et al.,
2024b). Here it is useful to distinguish two basic types of
identifiers:

• Local identifiers: A local identifier is a unique string
(e.g. UUIDv2) that can be used to distinguish an in-
stance of an AI system from another within a given
domain. This means that other systems and entities in
the domain are able to pinpoint each AI system using
that local identifier. A local identifier may be meaning-
less outside the domain, and thus require a mapping to
a global identifier.

• Global Identifiers: A global identifier enables an AI
system to be referred to (or referenced to) from any-
where in the Internet. This enables agents to interact
with other AI systems and other AI agents across dif-
ferent geographies.

From a scalability perspective, it is useful to be able
to map from the global identifier of an AI agent to its
local identifier to enable other systems within its home
domain to provide support for that AI agent, such as
a local authentication by the OP in that home domain
that attest to the true existence of the agent within the
domain.

A global identifier belonging to an AI system or agent
can be incorporated within a decentralized identifier
(DID) structures (W3C, 2021) that then enables use-
ful interactions with DLT based services that function
based on the DID.

Due to the prevalence of OAuth 2.0 and OIDC deployments
today, it is useful to reuse some of the existing identifier
structures already utilized in these deployments. If we view
an AI Agent as being a client (native or hosted service)
within OAuth 2.0 then we could reuse the two important
parameters used by an OAuth 2.0 client to interact with the
authorization server (or the OP). These parameters are the
client id and the client secret (see section 2.3.1
of (Hardt, 2012)). The client-ID and the client-secret param-
eters in OAuth 2.0 is used by the authorization server (the
OP) to recognize a client that had been previously registered
to the OP using specific client registration protocols (Jones

et al., 2015). In the current context of identifying AI sys-
tems and AI agents, the client-ID could be considered a local
identifier that is meaningful only in the domain serviced by
the specific OP (i.e. where the client has been registered).
However, the client-ID could be the basis for the OP to
issue a delegation token that signifies the user delegating
authorization to their AI Agent to carry out certain tasks,
defined by action scopes within the delegation token.

B.5. ID token threat model

Our proposal is meant to be secure against several different
security threats, ranging from the authenticity of the issued
tokens to the nature of the delegation.

With respect to ID tokens, Chan et al. (2024b) identifies
three fundamental threats that an AI ID system must defend
against. The first threat is tampering, where an attacker
modifies the ID while it is being transmitted between the
author and the receiving party, potentially altering crucial
system information or attributes. The second threat is ID
spoofing, where an attacker creates a fraudulent ID and
falsely claims it originated from a legitimate author (such
as a major AI company), which could enable malicious
systems to masquerade as trusted ones. The third threat
is instance spoofing, where an attacker takes a legitimate
ID and attempts to use it with their own unauthorized AI
instances, essentially hijacking the reputation or privileges
associated with the original system. To counter these threats,
the authors propose that IDs must implement digital signa-
tures that cover both the ID itself and the system’s outputs,
similar to how HTTPS certificates work for websites. How-
ever, they note an important limitation: since the signature
must cover both ID and output, any modification to the out-
put (even benign ones) would invalidate the ID, creating a
challenging trade-off between security and usability. These
threats to robust AI system identification extend naturally
to the task of authenticated delegation for AI agents, which
requires robustness for both AI system verification, human
delegate verification, and verification of valid delegation.

OpenID Connect could help prevent several additional
threats beyond these robust IDs. Through its built-in mech-
anisms, OIDC could prevent identity correlation attacks
by using pairwise pseudonymous identifiers to ensure AI
instances appear different to different services, thwarting
attempts to track instance behavior across platforms. Its ses-
sion management capabilities could prevent session hijack-
ing attempts against active AI instances, while its dynamic
client registration could prevent impersonation through
unauthorized endpoints. Most significantly, OIDC’s scoping
and audience restriction mechanisms could prevent autho-
rization scope abuse and cross-instance privilege escalation,
ensuring AI instances cannot exceed their intended permis-
sions or use tokens meant for other instances. The protocol’s
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discovery mechanisms could also prevent identity provider
spoofing, adding another layer of security to the ID ecosys-
tem.

C. Extended discussion of scoping for AI
agents

We distinguish between task scoping and resource scoping:

• Task scoping involves specifying which actions or
workflows an agent is authorized to perform on behalf
of the user. These actions may range from high-level
tasks (e.g., “draft a financial report”) to more granular
actions (e.g., “create a new database entry”);

• Resource scoping involves specifying which resources
(information, APIs, tools, etc.) an agent can use or
modify.

While conceptually distinct, task scoping and resource scop-
ing are closely connected. Limiting which tasks can be
performed also means that a (well-designed) agent will not
access unnecessary resources; similarly, restricting access
to specific resources also constrains what tasks are feasible
in the first place.

C.1. Structured permission languages

A large class of scoping mechanisms relies on structured,
machine-readable policy specifications. These specifica-
tions unambiguously define which entities have which autho-
rizations, under which conditions, and with what privileges.
Several well-known languages and frameworks exist for
encoding permissions, such as XACML (eXtensible Access
Control Markup Language), which uses XML to encode and
evaluate access control policies (OASIS, 2013), and ODRL
(Open Digital Rights Language), designed for expressing
usage permissions over digital content (W3C, 2018). Other
languages include OBAC (Brewster et al., 2020), ROWL-
BAC (Finin et al., 2008), KaOS (Van Lamsweerde, 2001)
and Multi-OrBAC Abou El Kalam & Deswarte (2006),
which rely on ontologies (typically described using OWL)
to model resources, subjects, and authorizations. In web-
based contexts, this can often be as simple as whitelisting or
blacklisting URLs and subdomains that an agent can access.

These structured languages are machine-readable and can
thus be enforced reliably by traditional (non-AI) systems.
From a practical perspective, they are well-suited for re-
source scoping, since resources are typically discrete and
can be classified, enumerated, and grouped into security
domains. For instance, when a policy states that a certain
directory is read-only for a particular agent, enforcing com-
pliance is straightforward and can be implemented at the
system level.

However, they have three main drawbacks. First, while

these frameworks are suitable for enumerating resources,
they are less flexible for task scoping, especially when tasks
are open-ended or cannot be easily described as a set of
operations. Second, policy definitions can become lengthy
and complex, especially in environments with a large num-
ber of resources and tasks, or in web contexts where the
number of possible web interactions is enormous. Third,
they are often environment-specific and require updating for
different digital systems with which an agent interacts.

Despite these drawbacks, structured permission languages
remain a cornerstone of access control because they provide
a precise, easily auditable basis for resource scoping. An
alternative approach involves using schema validation to
constrain how agents interact with the environment, dis-
cussed in Subsection C.2

C.2. Schema Validation As Scoping

An alternative approach to structured permission languages
involves using schema validation to constrain how agents in-
teract with the environment. In this approach, an AI agent’s
possible outputs or queries must conform to a predefined
schema (Allemang & Sequeda, 2024). For example, if the
agent can only communicate using RDF tuples, the system
can enforce rules on the permissible classes, properties, or
relationships that the agent can generate.

In practice, schema validation can be particularly powerful
in scenarios where the system is designed around standard-
ized data formats (e.g., JSON, XML, RDF). By restrict-
ing the agent to these formats and validating every output
(e.g. using JSON-Schema (ECMA, 2017) or SHACL (W3C,
2017)), schema validation indirectly controls which actions
are feasible. For instance, if an agent is only allowed to
generate RDF triples with certain predicates (e.g., “hasTitle”
or “hasSummary”) and certain classes (e.g., “Document”),
it cannot arbitrarily mutate data outside of that schema do-
main.

Like structured permission languages, non-AI systems can
quickly and deterministically verify if an agent’s output
complies with a given schema. Moreover, since the output
of the agent is already structured, schema validation may be
simpler compared to parsing unstructured text. Standard out-
puts also simplify logging, as every action can be captured
and audited with structured queries.

On the other hand, a rigid schema can reduce flexibility,
especially in the context of task scoping. Tasks that re-
quire nuanced or creative outputs can be difficult to capture
in a schema-based approach without introducing signifi-
cant complexity (especially if such tasks evolve over time).
Moreover, designing a robust schema that is both expressive
and safe requires considerable effort, and the agent must be
trained or prompted to work exclusively within that schema.
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Nevertheless, schema validation can be a powerful mecha-
nism for resource scoping, particularly when the range of
permissible actions can be codified in a structured format.

C.3. Authentication flows

Another dimension of controlling agent behavior is the au-
thentication flow (i.e., deciding when to prompt a user
or another authority for confirmation before the agent pro-
ceeds with an action). Rather than frontloading all access
decisions into a single policy definition, an authentication
flow can dynamically request user approval for borderline
or high-risk operations.

The main advantage of this approach is that users do not
need to define every edge case in a static policy. Addi-
tionally, authentication flows can be combined with other
scoping mechanisms: for example, a policy can state that
any resource that is neither explicitly approved nor explicitly
forbidden requires human approval.

On the other hand, frequent authorization prompts can neg-
atively affect the user experience, leading to “prompt fa-
tigue” (Baruwal Chhetri et al., 2024), where the user simply
grants permissions without a proper review. Moreover, de-
termining when a request requires explicit authorization can
be non-trivial, and misclassifications can lead to either ex-
cessive prompting or critical operations slipping through
unnoticed.

In practice, a well-designed system can combine robust,
structured policy definitions (for common scenarios) with
dynamic authentication flows for rare or particularly sen-
sitive actions. This approach allows users to offload the
majority of routine checks to automated policies while still
preserving the ability to escalate novel or ambiguous re-
quests for user confirmation.

C.4. Natural Language Mechanisms

Alongside fine-tuning, prompting has often been employed
to steer the behavior of a model towards safety (Zheng et al.,
2024). A reasonable extension of this approach would be to
train (or prompt) the LLM to interpret permissions described
in plain language. For instance, a user might say, “You are
allowed to generate summaries of public documents, but
you must not reveal any confidential metrics.” Such in-
structions can, in principle, be parsed and acted upon by an
LLM-based system.

The main strength of this paradigm is its user-friendliness.
Non-technical users may find expressing policies in natural
language much easier than writing formal rules. Moreover,
natural language can capture nuanced or context-dependent
instructions that are difficult to encode in structured lan-
guages. This makes them ideal for both task and resource
scoping. Finally, natural language can be used to enforce

policies on actions that require reading or using natural lan-
guage, such as interactions with other LLM-based agents.

However, natural language often lacks the precision needed
for reliable policy enforcement. For instance, terms like
“sensitive data” or “private emails” may be interpreted dif-
ferently depending on context. This problem is particularly
relevant in the case of conflict between different policies,
where ambiguous and context-dependent instructions may
yield different interpretations. Relying solely on an LLM to
interpret and enforce ambiguous natural language instruc-
tions can be risky in security-sensitive contexts.

In short, while natural language instructions can serve as a
convenient mechanism (especially for task scoping, where
other mechanisms are less suitable), they are not reliable
enough to be used as standalone policy mechanisms.

C.5. Controlled Natural Languages

While natural language permissions are flexible, they lack
specificity. Controlled Natural Languages (CNLs) (i.e., sub-
sets of natural language with restricted grammar and vo-
cabulary), represent an interesting middle ground between
structured and freeform specification. They preserve some
of the readability of natural language while being more
suitable for automated parsing and formal verification. An
agent using a CNL interface might be able to interpret re-
quests unambiguously, which reduces the risk of accidental
misinterpretation. However, designing a CNL that is both
secure and expressive can be challenging: allowing too
much freedom increases ambiguity and exposes LLMs to
prompt injection attacks (Perez & Ribeiro, 2022), while a
CNL that is too restricted will suffer from the same issues
as structured languages.

C.6. How this interacts with robots.txt

Robots.txt has, without legal heft, underpinned the modern
web for decades. It relies upon a simple set of directives,
where a user-agent is given rules for a subroute. Just as
the recent proliferation of scraping has led to rapid uptake
of new user-agent rules Longpre et al. (2024), new direc-
tives could easily be rolled out across the web with the right
incentives.

This system still has a place in a web full of AI agents.
While websites may wish to block scraping, they may also
wish to guide agents to the correct subroutes where they
could share credentials and interact. For example, a website
may wish to block scraping, allow human users to inter-
act, and send AI agents directly to an API natural language
interface designed for AI systems.

To guide agents to the correct subroutes where they could
share credentials and interact, we can define a new user
agent, AgentBot, and force it into a specific interaction
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route (e.g., /AgentInterface/). Since robots.txt
is a guide, not a rule, this route can go on to provide richer
details of what services can be accessed and what sitemaps
exist. Such a robots.txt need only be an initial guide
to agents.

C.7. Inter-agent scoping.

Extending beyond the user-agent-service model, this ap-
proach can apply to multi-agent settings where agents want
to propagate their limitations onto other agents performing
actions on their behalf. Suppose that the user specifies the
authorizations of an agent Alice. When Alice interacts with
another agent, Bob, in natural language to perform a task,
Bob can parse Alice’s scoping instructions and interpret
them in its own environment. By doing so, Bob can con-
firm that its assigned operations remain within the original
scope, and provide an auditable receipt of the actions taken
and the resources accessed. This is particularly useful in
scenarios where inter-agent communication spans differ-
ent organizations, each with separate policies and resource
constraints.

For a concrete example, suppose that Alice is a project man-
agement agent and Bob is an accounting agent. The user
describes in plain English a financial data request to Alice;
Alice thus sends the forwarded request and a description of
the authorizations to Bob. Bob replies with a structured in-
terpretation of the authorizations (e.g., “Read-only access to
‘transactions2025’ dataset, columns: total amount, vendor
name”), which is logged and approved by either the user or
Alice.

Such a workflow ensures that even if the agents communi-
cate in flexible natural language, their underlying scoping
and record-keeping remain anchored in auditable, determin-
istic policy. As a result, the risk of unauthorized data sharing
or unbounded agent behavior is greatly reduced, and each
agent’s capacity to “inherit” restricted credentials from the
delegator is tightly controlled.

D. Limitations of the current proposal
D.1. Problems with an OpenID Connect approach

While the OpenID Connect (OIDC) and OAuth 2.0-based
framework proposed here provide robust and battle-tested
mechanisms for authentication and delegation, it comes with
trade-offs and may be more complex than alternatives with
different trade-offs in privacy, security, and auditability.

Overhead from multiple sign-in flows. A significant
drawback of the OpenID Connect approach is the poten-
tial overhead introduced by multiple sign-in flows required
to authorize AI agents across individual service providers.
This can be likened to the experience of setting up a new

email client, where users must repeatedly log in to authorize
access to various services. While such authorization flows
enhance security by ensuring each provider independently
verifies the AI agent’s delegation credentials, they impose
a usability cost by slowing down access to secure systems.
In theory, it is possible to bypass this burden by present-
ing delegation tokens directly without performing the full
OIDC authentication flow; however, this shortcut sacrifices
key security guarantees, particularly those related to token
freshness and verification.

Increased reliance on OpenID Providers and privacy
risks. The reliance on OpenID Providers (e.g., Google,
Facebook, or equivalent entities) introduces systemic pri-
vacy concerns. Since OIDC providers mediate all authenti-
cation flows, they gain the ability to track and correlate indi-
vidual AI agent interactions across various services. This
can include collecting statistical usage analytics or requir-
ing relying parties to share logs, which facilitates extensive
behavioral profiling. Such centralized visibility undermines
user privacy and creates a potential single point of surveil-
lance. Addressing these risks necessitates strong privacy
mitigations, such as pairwise pseudonymous identifiers or
the minimization of log-sharing requirements, but these
mechanisms add further complexity to the system.

Comparative complexity relative to W3C Verifiable Cre-
dentials. While the paper highlights the ability to embed
W3C Verifiable Credentials (VC) within the OIDC frame-
work, the full OIDC authorization flow may still be unneces-
sarily heavy compared to native W3C VC-based delegation
and authentication processes. W3C VC issuance, authen-
tication, and delegation mechanisms could directly fulfill
the same requirements for AI agent identity verification
without incurring the additional overhead of repeated autho-
rization flows and central provider mediation. Additionally,
W3C VC-based approaches are inherently more privacy-
preserving, as they do not rely on a single provider to medi-
ate trust or track credential usage. A streamlined VC-based
process could generate OIDC-compatible credentials when
required, enabling interoperability while preserving simplic-
ity and privacy. Similarly, other proposed alternatives to
OAuth 2.0 specifications could be drop-in solutions here to
address design trade-offs, such as the Grant Negotiation and
Authorization Protocol (GNAP) (Richer & Imbault, 2024).
Further exploration of these alternative approaches remains
essential to determine their feasibility as lightweight solu-
tions for AI agent delegation.

Taken together, these limitations highlight key trade-offs
between security, usability, and privacy in the OIDC-based
framework. While the proposed approach remains an in-
cremental and interoperable path forward, addressing these
challenges will be critical to ensuring a robust and practical
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system for AI agent authentication and delegation.

D.2. Limitations of natural language scoping

Although translating natural language scoping instructions
into structured permission languages enables a more flexible
interface, it also creates several key challenges.

Evaluating reliability and correctness. One of the fore-
most difficulties is ensuring that the translation from a user’s
natural language specification to a machine-readable pol-
icy is accurate. Natural language instructions often contain
context-dependent or ambiguous terms, making them in-
herently prone to misinterpretation by an AI system. Al-
though a human-in-the-loop approach can mitigate these
risks through policy review, such human verification is not
infallible; users may inadvertently miss subtle translation
errors. Moreover, as the complexity of a permission specifi-
cation grows, verifying the alignment between the original
natural language instruction and the generated structured
policy becomes more difficult, both technically (due to large
policy definitions) and cognitively (due to the burden on
human reviewers).

New threat vectors for LLM attacks. Exploiting weak-
nesses in language-based interfaces can expose novel threats
that do not exist under purely static access control. Prompt
injection and jailbreak attacks can coerce a large language
model into generating or accepting policies that exceed the
original users intent, thereby gaining unauthorized privi-
leges. While separating resource or task-scoping instruc-
tions from normal chat sessions or interactions reduces the
likelihood of an attack, it still presents a new differentiated
attack surface that needs to be guarded.

Contextual drift. As policies evolve or the task context
changes over time, prior natural language instructions risk
becoming outdated or misaligned with newly introduced re-
sources. Maintaining consistency across multiple revisions
of instructions is nontrivial.

Partial reliance on third parties to enforce restrictions.
In some contexts, the access control rules are applied to an
external environment or agent that is being interacted with.
To maintain security over the application of these access
controls, it may be necessary for the corresponding party to
enforce the rules beyond trusting the native agent to follow
them. In such instances, the reliability of the third-party
becomes a critical point of failure.

E. Example Use Cases
This section outlines four scenarios where authenticated
delegation ensures secure and accountable AI agent interac-

tions. Each example illustrates the structure of delegation
credentials, the scoping mechanisms they enforce, and their
role in maintaining accountability.

E.1. AI Agent for Web Browsing

Scenario. A user employs an AI agent to perform tasks
such as scheduling appointments, retrieving information,
and managing online payments. The agent’s access must be
restricted to specific websites, with clear limitations on the
actions it can perform, such as transaction amounts.

Approach.

1. Delegation Credential. The credential specifies:

• User Identity: The unique identity of the delegating
user.

• Agent Identity: A unique identifier for the agent,
including its capabilities (e.g., browser-based inter-
actions).

• Scope: Restrictions such as approved websites, per-
mitted actions (e.g., viewing schedules, making pay-
ments), and specific constraints (e.g., spending lim-
its, validity duration).

2. Access Enforcement. Websites validate the agent’s
credential upon login or transaction attempts. Unau-
thorized actions, such as accessing unapproved sites or
exceeding predefined limits, are automatically blocked.

3. Auditability. Logs tied to the agent’s unique iden-
tity record all transactions and actions, enabling post-
interaction review and traceability.

Why It Matters. The structured credential ensures the
agent cannot access unauthorized websites or perform unin-
tended actions. This protects sensitive user data and ensures
the user retains control over their online interactions.

E.2. API-Only Data Manager

Scenario. An organization uses an AI agent to aggregate
and analyze data from internal APIs, such as those provid-
ing information about operations or inventory. The agent’s
access must be restricted to specific APIs and limited to
non-destructive actions like querying data.

Approach.

1. Delegation Credential.

• User Identity: The authenticated identity of the dele-
gating organization or individual.

• Agent Identity: A unique identifier for the agent,
specifying its purpose (e.g., data aggregation).
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• Scope: Access permissions restricted to specific
APIs, with limitations on actions (e.g., read-only
access) and operational constraints (e.g., rate limits
or expiration).

2. API Enforcement. APIs validate the credential and
deny actions outside the granted permissions, such as
attempts to write data or access restricted endpoints.

3. Credential Management. Delegation tokens are peri-
odically rotated or updated to reduce risks associated
with stale credentials.

Why It Matters. The agent’s restricted scope ensures it
cannot alter or access sensitive data unintentionally. De-
tailed access logs provide accountability and enable quick
responses to anomalous behavior.

E.3. Remote Virtual Environment via SSH

Scenario. A user directs an AI agent to execute tasks in
a remote virtual environment, such as running simulations
or processing data. The agent’s access must be limited to
specific commands and directories.

Approach.

1. Delegation Credential.

• User Identity: The user’s authenticated identity with
the virtual environment provider.

• Agent Identity: A credential tied to the agent, speci-
fying its role (e.g., simulation execution).

• Scope: Permission to access specific directories, exe-
cute defined commands, and perform actions within
a restricted time frame.

2. Environment Enforcement. The server enforces ac-
cess control policies. Unauthorized actions, such as
modifying configuration files or accessing sensitive
directories, are rejected.

3. Audit Trail. The environment logs each command
executed by the agent, tied to its unique delegation
credential, for post-task review.

Why It Matters. The restricted delegation credential en-
sures that the agent operates only within its assigned scope,
safeguarding the environment against unintended or mali-
cious actions.

E.4. Agent-to-Agent Collaboration

Scenario. Two AI agents collaborate on a complex task,
such as event planning or contract negotiation. Each agent
has distinct roles and permissions that must be respected,
such as one handling logistics and the other managing fi-
nances.

Approach.

1. Delegation Credentials.

• User Identity: The authenticated identity of the dele-
gating organization or individual.

• Agent Identities: Each agent receives a unique cre-
dential describing its role and capabilities.

• Scopes:
– Agent 1: Permissions for logistical tasks, such

as booking services or scheduling.
– Agent 2: Permissions for financial tasks, such as

processing payments, with explicit budget con-
straints.

• Cross-Agent Verification: Each agent includes its
credential when issuing requests to the other. The
receiving agent verifies the request is within scope
before proceeding.

2. Collaboration Mechanism. The agents communicate
using natural language, but all actionable requests ref-
erence their credentials for validation.

3. Auditability. A log of all interactions, including cre-
dential references, ensures a clear record of tasks and
decisions.

Why It Matters. By embedding scoping rules into cross-
agent interactions, the collaboration remains secure and ac-
countable. Each agent operates within its predefined limits,
reducing the risk of unintended actions or miscommunica-
tions.

21


