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Abstract

Many object counting methods rely on density map estimation (DME) us-
ing convolutional neural networks (CNNs) on discrete grid image represen-
tations. However, these methods struggle with large variations in object
size or input image resolution, typically due to different imaging conditions
and perspective effects. Worse yet, discrete grid representations of density
maps result in information loss with blurred or vanished details for low-
resolution inputs. To overcome these limitations, we design Scale-Invariant
Implicit neural representations for counting (SI-INR) to map arbitrary-scale
input signals into a continuous function space, where each function produces
density values over continuous spatial coordinates. SI-INR achieves robust
counting performances with respect to changing object sizes, extensive ex-
periments on commonly used diverse datasets have validated the proposed
method.

1 Introduction

Understanding the distribution and abundance of people as well as geographic entities such
as buildings and cars within these environments becomes crucial for various “smart city”
applications, such as urban planning, traffic management and beyond. Object counting
holds promising potential for such tasks, which have also been studied in other domains
too, including crowd counting for security (Ma et al., [2019; |Li et al.l 2018), animal crowd
estimations (Ma et al] [2015)), and cell counting for biomedicine (Paul Cohen et al., [2017).
Successful counting methods have been developed by introducing deep learning (Fu et al.,
[2015; [Wen et al., [2021)) and self-attention (Gao et al.,[2020; Lin et al.l 2022). In recent years,
the best-performing methods are mostly based on density map estimation (DME) (Ma et al.
[2019; |Gao et al., |2022; |Lin et al., 2022; |Wan et al., 2021), training convolutional neural
networks (CNNs) to generate discrete density maps.

However, several challenges persist in applying current deep learning methods for reliable
counting: 1) Scale-Dependence: CNNs (LeCun et al) [1998) lack intrinsic scale equivari-
ance, leading to degraded performance when object sizes deviate from those seen during
training. This issue is particularly pronounced for inputs at resolutions differing from the
training set, as CNNs rely on fixed receptive fields that cannot dynamically adapt to scale
variations; 2) Expressiveness-Bottleneck: Traditional grid-based density maps approximate
object distributions with Gaussian kernels, imposing a fixed spatial structure that misaligns
with irregular object arrangements (Wan & Chan| [2019). Gaussian smoothing reduces noise
but blurs local details, degrading fidelity in dense and sparse regions, and limiting counting
accuracy in complex scenes.

To address these issues, we design a new object counting framework named Scale-Invariant
Implicit Neural Representations (SI-INR) mapping arbitrary-scale discrete images into 2D
continuous functions which are invariant to the object or structure scales. This allows the
model to preserve the fine details and reduce potential information loss for better counting
accuracy and generalizability. Moreover, the scale-invariance, an important property for
the mapping between input images and output density maps, is explicitly introduced as the
inductive bias of model itself to potentially improve data efficiency and model robustness.
Our main contributions can be summarized as follows:
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1. We propose Scale-Invariant Continuous Implicit Neural Representations (SI-INR), an
object counting framework mapping discrete grid signals into continuous 2D functions
which are invariant to image scaling.

2. As a proof of concept, we give a realization of SI-INR using existing Scale-Equivariant
Steerable Network (SESN) (Sosnovik et al.,[2019) and a novel deep neural operator based
INR module. A sampling-based optimization objective is then derived for efficient model
training.

3. We conduct extensive experiments to evaluate the effectiveness of our SI-INR on object
counting, demonstrating notable advancements in performance, especially on the remote
sensing counting dataset.

2 Related Work

Object counting: Object counting, e.g. well-studied crowd counting (Lin et al [2001)), has

been mostly developed by detecting or segmenting individual objects in the scene. End-to-
end learning to directly map image features to object counts has been the most success-
ful counting strategy with rapid advancements in deep learning Krizhevsky et al.| (2012);
Wang et al|(2015), especially for object counting in densely populated scenes (Chan et al.|,
2008). Counting based on Density Map Estimation (DME) using convolutional neural net-
works (CNNs) (Lempitsky & Zisserman| 2010; Fu et al.| 2015; Ranjan et al., 2018; Sindagi
& Patel, [2019) to preserve translation-invariant multi-scale image features has shown supe-
rior performance over conventional object counting techniques. More recent ASPDNet
Et all, and PSGCNet have integrated attention, deformable convo-
lution, pyramidal scale modules (PSM) to address challenges in counting such as complex
cluttered backgrounds, viewing perspective, object appearance, and size variability. Besides,
[Huang et al.| (2023)) propose an optimized global regression model EfreeNet which is more
more annotation-efficient. introduce a lightweight multiscale context fusion
module (LMCFM) and a lightweight counting scale pooling module (LCSPM) to reduce the
numbers of network parameters and computing cost. These models have achieved state-

of-the-art (SOTA) counting performance on the RSOC (Remote Sensing Object Counting)
dataset (Gao et al/, [2020).

Scale-equivariance and invariance: The concept of scale-equivariance and invariance was
first proposed in image processing and computer vision (Lowe} [1999; [2004). To handle vari-
ations in scale effectively, multi-scale features can be learned by applying the convolutions
to several rescaled versions of the images or feature maps in every layer (Kanazawa et al.)
[2014; Marcos et all [2018) or by rescaling trainable filters (Xu et al., [2014). |Cai et al.
(2016)) proposed a pyramidal structure to learn scale-dependent features, which is widely
used in the object detection field nowadays. Later, Gaussian scale-space theory
and group theory (Cohen & Welling}, [2016]) have been widely used for achieving scale-
equivariance and invariance. [Yang et al.| (2023)); Lindeberg| (2022) parameterized convolu-
tional filters as a linear combination of Gaussian derivative filters with different scales, and
achieved scale-equivariance in image classification and segmentation tasks. Unlike models
rooted in Gaussian scale-space theory, [Sosnovik et al.| (2019) proposed a Scale-Equivariant
Steerable Network (SESN), which utilizes steerable filters parameterized by a trainable lin-
ear combination of pre-calculated Hermite basis functions. These models all first build
a scale-equivariant model, and use a simple pooling layer or rescale the outputs to con-
vert the model into a scale-invariant one if needed (Sosnovik et al., |2019)). However, such
methods have significant demands on memory and computational resources and can lose
information when doing the equivariance to invariance conversion. In SI-INR, we adopt
a scale-equivariant model to learn a deep representation that is equivariant to input scale
variations, and introduce a scale-invariant model to convert the equivariant mapping to an
invariant one.

Implicit neural representations: Implicit Neural Representations (INRs) allow for continuous
flexible representations of complex objects and scenes in computer vision (Mescheder et al.)
[2019; (Oechsle et al., 2019; Barrowclough et al., |2021; [Wang et all 2022). Together with
recently developed positional encoding strategies (Tancik et al., 2020; |Sitzmann et al., 2020
and end-to-end hypernetwork-based learning (Dupont et al 2022; [Lee et al., 2024; Kim)




Under review as a conference paper at ICLR 2025

et all, [2023), efficient training to capture high-frequency details has been achieved to better
model complex natural signals.

However, hypernetwork-based INR models are not translation-equivariant, making them
unsuitable for handling scale variations in input signals. As a result, these models typ-
ically require the input to be of a fixed size. More recent Hierarchical Neural Operator
Transformer (HINOTE) (Luo et al., 2024)) integrates neural operators in implicit neural rep-
resentation, which can preserve more local information and improve the generalizability of
INR models.

In SI-INR, we adopt a lightweight INR implementation and replace the traditional coor-
dinate input by a continuous latent. In this case, our INR model transforms continuous
latent to the continuous representation of targets, which can be seen as a deep neural oper-
ator (Kovachki et al., [2023). This approach improves stability, accelerates model training,
and offers greater flexibility when incorporating images of varying sizes during training.

3  Method

We propose a novel object counting framework, Scale-Invariant Implicit Neural Represen-
tation (SI-INR), that explicitly models scale-invariance in the adopted continuous INR for
robust object counting. We start the discussion by first presenting the problems of existing
methods in Section Next, we describe our solution and concept of SI-INR with the
corresponding analysis in Section We then describe the detailed construct of SI-INR
using SESN and a deep neural operator based INR architectures in Section Lastly in
Section we provide our sampling based model training for SI-INR on object counting.

3.1 Problem statement

In many real-world computer vision applications, input images can vary widely in dimension
and size, which requires the corresponding object detection and counting models to be able
to robustly identify objects ranging from a few pixels to thousands of pixels in scale. While
existing off-the-shelf CNNs often take the input images of the fixed size, the flexibility
to handle arbitrary resolution inputs and generate arbitrary resolution outputs is highly
desirable to take the best advantage of heterogeneous data available.

For a given image I, existing methods aim to establish a mapping f : R = Rt from
input image I € R% to corresponding outputs D9 € RIpst, where both input images
and outputs are in typical discrete-grid representations and the outputs’ resolution dpgt is
typically lower than inputs’ resolution reflected by the input dimension dj.

However, since traditional convolution models are not scale-invariant and always have a fixed
downsampling ratio, these methods usually struggle with handling varying resolution inputs
and objects in different scales. where f(p1(h)(1,)) # f(1,). Here h denotes an element of the
Scale-Translation group H and represents one scale-translation operator, p; () denotes the
corresponding group actions of h acting on the image domain. We provide a more detailed
explanation of scale equivariance in Appendix

To address this limitation, we propose SI-INR to model the mapping for continuous signal
representations. SI-INR learns a mapping ¥ : Z — F from input image space Z to the
continuous function space F.

U(p1(h)(La))(x) = ¥(Le)(x) = D (x), (1)

where we emphasize that the input image space Z here is more flexible considering arbitrary
normalized spatial coordinates, x € [0,1]2, sampling from continuous image space. ¥(I,)
denotes the predicted continuous representation of density maps for I,. D9 denotes a
continuous ground truth. Due to this formulation, SI-INR allows the learned model to
handle varying resolution inputs, detect as many target objects at different scales as possible,
and generate arbitrary resolution outputs.
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Figure 1: Schematic diagram of Scale-Invariant Implicit Neural Representation (SI-INR)
and existing Density Map Estimation (DME) methods. SI-INR learns scale-invariant con-
tinuous representations in three steps: first, a scale-equivariant backbone is designed to
extract deterministic scale-equivariant features; then, a scale-invariant encoder is adopted
to aggregate scale-equivariant features in different scales; and finally, an INR decoder con-
verts extracted features into an invariant output, a continuous representation of task targets.
Visualization of continuous and discrete representations demonstrates that continuous rep-
resentations preserve more information, leading to better reconstruction of the continuous
output.
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3.2 Scale-Invariant Implicit Neural Representations

Following the above formulation, to achieve a scale-invariant mapping from the image space
T to the function space F, we propose the SI-INR modular framework consisting of three
components: a Scale-Equivariant backbone (SE-Backbone), a Hybrid Pyramidal Scale Mod-
ule (HPSM), and an INR decoder. The SE backbone is designed to extract deterministic
scale-equivariant features resilient to different resolutions of inputs and sizes of objects; then
the HPSM merges scale-equivariant features in different scales; and finally, the INR decoder
converts extracted features into a scale-invariant output, which is a continuous representa-
tion of density maps.

3.2.1 Model Components

Traditional computer vision backbones struggle with scale variations of objects where dif-
ferent sizes of the same objects can have different appearances in the feature maps. This
results in inconsistent counting estimates and requires the model to have higher capacity to
memorize the same objects in different scales (Zhan et al., 2022).

To construct a model which is data efficient and capable of handling unseen resolution in-
puts, we want our model to be scale-invariant so that consistent outputs can be generated
with respect to varying scales of objects in input images. As the combination of scale-
equivariant and scale-invariant models is scale-invariant (Sosnovik et al. [2019), we can
construct the model by ensuring that either each component in the framework is invariant,
or the framework appropriately combines scale-equivariant and scale-invariant components.
It is more reasonable to implement a scale-equivariant mapping first to preserve fine de-
tails (Sosnovik et all,[2019)), and then convert the equivariant mapping into a scale-invariant
one for consequent prediction tasks.

SI-INR. adopts this strategy and takes three steps to achieve scale-invariant mapping for
arbitrary-scale signals as shown in Figure first, a scale-equivariant model B(-) is adopted
to extract deterministic features so that scale changes in objects will only affect the scale of
feature maps while keeping the appearance:

B(p1(h)(1a)) = pp(h)(B)(1a), (2)

where pp(-) denotes the corresponding group actions of h acting on the feature domain. We
emphasize that any scale-equivariant method can be adopted into SI-INR to handle different
tasks.
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Second, a scale-invariant converter transforms the equivariant features into scale-invariant
ones for consequent prediction tasks. At this step, a scale-invariant encoder E(-) is adopted
to integrate extracted equivariant features:

E(ps(h)(B(1a))) = E(B(la))- (3)

Equation demonstrates that the output of E(+) is invariant to scale changes in the input
signals. While E(-) can map the same signal at different scales into one latent space, it
cannot map different signals at varying scales into a unified space. To address this problem,
we introduce a scale-invariant continuous representation mapping #H. For any query image
I, H maps the output of E(-) into a continuous function u, : [0, 1]*> — Rxq, which means the
corresponding density value for arbitrary normalized query position x can be predicted by
evaluating the mapped continues function at x: u,(x). In SI-INR, we extend the function to
u(x; z,0inR ), where z € R™ represents the latent features extracted by the encoder. Thus,
SI-INR learns a conditional continuous representation of the input by optimizing over Oixgr
and z. This allows for task-specific predictions such as continuous density estimation.

Training a continuous representation learner not only achieves a uniform format of output for
different scales input but also enables flexible training sample-based algorithms to enhance
the training as we discuss in Section |3.3]

We now prove the scale-invariance of our SI-INR for any scale-translation action on I, in
Theorem [Il

Theorem 1 Given a scale-translation operation h and an input image I,, SI-INR is scale-
invariant:

Proof:
U(p1(h)(La))(x) = H(E(B(p1(h)(La)))(x) = H(E(B(la)))(x) = ¥(la)(x), (4)

SI-INR not only is invariant to the change of scales, but also maps signals into one latent
continuous function space.

3.2.2 SESN and Deep neural operator based Realization

In order to achieve the scale-invariant model, we first map the input signals into an equiv-
ariant space through a scale-equivariant backbone B(-). Thanks to the efficient INR-based
equivariant-to-invariant conversion architecture, any scale-equivariant models can be applied
in SI-INR, we choose SESN (Sosnovik et al., [2019) to build our scale-equivariant backbone
B(-) as an example. The introduction of SESN is given in Appendix Since the sum-
mation of two scale-equivariant models is still scale-equivariant by Lemma [I] in Appendix
we build our backbone based on the residual architecture, where the input is added to
the output of each equivariant layer.

In SI-INR, the scale-invariant converter encoder E(-) is designed by a combination of a
scaling operator S(-) and a CNN-based model G:

E(B(pi(h)(1a))) = G(S(B(p1(h1)(L)))) = Gps(h' - hi pp(hn)(B(L.)))
= G(ps(W)(B(L))) = E(B((L.))),
where the scaling operator rescales any feature map pg(h1)(B(1,) into a consistent scale:

pe(W)(B(1,)), S(-) = pp(h’' - hi'). This scaling operator ensures the invariant property of
our encoder E(-). Note that &' is a hyperparameter which can rescale the derived equivariant

()

. . L .
features into a more reasonable size Rlv*n*Cs  where 1,,, Ij,, and C% denote the size and
number of channels.

Prior knowledge about the original scales of test images can further improve the prediction
accuracy of SI-INR. In the cases where the images in the dataset are unscaled and mutually
independent, we can maintain the scale-invariance property by setting the scaling factor to
1.
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In the CNN-based model G, we propose a Hybrid Pyramidal Scale Module (HPSM) con-
sisting of a Pyramidal Scale Module (Gao et al., 2022)) that implements convolutions with
increasing kernel size to detect equivariant features in different scales, and scale-invariant
convolutions (SESC with maximum scale projection) to convert extracted features into in-
variant ones.

Finally, SI-INR efficiently utilizes extracted information by introducing an implicit neural
representation model H which maps different signals into a specific continuous function
space. This mapping fully utilizes its continuous property to predict and recover fine de-
tails. Representing these deterministic features in a continuous function can capture more
information compared with a discrete one. In our experiments in Section [@ SI-INR achieves
better counting performance and we show that increasing the number of samples increases
counting accuracy for small target objects such as compact cars.

‘H outputs a continuous representation u, of the target output for image I,, Here we give
the expression of the INR decoder:

H(E(B(La)), 018 r)(X) = ua(x|2", 01N R), (6)

where @7y r denotes the trainable parameters and the INR model consists of L;yypg linear
layers, BINR = [Wl, b1 ey WLINR7 bLINR]'

To build a more flexible INR model that can handle complex scenarios, we generate a
continuous latent z®, for any query position x, we compute corresponding z$ by sampling
from z® and set it as the INR model’s input.

In this way, our INR model treats input features as continuous functions instead of 2D
discrete arrays, which can fully utilize local details in downstream analyses (Luo et al.

2024). We call this continuous-to-continuous INR module a deep neural operator based
INR.

With all these, the predicted value at position x can be estimated as:

ua(x):¢INR (WEINR"' INR(WT( )+b1)"'+bL1NR)’ (7)

Linr
where ¢!V E(.) denotes the activation function.

We now prove the scale-invariance of our SI-INR’s realization. Given a scale-translation
operation h and an input image I,, we have:

Upr, (1) () = H(E (R - h71)(B(p, (h) (1)), 013 R) ()
=H(E(ps(h" - h™")(ps(h)(B(L)))),01vr)() (8)
=H(E(ps(1)(B(La))), 01nr)(-) = ta(-),

where pr, (h) and pp(h) denote the group actions of h on the input image domain and B(-)’s
output domain. For any scale-translation action pr, (h), the output for image I, is always

U (+).
3.3 Training with Regional Sampling

To train a continuous representation of the density map, a continuous ground truth is
needed. We achieve this by directly constructing the likelihood function of any position x
given label y,, as p (x | y») = N (x;my,,0%1552). The density map D¢ is then modeled as
2D stochastic processes in the continuous spatial domain:

N 2
by def _ 1 [x —my |
D9 ( ZN X;my,, o 12><2 = Z N exp (W ) 9)

n=1 n=1

where x denotes the normalized spatial coordinates, x € [0,1]%, N/ (x; m,,, 0212X2) denotes
the 2D Gaussian distribution with the mean m, and isotropic covariance matrix o21ayo.
Similar to Ma et al. (2019), we incorporate a Bayesian counting loss function in SI-INR,
which is robust to noise and object occlusion. Together with the MAE counting loss, the
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final minimization objective is:

A N N
1
L= Z Z {Z(Ex~ps(x) (Cn,a) - Exwps(x)(cit,a)) + K(Z(]Ex~ps(x) (Cn,a)) - N)]7 (10)
a=1 n=0 n=0

where ¢J',(-) and ¢y q(-) denote the contribution of DY to the n-th object label, py(x) is
any probability distribution of x which enables our model to be trained using any existing
stochastic optimization algorithm, and x is a hyperparameter that balances the two loss
function terms. To efficiently compute the loss, we introduce a regional sampling approach,
where x is uniformly sampled from a pre-defined grid. The loss function is then rewritten
as:

A N N
1
L= Z Z [Z(EXNUnif[O,lP (cn,a) - Ewanif[O,l]z (C%Ea)) + K(Z(Ewanif[O,l]z (Cn,a)) - N)} .
a=1

n=0 n=0
(11)

The detailed derivation is provided in Appendix The count predictions can be hereby
obtained by sampling uniformly over the normalized image domain and computing the
summation of D, (x).

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the model’s performance on three challenging datasets: (1) the
Remote Sensing Object Counting (RSOC) dataset (Gao et al. [2020); (2) the Car Parking
Lot Dataset (CARPK) (Hsieh et al., 2017); and (3) the Pontifical Catholic University of
Parana+ Dataset (PUCPR+) (Hsieh et al.l 2017)). Details on the datasets and the train-test
split are provided in Appendix

Baselines. We compare our SI-INR with three baseline methods: ASPDNet (Gao et al.
2020)), an attention-based network with scale pyramid and deformable convolutions; PSGC-
Net (Gao et all [2022)), which integrates pyramidal scale and global context modules; and
eFreeNet (Huang et al., [2023), an ensemble of first-rank-then-estimate networks. Network
architecture details are available in Appendix

Implementation. We implement our scale-equivariant backbone by stacking four SESC
layers (Sosnovik et al,2019)) with residual connections where the kernel size of SESC is set to
3 to reduce computational costs. Our scale-invariant encoder E(-) consists of two parts. The
first part involves a scaling operator, the second part involves a VGG-19 network (Simonyan
& Zisserman, [2014) to learn deep features, following a pyramidal scale module that has
increasing kernel sizes from 3 x 3 to 11 x 11, and applies SESC layers with maximum scale
projection. Our INR-based decoder network consists of four fully connected layers with
residual connections, and one fully connected layer with learnable parameters to output raw
density maps. We use the Adam (Kingma & Bay, [2014) optimizer for both our SI-INR and
baseline models, and set the learning rate to be 1le — 4. We initialize parameters in SI-INR
by random sampling from a Gaussian distribution A(0,0.012). We set o = 8 in our loss
function and S;yygr = 64 when generating density maps for different inputs unless specified.
We evaluate our SI-INR with baseline models on the RSOC dataset, CARPK dataset, and
PUCPR+ dataset, following Huang et al| (2023)’s setup with RSOC images resized into
512 x 512. Data augmentation has been implemented during model training by randomly
flipping the input images horizontally. We select the models with the lowest RMSE and
proper density maps in the first 300 training epochs and report the results. We run all
our experiments with the fixed random seed 64 on a workstation with a NVIDIA V100
32GB GPU. We adopt two widely used metrics in object counting tasks following previous
work (Gao et al., 2020; [Ma et al., 2019) to evaluate baselines and our model: the Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE). We additionally compare
SI-INR with SOTA crowd-counting methods on the UCF-QNRF dataset in Appendix
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Figure 2: Predicted density maps by SI-INR and other baselines for four test images from
RSOC. The test images (Test Images) and corresponding density maps (GT) are randomly
sampled. The illustrated density maps are predicted by PSGCNet with MSE loss (PS-
GCNet+MSE), PSGCNet with Bayesian counting loss (PSGCNet+Bayes), ASPDNet with
MSE loss (ASPD+MSE), ASPDNet with Bayesian counting loss (ASPD+Bayes), and SI-
INR. Warmer colors denote higher values while cooler colors denote lower values.

4.2 Main Results

Quantitative Results. Our performance evaluation on different benchmark datasets with
the reported experimental results on RSOC in Table [l and CARPK and PUCPR+ in Ta-
ble 2 respectively. It shows hat SI-INR significantly improves the MAE on all the datasets
compared with our baseline model PSGCNet. Also, SI-INR achieves comparable results, es-
pecially on PUCPR+ datasets. Note that the RSOC small-vehicle and RSOC ship datasets
exhibit the largest scale variations and the smallest target objects within the RSOC dataset
as we show in Appendix[B.1} For the RSOC ship and small-vehicle datasets, SI-INR achieves
superior counting performance primarily due to its flexibility in generating outputs at ar-
bitrary resolutions. Compared with other methods with fixed downsample ratio and can
only generate 64 x 64 density maps, SI-INR improves the counting performance by directly
generating larger and clearer density maps as we showed in Table[}] These results highlight
the significant advantages of SI-INR in handling targets across varying scales.

We visualize the predicted density maps generated by SI-INR and other SOTA methods
in Figure [2| excluding eFreeNet (Huang et all [2023)), as it is a regression-based counting
method. All four images are randomly sampled from the RSOC dataset, with the first three
from the RSOC ship dataset and the last one from the RSOC small-vehicle dataset. As
shown, SI-INR delivers more accurate counting performance, particularly when the objects’
appearance and scales are complex. In the first three images, SI-INR generates clearer
density maps. In the last image from the RSOC small-vehicle dataset, where the cars are
too small for the other SOTA methods to detect, SI-INR’s scale-invariant property enables
it to produce higher-quality density maps and achieve better counting accuracy.

Inference Efficiency. In the inference stage of the RSOC building dataset, ASPD-Net requires
approximately 15.13 seconds, PSGC-Net takes around 2.47 seconds, eFreeNet takes around
3.84 seconds, and our SI-INR model requires about 3.87 seconds. SI-INR does take longer
during the training phase compared to PSGC-Net due to the integration of scale-equivariant
models and the use of stacks of linear layers in the INR. However, the inference cost remains
acceptable thanks to the simple design of our INR decoder, which consists of only 4 linear
layers, and our lightweight scale-equivariant backbone.
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Table 1: Comparison of counting performances on the RSOC datasets.

Method Loss Building Small-vehicle Large-vehicle Ship

MSE. [ Bayes. | MAE [ RMSE | MAE [ RMSE [ MAE | RMSE | MAE [ RMSE

MCNN v 13.65 | 16.56 | 488.65 | 1317.44 | 36.56 | 56.55 | 263.91 | 412.30

eFreeNet v 6.99 9.61 195.86 | 463.62 | 14.55 | 19.77 | 65.34 | 85.45
PSGCNet v 7.33 11.02 | 346.78 | 952.64 | 21.54 | 32.75 | 75.27 | 94.79
PSGCNet v 7.18 10.98 | 196.25 | 360.15 | 14.47 | 26.19 | 72.07 | 98.06
ASPDNet v 7.40 11.06 | 378.23 | 978.93 | 18.76 | 31.06 | 63.32 | 84.85
ASPDNet v 7.59 11.07 | 365.69 | 1101.25 | 16.61 | 29.26 | 64.82 | 89.24
SI-INR v 6.54 9.80 | 157.18 | 306.43 | 12.61 | 21.78 | 59.76 | 81.79

Table 2: Comparison of counting performances on the CARPK and PUCPR+ datasets.

Method Loss CARPK PUCPR+

MSE. [ Bayes. [ MAE [ RMSE | MAE [ RMSE

MCNN (Zhang et al., 2016) v 24.95 | 39.63 | 21.86 | 29.53
eFreeNet (Huang et al.,[2023) v 46.42 | 52.34 | 18.98 | 23.03
PSGCNet (Gao et al.l 2022 v 11.07 | 14.55 | 3.87 4.86
PSGCNet (Gao et all 2022 v 771 | 10.28 | 3.17 5.27
ASPDNet (Gao et al., 2020 v 10.01 | 12.84 | 4.21 5.02
ASPDNet (Gao et al., 2020 v 9.98 | 13.19 | 4.48 5.93
SAFECount ;You et al., 2023 v 5.33 7.04 2.24 3.44
SI- v 5.54 7.43 2.09 2.70

Generalization Results. We evaluate the robustness of SI-INR, and baseline methods to the
scale variation in testing data by testing models using images with resolutions different from
training images. To further increase the scale variance inside the RSOC dataset, we keep
the training images in a fixed scale 512 x 512, rescale test images into 5 different resolutions:
205 x 205, 307 x 307, 410 x 410, 512 x 512, 614 x 614, and test our SI-INR as well as baselines
on the rescaled test images. The varying scales in the test set better reflect real-world
conditions, where objects may appear at different sizes due to changes in altitude, camera
settings, or image cropping. SI-INR significantly outperforms all baseline models when the
variation of resolution in test image is presented. The performance advantages over baseline
models illustrate that our SI-INR is not only more robust compared to other baselines
when processing images with unseen resolutions, but also more data efficient. Especially
on PUCPR+ dataset, SI-INR reduces MAE by 70.9% and RMSE by 71.64% compared
with efREENet. Furthermore, PSGCNet employs a traditional pyramidal architecture to
address object scale variance in object counting. However, as illustrated in Figure [3| and
Figure 5| SI-INR achieves superior counting accuracy and produces higher-quality density
maps when facing different resolution inputs even with extremely low resolution like 104 x
104, demonstrating its enhanced ability to handle scale variance compared to traditional
methods.

As shown in Figure 3| and Figure |5, SI-INR achieves a relative scale-invariance model while
truly scale-invariance model is impractical for SESN, SESN relies on group convolutions
to approximate scale-equivariance. However, the finite set of sampled scales used during
training and inference means that scale-equivariance is not exact but rather approximate
within a certain range of scales. Incorporating exact scale-equivariance for all scales would
require infinite representations, which is computationally infeasible.

Showcases. We further visualize these results in Figure [3| Although the performances of
all the models degrade with small-scale inputs, our SI-INR can still produce density maps
with the objects well separated. Moreover, the underestimation of object counts is much
less severe in SI-INR compared to all the baselines, which demonstrates the robustness of
SI-INR under scale variation. We provide additional results in Appendix
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Figure 3: Predicted density maps by SI-INR and other baselines for two test images from
RSOC. Two test images are rescaled to 205 x 205, 307 x 307, 410 x 410, 512 x 512, 614 x 614
before fed into the models.

Table 3: Counting performance of handling unseen scales images on the CARPK, PUCPR+,
RSOC building datasets and RSOC large-vehicle datasets.

Method Loss CARPK PUCPR+ Building Large-vehicle

MSE. | Bayes. | MAE [ RMSE | MAE [ RMSE | MAE | RMSE | MAE | RMSE

eFreeNet v 50.37 | 56.83 | 30.45 | 35.59 | 16.97 | 19.72 | 49.39 | 57.26
PSGCNet v 39.36 | 54.13 | 49.51 | 77.05 | 11.56 | 16.43 | 28.74 | 46.22
PSGCNet v 37.63 | 5246 | 32.58 | 52.38 | 12.09 | 16.96 | 22.47 | 39.99
ASPDNet v 41.28 | 53.62 | 46.31 | 75.18 | 11.31 | 15.60 | 26.86 | 40.17
ASPDNet v 37.25 | 52.26 | 35.02 | 63.90 | 11.37 | 16.11 | 22.11 | 39.37
SI-INR v 24.30 | 28.09 8.85 11.91 7.96 11.29 | 21.89 | 30.47

4.3 Ablation studies

In this section, we evaluate the effect of each constituting component, test the sensitivity of
the counting performance of our SI-INR model with respect to Sampling Rate Syygr. We
further discuss the effect of different scale-equivariant models in Appendix

Effect of constituting components. We conduct ablation experiments to study the effect of
each SI-INR component using the RSOC large-vehicle dataset. The results are reported in
Table We observe progressive counting performance improvement by introducing each
of our model components, which shows that all of the scale-equivariant backbone, hybrid
pyramidal scale module, and INR-decoder help improve the counting accuracy.

Table 4: Contributions of each component (SE-backbone, hybrid pyramidal scale module,
INR-decoder) in SI-INR.

RSOC-Large-vehicle

Method MAE | RMSE

VGG19 20.26 32.75
VGG19+HPSM+INR 14.70 25.74
SE-Backbone+HPSM 15.65 25.43
SE-Backbone+INR 16.28 28.87
SE-Backbone+HPSM+INR | 12.61 21.78
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Table 5: Effect of sampling rate S;yr on object counting in SI-INR.

RSOC-ship RSOC-small-vehicle
MAE | RMSE [ MAE | RMSE

Sinr=8 | 127.14 | 173.21 | 277.50 1017.56
Sinr=16 | 65.49 93.03 | 273.78 1016.11
Sivp=32 | 62.97 | 86.81 | 255.12 821.21
Sinr=64 | 62.26 83.98 | 243.66 731.51
Sinr=128 | 59.76 81.79 | 157.18 306.43

Method

Effect of sampling rate Syygr. We also report the prediction accuracy and include the
predicted density maps by our SI-INR trained with the loss estimated by sampling from the
grids of different size Syyr X Syygr in Table In this section, we evaluate the counting
performance of SI-INR on the RSOC ship and RSOC small-vehicle datasets with S;ygp =
8,16,32,64,128. The results show that SI-INR achieves better counting performance as
SN R increases from 8 to 128. This effect is particularly pronounced for the RSOC small-
vehicle dataset, where the sampling ratio significantly impacts counting accuracy. Since
the targets are very small, training with a higher sampling ratio helps the model more
accurately locate the vehicles. Besides, this continuous property helps make it easy to
balance the computation costs and the counting accuracy requirement. We further visualize
several results in Appndix

5 Conclusions

In this paper, we introduce SI-INR, a novel scale-invariant INR implementation that maps
discrete grid image signals into continuous 2D function space, maintaining invariance to scal-
ing variation of the input signals. For object counting, SI-INR achieves SOTA performance,
our experiments demonstrate that SI-INR is exceptionally robust and flexible compared to
existing methods, capable of processing images of unseen resolutions during testing and ef-
fectively handling images of various scales during training. This flexibility allows SI-INR to
learn and capture more detailed features from different input training images. SI-INR can
be easily applied to other image analysis tasks to achieve arbitrary-scale SOTA performance
robustly with respect to input image size/resolution. Future work will focus on applying
SI-INR to multi-task scenarios, integrating object detection, image segmentation, and depth
estimation alongside counting.

6 Reproducibility Statement

We have ensured the reproducibility of our experiments by providing detailed descriptions of
the model architectures, data augmentation steps, training procedures and hyperparameters
setup in Section The datasets are introduced in Appendix[B.1] For baseline models, we
also give training details and hyperparameter configurations in Appendix[B.2} Additionally,
the code is included in the Supplementary Material and will be made publicly available in
a repository to support further verification and replication by other researchers.
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A Supplementary information of model construction

A.1 Scale equivariance and invariance

Consider a Scale-Translation Group consisting of a Scaling Group Gg and a Translation
Group Gr, H = {h = (s,t)|s € Gg,t € Gr}, where h denotes an element of H and rep-
resents one scale-translation operator, Gg denotes the Scaling Group, which accounts for
transformations that scale an object or function, and G denotes the Translation Group,
which handles shifting the object or function within its domain. Besides, s is the scaling pa-
rameter, indicating how the input is stretched or compressed; t is the translation parameter,
specifying the shifting in the domain.

From the group theory, given an image I, € V1, a mapping ® : V; — V5 is scale-equivariant
if:

®(p1(h)(1a)) = p2(h)(2(la)), (12)

where V3 denotes the output domain, p;(-) and pa(-) denote the corresponding group actions
of h acting on Vi, V4. If pa(h) is the identity mapping, the mapping @ is scale-invariant.

A.2 Scale-translation equivariance of SESN

Consider a steerable convolution filter (Sosnovik et al.,[2019), ¢, (z) = m~ p(m~1z), which
has the following property:

PsT)(em) (@) = om(sz) = 571 0s-1m (@), (13)
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where p(s) denotes the group action of s on convolution filters. The scaling of this filter is
the transformation of its parameters.

With scale-translation group H and steerable convolution filters ¢,,(-), the group-
equivariant convolution on f can be defined as:

[ %11 o] (5,1) = [5 /T £ (58 p(s,8) ] () dp () dpe ()
=Z/Tf(s',t')1/)sm (s7's/ t/ —t)dt = [f(s,) % tham (s715',2)] (1)

s/

(14)
The proof of translation-equivariance of Equation is as follows:
()] %1 ] (5,1) = Z PO (5,) * o (s715,)] (1)
= Zp ;) * e (s71,)] (1)
(15)
=p(f){Z[f( et et b )
=p(0)[f iH U] (s, 1)
The proof of scale-equivariance of Equation can be obtained:
P(3)If) %11 W) (5.1) = Z (P31 (5, ) % am (s715",)] (2)
= Zp(é) [F (5716 ) *thamram (s71, )] (1)
_ Z ) x st (857157,)] (571) (16)
[f*H Y] (57"s,5711)
= p(3) [f xm Y] (s,1).
Finally, we have the proof of scale-translation equivariance of Equation (14)):
PO *u Y = p3)pOf] x5 Y = p(3) [p(D)[f] 11 Y] an

= p(3)p(d) [f *m ¥m] = p(30) [f %11 Y] -

The summation of two scale-equivariant models is still scale-equivariant by the following
Lemma.

Lemma 1 The summation of two equivariant mappings ®; : V7 — V5, &5 : V; — V5 is still
equivariant.

Proof: For any scale-translation operator h we have:

(@1 + ®2)(p1(h)(1a)) = @1(p1(h)(La)) + P2(p1(h) (L))

= pa()(®@1(1) + pa(h)(@a(1)) = pa(h)(@1 + 3)(1)). D)

A.3 Derivation of the minimization objective L1 5o

Here we detail the process of deriving the minimization objective in Section of the Main
Text.

For a given image I, we define the counting annotation map as Dy = {(m,,, y,)}Y. Where
€ [0,1]? denotes the normalized image-coordinate position of the n-th object, v, = n is
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the corresponding label for each object, and N denotes the total number of labeled objects in
I. Typically, people generate ground truth density maps D9t by convolving this annotation
map with a Gaussian kernel (Fu et al. 2015; Paul Cohen et al., [2017} |Gao et al., |2020]).

Following Ma et al. (2019)), we define y(-) : R? — {1,--- N}, with y(x) as whether the
location x belongs to one of the N objects computed by a prior distribution p(y(-)). The
posterior distribution can be expressed as:

N (5my,, 0%1559)
vazlf\/('; m;,0%1552)

p(y()=n|Dr) = (19)

Based on the definition of ¢Z(-) in Ma et al. (2019), the contribution in the likelihood can
be expressed as follows:

.t 2 N
N( y My, 0 12><2) % ZN(-;mi,U212x2)

() =py() =n|Dy,) x D" ('):ZLNC;mi,a?lzxz) =

=N (my,0%12x2)
(20)

We can find that ¢#'(-) is a Gaussian distribution centered at m,,, and the summation of
cdt(-) equals one.

Thanks to the continuous property of SI-INR, Bayesian counting loss can be represented as:

A N
1
Lpay = A Z [Z(EXNI)S(X) (Cn,a) - ]EXNps(X)(C%t,a)) . (21)

a=1 n=0

where p,(x) is any probability distribution of x. This optimization objective enables our
model to be trained using any existing stochastic optimization algorithm. Without loss of
generality, we can select p(x) as a uniform distribution, x ~ Uniform|0, 1]2.

Besides, we add MAE counting loss into our loss function, the final minimization objective
is:
1A X
Lsi-iNr =7 > {Z o Unif[0,1]2 (Cn,a) = Exmtmitfo,112 (¢5q))
a=1 n=0
N

Z x~Unif[0 1]2 Cn a)) - N)]

B Sumplementary information of experiments

B.1 Data

RSOC  (Gao et all, [2020): The Remote Sensing Object Counting (RSOC) dataset is a
large-scale benchmark specifically designed for counting objects in satellite imagery. It
includes a total of 3,057 images with 286,539 annotated object instances. The dataset is
divided into four distinct subdatasets, each focused on a different object type: Buildings,
Small Vehicles, Large Vehicles, and Ships. The RSOC Buildings dataset contains 1,205
training images and 1,263 test images, where the image resolution is 512 x 512. The RSOC
Small Vehicles dataset has 222 training images and 58 test images. The image resolution
ranges from 421 x 799 to 12029 x 5014. Large Vehicles consists of 108 training images
and 64 test images, The image resolution ranges from 731 x 596 to 6327 x 5662. And the
Ships subset has 97 training images and 60 test images. The image resolution ranges from
606 x 1065 to 6335 x 3591.

CARPK  (Hsieh et all |2017): The Car Parking Lot Dataset (CARPK) is a benchmark

for car counting tasks, consisting of 1,148 images taken from drone perspectives over four
parking lots, containing 89,777 annotated cars. These images capture real-world scenarios

17



Under review as a conference paper at ICLR 2025

Figure 4: Example images from the RSOC dataset.

with dense vehicle arrangements, making the dataset challenging for object detection and
counting tasks. The average resolution of the images is 1280 x 720 pixels, providing detailed
aerial views. Each image is annotated with bounding boxes around individual cars, making
the dataset suitable for both object counting and detection. The dataset is split into 989
training images and 459 testing images.

PUCPR+  (Hsieh et al, [2017): The Pontifical Catholic University of Parana+
Dataset (PUCPR+) is a specialized car counting resource where all images are captured
from the 10th floor of a building. PUCOR+ contains 125 images with 16,456 cars, where
100 images are set for training, while the remaining images are utilized for testing the
models.

Visualization We further provide several exemplar images from RSOC datasets in Figure
[ It can be found that the objects within the same image naturally appear of similar
size. However, remote sensing datasets, including RSOC, encompass images with a wide
range of resolutions. As a result, object sizes vary significantly across different images, even
if they appear uniform within a single image. Furthermore, we resize images to various
resolutions to evaluate robustness to scale variability which further increases the range of
scale differences across different images in our experiments. In Figure 4, the top-left two
images are both from the RSOC large-vehicle dataset, clearly showing that the cars in the
second image are three times larger than those in the first image. Similarly, the bottom-left
two images, from the RSOC small-vehicle dataset, highlight the differences in visibility: cars
are clearly seen in the first image but are almost invisible in the second.

B.2 Baselines

In this section, we delve into the training specifics for all baseline models utilized in our
experiments.

ASPDNet : ASPDNet is an advanced attention-based network that in-
tegrates scale pyramids and deformable convolutions to effectively utilize attention mecha-
nisms. This architecture captures extensive contextual and high-level semantic information,
which aids in reducing the impact of cluttered backgrounds while emphasizing the regions of
interest. In our study, we follow its original network design, set the batch size as 16, replace
the original Stochastic Gradient Descent (SGD) optimizer with ADAM (Kingma & Ba),2014)
optimizer, and set the learning rate as le — 4 to enhance the training results. Our training
spans 200 epochs. ASPDNet is trained under MSE counting and Bayes counting
respectively to get the best counting performance.
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Figure 5: Predicted deﬁs1ty maps by SI- INR and other baselines for two test 1mages from
RSOC. Two test images are rescaled to 102 x 102, 153 x 153, 205 x 205, 256 x 256, 307 x 307
before fed into the models.

PSGCNet  (Gao et all [2022): PSGCNet integrates pyramidal scale and global context
modules to handle scale variations of remote sensing images. We follow the network setup,
setting the learning rate as le — 4, and using a batch size of 16. We trained PSGCNet with
original Bayesian-based counting loss and MSE respectively. Our training spans 200 epochs.

eFreeNet  (Huang et al) 2023): The eFreeNet is an ensemble of first-rank-then-estimate
networks that tailors a ranking metric optimization scheme to fit object counting. The study
employs the default network architecture. In the optimization setup, we set the backbone’s
learning rate as le — 5 while 1le — 5 for other components following the original setup. The
ensemble number is set as 8 to get the best counting performance. Our training spans 3000
epochs with a batch size of 8.

B.3 Additional qualitative results

We provide additional qualitative results here. For the figures from the RSOC building
dataset, two test images are rescaled to 102 x 102, 153 x 153, 205 x 205, 256 x 256, and
307 x 307 before being input into the models. The results in Figure [5| highlight not only
the counting accuracy of our model but also its robustness and ability to handle inputs of
varying resolutions.

B.4 Effect of different Scale-equivariant models

In our experiments, we test SESC (Sosnovik et al.,2019) and scale-equivariant Fourier lay-
ers (Rahman & Yehl [2023) in SI-INR, Compared with SESC, scale-equivariant Fourier layers
demand more computational resources, especially processing images over 512 resolutions.
On the RSOC building dataset, training one epoch for SI-INR with SESC takes 161 seconds,
compared with ASPDNet’s 167 seconds and PSGCNet’s 121 seconds. However, SI-INR with
scale-equivariant Fourier layers takes more than 900 seconds, which is close to one order of
magnitude more costly.

B.5 Comparison on UCF-QNRF dataset

We compare our SI-INR with state-of-the-art methods as well as our baselines on the UCF-
QNRF (University of Central Florida - Qatar National Research Fund) dataset
, which is a highly diverse dataset consisting of 1,535 images with over 1.2 million
annotated individuals, spanning a wide range of crowd densities and changing object sizes.
We report the results in Table [6]
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Table 6: Performance Comparison on the UCF-QNRF Dataset

Model MAE | RMSE
MMNet (Dong et al}[2020) | 104.00 | 178.00
MSFFA (L et al}, [2023) 94.60 | 170.60
MFANet (Zhu et al.} 2021) 97.7 | 166.00
CLTR (Liang et al} [2022) 85.80 | 141.30

Bayesian+ (Ma et al.,[2019) 83.70 | 154.80
P2PNet (Song et al., |2021) 85.32 | 154.50
GauNet (Cheng et al}2022) | 81.60 | 153.71
APGCC (Chen et al., [2025) 80.10 | 136 .60
PSL-Net (Ryu & Song} [2024) | 85.50 | 144.40

PET (Liu ct al} 2023 79.53 | 144.32
PSGCNet (Baseline) 86.30 | 149.50
ST-INR (Ours) 80.89 | 134.73

The reported results indicate that SI-INR achieves competitive performance, with a Mean
Absolute Error (MAE) of 80.89 and a Root Mean Squared Error (RMSE) of 134.73. Ad-
ditionally, Compared with existing density map based methods, such as Bayesian+ (Ma]
Bt all, 2019), GauNet (Cheng et all [2022), and our baseline PSGCNet (Gao et all, [2022),
SI-INR demonstrates consistent improvements in both metrics. These results highlight the
effectiveness of our proposed approach.

B.6 Effect of different methods for handling multi-scale challenges

For efficiency and adaptability, scale-equivariant methods adjust to different scales without
having separate filters for each scale, unlike traditional methods that may rely on resizing
inputs or using multiple filters for different scales. Many traditional multi-scale methods,
such as image pyramids or multi-resolution networks, may struggle with high computational
costs because they process the same image at multiple resolutions, leading to increased
complexity especially with large images or when handling many scales. Besides, traditional
multi-scale approaches do not focus on deriving scale-invariant outputs compared with our
SI-INR.

In our experiment, we have compared our SI-INR with four SOTA methods (PSGCNet (Gao
Bt all, [2022), MMNet (Dong et all [2020), MFANet (Zhu et all [2021), MSFFA (Li et al
2023)) that mainly focus on handling multi-scale challenges. PSGCNet applies a pyramidal
network to handle multi-scale challenges, MMNet leverages multi-level density-based spatial
information, MFANet introduces multi-level feature aggregation, and MSFFA integrates
multi-scale feature fusion and attention mechanisms. As we report in Table [} our SI-INR
outperforms these methods on the UCF-QNRF crowd-counting dataset, which demonstrates
its superior performance in handling objects of different sizes.

B.7 Visualization of different sampling rate S;ygr of SI-INR

To further demonstrate the effect of sample rate Syygr of SI-INR, we visualize SI-INR’s
outputs when setting the sample rate from 8 to 128 in the Figure [f] In this ablation
experiment, we let the well-trained SI-INR model directly generate 5 different resolution
density maps, we can find that SI-INR can generate high-quality density maps when the
sample rate sampling rate S;yp increases.
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Flgure 6: Predicted density maps by SI-INR with different sampling rate Sy rg.

21



	Introduction
	Related Work
	Method
	Problem statement
	Scale-Invariant Implicit Neural Representations
	Model Components
	SESN and Deep neural operator based Realization

	Training with Regional Sampling

	Experiments
	Experimental Setup
	Main Results
	Ablation studies

	Conclusions
	Reproducibility Statement
	Supplementary information of model construction
	Scale equivariance and invariance
	Scale-translation equivariance of SESN
	Derivation of the minimization objective LELBO

	Sumplementary information of experiments
	Data
	Baselines
	Additional qualitative results
	Effect of different Scale-equivariant models
	Comparison on UCF-QNRF dataset
	Effect of different methods for handling multi-scale challenges
	Visualization of different sampling rate SINR of SI-INR


