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ABSTRACT

This paper proposes SplitSGD, a new dynamic learning rate schedule for stochastic
optimization. This method decreases the learning rate for better adaptation to the
local geometry of the objective function whenever a stationary phase is detected,
that is, the iterates are likely to bounce at around a vicinity of a local minimum.
The detection is performed by splitting the single thread into two and using the
inner product of the gradients from the two threads as a measure of stationarity.
Owing to this simple yet provably valid stationarity detection, SplitSGD is easy-
to-implement and essentially does not incur additional computational cost than
standard SGD. Through a series of extensive experiments, we show that this
method is appropriate for both convex problems and training (non-convex) neural
networks, with performance compared favorably to other stochastic optimization
methods. Importantly, this method is observed to be very robust with a set of default
parameters for a wide range of problems and, moreover, yields better generalization
performance than other adaptive gradient methods such as Adam.

1 INTRODUCTION

Many machine learning problems boil down to finding a minimizer ✓⇤ 2 Rd of a risk function taking
the form

F (✓) = E [f(✓, Z)] , (1)
where f denotes a loss function, ✓ is the model parameter, and the random data point Z = (X, y)
contains a feature vector X and its label y. In the case of a finite population, for example, this
problem is reduced to the empirical minimization problem. The touchstone method for minimizing
(1) is stochastic gradient descent (SGD). Starting from an initial point ✓0, SGD updates the iterates
according to

✓t+1 = ✓t � ⌘t · g(✓t, Zt+1) (2)
for t � 0, where ⌘t is the learning rate, {Zt}1t=1 are i.i.d. copies of Z and g(✓, Z) is the (sub-)
gradient of f(✓, Z) with respect to ✓. The noisy gradient g(✓, Z) is an unbiased estimate for the true
gradient rF (✓) in the sense that E [g(✓, Z)] = rF (✓) for any ✓.

The convergence rate of SGD crucially depends on the learning rate—often recognized as “the
single most important hyper-parameter” in training deep neural networks (Bengio, 2012)—and,
accordingly, there is a vast literature on how to decrease this fundamental tuning parameter for
improved convergence performance. In the pioneering work of Robbins and Monro (1951), the
learning rate ⌘t is set to O(1/t) for convex objectives. Later, it was recognized that a slowly decreasing
learning rate in conjunction with iterate averaging leads to a faster rate of convergence for strongly
convex and smooth objectives (Ruppert, 1988; Polyak and Juditsky, 1992). More recently, extensive
effort has been devoted to incorporating preconditioning/Hessians into learning rate selection rules
(Duchi et al., 2011; Dauphin et al., 2015; Tan et al., 2016). Among numerous proposals, a simple yet
widely employed approach is to repeatedly halve the learning rate after performing a pre-determined
number of iterations (see, for example, Bottou et al., 2018).

In this paper, we introduce a new variant of SGD that we term SplitSGD with a novel learning rate
selection rule. At a high level, our new method is motivated by the following fact: an optimal learning
rate should be adaptive to the informativeness of the noisy gradient g(✓t, Zt+1). Roughly speaking,
the informativeness is higher if the true gradient rF (✓t) is relatively large compared with the noise
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rF (✓t)� g(✓t, Zt+1) and vice versa. On the one hand, if the learning rate is too small with respect
to the informativeness of the noisy gradient, SGD makes rather slow progress. On the other hand, the
iterates would bounce around a region of an optimum of the objective if the learning rate is too large
with respect to the informativeness. The latter case corresponds to a stationary phase in stochastic
optimization (Murata, 1998; Chee and Toulis, 2018), which necessitates the reduction of the learning
rate for better convergence. Specifically, let ⇡⌘ be the stationary distribution for ✓ when the learning
rate is constant and set to ⌘. From (2) one has that E✓⇠⇡⌘ [g(✓, Z)] = 0, and consequently that

E[hg(✓(1), Z(1)), g(✓(2), Z(2))i] = 0 for ✓
(1)

, ✓
(2) i.i.d.⇠ ⇡⌘, Z

(1)
, Z

(2) i.i.d.⇠ Z (3)

Figure 1: Normalized dot product of averaged
noisy gradients over 100 iterations. Stationar-
ity depends on the learning rate: ⌘ = 1 corre-
sponds to stationarity (purple), while ⌘ = 0.1
corresponds to non stationarity (orange). De-
tails in Section 2.

SplitSGD differs from other stochastic optimization
procedures in its robust stationarity phase detection,
which we refer to as the Splitting Diagnostic. In short,
this diagnostic runs two SGD threads initialized at the
same iterate using independent data points (refers to
Zt+1 in (2)), and then performs hypothesis testing to
determine whether the learning rate leads to a station-
ary phase or not. The effectiveness of the Splitting
Diagnostic is illustrated in Figure 1, which reveals
different patterns of dependence between the two
SGD threads with difference learning rates. Loosely
speaking, in the stationary phase (in purple), the two
SGD threads behave as if they are independent due to
a large learning rate, and SplitSGD subsequently de-
creases the learning rate by some factor. In contrast,
strong positive dependence is exhibited in the non
stationary phase (in orange) and, thus, the learning
rate remains the same after the diagnostic. In essence,
the robustness of the Splitting Diagnostic is attributed
to its adaptivity to the local geometry of the objec-
tive, thereby making SplitSGD a tuning-insensitive
method for stochastic optimization. Its strength is

confirmed by our experimental results in both convex and non-convex settings. In the latter, SplitSGD
showed robustness with respect to the choice of the initial learning rate, and remarkable success in
improving the test accuracy and avoiding overfitting compared to classic optimization procedures.

1.1 RELATED WORK

There is a long history of detecting stationarity or non-stationarity in stochastic optimization to
improve convergence rates (Yin, 1989; Pflug, 1990; Delyon and Juditsky, 1993; Murata, 1998; Pesme
et al., 2020). Perhaps the most relevant work in this vein to the present paper is Chee and Toulis
(2018), which builds on top of Pflug (1990) for general convex functions. Specifically, this work uses
the running sum of the inner products of successive stochastic gradients for stationarity detection.
However, this approach does not take into account the strong correlation between consecutive
gradients and, moreover, is not sensitive to the local curvature of the current iterates due to unwanted
influence from prior gradients. In contrast, the splitting strategy, which is akin to HiGrad (Su and
Zhu, 2018), allows our SplitSGD to concentrate on the current gradients and leverage the regained
independence of gradients to test stationarity. Lately, Yaida (2019) and Lang et al. (2019) derive a
stationarity detection rule that is based on gradients of a mini-batch to tune the learning rate in SGD
with momentum.

From a different angle, another related line of work is concerned with the relationship between the
informativeness of gradients and the mini-batch size (Keskar et al., 2016; Yin et al., 2017; Li et al.,
2017; Smith et al., 2017). Among others, it has been recognized that the optimal mini-batch size
should be adaptive to the local geometry of the objective function and the noise level of the gradients,
delivering a growing line of work that leverage the mini-batch gradient variance for learning rate
selection (Byrd et al., 2012; Balles et al., 2016; Balles and Hennig, 2017; De et al., 2017; Zhang and
Mitliagkas, 2017; McCandlish et al., 2018).
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Figure 2: The architecture of SplitSGD. The initial learning rate is ⌘ and the length of the first single
thread is t1. If the diagnostic does not detect stationarity, the length and learning rate of the next
thread remain unchanged. If stationarity is observed, we decrease the learning rate by a factor � and
proportionally increase the length.

2 THE SPLITSGD ALGORITHM

In this section, we first develop the Splitting Diagnostic for stationarity detection, followed by the
introduction of the SplitSGD algorithm in detail.

2.1 DIAGNOSTIC VIA SPLITTING

Intuitively, the stationarity phase occurs when two independent threads with the same starting point
are no longer moving along the same direction. This intuition is the motivation for our Splitting
Diagnostic, which is presented in Algorithm 1 and described in what follows. We call ✓0 the initial
value, even though later it will often have a different subscript based on the number of iterations
already computed before starting the diagnostic. From the starting point, we run two SGD threads,
each consisting of w windows of length l. For each thread k = 1, 2, we define g

(k)
t = g(✓(k)t , Z

(k)
t+1)

and the iterates are
✓
(k)
t+1 = ✓

(k)
t � ⌘ · g(k)t , (4)

where t 2 {0, ..., wl � 1}. On every thread we compute the average noisy gradient in each window,
indexed by i = 1, ..., w, which is

ḡ
(k)
i :=

1

l

lX

j=1

g
(k)
(i�1)·l+j =

✓
(k)
(i�1)·l+1 � ✓

(k)
i·l+1

l · ⌘ . (5)

The length l of each window has the same function as the mini-batch parameter in mini-batch SGD
(Li et al., 2014), in the sense that a larger value of l aims to capture more of the true signal by
averaging out the errors. At the end of the diagnostic, we have stored two vectors, each containing
the average noisy gradients in the windows in each thread.
Definition 2.1. For i = 1, ..., w, we define the gradient coherence with respect to the starting point
of the Splitting Diagnostic ✓0, the learning rate ⌘, and the length of each window l, as

Qi(✓0, ⌘, l) = hḡ(1)i , ḡ
(2)
i i. (6)

We will drop the dependence from the parameters and refer to it simply as Qi.

The gradient coherence expresses the relative position of the average noisy gradients, and its sign
indicates whether the SGD updates have reached stationarity. In fact, if in the two threads the noisy
gradients are pointing on average in the same direction, it means that the signal is stronger than
the noise, and the dynamic is still in its transient phase. On the contrary, as (3) suggests, when the
gradient coherence is on average very close to zero, and it also assumes negative values thanks to its
stochasticity, this indicates that the noise component in the gradient is now dominant, and stationarity
has been reached. Of course these values, no matter how large l is, are subject to some randomness.
Our diagnostic then considers the signs of Q1, ..., Qw and returns a result based on the proportion of
negative Qi. One output is a boolean value TD, defined as follows:

TD =

(
S if

Pw
i=1(1� sign (Qi))/2 � q · w

N if
Pw

i=1(1� sign (Qi))/2 < q · w.
(7)

where TD = S indicates that stationarity has been detected, and TD = N means non-stationarity.
The parameter q 2 [0, 1] controls the tightness of this guarantee, being the smallest proportion of
negative Qi required to declare stationarity. In addition to TD, we also return the average last iterate
of the two threads as a starting point for following iterations. We call it ✓D := (✓(1)w·l + ✓

(2)
w·l)/2.
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2.2 THE ALGORITHM

Algorithm 1 SplitSGD
SplitSGD(⌘, w, l, q, B, t1, ✓0, �)

1: ⌘1 = ⌘

2: ✓
in
1 = ✓0

3: for b = 1, ..., B do
4: Run SGD with constant step size ⌘b for

tb steps, starting from ✓
in
b

5: Let the last update be ✓
last
b

6: Db = Diagnostic(⌘b, w, l, q, ✓lastb )
7: ✓

in
b+1 = ✓Db

8: if TDb = S then
9: ⌘b+1 = � · ⌘b and tb+1 = btb/�c

10: else
11: ⌘b+1 = ⌘b and tb+1 = tb

12: end if
13: end for

Diagnostic(⌘, w, l, q, ✓in)
14: ✓

(1)
0 = ✓

(2)
0 = ✓

in

15: for i = 1, ..., w do
16: for k = 1, 2 do
17: for j = 0, ..., l � 1 do
18: ind = (i� 1) · l + j

19: ✓
(k)
ind+1 = ✓

(k)
ind � ⌘ · g(k)ind

20: end for
21: ḡ

(k)
i = (✓(k)(i�1)·l+1 � ✓

(k)
i·l )/l · ⌘.

22: end for
23: Qi = hḡ(1)i , ḡ

(2)
i i

24: end for
25: if

Pw
i=1(1� sign (Qi))/2 � q · w then

26: return
n
✓D = (✓(1)w·l + ✓

(2)
w·l)/2, TD = S

o

27: else
28: return

n
✓D = (✓(1)w·l + ✓

(2)
w·l)/2, TD = N

o

29: end if

The Splitting Diagnostic can be employed in a
more sophisticated SGD procedure, which we
call SplitSGD. We start by running the standard
SGD with constant learning rate ⌘ for t1 itera-
tions. Then, starting from ✓t1 , we use the Split-
ting Diagnostic to verify if stationarity has been
reached. If stationarity is not detected, the next
single thread has the same length t1 and learn-
ing rate ⌘ as the previous one. On the contrary,
if TD = S, we decrease the learning rate by
a factor � 2 (0, 1) and increase the length of
the thread by 1/�, as suggested by Bottou et al.
(2018) in their SGD1/2 procedure. Notice that,
if q = 0, then the learning rate gets determin-
istically decreased after each diagnostic. On
the other extreme, if we set q = 1, then the
procedure maintains constant learning rate with
high probability. Figure 2 illustrates what hap-
pens when the first diagnostic does not detect
stationarity, but the second one does. SplitSGD
puts together two crucial aspects: it employs the
Splitting Diagnostic at deterministic times, but it
does not deterministically decreases the learning
rate. We will see in Section 4 how both of these
features come into play in the comparison with
other existing methods. A detailed explanation
of SplitSGD is presented in Algorithm 1.

3 THEORETICAL GUARANTEES
FOR STATIONARITY DETECTION

This section develops theoretical guarantees for
the validity of our learning rate selection. Specif-
ically, in the case of a relatively small learning
rate, we can imagine that, if the number of iter-
ations is fixed, the SGD updates are not too far
from the starting point, so the stationary phase
has not been reached yet. On the other hand,

however, when t ! 1 and the learning rate is fixed, we would like the diagnostic to tell us that we
have reached stationarity, since we know that in this case the updates will oscillate around ✓

⇤. Our
first assumption concerns the convexity of the function F (✓). It will not be used in Theorem 3.1, in
which we focus our attention on a neighborhood of ✓0.
Assumption 3.1. The function F is strongly convex, with convexity constant µ > 0. For all ✓1, ✓2,

F (✓1) � F (✓2) + hrF (✓2), ✓1 � ✓2i+
µ

2
k✓1 � ✓2k2

and also krF (✓1)�rF (✓2)k � µ · k✓1 � ✓2k.
Assumption 3.2. The function F is smooth, with smoothness parameter L > 0. For all ✓1, ✓2,

krF (✓1)�rF (✓2)k  L · k✓1 � ✓2k.

We said before that the noisy gradient is an unbiased estimate of the true gradient. The next assumption
that we make is on the distribution of the errors.
Assumption 3.3. We define the error in the evaluation of the gradient in ✓t�1 as

✏t := ✏(✓t�1, Zt) = g(✓t�1, Zt)�rF (✓t�1) (8)
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Figure 3: Histogram of the gradient coherence Qi (for the second pair of windows, normalized) of
the Splitting Diagnostic for linear and logistic regression. The two left panels show the behavior in
Theorem 3.1, the two right panels the one in Theorem 3.2. In orange we see non stationarity, while in
purple a distribution that will return stationarity for an appropriate choice of w and q.

and the filtration Ft = �(Z1, ..., Zt). Then ✏t 2 Ft and {✏t}1t=1 is a martingale difference sequence
with respect to {Ft}1t=1, which means that E[✏t|Ft�1] = 0. The covariance of the errors satisfies

�min · I � E
⇥
✏t✏

T
t | Ft�1

⇤
� �max · I, (9)

where 0 < �min  �max < 1 for any ✓.

Our last assumption is on the noisy functions f(✓, Z) and on an upper bound on the moments of their
gradient. We do not specify m here since different values are used in the next two theorems, but the
range for this parameter is m 2 {2, 4}.
Assumption 3.4. Each function f(✓, Z) is convex, and there exists a constant G such that
E [kg(✓t, Zt+1)km | Ft]  G

m for any ✓t.

We first show that there exists a learning rate sufficiently small such that the standard deviation of any
gradient coherence Qi is arbitrarily small compared to its expectation, and the expectation is positive
because ✓t1+l is not very far from ✓0. This implies that the probability of any gradient coherence to
be negative, P(Qi < 0), is extremely small, which means that the Splitting Diagnostic will return
TD = N with high probability.
Theorem 3.1. If Assumptions 3.2, 3.3 and 3.4 with m = 4 hold, krF (✓0)k > 0 and we run t1

iterations before the Splitting Diagnostic, then for any i 2 {1, ..., w} we can set ⌘ small enough to
guarantee that

sd(Qi)  C1(⌘, l) · E [Qi] ,

where C1(⌘, l) = O(1/
p
l) +O(

p
⌘(t1 + l)). Proof in Appendix B.

In the two left panels of Figure 3 we provide a visual interpretation of this result. When the starting
point of the SGD thread is sufficiently far from the minimizer ✓⇤ and ⌘ is sufficiently small, then
all the mass of the distribution of Qi is concentrated on positive values, meaning that the Splitting
Diagnostic will not detect stationarity with high probability. In particular we can use Chebyshev
inequality to get a bound for P(Qi < 0) of the following form:

P(Qi < 0)  P(|Qi � E[Qi]| > E[Qi])  sd(Qi)
2
/E[Qi]

2  C1(⌘, l)
2

Note that to prove Theorem 3.1 we do not need to use the strong convexity Assumption 3.1 since,
when ⌘(t1 + l) is small, ✓t1+l is not very far from ✓0. In the next Theorem we show that, if we let the
SGD thread before the diagnostic run for long enough and the learning rate is not too big, then the
splitting diagnostic output is TD = S probability that can be made arbitrarily high. This is consistent
with the fact that, as t1 ! 1, the iterates will start oscillating in a neighborhood of ✓⇤.
Theorem 3.2. If Assumptions 3.1, 3.2, 3.3 and 3.4 with m = 2 hold, then for any ⌘  µ

L2 , l 2 N
and i 2 {1, ..., w}, as t1 ! 1 we have

|E [Qi]|  C2(⌘) · sd(Qi),

where C2(⌘) = C2 · ⌘ + o(⌘). Proof in Appendix C.

The result of this theorem is confirmed by what we see in the right panels of Figure 3. There, most
of the mass of Qi is on positive values if t1 = 0, since the learning rate is sufficiently small and the
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Figure 4: (left) comparison between Splitting and pflug Diagnostics on linear and logistic regression.
The red bands are the epochs where stationarity should be detected. (right) comparison of the log(loss)
achieved after 100 epochs between SplitSGD, SGD1/2 (Half) and SGD with constant or decreasing
learning rate on linear and logistic regression. More details are in Section 4.1.

starting point is not too close to the minimizer. But when we let the first thread run for longer, we
see that the distribution of Qi is now centered around zero, with an expectation that is much smaller
than its standard deviation. An appropriate choice of w and q makes the probability that TD = S

arbitrarily big. In the proof of Theorem 3.2, we make use of a result that is contained in Moulines
and Bach (2011) and then subsequently improved in Needell et al. (2014), representing the dynamic
of SGD with constant learning rate.
Lemma 3.3. If Assumptions 3.1, 3.2, 3.3 and 3.4 with m = 2 hold, and ⌘  µ

L2 , then for any t � 0

E
⇥
k✓t � ✓

⇤k2
⇤


�
1� 2⌘(µ� L

2
⌘)
�t · E

⇥
k✓0 � ✓

⇤k2
⇤
+

G
2
⌘

µ� L2⌘
.

The simulations in Figure 3 show us that, once stationarity is reached, the distribution of the gradient
coherence is fairly symmetric and centered around zero, so its sign will be approximately a coin
flip. In this situation, if l is large enough, the count of negative gradient coherences is approximately
distributed as a Binomial with w number of trials, and 0.5 probability of success. Then we can set q
to control the probability of making a type I error – rejecting stationarity after it has been reached –
by making 1

2w
Pq·w�1

i=0

�w
i

�
sufficiently small. Notice that a very small value for q makes the type

I error rate decrease but makes it easier to think that stationarity has been reached too early. In the
Appendix E.1 we provide a simple visual interpretation to understand why this trade-off gets weaker
as w becomes larger. Finally, we provide a result on the convergence of SplitSGD. We leave for future
work to prove the convergence rate of SplitSGD, which appears to be a very challenging problem.
Proposition 3.4. If Assumptions 3.1, 3.2, 3.3 and 3.4 with m = 2 hold, and ⌘  µ

L2 , then SplitSGD
is guaranteed to converge with probability tending to 1 as the number of diagnostics B ! 1. Proof
in Appendix D.

4 EXPERIMENTS

4.1 CONVEX OBJECTIVE

The setting is described in details in Appendix E.1. We use a feature matrix X 2 Rn⇥d with standard
normal entries and n = 1000, d = 20 and ✓

⇤
j = 5 · e�j/2 for j = 1, ..., 20. The key parameters are

t1 = 4, w = 20, l = 50 and q = 0.4. A sensitivity analysis is in Section 4.3.

Comparison between splitting and pflug diagnostic. In the left panels of Figure 4 we compare
the Splitting Diagnostic with the pflug Diagnostic introduced in Chee and Toulis (2018). The
boxplots are obtained running both diagnostic procedures from a starting point ✓0 = ✓s + ✏

0, where
✏
0 ⇠ N(0, 0.01Id) is multivariate Gaussian and ✓s has the same entries of ✓⇤ but in reversed order,

so ✓s,j = 5 · e�(d�j)/2 for j = 1, ..., 20. Each experiment is repeated 100 times. For the Splitting
Diagnostic, we run SplitSGD and declare that stationarity has been detected at the first time that a
diagnostic gives result TD = S, and output the number of epochs up to that time. For the pflug
diagnostic, we stop when the running sum of dot products used in the procedure becomes negative at
the end of an epoch. The maximum number of epochs is 1000, and the red horizontal bands represent

6



Under review as a conference paper at ICLR 2021

Figure 5: Performance of SGD, Adam, FDR and SplitSGD in training different neural networks.
SplitSGD proved to be beneficial in (i) better robustness to the choice of initial learning rates, (ii)
achieving higher test accuracy when possible, and (iii) reducing the effect of overfitting. Details of
each plot are in Section 4.2.

the approximate values for when we can assume that stationarity has been reached, based on when the
loss function of SGD with constant learning rate stops decreasing. We can see that the result of the
Splitting Diagnostic is close to the truth, while the pflug Diagnostic incurs the risk of waiting for
too long, when the initial dot products of consecutive noisy gradients are positive and large compared
to the negative increments after stationarity is reached. The Splitting Diagnostic does not have this
problem, as a checkpoint is set every fixed number of iterations. The previous computations are then
discarded, and only the new learning rate and starting point are stored. In Appendix E.2 we show
more configurations of learning rates and starting points.

Comparison between SplitSGD and other optimization procedures. Here we set the decay rate
to the standard value � = 0.5, and compare SplitSGD with SGD with constant learning rate ⌘, SGD
with decreasing learning rate ⌘t / 1/

p
t (where the initial learning rate is set to 20⌘), and SGD1/2

(Bottou et al., 2018), where the learning rate is halved deterministically and the length of the next
thread is double that of the previous one. For SGD1/2 we set the length of the initial thread to be
t1, the same as for SplitSGD. In the right panels of Figure 4 we report the log of the loss that we
achieve after 100 epochs for different choices of the initial learning rate. It is clear that keeping the
learning rate constant is optimal when its initial value is small, but becomes problematic for large
initial values. On the contrary, deterministic decay can work well for larger initial learning rates but
performs poorly when the initial value is small. Here, SplitSGD shows its robustness with respect to
the initial choice of the learning rate, performing well on a wide range of initial learning rates.

4.2 DEEP NEURAL NETWORKS

To train deep neural networks, instead of using the simple SGD with a constant learning rate inside the
SplitSGD procedure, we adopt SGD with momentum (Qian, 1999), where the momentum parameter
is set to 0.9. SGD with momentum is a popular choice in training deep neural networks (Sutskever
et al., 2013), and when the learning rate is constant, it still exhibits both transient and stationary phase.
We introduce three more differences with respect to the convex setting: (i) the gradient coherences
are defined for each layer of the network separately, then counted together to globally decay the
learning rate for the whole network, (ii) the length of the single thread is not increased if stationarity
is detected, and (iii) we consider the default parameters q = 0.25 and w = 4 for each layer. We
expand on these differences in Appendix E.3. As before, the length of the Diagnostic is set to be
one epoch, and t1 = 4. We compare SplitSGD with SGD with momentum, Adam (Kingma and Ba,
2014) and FDR (Yaida, 2019) with different learning rates, and report the ones that show the best
results. Notice that, although ⌘ = 3e�4 is the popular default value for Adam, this method is still
sensitive to the choice of the learning rate, so the best performance can be achieved with other values.
For FDR, we tested each setting with the parameter t_adaptive 2 {100, 1000}, which gave similar
results. It has also been proved that SGD generalizes better than Adam (Keskar and Socher, 2017;
Luo et al., 2019). We show that in many situations SplitSGD, using the same default parameters, can
outperform both. In Figure 5 we report the average results of 5 runs. In Figure 10 in the appendix we
consider the same plot but also add 90% confidence bands, omitted here for better readability.
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Convolutional neural networks (CNNs). We consider a CNN with two convolutional lay-
ers and a final linear layer trained on the Fashion-MNIST dataset (Xiao et al., 2017). We
set ⌘ 2 {1e�2, 3e�2, 1e�1} for SGD and SplitSGD, ⌘ 2 {1e�2, 1e�1} for FDR and ⌘ 2
{3e�4, 1e�3, 3e�3, 1e�2} for Adam. In the first panel of Figure 5 we see the interesting fact
that SGD, FDR and Adam all show clear signs of overfitting, after reaching their peak in the first 20
epochs. SplitSGD, on the contrary, does not incur in this problem, but for a combined effect of the
averaging and learning rate decay is able to reach a better overall performance without overfitting.
We also notice that SplitSGD is very robust with respect to the choice of the initial learning rate, and
that its peak performance is better than the one of any of the competitors.

Residual neural networks (ResNets). For ResNets, we consider a 18-layer ResNet1 and eval-
uate it on the CIFAR-10 dataset (Krizhevsky et al., 2009). We use the initial learning rates
⌘ 2 {1e�3, 1e�2, 1e�1} for SGD and SplitSGD, ⌘ 2 {1e�2, 1e�1} for FDR and ⌘ 2
{3e�5, 3e�4, 3e�3} for Adam, and also consider the SGD procedure with manual decay that
consists in setting ⌘ = 1e�1 and then decreasing it by a factor 10 at epoch 150 and 250. In the
second panel of Figure 5 we clearly see a classic behavior for SplitSGD. The averaging after the
diagnostics makes the test accuracy peak, but the improvement is only momentary as the learning rate
is not decreased. When the decay happens, the peak is maintained and the fluctuations get smaller.
We can see that SplitSGD, with both initial learning rate ⌘ = 1e�2 and ⌘ = 1e�1 is better than
both SGD and Adam and that one setting achieves the same final test accuracy of the manually tuned
method in less epochs. The FDR method is showing excellent performance when ⌘ = 0.01 and a
worse result when ⌘ = 0.1. In Appendix E.4 we see a similar plot obtained with the neural network
VGG19.

Recurrent neural networks (RNNs). For RNNs, we evaluate a two-layer LSTM (Hochreiter
and Schmidhuber, 1997) model on the Penn Treebank (Marcus et al., 1993) language modelling
task. We use ⌘ 2 {0.1, 0.3, 1.0} for both SGD and SplitSGD, ⌘ 2 {0.1, 0.3} for FDR, ⌘ 2
{1e�4, 3e�4, 1e�3} for Adam and also introduce SplitAdam, a method similar to SplitSGD, but
with Adam in place of SGD with momentum. As shown in the third panel of Figure 5, we can see
that SplitSGD outperforms SGD and SplitAdam outperforms Adam with regard to both the best
performance and the last performance. FDR is not showing any improvement compared to standard
SGD, meaning that in this framework it is unable to detect stationarity and decay the learning rate
accordingly. Similar to what already observed with the CNN, we need to note that our proposed
splitting strategy has the advantage of reducing the effect of overfitting, which is very severe for
SGD, Adam and FDR while very small for SplitAdam and SplitSGD. We postpone the theoretical
understanding for this phenomena as our future work.

For the deep neural networks considered here, SplitSGD shows better results compared to SGD and
Adam, and exhibits strong robustness to the choice of initial learning rates, which further verifies
the effectiveness of SplitSGD in deep neural networks. The Splitting Diagnostic is proved to be
beneficial in all these different settings, reducing the learning rate to enhance the test performance
and reduce overfitting of the networks. FDR shows a good result when used on ResNet with a specific
learning rate, but in the other setting is not improving over SGD, suggesting that its diagnostic does
not work on a variety of different scenarios.

4.3 SENSITIVITY ANALYSIS FOR SPLITSGD

In this section, we analyse the impact of the hyper-parameters in the SplitSGD procedure. We focus
on q and w, while l changes so that the computational budget of each diagnostic is fixed at one
epoch. In the left panels of Figure 6 we analyse the sensitivity of SplitSGD to these two parameters
in the convex setting, for both linear and logistic regression, and consider w 2 {10, 20, 40} and
q 2 {0.35, 0.40, 0.45}. The data are generated in the same way as those used in Section 4.1. On
the y-axis we report the log(loss) after training for 100 epochs, while on the x-axis we consider the
different (w, q) configurations. The results are as expected; when the initial learning rate is larger, the
impact of these parameters is very modest. When the initial learning rate is small, having a quicker
decay (i.e. setting q smaller) worsen the performance.

In the right panels of Figure 6 we see the same analysis applied to the FeedForward Neural Network
(FNN) described in Appendix E.4 and the CNN used before, both trained on Fashion-MNIST. Here

1More details can be found in https://pytorch.org/docs/stable/torchvision/models.html.
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Figure 6: Sensitivity analysis for SplitSGD with respect to the parameters w and q, appearing as the
labels of the x-axis in the form (w, q). In the convex setting (left) we consider the log loss achieved
after 100 epochs, while for deep neural networks (right) we report the maximum of the test accuracy.
Details in Section 4.3.

we report the maximum test accuracy achieved when training for 100 epochs, and on the x-axis
we have various configurations for q 2 {0.15, 0, 25, 0.35} and w 2 {2, 4, 8}. The results are very
encouraging, showing that SplitSGD is robust with respect to the choice of these parameters also in
non-convex settings.

5 CONCLUSION AND FUTURE WORK

We have developed an efficient optimization method called SplitSGD, by splitting the SGD thread for
stationarity detection. Extensive simulation studies show that this method is robust to the choice of
the initial learning rate in a variety of optimization tasks, compared to classic non-adaptive methods.
Moreover, SplitSGD on certain deep neural network architectures outperforms classic SGD, Adam
and FDR in terms of the test accuracy, and can sometime limit greatly the impact of overfitting. As the
critical element underlying SplitSGD, the Splitting Diagnostic is a simple yet effective strategy that
can possibly be incorporated into many optimization methods beyond SGD, as we already showed
training SplitAdam on LSTM. One possible limitation of this method is the introduction of a new
relevant parameter q, that regulates the rate at which the learning rate is adaptively decreased. Our
simulations suggest the use of two different values depending on the context. A slower decrease,
q = 0.4, in convex optimization, and a more aggressive one, q = 0.25, for deep learning. In the future,
we look forward to seeing research investigations toward boosting the convergence of SplitSGD by
allowing for different learning rate selection strategies across different layers of the neural networks.
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