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Abstract

Can we efficiently choose the best Anomaly De-
tection (AD) algorithm for a data-stream without
requiring anomaly labels? Streaming anomaly
detection is hard. SOTA AD algorithms are
sensitive to their hyperparameters and no sin-
gle method works well on all datasets. The
best algorithm/hyper-parameter combination for a
given data-stream can change over time with data
drift. ‘What is an anomaly?’ is often application,
context and dataset dependent. We propose SEAD
(Streaming Ensemble of Anomaly Detectors), the
first model selection algorithm for streaming, un-
supervised AD. All prior AD model selection al-
gorithms are either supervised, or only work in
the offline setting when all data from the test set is
available upfront. We show that SEAD is (i) unsu-
pervised, i.e., requires no true anomaly labels, (ii)
efficiently implementable in a streaming setting,
(iii) agnostic to the choice of the base algorithms
among which it chooses from, and (iv) adaptive to
non-stationarity in the data-stream. Experiments
on 14 non-trivial public datasets and an internal
dataset corroborate our claims.

1. Introduction
Detecting anomalies on noisy, high-dimensional and non-
stationary data-streams is becoming an important sub-
routine in several applications such as monitoring (AWS,
2025; Hagemann & Katsarou, 2020), fault-detection (Singh
et al., 2024; Islam et al., 2021), intrusion detection (Lazare-
vic et al., 2003) and more. See the surveys of (Chandola
et al., 2009; Iglesias Vázquez et al., 2023). Given this ubiq-
uity, several anomaly detection (AD) settings and algorithms
have been designed in the literature with various modeling
assumptions (Ruff et al., 2021).
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We study the streaming unsupervised setting, where an AD
algorithm makes a decision as each data point streams in.
Further, the algorithm is never given any feedback as to
whether any of the inputs seen thus far were truly anoma-
lous. This setting is increasingly common in modern cloud-
computing and software monitoring systems where the vol-
ume and velocity of data is high and labeling any given
event as anomalous or not is expensive in terms of human
time and effort (Xu et al., 2018a;b; Sankararaman et al.,
2022). Current unsupervised AD algorithms are effective at
identifying anomalous events when the data satisfies their
modeling assumptions such as distance preservation in low
dimensional random projections (Manzoor et al., 2018), out-
liers increasing model complexity (Guha et al., 2016) or
anomalies isolated from the center of benign data points
(Ding & Fei, 2013).

However, no single model performs well on all datasets
(Schmidl et al., 2022; Paparrizos et al., 2022; Han et al.,
2022), and existing methods are sensitive to their hyperpa-
rameters (Zhao et al., 2021; Schmidl et al., 2022; Paparrizos
et al., 2022; Han et al., 2022). For example, on the Pendigits
dataset (Keller et al., 2012; Sathe & Aggarwal, 2016a), the
IForestASD algorithm (Ding & Fei, 2013) obtains superior
performance when compared to a simple rule based Statisti-
cal Process Control (SPC) (Shewhart, 1931) model, but the
ordering is reversed on an internal Telemetry dataset (Table
7 in Sec 4). Similarly, on the Letter Recognition dataset
(Slate, 1991; Micenková et al., 2014), changing the sliding
window hyperparameter from 64 to 128 for the RRCF al-
gorithm (Guha et al., 2016) increases the average precision
score (APS) by ∼ 42%, but setting it to the default value of
256 brings down the APS by ∼ 13%. (cf. Table 7)

Table 1. Accuracy numbers on the 3 datasets shown in Figure 1.
Each dataset has a perfect detector, but none of the 3 perfect
detectors perform well on all 3 datasets. SEAD performs model
selection online to yield perfect accuracy on all 3 datasets without
access to any labels.

DETECTOR1 DETECTOR2 DETECTOR3 SEAD

RDS CPU UTILIZATION CC0C53 100% 0% 0% 100%
ELB REQUEST COUNT 8C0756 0% 100% 0% 100%
EC2 NETWORK IN 257A54 0% 0% 100% 100%
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Figure 1. Three AD datasets from the Numenta Anomaly Detec-
tion Benchmark (Ahmad et al., 2017) (NAB), each of which has
a perfect but different detector shown by the orange horizontal
dotted line. However, each detector performs poorly on the other 2
datasets. SEAD is the perfect detector for all 3 datasets, as shown
in Table 1

SEAD provides an algorithmic solution to a key challenge
encountered in practice – the choice of which model to use
when, especially when labels are rare or unavailable, and
decision needs to be made in a streaming fashion. The vast
literature on AD suggests that there are good models for
most situations one encounters in practice. However, the
assumption that one knows the distribution of data in ad-
vance is becoming an unrealistic one, especially in modern
cloud-computing systems that serve a variety of workloads
(Zhang et al., 2021; Singh et al., 2024).

1.1. Summarizing our contributions

We propose SEAD , the first online model selection algo-
rithm for AD, that is both completely unsupervised, and
works online as the data streams in. In particular, SEAD
is (i) unsupervised and does not require anomaly labels,
(ii) efficiently implementable online, i.e., the computational
complexity to process each data-point on the stream does
not depend on the stream length, (iii) agnostic to the choices
of the base algorithms among which it chooses from, and
(iv) adaptive to non-stationarity in the data-stream, i.e., the
optimal choice of the algorithm changes as the data-stream’s
distribution changes.

1.2. Design principle behind SEAD

The key insight that SEAD leverages is that anomalies by
definition are ‘rare’, which SEAD uses to work in a fully
unsupervised fashion. Anomaly detection algorithms output
an anomaly score for each input, with the convention that
larger the score, more likely the input is anomalous (Schmidl
et al., 2022). In SEAD , we exploit the observation that a
candidate AD algorithm is ‘good’ on a data-stream if it has
consistently output small anomaly scores in the past, and
similarly is ‘poor’ if it has output larger scores in the past.
This observation builds on the assumption that anomalies on
any data-stream, by definition are rare. SEAD maintains a
weight for each candidate AD algorithm with algorithms that
have consistently output lower scores having higher weight
and vice-versa. When a new data point comes in, SEAD
outputs as its anomaly score the weighted combination of
anomaly scores from the individual models.

The main technical contribution in SEAD is a method-
ology to set the weights for the individual models. SEAD
chooses the weight using the classical multiplicative weights
update (MWU) (Cesa-Bianchi et al., 1997) to predict with
expert advice. We treat each candidate AD algorithm as
an expert and treat both the advice and the loss incurred
by an expert as its output anomaly score. This formulation
ensures that a candidate AD algorithm that consistently out-
puts smaller anomaly scores, will have a higher weight. The
complete pseudo code is in Algorithm 1.

We motivate our intuition of down weighing detectors with
high scores in Figure 1, using results from 3 simple univari-
ate datasets in the Numenta Anomaly Detection Benchmark
(NAB) (Ahmad et al., 2017). Most NAB datasets are eas-
ily solvable by rules (Wu & Keogh, 2020), including the
three datasets that we consider. Each dataset has a perfect
anomaly detector of the form y > a with a different value
of the parameter a for each dataset, as shown in Table 1
and Figure 1. We show that SEAD is able to select the best
detector in each case. Later, we compare with state-of-the-
art streaming AD methods on more complex datasets, and
show that SEAD obtains the best performance using both
quantitative metrics and qualitative examples. SEAD is only
as good as its individual components, so it needs at least one
model to perform well at detecting anomalies on the given
dataset i.e. the underlying data must satisfy assumptions of
at least one base model.

An advantage of SEAD is its computational efficiency on
a data-stream. Existing outlier ensembles cannot be used in
the streaming setting because, they use computationally ex-
pensive O(n2) operations like ranking the anomaly scores
across time (Rayana & Akoglu, 2014; 2016) or using all
data points to compute agreements between base detectors
(Rayana et al., 2016), where n is the number of data points
seen so far. Similarly, meta learning based model selection
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methods (Ding et al., 2024; Zhao et al., 2021; 2022) also use
expensive O(n2) operations, looking at each historical data
point. On the Ozone dataset (Zhang et al., 2008), MetaOD
(Zhao et al., 2021) takes roughly 2 days to make predictions
on a data stream of about 2,534 data points, often taking
> 1 minute for a single data point. Ozone sensors should
have low detection times of < 1 min because ozone expo-
sure can have serious health consequences (Barreto et al.,
2022). Our method SEAD takes only ∼ 1746 seconds on
the Ozone dataset, taking less than half a minute on average
and processing each data point in O(1) time. SEAD ++
further improves runtime, taking only ∼ 945 seconds with
comparable detection performance.

Organization Section 2 describes the problem statement
and the formal description of SEAD is in Section 3. Experi-
mental results are in Section 4 followed by related work in
Section 5 and conclusions in Section 6.

2. Problem Setting
Online data-stream. We consider the problem of online
anomaly detection, where at each time t = 1, 2, · · · , a data-
point Xt ∈ X is presented to an algorithm which returns
a non-negative score St ∈ R+ with the interpretation that
larger the score, more anomalous the input. Throughout,
we will assume that each data-point is an element of the set
X , which could be numerical, or a mix of numerical and
categorical or even a mix of numerical and free-form text.
The exact description of X is not crucial for our exposition.
Additionally, associated with each data point Xt, is a binary
label Yt ∈ {0, 1} with the interpretation that Yt = 1 implies
that Xt is anomalous. The AD algorithm does not have
access to this label, nor can it get access to this over time.

Base AD algorithms. We assume that we have access to N

base algorithms, denoted by A
(1)
t (·), · · · , A(N)

t (·), where
S
(i)
t := A

(i)
t (Xt) is the anomaly score output by algorithm

i on input Xt. Each base algorithm is also indexed by time
t, allowing it to change over time, e.g. through incremental
or online learning.

Online ensembling. The goal of our system is to predict
an anomaly score St ∈ R+ at each time t for the input
Xt, based only on the historical information seen so far.
At each time t, the input Xt is scored by each of the N

base algorithms to give the N individual scores {S(i)
t }Ni=1.

The ensembling algorithm then outputs a single anomaly
score St ∈ R+ by taking these N scores as input. The
ensembling algorithm can be ‘stateful’, i.e., can depend on
the past and present inputs (Xs)s≤t, past and present base
anomaly scores {S(i)

s }i∈[N ],s≤t and past outputs {Ss}s<t.
The algorithm however must be (i) online, i.e., produce
the output St before observing the input Xt+1, and (ii) be
unsupervised, i.e., Yt is never revealed.

Performance Metric. The metric of interest for the algo-
rithm A is the Averaged-Precision score (APS), which is
informative of AD performance given the imbalanced nature
of anomalies being only a small fraction of all datapoints
(Ruff et al., 2021). We use this metric as it has been well
documented that for most applications of AD, the APS is a
meaningful metric of performance in practice compared to
other binary classification metrics such as AUROC. How-
ever, note we cannot directly optimize the APS since the
true anomaly labels are never revealed.

3. The SEAD Algorithm
The challenge in designing an ensembling algorithm is the
fact that the true anomaly labels Y1, · · · , YT are never re-
vealed to the algorithm. This might lead one to conclude
that the problem of online unsupervised aggregation can-
not be solved. We show that if the data-stream is such that
anomalies are very rare for at least one of the base detectors,
then SEAD given in Algorithm 1 leverages this property to
get an unsupervised anomaly aggregation algorithm with
good performance.

Recall that the goal of an anomaly detection algorithm is to
output smaller scores for non-anomalous inputs and larger
scores for anomalous inputs. On a data-stream that has a
very small number of anomalies, a good anomaly detection
algorithm is one that usually outputs smaller scores. We
leverage this observation and use the unsupervised loss of
directly minimizing the anomaly score as a proxy for the
supervised loss of APS in SEAD .

3.1. Unsupervised ensembling

Our proposed methodology is to output as anomaly score
at time t, St :=

∑N
i=1 w

(i)
t S

(i)
t , where

∑N
i=1 w

(i)
t = 1 and

w
(i)
t ≥ 0 for all i. Ideally, we want the weight w(i)

t to be
large if algorithm i is ‘good’ and small when algorithm i is
‘poor’. Since in our setting, the true binary labels are never
revealed, we rely on the following unsupervised proxy loss
to set the weights. An algorithm that has consistently output
smaller anomaly scores in the past is likely to be superior
and thus should be assigned a higher weight.

3.2. Normalizing the anomaly scores

A roadblock in this proxy is that the anomaly scores across
different base algorithms may not be comparable. For exam-
ple consider two different algorithms – the first one outputs
the scores in the range [1, 2], while the second one only
outputs in the range [0, 1]. If we directly use the anomaly
scores as the loss for each algorithm, the first algorithm will
always get a lower weight compared to the second one, no
matter the relative performance as measured by APS.

3



SEAD : Unsupervised Ensemble of Streaming Anomaly Detectors

In SEAD , we circumvent this issue by normalizing each AD
algorithm’s output to be the quantile of the anomaly score
according to the empirical distribution of the past scores, i.e.,
use Quantile

(
S
(i)
t , 1

t

∑t
j=1 δS(i)

j

)
(Line 8 in Algorithm 1).

Henceforth, we refer to S
(i)
t ∈ [0, 1] to be the normalized

anomaly score output at time t, by base algorithm i. The
streaming quantiles can be efficiently implemented for ex-
ample using t-digest data-structure (Dunning & Ertl, 2019).
For larger data-streams, a windowed quantile that transform
S
(i)
t to be the quantile of the scores only in the past W time-

steps, where W is a hyper-parameter can be efficient. The
implementation in Algorithm 1 corresponds to W =∞.

3.3. Prediction with expert advice

In order to set the weight w(i)
t to be large, if the scores

(S
(i)
1 , · · · , S(i)

t−1) are small and vice-versa, we use the clas-
sical Follow-the-regularized-leader (FTRL) algorithm to
predict with expert advice (Cesa-Bianchi et al., 1997; Cesa-
Bianchi & Lugosi, 2006). In our setting, the anomaly scores
by each algorithm is both the prediction of that expert, as
well as the loss incurred by following that expert. The
ensembling algorithm observes the N expert predictions
(S

(1)
t , · · · , S(N)

t ) and outputs a score St as a convex combi-
nation of the N expert’s predictions.

Formally, the FTRL primitive is to choose the weights
wt := [w

(1)
t , · · · , w(n)

t ] at time t to be the minimizer
of the sum of historical performance and regularizer as
w∗

t := argminw∈∆N−1

∑t−1
s=1⟨w,Ss⟩ + Rt(w), where

∆N−1 is the simplex on N dimensions andRt(·) is a non-
negative regularization function.

3.4. Putting it together

SEAD employs the KL divergence as the regularizer, which
penalizes deviation of the weights w from a fixed distri-
bution π, which is a hyperparameter of SEAD . This dis-
tribution π encodes prior information over the base AD
algorithms as to which ones are better than others. For ex-
ample, if there is some offline data from the stream available,
one can use the offline model-selection algorithm of (Zhao
et al., 2021), to inform a prior distribution for the weights
on the online stream. On the other hand, if there is no prior
information, we set π as the uniform distribution, which
reduces the KL divergence regularizer to the negative en-
tropy of the weights w, which corresponds to the classical
multiplicative-weights update (MWU) algorithm. This is
beneficial since it is well known in online learning literature
that MWU is optimal (upto constant factors) in the absence
of any prior information (Cesa-Bianchi et al., 1997).

Further to reduce complexity, (i) we set the weights at time
t denoted by wt by taking one gradient step from the pre-

Algorithm 1 SEAD Algorithm
1: Input Streaming data {x1,x2, · · · }, learning rate η >

0, regularization λ ≥ 0, prior distribution π ∈ ∆N−1

2: Initialize weights w1 ← [1, · · · , 1] ∈ RN ,
3: Initialize base AD detectors A(i)

1 (·), for all 1 ≤ i ≤ N
4: for Time t = 1, 2, · · · do
5: Receive input xt

6: for each base detector i ∈ {1, · · · , N} do
7: S̃

(i)
t = A

(i)
t (xt)

8: S
(i)
t ← Quantile

(
S̃
(i)
t ; 1

t

∑t
u=1 δS̃(i)

u

)
9: end for

10: Output Score St ←
∑N

i=1

(
exp(w

(i)
t )∑N

j=1 exp(w
(j)
t )

S
(i)
t

)
11: Update weights according to Equations (1) and (2).
12: A

(i)
t+1(·)← Update-Algo-i(A(i)

t (·),xt), ∀i ∈ [N ]
13: end for

vious weights wt−1, and (ii) re-parametrize w to be un-
constrained using the softmax transform. In particular, we
set the weights wt ∈ RN and output the score (Line 10 of
Algorithm 1)

St :=

N∑
i=1

exp(w
(i)
t )∑N

j=1 w
(j)
t

· S(i)
t ,

and update the weights using a single step of gradient de-
scent (Line 13 of Algorithm 1)

wt+1 ← wt − η∇wLt(w)|w=wt
, (1)

where the loss function (Line 12 of Algorithm 1)

Lt(w)←
N∑
i=1

(
exp(wi)∑N
j=1 exp(wj)

S
(i)
t

)
+

λKL

(
exp(w)∑N

j=1 exp(wj)

∣∣∣∣∣∣∣∣π
)
. (2)

Observe that this loss function ensures that the final anomaly
score output is minimized while ensuring that the weight
distribution does not deviate too much from the prior infor-
mation (if any) that is available.

3.5. Online update to the base algorithms

In SEAD we allow for the N base-algorithms to also be
incremented with each incoming sample xt : for example, a
standard auto-encoder could be updated with a single gradi-
ent descent step as in (Mirsky et al., 2018), or an isolation
forest can be incremented using a custom tree-update algo-
rithm as in (Leveni et al., 2024). SEAD itself is agnostic
to the update mechanism, except for the fact that the up-
dates need to be unsupervised, i.e., the true anomaly label
information is not known.
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Algorithm 2 SEAD ++: Optimizing runtime by sampling
1: Input: Streaming data {x1,x2, · · · }, learning rate η >

0, regularization strength λ ≥ 0, prior distribution π ∈
∆N−1, K ∈ {1, · · · , N}

2: Initialize weights w1 ← [1, · · · , 1] ∈ RN ,
3: Initialize base AD detectors A(i)

1 (·), for all 1 ≤ i ≤ N
4: for Time t = 1, 2, · · · do
5: Receive input xt

6: Et ← a set of K detectors sampled without replace-
ment with detector i ∈ [N ] sampled with probability
proportional to exp(w

(i)
t ).

7: for each base detector i ∈ Et do
8: S̃

(i)
t = A

(i)
t (xt)

9: Λ
(i)
t := {1 ≤ s ≤ t s.t. i ∈ Et}

10: S
(i)
t ← Quantile

(
S̃
(i)
t ; 1

|Λ(i)
t |

∑
u∈Λ

(i)
t

δ
S̃

(i)
u

)
11: end for
12: Output Score St ←

∑
i∈Et

(
exp(w

(i)
t )∑

j∈Et
exp(w

(j)
t )

S
(i)
t

)
13: Update weights according to Equations (3) and (4).
14: A

(i)
t+1(·)← Update-Algo-i(A(i)

t (·),xt), ∀i ∈ Et

15: end for

3.6. Theoretical Guarantees

Since SEAD is built on the FTRL abstraction, it also inherits
several desirable properties of FTRL. In particular, SEAD
enjoys small ‘regret’, namely the sum of all anomaly scores
output by SEAD , is no more than O(

√
T ln(N)) compared

to the sum of anomaly scores output by any base-algorithm.
When the parameters of learning rate and regularization
strength are appropriately chosen, the MWU algorithm, and
as a consequence SEAD , is adaptive to distribution shifts

Theorem 3.1 (Single best in hindsight, (Cesa-Bianchi &
Lugosi, 2006)). The difference between the expected cumu-
lative sum of anomaly scores output by our algorithm and
any base AD algorithm is no more than O

(√
T ln(N)

)
.

However, this result does not say that the performance of
SEAD as measured by APS, which requires labels matches
that of the best base-algorithm. Nevertheless, this theorem
indicates why it is possible for SEAD to be as competitive
as the best possible AD algorithm in hindsight, which our
experiments corroborate.

3.7. SEAD ++: Runtime optimization by sampling base
AD Algorithms

A drawback in SEAD as given in Algorithm 1 is that at every
time t, all N base algorithms provide an anomaly-score and
are incrementally updated. The computational cost can
be prohibitive for large N , which can occur when different
hyper-parameter configurations correspond to different base-

detectors. We propose a modification to SEAD in Algorithm
2, which only considers the anomaly scores and incremental
updates to K out of N algorithms at each time. The design
of Algorithm 2 is motivated by the classical Thompson
sampling algorithm (Russo et al., 2018), originally proposed
to solve the special case when exactly one out of the N base
detectors can be chosen at each time. Formally, Algorithm 2
takes K ≤ N as input and at each time t, samples a subset
Et consisting of K out of the N detectors. This subset is
sampled without replacement from the set of N detectors
with each detector i sampled with probability proportional
to exp(w

(i)
t ) (Line 6 of Algorithm 2). The output St is given

by a weighted combination of the scores by the detectors
in Et (line 11 of Algorithm 2). The weight vector wt+1 is
obtained by a gradient step

wt+1 ← wt − η∇wL̂t(w, Et)|w=wt
, (3)

on a modified loss function L̂t(w, Et) that accounts for the
sub-sampling of detectors

L̂t(w, Et)←
∑
i∈Et

(
exp(wi)∑

j∈Et
exp(wj)

S
(i)
t

)
+

λKL

(
exp(w)∑N

j=1 exp(wj)

∣∣∣∣∣∣∣∣π
)
. (4)

Observe that when K = N , Algorithm 2 is identical to
Algorithm 1. The main savings in computation in Algorithm
2 comes in lines 8 and 14, where only K detectors are
queried for an anomaly score and incrementally updated at
each time. In contrast, Algorithm 1 queries anomaly scores
and incrementally updates all N algorithms at each time.

The main reduction of runtime in SEAD ++ is in not needing
to do forward-pass/inference and backward pass/gradient
calculation on K −N AD models. For many big models,
these forward and backward passes are the main computa-
tional bottlenecks. While SEAD ++ does require maintain-
ing weights for each base detector, the updates and storage
for the weights are trivial and independent of the size of the
base AD models.

4. Experiments
We empirically evaluate the following research questions.

1. Is SEAD effective, i.e., can match the performance of
the best base AD Algorithm on any data-stream?

2. Is SEAD efficient, i.e., has a better detection perfor-
mance and runtime in the streaming setting compared
to offline methods?

3. Does SEAD ++ improve over the runtime of SEAD
and, how does it affect detection performance?

In addition, we also show an anecdotal case study to further
give intuition on how SEAD works.
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4.1. Experimental Setup

We use 4 streaming anomaly detectors in our base mod-
els: IForestASD (IF) (Ding & Fei, 2013), xStream (XS)
(Manzoor et al., 2018), Robust Random Cut Forest (RRCF)
(Guha et al., 2016) and a simple rule based model based
on Statistical Process Control (SPC) (Shewhart, 1931). For
IForestASD, xStream and RRCF, we use open source im-
plementations from PySAD (Yilmaz & Kozat, 2020). For
the rule based model, we compute anomaly score for a
D dimensional incoming data point x = [x1, · · · , xD] as
1
D

∑D
i=1

xi−µi

σi
, where µi and σi are the mean and stan-

dard deviation for the ith dimension. We initialize each of
IForestASD, xStream and RRCF with 4 different hyperpa-
rameter configurations including the default configuration
(please refer to Appendix C for more details). Since we
focus on the streaming setting in this work, we only perturb
parameters related to number of past data points stored in
memory. We choose other parameters as recommended in
their open source implementations. The rule based model
does not have any parameters. We get a total of N = 13
base models. For our method SEAD , we choose hyperpa-
rameters η = 1, λ = 10−6 and π = Uniform distribution
across all experiments. We use tdigest (Dunning & Ertl,
2019) for streaming quantile computation for normalizing
anomaly scores. We set the first 100 data points for warm
starting the base models and SEAD , but not for evaluation,
i.e., is ‘cold start’. We performed all experiments on a single
c5.2xlarge AWS EC2 instance.

4.2. Datasets considered

We perform experiments on 15 datasets, of which 11 are
from the Outlier Detection DataSets (ODDS) (Rayana,
2016), 3 are from the USP Data Stream Repository (Souza
et al., 2020) and one is an internal telemetry dataset from a
multiserver database cloud service. Our choice of datasets
cover diverse applications and use-cases, including the
INSECTS dataset (Souza et al., 2020) which has non-
stationarity, a private telemetry dataset that has only 0.03%
of its stream as anomalies and the IONOSPHERE dataset
(Rayana, 2016; Keller et al., 2012) which has 36% of its
stream as anomalies. Dataset characteristics are in Table
10 in Appendix B. The number of data points range from
214 to 567, 000 and the number of features vary from 1 to
71. We report the rankings of the base models and SEAD in
Table 2 based on the AP metric.

4.3. Effectiveness of SEAD

We first observe that our datasets are non-trivial, i.e., no sin-
gle algorithm performs well across all of these datasets (see
Table 2 and Appendix A). RRCF outperforms other meth-
ods on the Letter, Glass and Telemetry datasets. xStream
outperforms on the Ozone, Optdigits and INSECTS datasets.

IForestASD is the best method on the Pendigits, Cardio and
Ionosphere datasets. Surprisingly, the rule based method per-
forms the best on multiple datasets: Pima, Mammography,
HTTP and Telemetry. All base methods show sensitivity to
their hyperparameters. Examples include RRCF on WBC,
xStream on Pendigits and IForestASD on Optdigits datasets.
The sensitivity to model selection and hyperparameter con-
figurations underscores the need for an ensemble model that
can appropriately aggregate base models depending on the
dataset.

From Table 2, we see that SEAD obtains the best rank on
average, outperforming about 60% of the base models and
having the lowest variance. In the worst case, it ranks 9th

among all models. For all other base models, the rank in
the worst case is >= 10, with most base models achieving
the worst rank on at least one dataset. This demonstrates
that even on the worst dataset, the performance of SEAD is
good, while all other algorithms have at-least one dataset in
which their performance is bad.

We also compare with simple ensemble baselines that ag-
gregate base detectors using (a) mean, (b) max or (c) min
of the anomaly scores in Tables 3 and in Appendix A. We
only compare against simple baselines because SEAD is
the first unsupervised online ensembling technique. SEAD
outperforms simple ensemble baselines, achieving a higher
rank on average with the lowest variance. We later show that
SEAD ++ achieves detection performance comparable to
these simple ensemble baselines, while reducing the runtime
by half.

We evaluate the statistical significance of our results using
Wilcoxon signed-rank test, concluding that our method is
statistically different from all base models and ensemble
baselines (in Appendix H). Using the same methodology
for computing statistical significance, we show critical dif-
ference diagram for SEAD, the best performing variants of
each base method and simple ensemble baselines in Figure
2. We report hyperparameter ablations in Appendix D.

4.4. Comparison with offline model selection method

Offline model selection methods cannot be used in the
streaming setting, which requires processing each incoming
data point in constant time. Nevertheless, for comparison,
we relax the streaming requirement. We allow the offline
meta learning method to look back at all of the data points
seen so far, allowing O(n) computation instead of the O(1)
computation time required in the streaming setting.

We compare with the offline model selection algorithms
MetaOD (Zhao et al., 2021) and the method described in
(Goswami et al., 2023). We evaluate on an open source
dataset on which neither of the offline algorithms has been
trained on: Ozone dataset (Zhang et al., 2008) from the USP
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Table 2. Comparison with base models: Ranks on real world datasets

INDEX SPC RRCF 0 RRCF 1 RRCF 2 RRCF 3 XS 0 XS 1 XS 2 XS 3 IF 0 IF 1 IF 2 IF 3 SEAD

PIMA 1 13 12 8 10 11 9 4 5 3 6 7 5 2
PENDIGITS 13 10 11 9 11 12 6 5 8 4 2 3 1 7
LETTER 9 2 6 1 3 9 11 5 7 6 12 8 10 4
OPTDIGITS 10 8 7 9 13 6 3 1 2 9 12 11 4 5
IONOSPHERE 14 8 9 5 7 13 10 11 12 4 2 1 3 6
WBC 1 14 10 12 11 13 8 7 5 2 3 4 6 9
MAMMOGRAPHY 1 13 12 11 7 10 8 9 6 4 2 5 3 6
GLASS 11 9 1 2 3 13 4 12 10 6 8 7 9 5
VERTEBRAL 12 2 3 5 4 11 1 7 6 9 9 10 9 8
CARDIO 10 13 14 12 7 8 9 6 11 4 2 1 3 5
HTTP 1 11 11 11 12 10 7 3 2 8 9 6 4 5
INSECTS GRADUAL IMBALANCED 11 7 9 5 8 10 2 2 1 7 4 6 6 3
INSECTS INCREMENTAL IMBALANCED 11 9 4 5 7 12 6 2 3 10 9 8 7 1
OZONE 7 4 5 6 10 1 3 4 2 10 8 9 8 9
TELEMETRY 1 1 1 2 1 5 1 3 3 7 6 8 4 1

AVERAGE RANK 7.53 8.27 7.67 6.87 7.60 9.60 5.87 5.40 5.53 6.20 6.27 6.27 5.47 5.07
VARIANCE 25.41 18.78 17.38 13.84 13.11 11.54 11.12 10.83 12.27 6.89 13.07 9.07 7.12 6.64

Table 3. Comparison with ensemble baselines: Ranks on real world datasets

INDEX MEAN MAX MIN SEAD (OURS)

PIMA 2 2 2 2
PENDIGITS 5 5 12 7
LETTER 11 9 9 4
OPTDIGITS 8 6 13 5
IONOSPHERE 4 9 7 6
WBC 9 9 11 9
MAMMOGRAPHY 7 7 9 6
GLASS 9 9 9 5
VERTEBRAL 10 5 4 8
CARDIO 5 5 7 5
HTTP 9 4 12 5
INSECTS GRADUAL IMBALANCED 1 3 1 3
INSECTS INCREMENTAL IMBALANCED 1 1 1 1
OZONE 4 7 1 9
TELEMETRY 1 6 1 1

AVERAGE RANK 5.73 5.80 6.60 5.07
VARIANCE 12.35 6.74 20.69 6.64

Figure 2. Critical difference diagram for SEAD, the best perform-
ing variants of each base method and simple ensemble baselines
based on rank comparisons in Table 2 and Table 3. The values
on the x axis represent the average ranks. All shown methods
are statistically different from each other. Appendix C describes
hyperparameter configurations for each base model.

dataset repository (Souza et al., 2020). We compare APS
and runtime vs SEAD in Table 5. SEAD slightly improves
over MetaOD and (Goswami et al., 2023) on detection per-
formance, while providing 35x speedup in runtime. We
describe the experimental details for adapting (Goswami
et al., 2023)’s method to the online setting in Appendix G

4.5. Comparison with SEAD ++

We choose the number of sampled detectors K = ⌊N/2⌋ =
6. We report ranks based on AP scores and runtime in
seconds for SEAD ++ in Table 4. Note that SEAD and the
ensemble baselines have approximately the same runtime
because they differ in computationally trivial operations like
taking mean, min and max or a linear sum across all N
base anomaly detector scores. SEAD ++ obtains AP score
comparable to the best ensemble baselines computed using
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Table 4. Comparison with SEAD ++ (K = 6)

RUNTIME (S) AP RANK

DATASET SEAD SEAD++ SEAD SEAD++

PIMA 817.58 318.45 2 2
PENDIGITS 3680.16 1924.70 7 6

LETTER 1209.85 570.29 4 5
OPTDIGITS 3140.09 1554.65 5 6

IONOSPHERE 332.99 164.82 6 6
WBC 353.20 170.91 9 9

MAMMOGRAPHY 5567.67 2877.58 6 8
GLASS 199.60 91.06 5 6

VERTEBRAL 224.47 98.82 8 8
CARDIO 1334.02 648.94 5 10

HTTP 274102.52 116252.01 5 10
INSECTS GRADUAL IMBALANCED 24000.80 12536.13 3 2

INSECTS INCREMENTAL IMBALANCED 77740.12 38245.36 1 2
OZONE 1746.19 1002.05 9 6

TELEMETRY 2235.19 969.20 1 1

AVERAGE RANK - - 5.07 5.8
VARIANCE - - 6.64 8.74

Table 5. Comparison with offline model selection methods on the Ozone dataset
AVERAGE PRECISION RUNTIME (S)

SEAD (ZHAO ET AL., 2021) (GOSWAMI ET AL., 2023) SEAD (ZHAO ET AL., 2021) (GOSWAMI ET AL., 2023)

0.059 0.052 0.070 1746 173684 61543

the mean and max of the anomaly scores, while providing
a ∼ 2x speedup in runtime. Compared to SEAD , it trades
off detection performance with reduced runtime. We report
APS scores for SEAD ++ in Appendix A and comparisons
with K = ⌊N/4⌋ and K = ⌊3N/4⌋ in Appendix D.

4.6. Case study illustrating the evolution of weights over
time of the base-algorithms in SEAD

Figure 3 shows an example where SEAD reduces the weight
for a misfiring detector on the Ionosphere dataset (Sig-
illito et al., 1989; Keller et al., 2012). The red lines mark
the ground truth labeled anomalies. The top plot shows
the anomaly scores for the two models having the high-
est weight during this duration - IForestASD and xStream,
and the bottom plot shows the weights assigned by SEAD
to these two models. During the anomalous period till in-
dex 255, both IForestASD and xStream have similar scores.
SEAD assigns a higher weight to xStream during this period.
xStream outputs higher scores even after the anomalous pe-
riod. The xStream scores on the benign data points are
even higher than the xStream scores on the anomalous data
points. Due to xStream misfiring on benign data points,
SEAD downweights xStream and increases the weight for

IForestASD. This behavior results in fewer false positives.

4.7. Robustness to uninformative base detectors

An advantage of SEAD is that its comparison against base-
lines like the mean aggregator improves with the addition of
many random detectors. We perform an experiment where
we double the number of base detectors to N = 26, adding
13 random detectors that each gives a random number as
anomaly score to each input. We evaluate on the ODDS
datasets, excluding the larger HTTP dataset because of com-
putational reasons. As we can see in Table 6 the perfor-
mance of SEAD does not diminish a lot while that of base-
lines like mean, max and min deteriorates significantly. The
reason being that SEAD quickly identifies the bad detectors
and down-weighs them, while baselines like mean cannot
do this. When we add random detectors, the performance of
SEAD is much more distinguishable than that of baselines.
We report APS metrics in Appendix F.
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Figure 3. Evolution of weights across time for a subset of the Iono-
sphere (Sigillito et al., 1989; Keller et al., 2012) dataset. SEAD re-
duces false positives by down weighing xStream when it scores be-
nign data points higher, and reassigning the weight to IForestASD.

Table 6. Average performance across ODDS datasets for SEAD
and ensemble baselines after adding random detectors

MEAN MAX MIN SEAD (OURS)

9.75% 22.31% 22.04% 0.88%

5. Related Work
5.1. Anomaly detection algorithms

AD is widely studied both in the machine learning literature
as well as in applied data-science literature (see surveys
of (Schmidl et al., 2022; Paparrizos et al., 2022; Iglesias
Vázquez et al., 2023; Ruff et al., 2021)). Some AD algo-
rithms are inherently ensemble based in order to be robust
to dataset properties. These methods however only build
ensembles of a specific class of models – an ensemble of
histogram density estimators (Pevný, 2016), autoencoders
(Mirsky et al., 2018), half-space chains (Manzoor et al.,
2018), decision trees (Liu et al., 2008; Guha et al., 2016)
and subspace outlier detectors (Sathe & Aggarwal, 2016b).
On the contrary, SEAD is agnostic to the base-algorithms.

Selecting models based on new unsupervised metrics has
been proposed in the literature – (Goix, 2016) proposes an
extension of Excess-Mass and Mass-Volume based metrics
to higher dimensions, while IREOS (Marques et al., 2020)
measures how easily each outlier can be separated from
other objects using maximum margin classifiers. However,

it has been observed that selecting based on these unsu-
pervised measures does not yield useful results (Ma et al.,
2023).

5.2. Offline Model selection algorithms

The offline case when all data is available up-front has been
studied in recent past. HYPER (Ding et al., 2024) uses a
hypernetwork to predict model parameters for deep models,
however it is limited only to deep models. MetaOD (Zhao
et al., 2021) uses meta features to identify similar histori-
cal labeled datasets, while ELECT (Zhao et al., 2022) uses
performance-driven similarity. All these algorithms need
as input a collection of labeled datasets similar to the test
dataset, while SEAD also works in the absence of offline
labeled datasets. (Goswami et al., 2023) while proposing
a state-of-the-art offline model selection method that does
not require labeled offline data, nevertheless needs to rank
the anomaly scores for all the test data across all models –
making it inefficient to implement in the streaming setting.
Ensembling algorithms (Gao et al., 2012) combine top-n
outlier detection scores using outlier score normalization.
(Rayana & Akoglu, 2014; 2016) use rank aggregation tech-
niques for combining anomaly scores from base models.
Other outlier ensembling methods use techniques like fea-
ture bagging (Lazarevic & Kumar, 2005), subsampling data
(Zimek et al., 2013) and improved normalization (Gao &
Tan, 2006; Kriegel et al., 2011).

However, all of these offline methods use the entire testing
data to choose the best models, i.e., take O(t) time to pro-
duce an anomaly score for the tth data point. Thus these are
not computationally feasible in the streaming setting (see
also Section 4).

6. Conclusions
We propose SEAD – the first unsupervised online model
selection algorithm for anomaly detection. The main idea
behind SEAD is to observe that the anomaly scores output
by the candidate algorithms, can be used as an unsupervised
proxy for its performance. SEAD ensembles anomaly scores
using time-varying weights set by multiplicative weights
update algorithm. We further optimized SEAD ’s runtime
by Thompson sampling that reduces run-time without signif-
icant accuracy degradation. We see through comprehensive
experiments the value and applicability of SEAD .

Our work leaves open regret guarantees on SEAD that holds
even under non-stationarity. Further optimizing SEAD to
leverage offline labeled datasets to improve online selection
under non-stationarity is interesting future work.
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A. Average Precision Metrics
We report Average Precision scores for the base models and SEAD in Table 7, ensemble baselines in Table 8 and SEAD ++
with K = 6 in Table 9.

Table 7. Comparison with base models: Average precision scores on real world datasets

DATASET SPC RRCF 0 RRCF 1 RRCF 2 RRCF 3 XSTREAM 0 XSTREAM 1 XSTREAM 2 XSTREAM 3 IFORESTASD 0 IFORESTASD 1 IFORESTASD 2 IFORESTASD 3 SEAD (OURS)

PIMA 0.616 0.400 0.430 0.461 0.445 0.442 0.455 0.499 0.492 0.501 0.491 0.488 0.492 0.519
PENDIGITS 0.016 0.070 0.069 0.076 0.069 0.039 0.092 0.115 0.085 0.244 0.262 0.254 0.292 0.091
LETTER 0.062 0.109 0.078 0.111 0.097 0.062 0.057 0.083 0.072 0.078 0.050 0.063 0.058 0.084
OPTDIGITS 0.038 0.057 0.068 0.039 0.023 0.082 0.218 0.272 0.225 0.039 0.028 0.036 0.086 0.084
IONOSPHERE 0.243 0.457 0.435 0.585 0.520 0.308 0.391 0.379 0.312 0.606 0.670 0.678 0.667 0.555
WBC 0.815 0.136 0.342 0.253 0.339 0.144 0.540 0.591 0.706 0.788 0.722 0.719 0.691 0.486
MAMMOGRAPHY 0.267 0.037 0.061 0.066 0.107 0.069 0.080 0.073 0.118 0.204 0.240 0.195 0.214 0.118
GLASS 0.062 0.100 0.188 0.179 0.145 0.057 0.116 0.058 0.068 0.113 0.101 0.104 0.100 0.115
VERTEBRAL 0.132 0.206 0.187 0.165 0.181 0.134 0.251 0.160 0.162 0.153 0.153 0.151 0.153 0.154
CARDIO 0.147 0.111 0.097 0.122 0.192 0.179 0.160 0.210 0.129 0.548 0.696 0.743 0.604 0.505
HTTP 0.425 0.004 0.004 0.004 0.003 0.005 0.019 0.071 0.099 0.013 0.007 0.024 0.051 0.035
INSECTS GRADUAL IMBALANCED 0.111 0.152 0.141 0.156 0.151 0.140 0.165 0.165 0.178 0.152 0.157 0.154 0.154 0.161
INSECTS INCREMENTAL IMBALANCED 0.133 0.147 0.163 0.162 0.156 0.128 0.161 0.184 0.170 0.146 0.147 0.152 0.156 0.189
OZONE 0.065 0.081 0.078 0.070 0.058 0.111 0.087 0.081 0.089 0.058 0.060 0.059 0.060 0.059
TELEMETRY 1.000 1.000 1.000 0.333 1.000 0.026 1.000 0.200 0.200 0.006 0.009 0.004 0.067 1.000

Table 8. Comparison with ensemble baselines: Average precision scores

DATASET MEAN MAX MIN SEAD (OURS)

PIMA 0.526 0.509 0.522 0.519
PENDIGITS 0.133 0.124 0.037 0.091
LETTER 0.055 0.060 0.058 0.084
OPTDIGITS 0.041 0.075 0.022 0.084
IONOSPHERE 0.624 0.423 0.497 0.555
WBC 0.464 0.362 0.319 0.486
MAMMOGRAPHY 0.117 0.108 0.076 0.118
GLASS 0.090 0.088 0.096 0.115
VERTEBRAL 0.149 0.174 0.186 0.154
CARDIO 0.237 0.219 0.180 0.505
HTTP 0.005 0.059 0.002 0.035
INSECTS GRADUAL IMBALANCED 0.230 0.162 0.219 0.161
INSECTS INCREMENTAL IMBALANCED 0.293 0.188 0.268 0.189
OZONE 0.086 0.067 0.112 0.059
TELEMETRY 1.000 0.022 1.000 1.000

B. Dataset descriptions
We report the number of data points, number of dimensions and the anomaly percentage for each dataset in Table 10. For the
two INSECTS datasets, we use the most populous class ‘Aedes aegypti (female)’ as the benign class and the least populous
class ‘Culex quinquefasciatus (male)’ as the anomalous class.

C. Hyperparameter configurations for base models
We report hyperparameter configurations for all base models in Table 11.

D. Ablations
We compare against the choices of η = [1, 0.1, 0.01] and λ = [10−2, 10−4, 10−6] for SEAD in Table 13. We report ablations
for SEAD ++ in Table 12, varying the number of sampled detectors K.
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Table 9. Average Precision scores for SEAD++ (K = 6)

DATASET SEAD++

PIMA 0.537
PENDIGITS 0.092
LETTER 0.078
OPTDIGITS 0.076
IONOSPHERE 0.535
WBC 0.536
MAMMOGRAPHY 0.091
GLASS 0.108
VERTEBRAL 0.155
CARDIO 0.131
HTTP 0.004
INSECTS GRADUAL IMBALANCED 0.168
INSECTS INCREMENTAL IMBALANCED 0.183
OZONE 0.076
TELEMETRY 1.000

Table 10. Dataset descriptions for the ODDS (Rayana, 2016), USP (Souza et al., 2020) and internal datasets

DATASET #POINTS #DIM. #OUTLIERS (%)
PIMA (ODDS) 768 8 268 (35%)
PENDIGITS (ODDS) 6870 16 156 (2.27%)
LETTER (ODDS) 1600 32 100 (6.25%)
OPTDIGITS (ODDS) 5216 64 150 (3%)
IONOSPHERE (ODDS) 351 33 126 (36%)
WBC (ODDS) 278 30 21 (5.6%)
MAMMOGRAPHY (ODDS) 11183 6 260 (2.32%)
GLASS (ODDS) 214 9 9 (4.2%)
VERTEBRAL (ODDS) 240 6 30 (12.5%)
CARDIO (ODDS) 1831 21 176 (9.6%)
HTTP (ODDS) 567479 3 2211 (0.4%)
INSECTS GRADUAL IMBALANCED (USP) 47251 33 4867 (10.3%)
INSECTS INCREMENTAL IMBALANCED (USP) 148048 33 13331 (9%)
OZONE (USP) 2534 71 160 (12.5%)
TELEMETRY (PRIVATE) 3726 1 1 (0.03%)

Table 11. Hyperparameter configurations for the base models. Since we primarily focus on the streaming setting in this work, we only
vary hyperparameters related to number of past data points stored in memory.

MODEL HYPERPARAMETERS

RRCF NUM TREES = 4, SHINGLE SIZE=4, TREE SIZE=[32, 64, 128, 256]
IFORESTASD INITIAL WINDOW X = NONE, WINDOW SIZE=[256, 512, 1024, 2048]
XSTREAM NUM COMPONENTS = 100, N CHAINS=100, DEPTH=25, WINDOW SIZE=[8, 16, 25, 32]
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Table 12. Ablations for SEAD ++ with different values for the number of sampled detectors K. The total number of base detectors is
N = 13.

RUNTIME (S) AP SCORE

DATASET K=3 K=6 K=9 K=3 K=6 K=9

PIMA 143.347 318.449 589.054 0.455 0.537 0.526
PENDIGITS 1456.997 1924.700 2772.344 0.189 0.092 0.117

LETTER 440.250 570.286 916.786 0.073 0.078 0.133
OPTDIGITS 1552.878 1554.646 2299.575 0.043 0.076 0.142

IONOSPHERE 72.610 164.815 228.618 0.588 0.535 0.535
WBC 82.772 170.914 246.968 0.480 0.536 0.465

MAMMOGRAPHY 1955.149 2877.584 4006.977 0.086 0.091 0.098
GLASS 51.274 91.061 141.936 0.100 0.108 0.110

VERTEBRAL 65.503 98.824 151.341 0.195 0.155 0.182
CARDIO 351.500 648.944 941.799 0.252 0.131 0.190

Table 13. Performance across different hyperparameter combinations (η, λ)

η = 1 η = 0.1 η = 0.01

Dataset λ = 10−6 10−4 10−2 10−6 10−4 10−2 10−6 10−4 10−2

pima 0.519 0.519 0.520 0.531 0.531 0.531 0.527 0.527 0.527
pendigits 0.091 0.255 0.188 0.164 0.164 0.159 0.147 0.147 0.147
letter 0.084 0.083 0.076 0.066 0.066 0.064 0.056 0.056 0.056
optdigits 0.084 0.031 0.030 0.041 0.041 0.039 0.042 0.042 0.042
ionosphere 0.555 0.544 0.557 0.568 0.568 0.568 0.570 0.570 0.570
wbc 0.486 0.483 0.471 0.487 0.487 0.487 0.488 0.488 0.488
mammography 0.118 0.128 0.125 0.118 0.118 0.120 0.123 0.123 0.123
glass 0.115 0.129 0.124 0.093 0.093 0.093 0.094 0.094 0.094
vertebral 0.154 0.158 0.158 0.152 0.152 0.152 0.154 0.154 0.154
cardio 0.505 0.508 0.173 0.240 0.240 0.231 0.209 0.209 0.209

E. Example of evolution of weights
We show two examples where the best performing methods are different, and SEAD is able to select the best performing
methods in each case. Figures 4 and 5 show the evolution of weights for two datasets. In Figure 4, on a variant of the
INSECTS (Souza et al., 2020) dataset, SEAD gives highest weights to xStream models which obtain the best average
precision. On the Cardio dataset (Aggarwal & Sathe, 2015; Sathe & Aggarwal, 2016a) in Figure 5, SEAD has the highest
weights for the IForestASD models which obtain the best detection performance.

F. APS metrics after adding random detectors
We report Average Precision scores after adding random detectors for SEAD and ensemble baselines in Table 14. Adding
random detectors demonstrates SEAD’s robustness to uninformative base detectors - SEAD’s performance drop is lower
than the baselines as shown in Table 6.

G. Adapting (Goswami et al., 2023)’s method to the online setting for comparison in Table 5
The main issue with (Goswami et al., 2023)’s algorithm is that it is designed in the offline case where all the train data is
available up-front, a single model is selected and applied as a batch to the entire inference dataset. In order to adapt it to the
online setting, we ran inferences in batches of 50 data points, where we retrained and applied it to a contiguous batch of 50
data points. For each re-training, we use the entire data-stream seen thus far and re-train from scratch each time.
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Figure 4. Evolution of weights across time for a variant of the INSECTS dataset, which is known to exhibit strong non-stationarity (Souza
et al., 2020). SEAD ’s performance is the best as indicated in Table 2. The evolution of the weights above shows SEAD having the highest
weight to the second best performing base model.

Figure 5. Evolution of weights across time for the Cardio dataset (Aggarwal & Sathe, 2015; Sathe & Aggarwal, 2016a). SEAD selects the
top two best performing models.
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Table 14. Comparison with ensemble baselines after adding 13 random detectors; the last row shows average performance drop across
datasets after adding random detectors

DATASET MEAN MAX MIN SEAD (OURS)

PIMA 0.513 0.399 0.358 0.520
PENDIGITS 0.099 0.051 0.034 0.246
LETTER 0.056 0.055 0.073 0.088
OPTDIGITS 0.045 0.052 0.024 0.048
IONOSPHERE 0.493 0.323 0.385 0.491
WBC 0.436 0.176 0.121 0.292
MAMMOGRAPHY 0.081 0.053 0.029 0.060
GLASS 0.082 0.127 0.070 0.078
VERTEBRAL 0.154 0.193 0.192 0.137
CARDIO 0.195 0.147 0.098 0.518

AVG PERFORMANCE DROP 9.75% 22.31% 22.04% 0.88%

Operating this way significantly increased run-time due to repeated training on the stream. Repeated re-training is needed
since we are operating on data-streams with non-stationarities. Adapting the algorithm presented in (Goswami et al., 2023)
to be online where some computations can be re-used (for example the re-trainings need not be from scratch) is non-trivial
and requires further research that is beyond the scope of this paper. The 35x increase in run-time was the fundamental
reason we did not evaluate the algorithm from (Goswami et al., 2023) (and even MetaOD (Zhao et al., 2021)) on all the
datasets.

H. Statistical significance tests to analyze performance difference between SEAD and base models
We perform Wilcoxon signed-rank test to evaluate the statistical significance of our results in Table 15. The datasets that we
test on are diverse and no single method performs well on all datasets. Hence, each method has a high variance in Average
Precision Score (APS) across the 15 datasets that we have tested on. The high variance makes statistical significance tests
unreliable

To overcome this issue, we split each dataset into chunks of 50 contiguous data points. This is also relevant for the online
learning paradigm where we want to evaluate the model continously over time. Since APS is not defined for chunks having
all data points labeled as non anomalous, we only consider chunks which have at least one anomalous label. Using this
splitting mechanism gives us 3,282 chunks across all datasets. We report p values for the Wilcoxon signed-rank test using
the APS scores on the 3,282 chunks. Using a threshold of 0.01, we conclude that our method is statistically different from
all base models and ensemble baselines.
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Table 15. Statistical significance of SEAD performance compared to base detectors and baseline methods

MODEL WILCOXON P-VALUE

SPC 6.93× 10−258

RRCF 0 4.26× 10−68

RRCF 1 1.47× 10−43

RRCF 2 3.16× 10−14

RRCF 3 7.43× 10−29

XSTREAM 0 2.09× 10−95

XSTREAM 1 3.53× 10−12

XSTREAM 2 1.80× 10−4

XSTREAM 3 1.60× 10−3

IFORESTASD 0 1.88× 10−64

IFORESTASD 1 8.08× 10−63

IFORESTASD 2 3.48× 10−57

IFORESTASD 3 2.94× 10−51

MEAN 6.41× 10−171

MAX 6.48× 10−5

MIN 6.17× 10−44
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