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ABSTRACT

In this paper, we investigate the phenomenon of grokking, wherein models ex-
hibit delayed generalization following overfitting on training data. Our focus is
on studying grokking in data regimes where the amount of training data is be-
low the critical threshold necessary for grokking to occur naturally. We examine
several scenarios that provide insight on the grokking phenomenon and suggest
avenues for practical applications. We first consider training with a strong regu-
larizer, specifically Knowledge Distillation(KD) from a model that has grokked
on a distribution (p1) to induce grokking on a different distribution (p2). We find
that this can lead to much faster grokking and reduced critical data size. Further-
more, we show that reducing the weight norm, a key focus in previous grokking
studies, is not a necessary condition for grokking. We next, explore the scenario
where we aim to train a larger size model on a joint distribution (p1, p2). We
demonstrate that achieving generalization under the critical data size is not possi-
ble through standard supervised training. However, we show that we can achieve
generalisation if we first perform grokking on two models with the individual dis-
tributions and distill this result into the larger model. Finally we consider a con-
tinual pretraining setup, where a grokked model transitions from distribution p1 to
p2, we find that KD from the grokked model leads to faster generalization, even
when the available data constitutes as little as 10% of the dataset. This is note-
worthy because generalization might otherwise be unattainable in such low-data
conditions. Moreover, distillation mitigates catastrophic forgetting of previously
learned knowledge. Our analysis offers new insights on the grokking phenomenon
when knowledge transfer is feasible and illustrates the substantial role KD can
play in accelerating generalization especially under low-data regime.

1 INTRODUCTION

In the rapidly evolving landscape of machine learning, the ability of models to adapt and generalize
across varying data distributions (Singh et al., 2024b;a; Van de Ven & Tolias, 2019; Fang et al., 2020;
Liang et al., 2024) remains a paramount challenge. Traditional training paradigms often struggle in
dynamic environments where data distributions shift or where data is scarce, leading to models that
either fail to generalize or require extensive computational resources to retrain. Recently, the phe-
nomenon of grokking (Power et al., 2022) has demonstrated new perspectives on the generalization
behaviour and how a model can transition to a perfect generalization after long episode of overfit-
ting and pure memorization (Arpit et al., 2017). Many recent studies attempted at providing a better
understanding of grokking, attributing it to weight decay that steers the optimization towards gener-
alization zone even after reaching a zero loss on the training data (Ishida et al., 2020). Grokking is
predominantly observed in low-data regimes; however, it has been shown that beyond a critical data
threshold, grokking cannot occur.

To the best of our knowledge, grokking has only been studied in the context of a single training
distribution, primarily focusing on weight decay as its underlying cause. In this work, we explore
grokking in the data regimes lower than critical data, and systematically analyze the influence of
grokked models on related varying distributions in conditions that trigger grokking.

Specifically we address the following questions
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(a) Grokking a model on p2 using KD,
which otherwise fails to generalize.

(b) Distilling from multiple grokked models fT , fS
yields grokking on a larger model fM below critical
data.

Figure 1: Fig 1a demonstrates that fS successfully groks below the critical data size when trained
using KD from an already grokked model fT which otherwise fails to generalize on its own. In
Figure 1b, a larger model fM , tasked with jointly learning p1 and p2, fails to generalize when either
dataset falls below the critical size. However, distilling knowledge from the smaller grokked models
fS and fT enables fM to grok, allowing it to generalize effectively even when data is below the
critical threshold.

Q-1: Can we leverage an already grokked model in learning another model especially on
a varying distribution?

Q-2: Is it possible to observe grokking when the available data is less than the critical
amount?

Q-3: Are weight decay and decreasing weight norms the sole drivers of the grokking phe-
nomenon?

To address the first question, we conducted extensive experiments by initially training a 1 layer
Transformer (Vaswani et al., 2017) model to grok on a distribution p1. This model serves as the
Teacher (fT ), which is then used to train a Student model (fS) on a different distribution p2. We
observed that not only does the Student model fS exhibit grokking on the new distribution p2, but
with distillation, the number of steps required to achieve grokking are also reduced. This approach
is especially relevant in data crunch situations where the availability of data for p2 is limited. By
utilizing a pre-grokked model on p1 we aim to facilitate rapid adaptation to p2, thereby mitigating the
challenges posed by data scarcity. A natural question arises, why differ distributions? The primary
reason is to give a flavour of practical utility, where a perfectly generalizable model can be used to
assist other models in transferring knowledge under distribution shift. Our investigation is motivated
by the pressing need for models that can seamlessly transition between different data distributions
without incurring prohibitive computational costs. This is can be highly useful in various domains
like continual learning, multi-task learning, domain generalization, etc.

To address the second question, our investigation reveals that Knowledge Distillation(KD) offers
multiple advantages, one of which is reducing the number of iterations required for grokking. Uti-
lizing KD, we empirically demonstrate that grokking can occur even when the amount of data is less
than the critical data size. The critical data size as defined in (Liu et al., 2022b; Varma et al., 2023)
is the minimum amount of data below which generalization is impossible.
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Previous studies have established that grokking occurs within specific data regimes. For in-
stance, Power et al. (2022) mentions that for large dataset sizes, training and validation losses track
each other closely. Similarly, Nanda et al. (2023) observes that with sufficient data, the gap be-
tween training and test loss vanishes. Varma et al. (2023) further investigate the behavior of learning
curves around the critical dataset size, identifying various manifestations of grokking. In contrast,
our experiments demonstrate that grokking can be observed even below the critical data regime,
highlighting the efficacy of KD in facilitating generalization under limited data conditions.

Finally, in addressing the third question, we empirically demonstrate that generalizing solutions
do not always lie on smaller weight norm spheres in parameter space, contrary to the arguments
presented in (Liu et al., 2022b; Varma et al., 2023).

Nanda et al. (2023) propose that training can be divided into three phases: memorization of the train-
ing data, circuit formation (where the network learns a mechanism that generalizes), and cleanup
(where weight decay removes the memorization components). They further suggest that the sudden
transition to perfect test accuracy in grokking occurs during the cleanup phase, after the general-
izing mechanism has been learned. Through our rigorous experiments, we refute these ideas. We
consistently demonstrate examples of grokking occurring with zero weight decay and an increase
in parameter weight norm across different training settings, thereby ruling out these factors as the
primary reasons or explanations for grokking.

To substantiate our claims, we conduct a series of experiments across various algorithmic tasks,
including addition and subtraction. These tasks provide a controlled environment to rigorously
evaluate the efficacy of our proposed methodologies. The results from these experiments underscore
the potential of grokking-based approaches in enabling efficient model training under constraints of
dynamic data distributions and limited data availability. Our findings contribute a comprehensive
framework for developing more robust and adaptable machine learning systems, paving the way for
advancements in fields where data variability and scarcity are prevalent.

2 RELATED WORK

Grokking was first observed for algorithmic datasets by (Power et al., 2022). Since then consider-
able efforts have been made to understand grokking.

Theoretical explanation of Grokking on simpler networks: Rubin et al. (2024) provides analyt-
ical predictions from a first-order phase transition perspective on feature learning and demonstrate
a mapping between Grokking and the theory of phase transitions. Similarly Levi et al. (2024) pro-
vided explicit analytical solutions for the training loss, generalization loss and accuracy dynamics
in a linear network. Analysing polynomial regression using a two-layer neural network Kumar et al.
(2024) hypothesized that grokking may arise from a transition from lazy to rich learning regime. Lyu
et al. (2024) suggest that the sharp transition in test accuracy may stem from a dichotomy of implicit
biases between the early and late training phases.

Empirical demonstrations of Grokking: Humayun et al. (2024) explains that grokking mate-
rializes in a wide range of practical settings, such as training of a convolutional neural network
(CNN) on CIFAR10 (Krizhevsky, 2012). They introduce the new concept of delayed robustness,
whereby a deep neural network groks adversarial examples and becomes robust, long after interpo-
lation and/or generalization. Notsawo Jr et al. (2023) proposed to predict grokking using the spectral
signature from the Fourier transform to detect specific oscillations in the early training phase. Liu
et al. (2022a) attributes grokking to the slow formation of good representations owing to the presence
of four learning phases: comprehension, grokking, memorization, and confusion. They find repre-
sentation learning to occur only in a “Goldilocks zone”(including comprehension and grokking)
between memorization and confusion. Nanda et al. (2023) demonstrated that grokking, rather than
being a sudden shift, arises from the gradual amplification of structured mechanisms encoded in
the weights, followed by the later removal of memorizing components. This process is followed by
the systematic elimination of memorization components. Barak et al. (2022) suggests that general-
ization is due not to random search, but to hidden progress of SGD to gradually amplify a Fourier
gap. Thilak et al. (2022) links grokking to the ”Slingshot mechanism” marked by cyclic transitions
between stable and unstable training
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Relationship of Grokking and Dataset Size: Varma et al. (2023) employed circuit efficiency anal-
ysis to reveal that generalization is slower to learn but more efficient. They also introduced a concept
of ’critical data size’ below which it is extremely easy to memorise the training dataset, without gen-
eralisation. Training with these data points will result in suboptimal test loss (i.e., semi-grokking).
And fine-tuning grokked models with smaller data sizes will lead to poor test performance (i.e.,
ungrokking). Doshi et al. (2023) indicated that regularization methods could correct errors in the
training samples. Liu et al. (2022b) analyzed the loss landscapes of neural networks in explaining
many aspects of grokking: data size dependence, weight decay dependence, emergence of represen-
tations

Knowledge Distillation(KD): Knowledge distillation Hinton (2015) is a widely used technique for
model compression Sun et al. (2019); Sarfraz et al. (2021); Mishra & Marr (2017), building more
efficient neural network families (Huang et al., 2017; Singh et al., 2024a;b), quantizing existing
networks to use fewer bits for weights and activations Wu et al. (2016) and distilling knowledge
from larger networks into smaller ones (Tung & Mori, 2019). The method involves training a smaller
student model to replicate the behavior of a larger teacher model. This approach has been applied
successfully in various domains, including natural language processing and computer vision. Our
work builds on this foundation by focusing on task-level knowledge transfer in algorithmic tasks
with varying data distributions.

3 EXPERIMENTAL SETUP

We trained a decoder only transformer to perform experiments on algorithmic tasks of the form
((a@b)%P ), where @ represents operator for any of the binary operations. In this work, we focus
on addition and subtraction tasks. Our choice of algorithmic data is based on previous studies (Nanda
et al., 2023; Varma et al., 2023; Liu et al., 2022b; Power et al., 2022; Liu et al., 2022a) have consis-
tently demonstrated the phenomenon of grokking on these tasks. By utilizing these well-established
benchmarks, we are able to derive significant insights into the underlying mechanisms of grokking,
which can inform our understanding of more complex and practical applications.

The input to the model is of the form [a, b,@, P ], where we read the output of the task c from the
last token P . In our primary experiments, each binary arithmetic modulo P task is referred as p1 for
a specific prime number P . A distribution shift is introduced by changing the P , while keeping the
task operation same. For example, consider algorithmic addition modulo P task: ((a+ b)%P ). For
a given prime P = P1, the distribution is referred to as p1, whereas for some other P = P2 ̸= P1,
the distribution is referred to as p2. Our results are consistent regardless of the choice of P1 and P2.

For an Input Space: X ⊆ Rd, Output Space: Y = {1, 2, . . . , P} we have a general definition for
Data Distribution as D over X × Y . The loss function without KD is the Cross Entropy given as:

LCE(θ) = E(x,y)∼D [− log fy
S(x; θ)] (1)

where fS(·; θ) :, is the Student Network: parameterized by θ.

For knowledge distillation, we use Kullback-Leibler (KL) Divergence Loss:

LKL(θ) = Ex∼DX
[DKL (qT (x)∥qS(x; θ))] (2)

where DKL(p∥q) =
∑K

i=1 pi log
(

pi

qi

)
. This takes softened outputs as qT (x) = softmax

(
fT (x)

t

)
,

and qS(x; θ) = softmax
(

fS(x;θ)
t

)
where fT :, represents the Teacher model, and t > 0 is the

Temperature used to soften probabilities.

The total distillation loss is therefore realised as:

L(θ) = (1− α)LCE(θ) + αLKL(θ) (3)

where α controls the proportion of each loss component.

We start training by utilising only 30% of the training set, to first observe grokking. We then consis-
tently lower the data fraction to 20% and 10%, which are below critical data regime for algorithmic
addition and subtraction task as given by (Varma et al., 2023). For demonstrating the efficacy of
our distillation method and to negate the dependency of weight norm and weight decay theories, we
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(a) Training on p1 without KD (b) Training on p2 with KD from p1

Figure 2: Fig 2a shows the typical grokking phenomena on distribution p1 on 30% of training
data, without KD. We observe that weight decay is helpful in showing grokking but its not the only
underlying cause. When trained with Adam, grokking is not observed within 30000 iterations. This
concurs with (Power et al., 2022). However Fig 2b demonstrates a Student model trained on a
different distribution p2 with same fraction, but now with KD from the Teacher model trained on
p1(Fig 2a). Distillation takes place on probability outputs from the operator token, and not the P
token, since we aim to learn generic operator level representations, rather than overall task level
representations, which would depend on the choice of P . This shows that irrespective of the choice
of optimizer, KD is sufficient to grokk a model, which is not dependent on weight norm or weight
decay.

compare both Adam without weight decay & AdamW(with weight decay) optimizer (Loshchilov,
2017) with a learning rate γ = 1e− 3. For AdamW we set the weight decay parameter λ = 1. We
perform 30,000 epochs of training with a batch size of 2048 on NVIDIA V100 GPU.

4 IS GROKKING TRULY DEPENDENT ON THE PARAMETER WEIGHT NORM OR
WEIGHT DECAY?

We first train a 1 layer Transformer model(fT ) on 30% of training data p1. As seen in Figure 2a,
grokking is observed within 30000 iterations. We further observe that weight decay helps in reducing
the number of iterations as shown in (Power et al., 2022). But we observe that weight decay is not the
only cause of grokking. Teacher model fT , which has grokked on distribution p1, can be leveraged
to train a student model fS from scratch on a different distribution p2, using the same fraction
(30%) of p2. As shown in Fig 2b, distillation from fT not only enables fS to grok on p2, but also
significantly accelerates the grokking process, regardless of the optimizer used. This demonstrates
a practical utility of grokked models, illustrating their effectiveness in training models on varying
distributions through KD. It is important to note that distillation occurs on the probability outputs
from the operator token rather than the P token. This approach aims to learn generic operator-level
representations instead of task-specific representations, which would depend on the choice of P .

We observe that utilizing KD significantly reduces the number of steps required to achieve grokking,
irrespective of the optimizer employed. It has been shown to provide multiple benefits in improv-
ing training dynamics. Menon et al. (2021) provided a statistical perspective on distillation, that
providing the true class-probabilities from the teacher model can lower the variance of the student
objective, and thus improve performance. Further Phuong & Lampert (2019) provides a general-
ization bound that establishes fast convergence of the expected risk of a distillation-trained linear
classifier. It can be inferred from these studies (Tang et al., 2020; Cho & Hariharan, 2019; Yuan
et al., 2020) that KD brings the following advantages towards training dynamics,

• Regularization Effect through Label Smoothing: KD smooths the labels, which acts as
a regularizer and prevents overfitting.

• Domain Knowledge Injection: The teacher model imparts class relationships that shape
the geometry of the student’s logit layer.
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Figure 3: Evolution of the L2 weight norm for Student model fS trained with Adam(without weight
decay) and AdamW(with weight decay) on different fractions of p2 distribution. fS is trained via KD
from a grokked model fT . Notably, training without weight decay the L2-weight norm increases
continuously, while giving generalised solutions. This rules out the necessity of decreased weight
norm condition for exhibiting grokking given by (Liu et al., 2022b; Varma et al., 2023; Nanda et al.,
2023)

• Instance-Specific Knowledge: The teacher adjusts the student model’s per-instance gra-
dients based on the difficulty of each sample, facilitating more effective learning.

Additionally, as illustrated in Figure 3, the weight norm continuously increases for both addition
and subtraction tasks, yet grokking still occurs. These findings challenge the theories proposed
by (Nanda et al., 2023) who suggest that the abrupt transition to perfect test accuracy during grokking
occurs in the cleanup phase (where weight decay removes memorization components), following the
establishment of the generalizing mechanism. Our empirical evidence contradicts these claims by
demonstrating grokking even without weight decay and with increasing weight norms.

Similarly Liu et al. (2022b) induce grokking by increasing the initial weight norm and conclude
that generalizing solutions lie on smaller norm spheres in parameter space. While we acknowledge
that an initially higher weight norm can facilitate grokking, our results indicate that generalizing
solutions do not necessarily lie on smaller norm spheres. Our modular arithmetic tasks serve as
counterexamples, where the final generalizing solutions exhibit larger parameter weight norms than
their initial states, and grokking occurs without the application of weight decay.

Furthermore Varma et al. (2023) claim that the transition from memorizing to generalizing circuits
occurs because the generalizing circuit is more “efficient” than the memorizing circuit, in the sense
that it can produce equivalent loss with a lower parameter norm. In contrast, our studies show that
modular arithmetic tasks can achieve generalizing solutions with higher parameter norms without
any weight decay, disproving the necessity of norm reduction for grokking.

Therefore we assert that neither parameter weight decay nor decreasing weight norm during op-
timization is inherently fundamental to observing grokking, as highlighted by the above previous
studies on modular arithmetic tasks.

5 IS IT POSSIBLE TO OBSERVE GROKKING BELOW CRITICAL DATA REGIME?

Building upon the observations from the previous section, where we found that KD significantly
accelerates grokking at a data fraction of 30%, a pertinent question arises: Can KD facilitate gen-
eralization below this critical data threshold? To investigate this, we replicate the experiments
described in Section 4, this time employing a reduced data fraction of 20%.

As illustrated in Figure 4, our results reveal that without KD, no generalization is achieved within
30,000 iterations, regardless of weight decay. This lack of generalization persists even when weight
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(a) Without KD on 20% of p2 (b) With KD on 20% of p2

Figure 4: Fig 4a demonstrates that its impossible to observe grokking when the data fraction goes
below a certain critical threshold(20%.) In such a case, the model does not learn anything regardless
of the optimizer. In Fig 4b, it can be clearly seen that with KD, grokking is observed for all tasks,
even without weight decay. However we notice that weight decay helps in achieving a better gener-
alisation.

decay is applied, highlighting the limitations of traditional optimization techniques in low-data
regimes. In stark contrast, the application of KD enables grokking at the lower data fraction of
20%. Remarkably, even in these scenarios, the weight norm continues to increase, thereby support-
ing our earlier assertion that neither weight decay nor weight norm reduction is essential for the
emergence of grokking.

These findings highlight the critical role of a grokked Teacher model, especially in data-scarce en-
vironments where the available training data falls below the threshold necessary for grokking or
any generalisation. By leveraging a grokked Teacher model through KD, we not only accelerate
the grokking process but also extend its applicability to situations with limited data. This demon-
strates the practical utility of grokked models in facilitating efficient training across varying data
distributions, thereby offering a robust solution for scenarios where data is constrained.

Extending the previously discussed concepts, we conducted an additional experiment by checkpoint-
ing the grokked models for different fractions (0.3, 0.2, 0.1) of p2 trained via distillation as discussed
in previous Section 4 and Section 5. Specifically, we refer the model trained on distribution p1 using
30% of the training data as fp1

, and the grokked models trained on different fractions of distribu-
tion p2 with KD as fp2 . Our objective now becomes to train a larger transformer model capable of
generalizing across both distributions p1 and p2. To achieve this, we compared two distinct training
scenarios, as illustrated in Figure 5.

Joint Training on Limited Data: The larger model was trained jointly on 30% of p1 and different
fractions of p2. In this scenario, we observed that the larger model failed to generalize when the
data for p2 falls below the critical size, indicating that the scarcity on any distributions impeded its
ability to learn a robust and generalizable representation.

Training via KD Only: We conducted two sets of experiments. In the first, as shown in Figure 5, a
larger model fM was trained solely through KD using the pre-trained models fp1

and fp2
, without

applying any cross-entropy minimization. Distillation occurred over the probability logits from the
final P token, as the goal was to generalize across both tasks simultaneously. In a similar setup, we
performed another experiment using two grokked models, fp1

and fp2
, each trained on 30% of their

respective data. fM was again trained exclusively via distillation from these grokked models, but
with varying fractions of both p1 and p2, as illustrated in Figure 6.

Remarkably, fM exhibited grokking behavior only when trained via KD, even when either p1 or p2
was below the critical data size, successfully generalizing despite the limited data. This demonstrates
that KD over the joint distribution (p1, p2) provides a more informative signal than training with
ground-truth labels. KD-enabled training allows grokking to emerge even when the data is below
the critical size. Notably, this effect holds true even when the grokked teacher model fp2

was trained
on a similarly small fraction of p2 data, but with distillation from fp1 .
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(a) without KD (b) With only KD, without entropy minimization

Figure 5: Performance comparison of training strategies for a larger transformer model fM on
distributions of p1(30%) and different fractions (0.3, 0.2, 0.1) of p2. Figure 5a shows the Joint
Training regime. it can be observed that the model fails to generalise via cross entropy minimization
when the training data from any of distributions falls below critical threshold. On the contrary,
training a larger model alone with distillation with just 10% induces grokking as shown in Figure 5b.
Although we observe that when data is so scarce(10%), the generalization accuracy falls short of
unity, because of the imperfect fp2

, trained in data crunch situation with distillation. In a it looks
like an immediate generalization for 0.2 and 0.3, with no grokking.

Figure 6: Training of a larger model fM via distilling from grokked models fp1
and fp2

.These small
models are grokked on 30% of training data each. Training of larger model fM is trained with
different fractions(0.3, 0.2, 0.1) of p1 and p2, with only distillation from grokked models fp1

and
fp2 .

In a similar setup based on upon recent advancements in continual pretraining methodologies (Ke
et al., 2023), we conducted a comprehensive experiment to evaluate the efficacy of continual pre-
training transitions from a previously grokked model generalized on p1 to p2. Specifically, we
investigated the role of KD in mitigating catastrophic forgetting during this transition. Our experi-
mental setup involved initializing the pretraining process with a model that had achieved generalized
performance on p1 through grokking. We then proceeded to pretrain the model on p2. under two
distinct conditions: with and without the application of KD.

The results demonstrated that in the absence of KD, the model experienced almost instantaneous
and severe forgetting of the previously acquired knowledge on p1. Despite this rapid forgetting, the
model exhibited swift generalization capabilities to the new distribution p2. In stark contrast, when
KD was employed during continual pretraining, the model retained nearly perfect test accuracy on
p1 while simultaneously achieving rapid generalization on p2. Importantly, the incorporation of
KD effectively prevented the occurrence of grokking, as delayed generalization was not observed
in either scenario. These findings highlight the critical role of KD in preserving previously learned
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(a) Previous Task Accuracy for different fractions of
data, with and without KD.

(b) Current Task Accuracy for different fractions of
data, with and without KD.

Figure 7: This demonstrates continual pretraining where the grokked model on p1 is continually
pretrained on p2. It can be clearly inferred that without KD, the performance on the previous task
deteriorates rapidly, while generalising rapidly on the current p2. Fig 7b shows that distillation
preserves current task accuracy as well as mitigates catastrophic forgetting. Its interesting to note
that training on current task from a grokked model, achieves quick generalisation without grokking.
However in Fig 7b for data regime less than critical size, we observe a sudden phase transition from
an already high accuracy of around 92% to unity at around 28K steps.

information during continual pretraining. By effectively balancing the retention of legacy knowledge
with the acquisition of new skills, KD serves as a robust mechanism to enhance model stability and
performance in dynamic learning environments.

These results highlight that KD can facilitate generalization even in scenarios with severely limited
data from multiple distributions. This is particularly pertinent in practical situations where acquiring
sufficient data is challenging due to constraints such as security protocols, privacy regulations, and
other restrictive factors. In such contexts, leveraging KD from pre-trained grokked models emerges
as an elegant and effective solution to overcome the limitations imposed by scarce data availability.

Furthermore in all the above experiments, the consistent increase in weight norm despite successful
grokking challenges existing theories that posit weight norm reduction as a fundamental driver of
grokking. Our experiments provide compelling evidence that alternative mechanisms, such as the
transfer of learned representations via KD, play a more pivotal role in enabling generalization under
reduced data conditions. This insight opens new avenues for research into the underlying factors
that contribute to grokking, moving beyond traditional optimization paradigms.

6 CONCLUSIONS AND FUTURE WORK

This study advances our understanding of the grokking phenomenon by exploring its behavior below
critical data regime. Unlike prior research that primarily focused on a single training distribution and
the influence of weight norm and weight decay, our work broadens the scope by systematically inves-
tigating how grokking can be induced with KD without relying only on weight decay and decreasing
weight norms. Our findings challenge the prevailing notion that weight decay and decreasing weight
norms are the sole drivers of grokking. Through rigorous experimentation, we demonstrated that
grokking can occur even in the absence of weight decay and with increasing weight norms, thereby
refuting earlier hypotheses that linked grokking exclusively to these factors. Additionally, we es-
tablished that KD not only accelerates the grokking process but also enables generalization below
the previously identified critical data threshold even in varying distributions which is significant for
scenarios characterized by data scarcity, where traditional training methods falter.

Future work may extend these insights to more complex and diverse real-world tasks, further elu-
cidate the underlying mechanisms of grokking, and explore additional strategies to harness pre-
grokked models for various transfer learning applications. By continuing to unravel the intricacies
of grokking, we can pave the way for the development of machine learning models that not only
generalize effectively but also adapt swiftly and efficiently to the ever-changing landscapes of real-
world data.
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