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ABSTRACT

Proximal policy optimization (PPO) is a widely-used algorithm for on-policy rein-
forcement learning. This work offers an alternative perspective of PPO, in which
it is decomposed into the inner-loop estimation of update vectors, and the outer-
loop application of updates using gradient ascent with unity learning rate. Using
this insight we propose outer proximal policy optimization (outer-PPO); a frame-
work wherein these update vectors are applied using an arbitrary gradient-based
optimizer. The decoupling of update estimation and update application enabled
by outer-PPO highlights several implicit design choices in PPO that we challenge
through empirical investigation. In particular we consider non-unity learning rates
and momentum applied to the outer loop, and a momentum-bias applied to the in-
ner estimation loop. Methods are evaluated against an aggressively tuned PPO
baseline on Brax, Jumanji and MinAtar environments; non-unity learning rates
and momentum both achieve statistically significant improvement on Brax and
Jumanji, given the same hyperparameter tuning budget.

1 INTRODUCTION

Proximal policy optimization (PPO) (Schulman et al., 2017b) is ubiquitous within modern reinforce-
ment learning (RL), having found success in domains such as robotics (Andrychowicz et al., 2020b),
gameplay (Berner et al., 2019), and research applications (Mirhoseini et al., 2021). Given its ubiq-
uity, significant research effort has explored the theoretical (Hsu et al., 2020; Kuba et al., 2022) and
empirical (Engstrom et al., 2020; Andrychowicz et al., 2020a) properties of PPO.

PPO is an on-policy algorithm; at each iteration it collects a dataset using the current (behavior)
policy. This dataset is used to construct a surrogate to the true objective, enabling gradient-based
optimization while seeking to prevent large changes in policy between iterations, similar to trust
region policy optimization (Schulman et al., 2017a). The solution to the surrogate objective is then
taken as the behavior parameters for the following iteration, defining the behavior policy with which
to collect the following dataset. The behavior policies are therefore exactly coupled with the preced-
ing surrogate objective solution.

In this work we instead consider the inner-loop optimization of each surrogate objective to estimate
an update vector, which we name the outer gradient. A trivial result follows that the outer loop
of PPO can be viewed to update the behavior parameters using unity learning rate σ = 1 gradient
ascent on the outer gradients. Using this insight we propose outer-PPO, a novel variation of PPO
that employs an arbitrary gradient-based optimizer in the outer loop of PPO. Outer-PPO decouples
the estimation and application of updates in way not possible in standard PPO. An illustration of
outer-PPO applying a learning rate greater than unity is provided in figure 1. The new behaviors
enabled by outer-PPO raise several questions related to implicit design choices of PPO:
Question 1. Is the unity learning rate always optimal?

Question 2. Is the independence (lack of prior trajectory information e.g momentum) of each outer
update step always optimal?

Question 3. Is initializing the inner loop surrogate objective optimization at the behavior parame-
ters (without exploiting prior trajectory / momentum) always optimal?
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(i)
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(ii)
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(iii)
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θk+1σgO
k

Figure 1: Diagram of outer-PPO estimating and applying the outer gradient as an update. (i)
Transitions are collected with policy π(θk) defining a surrogate objective and corresponding ‘trust-
region’ (shaded) surrounding θk; inner-loop optimization of the surrogate objective (blue dashed)
yields θ∗

k. (ii) Outer-PPO computes outer gradient as gO
k ← θ∗

k − θk. (iii) Outer-PPO updates
behavior parameters using an arbitrary gradient based optimizer applied to the outer gradient to give
θk+1, in this case gradient ascent with a learning rate σ > 1. Standard PPO can be understood as
directly taking θk+1 ← θ∗

k, or as a special case of outer-PPO corresponding to gradient ascent with
learning rate σ = 1.

This work forms an empirical investigation of the aforementioned questions. To motivate this inves-
tigation, consider the clipping parameter ϵ of PPO, controlling the size of the ‘trust region’ within
which we seek to restrict our update. If ϵ is set too low, we restrict ourselves to small policy updates.
Conversely, if we set ϵ too high we decrease the reliability of our update direction. In outer-PPO,
introducing an outer learning rate decouples these two effects; we are able to reliably estimate an
update vector using a moderate ϵ, but then take step of large magnitude in this direction.

We emphasize that we do not seek to identify the most performant configuration possible but to
understand the performance of outer-PPO relative to a well-tuned PPO baseline. To this end we
restrict the tuning of outer-PPO to simple grid searches applied to fixed base PPO hyperparameters.

Our contributions are as follows:

• We propose outer proximal policy optimization (outer-PPO), in which an arbitrary gradient-
based optimizer is applied to the ‘outer gradients’ of PPO. By tracking the outer trajectory,
outer-PPO further permits a momentum bias to be applied to the inner-loop initialization.

• We optimize a PPO baseline through extensive hyperparameter sweeps (total of 38,400
agent trained) on subsets of Brax (6 tasks) (Freeman et al., 2021), Jumanji (4 tasks) (Bonnet
et al., 2024), and MinAtar (4 tasks) (Young & Tian, 2019). We open-source the sweep
database files to facilitate future research against strongly tuned baselines.

• We perform three lightweight outer-PPO grid searches on non-unity outer learning rates,
outer Nesterov momentum and biased-initialization, each addressing questions 1, 2 and 3
respectively.

• We evaluate the outer-PPO methods against the baseline, using 64 seeds per task over the
14 different tasks. We find non-unity outer learning rates to yield the greatest improvement
(5-10%) on both Brax and Jumanji. Outer Nesterov also improves performance on Brax
and Jumanji. Biased initialization achieves a moderate improvement on Jumanji alone. No
method improves over the baseline on MinAtar.

• Given the stated empirical results we conclude the negative for questions 1, 2 and 3. Re-
laxing each of these PPO design choices can lead to consistent, statistically significant
improvement of performance over at least one of the evaluated environment suites.

• We propose that practitioners able to experiment may explore non-unity outer learning rates
given the simplicity (single hyperparameter) and consistent improvement achieved on Brax
and Jumanjji.
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2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We consider the standard reinforcement learning formulation of a Markov decision processM =
⟨S,A, T , r, γ⟩, where S is the set of states, A is the set of actions, T : S × A → ∆(S) is the
state transition probability function, r : S × A → ∆(R) is the reward function, and γ ∈ [0, 1] is
the discount factor. We use the notation ∆(X) to denote the probability distribution over a set X .
The reinforcement learning objective is to maximize the expected return Eπ[Gt] = Eπ[

∑
t γ

trt]
given a policy π : S → ∆(A) defining the agent behavior. In actor-critic policy optimization the
policy is explicitly represented as a parametric function π : S × θπ → ∆(A), and a value function
V : S × θV → R is employed to guide optimization. In deep RL (Mnih et al., 2015; Silver et al.,
2017) neural networks are used for the policy and value functions, for ease of notation we consider
θ ∈ R(dπ+dV ) as the concatenation of the respective weight vectors.

2.2 PROXIMAL POLICY OPTIMIZATION

Proximal policy optimization was proposed by Schulman et al. (2017b), and has since become one
of the most popular algorithms for on-policy reinforcement learning. At each iteration k a dataset of
transitions Dk is collected using policy π(θk), and advantages Âk are estimated using generalized
advantage estimation (GAE) (Schulman et al., 2018). The transition dataset and advantages are then
used within an inner optimization loop, in which the policy parameters θπ are optimized with respect
to a given surrogate objective along with the value parameters θV . Psuedocode for a single iteration
of PPO is provided in algorithm 1, where INNEROPTIMIZATIONLOOP is defined in appendix A.
The full algorithm updates parameters iteratively by θk+1 ← PPOITERATION(θk).

Algorithm 1 Proximal policy optimization iteration

1: function PPOITERATION(θ)
2: Collect set of trajectories D by running policy π(θ)

3: Estimate advantages Â with GAE.
4: θ∗ ← INNEROPTIMIZATIONLOOP(θ,D, Â)
5: return θ∗

6: end function

PPO permits the use of any arbitrary surrogate objective, though it is most commonly associated
with the clipped objective Schulman et al. (2017b) stated in equation 1.

Lπ(θπ) = Es,a∼Dk

[
min

(
ρ(θπ)Â, clip(ρ(θπ), 1− ϵ, 1 + ϵ)Â

)]
(1)

Here ρ(θπ) = π(a|s)
πk(a|s) is the ratio between our current policy π and the behavior policy πk, and ϵ

is the clipping threshold. The value function is similarly optimized using either simple regression.
LV (θV ) = (Vθk

− Vtarg)
2 or the clipped objective defined in appendix A.

2.3 TRUST REGIONS

A trust region is a region surrounding an optimization iterate θk within which we permit our
algorithm to update the parameters to θk+1. In TRPO, a trust region surrounding the be-
havior parameters is explicitly defined as the region in parameter space θ ∈ Θ satisfying
Es∼Dk

[DKL (π(θk|s) ∥ π(θ|s))] ≤ δ. Optimizing subject to this constraint prevents large changes
in the policy between successive iterations, and gives rise to a guarantee of monotonic improve-
ment. Similarly, if the clipped surrogate objective of PPO is replaced with a KL penalty Lπ(θ) =

Es,a∼Dk
[ρ(θ)Â − βDKL (π(θk|s) ∥ π(θ|s))], a trust-region is implicitly defined for some δ. Both

TRPO and PPO-KL approximate the natural policy gradient (Kakade, 2001), (Hsu et al., 2020); the
steepest direction in the non-Euclidean geometry of policy space induced by the Fisher information
metric.

3
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Unlike the KL penalized surrogate, the clipped surrogate objective of equation 1 does not define a
formal trust region. We can however define the region of non-zero gradients, with gradient defined
as in equation 2.

∇θπLπ(θπ) = Es,a∼Dk

[
Â∇θπρ(θπ) · I

(
|ρ(θπ)− 1| ≤ ϵ or (ρ(θπ)− 1) Â ≤ 0

)]
(2)

Here I(·) is an indicator function that equals 1 if and only if the argument is true, and 0 otherwise.
Whilst the subspace ∇θL

π ̸= 0 can be considered analogous to a trust region, it is possible to irre-
versibly step arbitrarily far beyond this region (Hsu et al., 2020). Nonetheless, where not ambiguous
we shall abuse notation and refer to ∇θL

π ̸= 0 as the trust region of the clipped surrogate. Whilst
not defining a formal trust region, the clipped objective enjoys theoretical motivation as a valid drift
function in the mirror learning framework (Kuba et al., 2022), hence also benefits from monotonic
improvement and convergence guarantees.

3 OUTER-PPO

In equation 3 we define the outer gradient of PPO.

gO(θ) = PPOITERATION(θ)− θ (3)

The behavior parameter update of PPO θk+1 ← PPOITERATION(θk) can now be equivalently
expressed as θk+1 ← θk + gO(θk). Evidently, PPO is exactly gradient ascent, with a constant
learning rate σ = 1, on its outer gradients. With this simple result established, we propose a family
of methods employing arbitrary optimizers on the PPO outer loop, denoted as outer-PPO. As an
illustrating example, a comparison of standard PPO and outer-PPO with non-unity learning rates is
provided in algorithms 2 and 3. We additionally propose a closely-related method for biasing the
inner estimation loop using the prior (outer) trajectory, denoted as biased initialization.

3.1 OUTER LEARNING RATES

Varying the outer learning rate scales the update applied to the behavior parameters, as defined in
algorithm 3 and illustrated in figure 1. The behavior of scaling the outer gradient can not be directly
recovered by varying the PPO hyperparameters.

Algorithm 2 Standard PPO

Input: θ0 (parameters)
1: for k = 0, 1, 2, . . . do
2: θ∗ ← PPOITERATION(θk)
3: θk+1 ← θ∗

4: end for

Algorithm 3 Outer-LR PPO

Input: θ0 (parameters), σ (outer learning rate)
1: for k = 0, 1, 2, . . . do
2: gO

k ← PPOITERATION(θk)− θk
3: θk+1 ← θk + σgO

k
4: end for

An outer learning rate σ < 1 interpolates between the behavior parameters θk and inner-loop solu-
tion θ∗

k, encoding a lack of trust in the outer gradient estimation. Whilst the magnitude of the outer
gradient can be reduced by varying hyperparameters, such as the clipping ϵ or number of inner loop
iterations, the outer gradients are inherently noisy due to stochastic data collection and inner-loop
optimization. PPO is additionally able to irreversibly escape its clipping boundary (Engstrom et al.,
2020), and can drift far from the behavior policy given sub-optimal surrogate objective parameters.
Finally, whilst by monotonic improvement guarantees we can assume θ∗

k to define an equal or supe-
rior policy to θk, the non-linear map from parameters to policy and non-convex surrogate objective
imply we cannot assume performance monotonically improves on the linear interpolation between
these points. These effects motivate the exploration of methods that attenuate the outer updates,
irrespective of the outer gradient magnitude. In contrast, a learning rate σ > 1 amplifies the update
vector, encoding confidence in its direction. Whilst the outer gradient magnitude could be increased
by varying the PPO hyperparameters, in particular ϵ, increasing the size of the trust region may lead
the policy to drift to beyond the region of policy space where the dataset Dk collected with policy
πk can be considered representative of the environment dynamics, motivating the amplification of
well-estimated outer gradients over increases to trust region size.
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(i)

θk
θ∗
k

mk−1

(ii)

θk
θ∗
k

mk−1

gO
k

(iii)

θk θk+1
σ(gO

k + µmk)

mk = µmk−1 + gO
k

mk

(a) Outer-Nesterov PPO. At each iteration Outer-Nesterov PPO estimates an outer gradient gO
k , updates the

momentum mk, and steps the parameters using the Nesterov momentum update. The momentum step therefore
precedes the construction of the following trust region, since it defines the following behavior policy π(θk+1).

(i)

θk

αmk−1

θk
θ∗
k

(ii)

θk
θ∗
k

gO
k

(iii)

θk
θk+1

gO
k

mk = µmk−1 + (1− µ)gO
k

mk

(b) Biased initialization. Each iteration commences with a momentum step (solid orange); the inner optimiza-
tion (blue dashed) is therefore initialized at θk+αmk−1. The momentum step therefore occurs within the trust
region as the dataset Dk was collected prior, and the surrogate objective remains defined relative to π(θk).

Figure 2: Comparison of Nesterov-PPO and biased initialization.

3.2 MOMENTUM

Whilst permitting novel behavior, outer-LR PPO still only exploits information from a single PPO
iteration when updating the parameters. Applying momentum breaks this design choice; instead of
directly updating the parameters with the scaled outer gradient σgO

k , we update using the Nesterov
momentum rule as in algorithm 4 and illustrated in figure 2a.

Algorithm 4 Outer-Nesterov PPO

1: Input: θ0 (parameters), σ (learning rate), µ (momentum factor)
2: m0 ← 0 ∈ Rd

3: for k = 0, 1, 2, . . . do
4: gO

k ← PPOITERATION(θk)− θk
5: mk ← µmk−1 + gO

k

6: θk+1 ← θk + σ(mk + µgO
k )

7: end for

In supervised learning momentum is motivated using pathological curvature, and the ability to ‘build
up speed’ (Sutskever et al., 2013). Given that the outer gradient is the solution to a surrogate objec-
tive, we do not anticipate pathological curvature presenting to the outer optimizer. However, similar
to learning rates σ > 1 the increase in effective learning rate of momentum may assist in learning.
Momentum can also be motivated here using resilience to noise; since any given collected dataset
will be noisy, the outer gradient is also noisy. As using a learning rate σ < 1 corresponded to a lack
of trust in any given outer gradient, using momentum corresponds to a smoothing process, where
we at no point solely trust a single outer gradient to be accurate.

3.3 BIASED INITIALIZATION

Outer-PPO Nesterov applies a momentum-based update to the outer loop of PPO. This update occurs
before the successive iteration’s datasetDk+1 is collected, hence the momentum directly determines

5
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the behavior parameters πk+1 for the following surrogate objective. Beyond the effects of state-
ful inner-loop optimizers such as Adam (Kingma & Ba, 2014), each outer gradient estimation is
independent of the prior trajectory. In contrast we propose biased initialization to apply an outer
momentum-based update after data is collected, hence inside the following trust region problem as
in algorithm 5,where mk = µmk−1 + (1− µ)gO

k is the momentum vector, and in figure 2b.

Algorithm 5 PPO iteration with biased initialization

1: function BIASEDPPOITERATION(θ,m, α)
2: Collect set of trajectories D by running policy π(θ)

3: Compute advantages Â.
4: θ ← θ + αm
5: θ∗ ← INNEROPTIMIZATIONLOOP(θ,D, Â)
6: return θ∗

7: end function

Biased initialization bears a strong similarity to the conjugate gradient initialization employed in
Hessian-free optimization (Martens, 2010). The primary motivation for such techniques would be
to better estimate the update vector in a given budget of inner-loop iterations.

4 EXPERIMENTS

4.1 EVALUATION PROCEDURE

We experiment on subsets of the Brax (Freeman et al., 2021), Jumanji (Bonnet et al., 2024), and
MinAtar (Young & Tian, 2019) environment suites, selected as diverse examples of continuous and
discrete control problems. We employ the absolute evaluation procedure recommended by Colas
et al. (2018) and Gorsane et al. (2022). Absolute evaluation entails intermediate evaluations during
training and a final, large-scale evaluation using the best policy identified to give the ‘absolute’
performance. We train with a budget of 1 × 107 transitions, perform 20 intermediate evaluations,
and conduct final evaluation using 1280 episodes.

Recognizing the hyperparameter sensitivity of deep reinforcement learning (Hsu et al., 2020; En-
gstrom et al., 2020; Andrychowicz et al., 2020a), we commit significant resources to establishing
a strong PPO baseline and fair evaluation. We sweep for a budget of 600 trials per task using the
tree-structured Parzen estimator (Bergstra et al., 2011; Watanabe, 2023). Each trial is the mean of
4 agents, trained using seeds randomly sampled from [0, 10000], for a total of 2400 agents trained
per task during baseline tuning. A total of 11 hyperparameters are tuned, each with extensive ranges
considered. Full descriptions of the hyperparameter sweep ranges, and the optimal values identified
are provided in appendix C.

After hyperparameter tuning a final 64 agents are trained per environment task, where the set of eval-
uation seeds is non-overlapping with seeds used for hyperparameter tuning. To compare methods
we aggregate performance over the tasks of an environment suite following the procedure recom-
mended by Agarwal et al. (2021), normalizing with the min/max return found for each task across
all trained agents (including sweep agents), a table of which is presented in appendix D.

4.2 DEFINED EXPERIMENTS

We consider the three outer-PPO methods defined in section 3; outer-LR, outer-Nesterov and bi-
ased initialization, addressing questions 1, 2, and 3 respectively. The outer-PPO methods are grid
searched using increments of 0.1 for all hyperparameters. Outer-LR has a single hyperparameter;
outer learning rate σ, which is swept over the range [0.1, 4.0] (40 trials). Nesterov-PPO two hy-
perparameters; σ [0.1, 1.0] and momentum factor µ [0.1, 0.9] (90 trials). Biased initialization also
has two hyperparameters; bias learning rate α [0.1, 1.0], bias momentum µ [0.0, 0.9] (100 trials).
The base PPO hyperparameters are frozen from the baseline sweep up to the 500th trial, such that
no method is tuned using a budget greater than the 600 trials used by the baseline. The optimal
hyperparameters identified for each sweep are provided in the figures of appendix E.
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0.64 0.68 0.72
Baseline
Bias Init

Nesterov
Outer LR

Median

0.64 0.68 0.72

IQM

0.650 0.675 0.700

Mean

Normalized mean episode return

0.725 0.750 0.775 0.800
Baseline
Bias Init

Nesterov
Outer LR

Median

0.76 0.78 0.80

IQM

0.74 0.76 0.78 0.80

Mean

Normalized mean episode return

0.855 0.870 0.885
Baseline
Bias Init

Nesterov
Outer LR

Median

0.900 0.906 0.912 0.918

IQM

0.82 0.84 0.86

Mean

Normalized mean episode return

Figure 3: Aggregate point estimates for Brax (upper), Jumanji (center), and MinAtar (lower). Opti-
mal hyperparameters per-environment are used. Normalized to task min/max across all experiments.

0.3 0.4 0.5 0.6 0.7
P(X > Y)

Bias Init

Nesterov

Outer LR
Algorithm X

Baseline

Baseline

Baseline
Algorithm Y

0.3 0.4 0.5 0.6 0.7
P(X > Y)

Bias Init

Nesterov

Outer LR
Algorithm X

Baseline

Baseline

Baseline
Algorithm Y

0.3 0.4 0.5 0.6 0.7
P(X > Y)

Bias Init

Nesterov

Outer LR
Algorithm X

Baseline

Baseline

Baseline
Algorithm Y

Figure 4: Probability of improvement for Brax (left), Jumanji (center), and MinAtar (right). Opti-
mal hyperparameters per-environment are used. Normalized to task min/max across all experiments.

5 RESULTS

5.1 EMPIRICAL PERFORMANCE

We first consider the performance of the three outer-PPO methods, where the optimal hyperparam-
eters identified from the grid sweeps per-environment are employed. In figures 3 and 4 we present
the aggregate point estimates and probability of improvement. Further results including sample
efficiency curves are provided in appendix D.

Aggregate point estimates. Outer-LR demonstrates a statistically significant improvement over
the PPO baseline on Brax and Jumanji for all point estimates considered (median, IQM, mean,
optimality gap). Outer-Nesterov also demonstrates enhanced performance on Brax and Jumanji;
this improvement is less substantial than that of outer-LR but remains statistically significant on all
point estimates aside from the Brax median. Biased initialization is the weakest of the outer-PPO
instantiations, with minor improvements lacking statistical significance on Brax and moderate but
significant improvements on Jumanji. No method improves over baseline on MinAtar.

Probability of improvement. All methods have a probability of improvement (over baseline)
greater than 0.5. In most cases this improvement is statistically significant, aside from biased ini-
tialization on Brax and outer-LR on MinAtar. Notably, outer-LR has a probability of improvement
greater than 0.6 on Brax and greater than 0.7 on Jumanji.

5.2 HYPERPARAMETER SENSITIVITY

In the results of figures 3 and 4, the optimal hyperparameters from each per-environment outer-PPO
grid search are used. We now consider the sensitivity of outer-PPO to these hyperparameters. In
figures 5, 6, and 7 we present the return, normalized across each environment suite, as a function
of the sweep hyperparameters for outer-LR, outer-Nesterov and biased initialization. Normaliza-
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Figure 5: Outer-LR hyperparameter sensivity. Mean normalized return across the Brax (left),
Jumanji (center), MinAtar (right) tasks as a function of outer learning rate σ. Mean of 4 seeds
plotted with standard error shaded. Normalized to task min/max across all experiments. Common
outer learning rate used to define the x-axis, with task-specific base PPO hyperparameters.
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Figure 6: Outer-Nesterov hyperparameter sensitivity. Mean normalized return across the Brax
(left), Jumanji (center), MinAtar (right) tasks as a function of outer learning rate σ and outer mo-
mentum µ. Mean of 4 seeds plotted. Normalized to task min/max across all experiments. Common
outer hyperparameters used to define the grid, with task-specific base PPO hyperparameters.
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Figure 7: Biased initialization hyperparameter sensitivity. Mean normalized return across the
Brax (left), Jumanji (center), MinAtar (right) tasks as a function of bias init learning rate α and bias
momentum µ. Mean of 4 seeds plotted. Normalized to task min/max across all experiments. Com-
mon outer hyperparameters used to define the grid, with task-specific base PPO hyperparameters.

tion is again performed using the extreme values presented in appendix D. Analogous plots for the
individual tasks are provided in appendix E.

Outer learning rate. When normalized across all tasks, Brax has low sensitivity to outer learning
rate. The range of values σ ∈ [0.8, 2.0] has comparable performance to the peak located at σ = 1.6.
Notably, performance is not greatly reduced when using values up to σ = 3.0. Jumanji again exhibits
near optimal-performance over a broad range of values σ ∈ [0.5, 2.2], with the peak again located
at σ = 1.6. Unlike in Brax, performance on Jumanji is greatly diminished for values σ > 2.5.
MinAtar has a sharp peak in performance around standard PPO (σ = 1.0), with a rapid decrease in
performance for values greater than this.

Nesterov. All three suites have a ridge-like trend in normalized performance, with poor perfor-
mance where σ and µ are both small or both large. Both Brax and Jumanji have their peak at
(σ, µ) = (0.7, 0.5), with a relatively broad plateau of near-optimal performance. The peak of Mi-
nAtar is at (σ, µ) = (0.9, 0.1), with a narrow ridge of near-optimal performance.
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Biased initialization. The dominant trend on all three suites is decreasing normalized performance
for large bias learning rate α. The optima for all suites at either α = 0.1 (Brax, MinAtar) or
α = 0.2 (Jumajji). There is comparably little variation with respect to bias momentum µ, with the
suite optima dispersed through the available range. Jumanji has a broader region of near optimal
performance than Brax or MinAtar, covering α < 0.4.

6 DISCUSSION

We now reflect on the questions posed in section 1. The PPO baselines in this work were tuned
aggressively for each task, greatly increasing the confidence in the experimental findings. Given the
baseline strength, and performance demonstrated in figures 3 and 4, we conclude in the negative for
all three questions as evidenced by:

Q1. Varying the outer learning rate leads to an statistically significant increase on all point esti-
mates on Brax and Jumanji, with corresponding increases to probability of improvement.

Q2. Employing Nesterov momentum on the outer loop, with outer learning rate attenuation,
achieves statistically significant increases to all point estimates on Brax and Jumanji. We
also observe a statistically significant probability of improvement on all three suites.

Q3. Momentum-biased initialization achieves statistically significant increase on all point esti-
mates on Jumanji, with a probability of improvement of 0.6 on this suite.

Common hyperparameters. The sensitivity plots in figures 5, 6 demonstrate robust normalized
performance across the Brax and Jumanji suites for outer-LR and outer-Nesterov. However, they do
not indicate any significant increase in normalized return could be achieved over standard PPO for
a set of common hyperparameters shared across a suite. To achieve the improved aggregate metrics
in figure 3 it was necessary to use task-specific hyperparameters. We do however emphasize the
aggressive, task-specific, tuning of the baseline, and view the robustness of normalized return across
a range of hyperparameters as a strength of the methods.

Task-specific hyperparameters. Task-specific hyperparameter sensitivity plots are provided in
appendix E. For outer-LR the optimal per-task values for α range between 0.5 (corresponding to
cautious updates) and 2.3 (corresponding to confident updates). That values of α up to 2.3 can
be optimal is surprising, as an α greater than unity directly violates the trust region established by
our previous behavior policy. This precludes the provable monotonic improvement of PPO (Kuba
et al., 2022); by stepping beyond the trust region we may in principle select a policy that is worse
than the previous. For outer-Nesterov co-varying σ with µ can be understood through the effective
learning rate σ/(1 − µ). The task-specific effective learning rate varies from 0.7 to 2.3. Lastly, for
biased initialization the sharp peaks in performance on Brax tasks suggest the method suffers from
high variance on this suite, hence the hyperparameters selected may not be optimal in expectation.
On Jumanji the method is significantly less hyperparameter sensitive as evidenced by the smooth
contours, providing an explanation for the performance gap observed between these suites.

MinAtar results. No outer-PPO method improved over baseline on MinAtar. We comment that
our baseline results are much stronger than other works (Lu et al., 2022), and are approaching the
mathematical maxima of these tasks as defined by the gymnax library (Lange, 2022). We further add
that other works committing substantial resources to baseline tuning on MinAtar have struggled to
achieve improvements on the suite Jesson et al. (2023). Furthermore, the hyperparameter sensitivity
plots in figures 5, 6 and 7 demonstrate all methods achieve peak normalized return greater than 0.9
on MinAtar. Since here we are normalizing to the maximum performing agents across all sweeps,
this indicates there is less variance in the optimal performance of MinAtar compared to Brax and
Jumanji with peak normalized returns around 0.7 and 0.8 respectively. A final explanation for the
failure to surpass baseline on MinAtar could be ‘brittle’ base hyperparameters, not suited to the
modified dynamics introduced by outer-PPO, supported by the sharp peak observed in outer-LR and
concentration of performance in outer-Nesterov about standard PPO in figures 5 and 6.

Limitations. We identify two core limitations to this work; the fixed transition budget and the lack
of co-optimization of base and outer-PPO hyperparameters. We only consider a timestep budget of
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1× 107 transitions. Whilst sample efficiency plots are provided in appendix D the hyperparameters
have not been tuned to maximize performance in the data-limited regime. Furthermore, we do not
consider the asymptotic performance for larger transition budgets, where it is possible the improve-
ment achieved by outer-PPO methods may be diminished. With respect to co-optimization, given
the dependence of the outer gradients on the base hyperparameters there is undoubtedly significant
interaction between these and the outer-PPO hyperparameters. Exploring these interactions would
yield better understanding and potentially improved performance. We additionally highlight the
presence of learning rate annealing on the inner Adam instances in all experiments. This implies the
outer gradients tend to zero, the implications of which we do not explore in this work.

7 RELATED WORK

The usage of the difference between initial parameters and those after gradient-based optimization
as a ‘gradient’ has been explored for meta-learning in the Reptile algorithm (Nichol et al., 2018).
Reptile aims to find an initialization that can be quickly fine-tuned across a distribution of tasks.
Unlike outer-PPO, which applies this idea within a single RL task, Reptile performs gradient steps
on different supervised learning tasks to determine the ‘Reptile gradient’. One could interpret outer-
PPO as performing serial Reptile whereby each sampled task is the next PPO iteration alongside the
collected dataset.

Whilst to the best of our knowledge we are the first to apply momentum to the outer loop of PPO,
momentum-based optimizers such as RMSProp Tieleman & Hinton (2012) and Adam Kingma &
Ba (2014) are commonly applied in other areas of RL. Recent work has examined the interaction
of momentum based optimizers and RL objectives. Bengio et al. (2021) identify that a change in
objective (such as by updating a target network or dataset), may lead to momentum estimates anti-
parallel to the current gradient thereby hindering progress, and propose a correction term to mitigate
this effect. Asadi et al. (2023) propose to reset the momentum estimates periodically throughout
training and demonstrate improved performance on the Atari Learning Environment Bellemare et al.
(2012) with Rainbow Hessel et al. (2017) doing so. However, none of these approaches focuses on
PPO specifically, and instead address temporal difference learning or value based-methods.

Lastly, the biased initialization explored in this work is similar to the conjugate gradient initializa-
tion technique employed in hessian-free optimization Martens (2010), although this used only the
prior iterate and not a momentum vector. Hessian-free optimization can be considered a supervised
learning version of TRPO (Schulman et al., 2017a).

8 CONCLUSION

In this work, we introduced outer-PPO, a novel perspective of proximal policy optimization that
applies arbitrary gradient-based optimizers to the outer loop of PPO. We posed three key research
questions regarding the optimization process in PPO and conducted an empirical investigation across
14 tasks from three environments suites. Our experiments revealed that non-unity learning rates and
momentum in the outer loop both yielded statistically significant performance improvements across
a variety of evaluation metrics in the Brax and Jumanji environments, with gains ranging from 5-10%
over a heavily tuned PPO baseline. Biased initialization provided improvements upon the baseline
on Jumanji tasks but not Brax.

The most immediate direction for future research would be the exploration of interactions between
base hyperparameters and outer-PPO hyperparameters. Since the optimal base hyperparameters may
be unsuited to the modified dynamics of outer-PPO, the co-optimization of hyperparameters may
yield performance improvements and deeper understanding of the method. Other possible future
directions include the use of outer-PPO with alternatives to the clipped surrogate loss function, such
as KL-penalized PPO Hsu et al. (2020) or discovered policy optimization Lu et al. (2022), and the
use of adaptive optimizers on the outer loop such as RMSProp or Adam. Indeed, an ‘outer’ variant
of many dual-loop RL algorithms can be defined, and we hope that this work will stimulate further
research into optimizing RL algorithms through more sophisticated outer-loop strategies.
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A FURTHER DETAILS ON PPO

A.1 INNER OPTIMIZATION LOOP

Algorithm 6 PPO Inner Optimization Loop

1: Input: θ (initial parameters), D (collected trajectories), Â (estimated advantages)
2: θπ,θV ← θ
3: for epoch i = 1, 2, . . . , N do
4: Shuffle (D, Â) and create M minibatches {(D1, Â1), (D2, Â2), . . . , (DM , ÂM )}
5: for j = 1, 2, . . . ,M do
6: θπ ← θπ + η∇θπLπ(θπ,Dj , Âj)

7: θV ← θV + η∇θV LV (θV ,Dj , Âj)
8: end for
9: end for

10: θ ← θπ,θV

11: Return: θ∗ ← θ

Algorithm 6 describes the inner optimization loop of proximal policy optimization, where Lπ and
LV are defined in equations 1 and 4 respectively. For notational ease this presentation is slightly
simplified. Typically, instead of the gradient ascent steps taken in lines 5 and 6 typically each of θπ

and θV are optimized using independent instances of Adam (Kingma & Ba, 2014), with potentially
distinct learning rates ηπ ̸= ηV . In this work we use Adam for the inner-loop optimization, following
standard best-practice (Schulman et al., 2017b; Engstrom et al., 2020).

A.2 CLIPPED VALUE OBJECTIVE

LV (θV ) = max
[
(Vθk

− Vtarg)
2
,
(
clip

(
Vθk

, Vθk−1
− ε, Vθk−1

+ ε
)
− Vtarg

)2]
(4)
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B IMPLEMENTATION DETAILS

We implement our experiments using the JAX-based Stoix library (Toledo, 2024). Our implementa-
tion is such that several seeds can be trialed / evaluated simultaneously for the same hyperparameters
using a single device. We used Google Cloud TPU (v4-8) for these experiments. We used the gym-
nax Lange (2022) library implementation of MinAtar.

Table 1: PPO implementation details employed in this work as identified by Huang et al. (2022).

Implementation Detail Applied
Orthogonal Initialization Yes
Adam Optimizer’s Epsilon Yes
Learning Rate Annealing Yes
Generalized Advantage Estimation (GAE) Yes
Mini-batch Updates Yes
Normalization of Advantages Yes
Clipped Surrogate Objective Yes
Value Function Loss Clipping Yes
Entropy Bonus No
Global Gradient Clipping Yes
Separate Networks Yes
Observation Normalization Yes
Reward Scaling Yes
Reward Clipping No

Normal Distribution for Actions Yes
State-independent Log Std No
Independent Action Components Yes
Action Clipping No
Action TanH Transform Yes
Observation Clipping No

C HYPERPARAMETERS

C.1 SWEEP RANGES

The sweep ranges for baseline hyperparameter sweeps are presented in table 2.

Table 2: Sweep ranges for baseline hyperparameters.

Parameter Sweep Range

Parallel environments 26 to 210

Rollout 22 to 28

Num. epoch 1 to 16
Num. minibatch 20 to 26

Actor learning rate 1× 10−5 to 1× 10−3 (log scale)
Critic learning rate 1× 10−5 to 1× 10−3 (log scale)
Discount factor (γ) 0.9 to 1.0
GAE λ 0.0 to 1.0
Clip ϵ 0.1 to 0.5
Max gradient norm 0.1 to 5.0
Reward scaling 0.1 to 100 (log scale)
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C.2 OPTIMAL VALUES

The optimal values identified by the baseline sweep, up to trial 500, are included in table 3. These
values are the ‘base’ hyperparameters used for outer-PPO methods.

Table 3: Optimal values from baseline sweep up to trial 500

Task Pa
ra

lle
le

nv
.

R
ol

lo
ut

N
um

.e
po

ch

N
um

.m
-b

at
ch

A
ct

or
lr

C
ri

tic
lr

D
is

co
un

tγ

G
A

E
λ

C
lip

ϵ

M
ax

g.
no

rm

R
ew

ar
d

sc
al

e

ant 128 8 2 32 3.0e-04 1.4e-04 0.98 0.70 0.21 4.85 0.14
halfcheetah 64 64 3 16 3.9e-04 4.4e-04 0.99 0.94 0.13 2.40 0.46
hopper 64 64 2 64 6.3e-04 3.6e-04 1.00 0.96 0.17 3.54 3.95
humanoid 256 64 4 64 1.0e-04 1.0e-04 0.98 0.89 0.34 3.30 0.14
humanoidstandup 64 64 3 32 3.0e-04 8.2e-04 0.99 0.98 0.10 4.65 0.35
walker2d 256 32 4 64 5.4e-04 8.2e-04 1.00 0.92 0.12 3.74 22.54

asterix 128 128 3 64 8.3e-04 2.1e-05 1.00 0.20 0.30 2.28 6.62
breakout 64 16 14 16 1.8e-04 1.2e-04 0.90 0.53 0.16 0.25 5.19
freeway 64 128 10 2 6.9e-04 1.3e-04 0.98 0.70 0.15 4.71 6.64
space_invaders 128 32 16 2 3.0e-05 1.1e-04 0.98 1.00 0.25 0.35 0.61

game_2048 1024 8 9 32 4.9e-04 3.8e-04 0.99 0.04 0.28 2.56 0.13
maze 256 32 7 64 6.5e-04 4.3e-04 0.98 0.66 0.14 2.46 1.97
rubiks_cube 64 256 13 4 9.0e-04 2.2e-04 0.99 0.55 0.14 3.45 11.03
snake 1024 8 11 4 6.0e-04 6.0e-04 1.00 0.46 0.12 2.52 20.48

Table 4: Optimal hyperparameters per task for each outer-PPO method

Task Outer-LR Outer-Nesterov Biased Initialization
σ σ µ α µ

Ant 0.5 0.7 0.2 0.1 0.8
HalfCheetah 0.5 0.4 0.5 0.2 0.8
Hopper 1.5 0.9 0.4 0.5 0.8
Humanoid 1.9 0.5 0.7 0.1 0.4
HumanoidStandup 2.1 0.5 0.3 0.5 0.8
Walker2d 2.0 0.9 0.6 0.4 0.0

2048 1.3 0.8 0.4 0.3 0.9
Snake 2.3 1.0 0.4 0.7 0.5
Rubik’s Cube 1.7 0.5 0.7 0.4 0.3
Maze 0.9 0.9 0.0 0.1 0.5

Asterix 1.1 0.6 0.5 0.1 0.4
Breakout 1.1 0.9 0.1 0.0 0.5
Freeway 1.6 0.9 0.3 0.2 0.5
Space Invaders 1.3 0.8 0.2 0.1 0.9
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D ADDITIONAL RESULTS
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Figure 8: Performance profiles for Brax (left), Jumanji (center), and MinAtar (right). 6 / 4
/ 4 tasks used from Brax / Jumanji / MinAtar respectively. For each task, agents are trained and
evaluated using 64 seeds.
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Figure 9: Sample efficiency curves for Brax (left), Jumanji (center), and MinAtar (right).

Table 5: Minimum and maximum returns used for normalization.

Task Min Max
Ant -2958.14 13466.48
Halfcheetah -587.37 7859.28
Hopper 21.03 3697.39
Humanoid 207.63 11851.71
Humanoidstandup 6686.00 71897.67
Walker2d -32.44 2558.61

2048 989.50 29084.63
Snake 0.00 92.55
Rubiks Cube 0.00 0.66
Maze 0.03 0.84

Asterix 0.30 64.46
Breakout 0.00 92.86
Freeway 0.00 66.13
Space Invaders 0.00 191.80

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E SWEEP PERFORMANCES
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Figure 10: Baseline sweep performance for Brax tasks. x-axis is trial number, each trial represents
a selection of hyperparameters selected by the Tree Parzen estimator. The y-axis is mean return
achieved by the 4-seed trial. Red line represents cumulative maximum.
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Figure 11: Baseline sweep performance for MinAtar tasks. x-axis is trial number, each trial
represents a selection of hyperparameters selected by the Tree Parzen estimator. The y-axis is mean
return achieved by the 4-seed trial. Red line represents cumulative maximum.
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Figure 12: Baseline sweep performance for Jumajji tasks. x-axis is trial number, each trial
represents a selection of hyperparameters selected by the Tree Parzen estimator. The y-axis is mean
return achieved by the 4-seed trial. Red line represents cumulative maximum.
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Figure 13: Outer learning rate sweep performance for Brax tasks. Mean of 4 seeds shown with
standard error shaded. Optimal point marked with blue star.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Outer learning rate

0

10

20

30

40

50

60

M
ea

n 
re

tu
rn

(a) asterix

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Outer learning rate

0

20

40

60

80

M
ea

n 
re

tu
rn

(b) breakout

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Outer learning rate

0

10

20

30

40

50

60

M
ea

n 
re

tu
rn

(c) freeway

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Outer learning rate

0

25

50

75

100

125

150

175

M
ea

n 
re

tu
rn

(d) space_invaders

Figure 14: Baseline sweep performance for MinAtar tasks. Mean of 4 seeds shown with standard
error shaded. Optimal point marked with blue star.
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Figure 15: Baseline sweep performance for Jumajji tasks. Mean of 4 seeds shown with standard
error shaded. Optimal point marked with blue star.
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Figure 16: Nesterov sweep performance for Brax tasks. Contour plot of mean of 4 seeds. White
regions resulted in numerical errors (NaN). Optimal point marked with blue star.
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Figure 17: Nesterov sweep performance for MinAtar tasks. Contour plot of mean of 4 seeds.
White regions resulted in numerical errors (NaN). Optimal point marked with blue star.
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Figure 18: Nesterov sweep performance for Jumanji tasks. Contour plot of mean of 4 seeds.
White regions resulted in numerical errors (NaN). Optimal point marked with blue star.
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Figure 19: Biased initialization sweep performance for Brax tasks. Contour plot of mean of 4
seeds. White regions resulted in numerical errors (NaN). Optimal point marked with blue star.
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Figure 20: Biased initialization sweep performance for MinAtar tasks. Contour plot of mean of
4 seeds. White regions resulted in numerical errors (NaN). Optimal point marked with blue star.
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Figure 21: Biased initialization sweep performance for Jumanji tasks. Contour plot of mean of
4 seeds. White regions resulted in numerical errors (NaN). Optimal point marked with blue star.
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F INDIVIDUAL TASK PERFORMANCES
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Figure 22: Individual task performance for Brax. For each task mean of 64 seeds is presented
with standard deviation shaded.
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Figure 23: Individual task performance for MinAtar. For each task mean of 64 seeds is presented
with standard deviation shaded.
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Figure 24: Individual task performance for Jumanji. For each task mean of 64 seeds is presented
with standard deviation shaded.
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G CAN STANDARD PPO RECOVER OUTER-PPO?

Here we discuss that outer-PPO introduces novel behavior that cannot be recovered through variation
of standard PPO hyperparameters. We focus our discussion on clipping ϵ and inner learning rates η
as highly influential hyperparameters, but similar arguments can be made for other hyperparameters.

G.1 CLIPPING ϵ

The clipping ϵ defines the policy ratio ρ(θπ) beyond which the loss is clipped, hence the gradients
are zero. Intuitively, increasing ϵ increases the size of the trust region within which we seek to
restrict our policy updates. Given suitable hyperparameters, a larger value of ϵ will enable larger
updates to policy between iterates, hence larger magnitude outer gradients gO. In contrast, scaling
the outer learning rate σ does not change the size of the trust region used for gO estimation, but
instead directly scales the outer gradient when applying the update to the behavior parameters σgO.

Let θ∗(ϵ) be the surrogate objective solution for a given value of ϵ, defining the outer gradient
gO(ϵ) = θ∗(ϵ) − θ. Assume the equivalence of ϵ-variation and σ-variation; in other words the
behavior of outer learning rates can simply be achieved by varying the clipping ϵ. Formally, this
implies that there exists k ∈ R+

σgO(ϵ0) = σ(θ∗(ϵ0) − θ) = θ∗(kϵ0) − θ = gO(kϵ0),

for any given value of σ ∈ R+.

Consider a true proximal objective, such as PPO-KL (Hsu et al., 2020). Assuming the penalty
coefficient β is sufficiently high such that the proximal objective is convex, and that the inner-loop
optimization converges to the global minimum thereof, the above condition is met. In this case the
outer gradient corresponds to exactly the natural policy gradient (Kakade, 2001). Scaling β directly
scales the trust region size, and the (unique) solution remains on the span of the natural policy
gradient. However, PPO-clip is not a true proximal objective, and importantly non-convex. Unlike in
PPO-KL there is no guarantee of a unique solution, indeed the clipping mechanism implies regions
of equivalent loss. Given that is is possible to irreversibly enter the clipped region (Engstrom et al.,
2020) we cannot assume different values of ϵ = kϵ0 will converge onto the span of θ∗(ϵ0)−θ, hence
do not meet the above condition for the equivalence of ϵ-variation and σ-variation. An illustrative
diagram of this behavior is provided in figure 25.

θ θ(0.2)

θ(0.1)

θ(0.5)

σgO

Figure 25: The behavior permitted by varying the outer learning rate is not directly recovered
by varying the clipping ϵ. Different values of clipping parameter ϵ ∈ {0.1, 0.2, 0.5} lead to differ-
ent surrogate objective solutions θ∗(ϵ). Solving the surrogate objective with ϵ = 0.2 (blue dashed)
results in outer gradient gO(0.2) = θ∗(0.2) − θ. By varying the outer learning rate σ we can update
the parameters to any point on this vector span (green). Varying the clipping epsilon to 0.1 or 0.5
increases or decreases the trust region size, but this does not imply the inner loop will converge to the
span of θ∗(0.2) − θ, and therefore we are unable to directly recover the outer learning rate behavior.

G.2 INNER LEARNING RATES

The inner learning rate η defines the learning rate for the inner-loop optimization of the clipped
surrogate objective. Unlike clipping ϵ, η does not change the size of the trust region established,
but instead influences the convergence to solution within this trust region. In contrast, the outer
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learning rate σ defines a rescaling of the outer gradient σgO when it is applied to update the behavior
parameters.

Let θ∗(η) be the surrogate objective solution for a given value of η, defining the outer gradient
gO(η) = θ∗(η) − θ. Assume the equivalence of η-variation and σ-variation; in other words the
behavior of outer learning rates can simply be achieved by varying the inner learning rate. Formally,
this implies that there exists l ∈ R+

σgO(η0) = σ(θ∗(η0) − θ) = θ∗(lη0) − θ = gO(lη0),

for any given value of σ ∈ R+.

Unlike clipping ϵ the inner learning rate η does not affect the size of the trust region defined by
the surrogate objective. However, as previously discussed the PPO-clip surrogate objective is non-
convex and has no guarantee of a unique solution. Furthermore, it is possible to irreversibly escape
the unclipped trust region. The convergence of the inner-loop to θ∗(η) is simply defined using a
specified number of inner-loop iterations. It is therefore trivial to see that variation in η may lead to
solutions not on the span of θ∗(η0) − θ, hence do not meet the above condition for the equivalence
of η-variation and σ-variation.

H COMPUTATIONAL COMPLEXITY

All outer-PPO algorithms proposed have negligible increase in computational complexity over PPO,
only requiring a few vector scaling and addition operations. Outer-PPO configurations that maintain
first moment estimates such as momentum-PPO and biased initialization have linear increase in
memory complexity over standard PPO with respect to the parameter count. Since outer-PPO is
a lightweight modification to the outer loop of vanilla PPO, it does not increase complexity with
respect to dataset size (either in terms of total timesteps, or timesteps per iteration).

In table 6 we report the runtime for the four different algorithms evaluated. We use the final 64-seed
evaluation runs to compute the runtime, hence hyperparameters relevant to runtime such as parallel
environments etc. are fixed. We use v4-8 for all of the experiments in this table. These times are for
4-seeds to be evaluated, using our parallel implementation that distributes each seed to a different
TPU device. We observe no significant deviation in runtime between the algorithms, supporting the
claim of no material increase in complexity.

Table 6: Performance metrics (runtime in minutes) for each method across tasks with standard
deviations. Results reported from the 64-seed evaluation.

Task Runtime (minutes)
Baseline Outer-LR Outer-Nesterov Biased Initialization

ant 8.6± 0.5 8.5± 0.5 8.4± 0.5 8.4± 0.5
halfcheetah 21.6± 0.5 21.6± 0.5 21.5± 0.5 21.5± 0.5
hopper 12.6± 0.5 12.7± 0.5 12.6± 0.5 12.7± 0.5
humanoid 16.5± 0.5 11.8± 0.4 11.9± 0.3 11.7± 0.5
humanoidstandup 24.2± 0.4 24.1± 0.4 24.1± 0.4 24.4± 0.5
walker2d 5.9± 0.4 5.8± 0.4 6.1± 0.4 6.0± 0.4

game_2048 5.7± 0.5 5.9± 0.3 5.9± 0.3 6.0± 0.4
maze 22.3± 0.5 22.3± 0.5 22.4± 0.5 22.1± 0.3
rubiks_cube 5.2± 0.4 6.2± 0.5 5.5± 0.5 5.5± 0.5
snake 4.1± 0.4 4.2± 0.4 4.1± 0.4 4.1± 0.4

asterix 4.9± 0.3 4.0± 0.0 4.2± 0.4 4.1± 0.3
breakout 6.7± 0.5 6.7± 0.5 6.9± 0.5 6.8± 0.4
freeway 6.1± 0.3 6.3± 0.5 6.2± 0.4 6.2± 0.4
space_invaders 3.3± 0.5 3.1± 0.3 3.1± 0.4 3.1± 0.4
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I EVALUATION DETAILS

Algorithms are evaluated across M tasks within a defined suite, with N = 64 independent seeded
runs conducted per task. Each run involves training over 1 × 107 timesteps, with performance
measured over 128 episodes at 20 equally spaced checkpoints i. The checkpointed model achieving
the highest mean return Gi

m,n across all intermediate evaluations is selected for final ‘absolute’
evaluation.

In absolute evaluation, the selected model is tested over 1280 episodes to obtain more reliable perfor-
mance estimates. For consistency across tasks, raw scores xm,n are normalized for each task m and
seed n, using the observed minimum and maximum scores found during the entire experimentation
process for each task independently as proxies for the global min and max returns. This normaliza-
tion produces a matrix of normalized scores x1:M,1:N , which are aggregated to derive performance
metrics.

To provide robust statistical estimates, we compute 95% confidence intervals through stratified boot-
strapping over the M×N experiments. This approach accounts for variability across tasks and runs,
ensuring results reflect the algorithm’s performance across the full task suite.

I.1 METRICS

We evaluate algorithm performance using the following metrics:

1. Mean and Median Scores: These traditional metrics summarize overall performance, with
the mean capturing the average performance across runs and the median offering robustness
to extreme values.

2. Interquartile Mean (IQM): IQM calculates the mean of the central 50% of runs, exclud-
ing the upper and lower quartiles. This metric reduces sensitivity to outliers and provides a
statistically efficient estimate of performance.

3. Probability of Improvement: Probability of Improvement measures the likelihood that
one algorithm X outperforms another Y on a random task m. It is defined using the Mann-
Whitney U-statistic (Mann & Whitney, 1947) as:

Pr(X > Y ) =
1

M

M∑
m=1

Pr(Xm > Ym),

where:

Pr(Xm > Ym) =
1

NK

N∑
i=1

K∑
j=1

S(xm,i, ym,j),

and S(x, y) is given by:

S(x, y) =


1 if y < x

0.5 if y = x

0 if y > x

.

4. Performance Profiles: Performance profiles visually compare algorithms by plotting the
fraction of runs exceeding a given performance threshold. These plots highlight stochastic
dominance and performance variability.

5. Sample Efficiency: Sample efficiency is assessed by plotting the interquartile mean score
against the number of environment steps, showing how quickly an algorithm achieves high
performance.

J CO-OPTIMIZATION EXPERIMENTS

In the results of figures 3, 4, 8, and 9 we use base PPO hyperparameters as identified from 500 trials
of baseline tuning using the Tree Parzen estimator Watanabe (2023), and outer-PPO hyperparameters
as identified using grid searching where the base PPO hyperparameters are kept frozen for the grid
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search. In contrast, the baseline was tuned for 600 trials using only the Tree Parzen estimator. Whilst
all methods have a total budget of at most 600 trials, there is a distinction in the tuning process, as
for the final 100 trial the outer-PPO methods are directly searched over a smaller hyperparameter
space (1 or 2 dimensions), whereas the baseline optimization continues over the full set of base
hyperparameters (11 dimensions).

To establish if the performance increases observed can be attributed to the change in tuning proce-
dure we conduct an additional experiment in which the outer-PPO hyperparameters are co-optimized
with the base PPO hyperparameters using the Tree Parzen estimator. Given that the outer-PPO hy-
perparameter are a superset of the baseline PPO hyperparameters, we use the 500-trial baseline
sweep as a starting point for this outer-PPO tuning, where the baseline trials are edited to represent
standard PPO within the outer-PPO hyperparameter space (e.g σ = 1). We then tune the union of
base PPO and outer-PPO hyperparameters for 100 trials using the Tree Parzen estimator, to match
the 600 trials of baseline tuning. When selecting the optimal configuration of outer-PPO hyperpa-
rameters, we take the maximum performing trial from the final 100 trials to ensure the outer-PPO
configurations do not simply represent standard PPO.

Results for outer-LR on Brax are provided in figures 26 - 29. We observe the performance increases
to be comparable to those reported in the previous figures 3, 4, 8 and 9. This demonstrates the tuning
procedure was not responsible for the performance increases observed, and that the outer-LR can be
tuned for superior performance in a given hyperparameter tuning budget under a fair, like-for-like
tuning procedure. Further results for other suites and algorithms to be added in updated versions of
this manuscript.
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Figure 26: Aggregate point estimates for Brax using hyperparameters from Tree Parzen estimator
co-optimization of base PPO and outer learning rate for 100 trials, using the 500-trial baseline sweep
as initialization. Optimal hyperparameters per-environment are used. Normalized to task min/max
across all experiments.
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Figure 27: Probability of improvement for Brax using hyperparameters from Tree Parzen estima-
tor co-optimization of base PPO and outer learning rate for 100 trials, using the 500-trial baseline
sweep as initialization. Optimal hyperparameters per-environment are used. Normalized to task
min/max across all experiments.
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Figure 28: Performance profiles for Brax using hyperparameters from Tree Parzen estimator co-
optimization of base PPO and outer learning rate for 100 trials, using the 500-trial baseline sweep
as initialization. Normalized to task min/max across all experiments.
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Figure 29: Sample efficiency curves for Brax using hyperparameters from Tree Parzen estimator
co-optimization of base PPO and outer learning rate for 100 trials, using the 500-trial baseline sweep
as initialization. Normalized to task min/max across all experiments.
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K PPO HYPERPARAMETER SENSITIVITY

In figures 5 - 7 we plot the mean normalized return for the 4-seed grid searches used to select
hyperparameter for final evaluation. Whilst noisier than the final 64-seed evaluation, these plots
provide insight into the hyperparameter sensitivity of the outer-PPO methods.

In this appendix we conduct a corresponding analysis of standard PPO, by grid searching two hy-
perparameters; learning rate scale and ϵ-scale. learning rate scale scales the actor and critic (inner)
learning rates, and ϵ-scale scales the clipping ϵ. As in the outer-PPO hyperparameter sweeps, we
use the optimal base PPO hyperparameters as identified up to 500 trials of baseline tuning. In figure
30 we plot the results of these grid searches.
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Figure 30: Learning rate scale and epsilon scale sensitivity plots. Mean normalized return across
the Brax (left), Jumanji (center), MinAtar (right) tasks as a function of learning rate scale and ϵ-
scale. Mean of 4 seeds plotted. Normalized to task min/max across all experiments.
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