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Abstract

Discovering symbolic differential equations from data uncovers fundamental dynamical laws
underlying complex systems. However, existing methods often struggle with the vast search
space of equations and may produce equations that violate known physical laws. In this work,
we address these problems by introducing the concept of symmetry invariants in equation
discovery. We leverage the fact that differential equations admitting a symmetry group
can be expressed in terms of differential invariants of symmetry transformations. Thus, we
propose using these invariants as atomic entities in equation discovery, ensuring the discovered
equations satisfy the specified symmetry. Our approach integrates seamlessly with existing
equation discovery methods such as sparse regression and genetic programming, improving
their accuracy and efficiency. We validate the proposed method through applications to
various physical systems, such as Darcy flow and reaction-diffusion, demonstrating its ability
to recover parsimonious and interpretable equations that respect the laws of physics.

1 Introduction

Differential equations describe relationships between functions representing physical quantities and their
derivatives. They are crucial in modeling a wide range of phenomena, from fluid dynamics and electromagnetic
fields to chemical reactions and biological processes, as they succinctly capture the underlying principles
governing the behavior of complex systems. The discovery of governing equations in symbolic forms from
observational data bridges the gap between raw data and fundamental understanding of physical systems.
Unlike black-box machine learning models, symbolic equations provide interpretable insights into the structure
and dynamics of the systems of interest. In this paper, we aim to discover symbolic partial differential
equations (PDEs) in the form

F(x,u™) =0, (1)

where x denotes the independent variables, (™) consists of the dependent variable u and all of its up-to-nth
order partial derivatives.

While it has long been an exclusive task for human experts to identify governing equations, symbolic regression
(SR) has emerged as an increasingly popular approach to automate the discoveryE] SR constructs expressions
from a predefined set of atomic entities, such as variables, constants, and mathematical operators, and fits the
expressions to data by numerical optimization. Common methods include sparse regression (Brunton et al.)
2016}, |Champion et al.| 2019)), genetic programming (Cranmer et al., 2019; 2020; |Cranmer), 2023)), neural
networks (Kamienny et al.| [2022)), etc.

However, symbolic regression algorithms may fail due to the vastness of the search space or produce more
complex, less interpretable equations that overfit the data. A widely adopted remedy to these challenges is to
incorporate inductive biases derived from physical laws, such as symmetry and conserved quantities, into
equation discovery algorithms. Implementing these physical constraints narrows the space for equations and
expedites the search process, and it also rules out physically invalid or unnecessarily complex equations.

"'While some literature uses symbolic regression specifically for GP-based methods, we use the term interchangeably with
equation discovery to refer to all algorithms for learning symbolic equations.
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Figure 1: Our framework enforces symmetry in equation discovery by using symmetry invariants. We
highlight three discovery algorithms in their original form (bottom row) and when constrained to only use
symmetry invariants (top row). The colored circles visualize the predicted functions on a circular domain and
demonstrate that using symmetry invariants guarantees a symmetric output.

Among the various physical constraints, symmetry plays a fundamental role in physical systems, governing
their invariances under transformations such as rotations, translations, and scaling. Previous research has
shown the benefit of incorporating symmetry in equation discovery, such as reducing the dimensionality of
the search space and promoting parsimony in the discovered equation (Yang et all [2024). However, the
scopes of existing works exploiting symmetry are limited in terms of the types of equations they can handle,
the compatible base algorithms, etc. For example, [Udrescu & Tegmark]| (2020]) deals with algebraic equations;
[Otto et al.| (2023)) deals with ODE systems; [Yang et al| (2024) applies to sparse regression but not other SR
algorithms.

In this paper, we propose a general procedure based on symmetry invariants to enforce the inductive bias of
symmetry with minimal restrictions in the types of equations and SR algorithms. Specifically, we leverage
the fact that a differential equation can be written in terms of the invariants of symmetry transformations
if it admits a certain symmetry group. Thus, instead of operating on the original variables, our method
uses the symmetry invariants as the atomic entities in symbolic regression, as depicted in Figure[I] These
invariants encapsulate the essential information while automatically satisfying the symmetry constraints.
Consequently, the discovered equations are guaranteed to preserve the specified symmetry. In summary, our
main contributions are listed as follows:

o We propose a general framework to enforce symmetry in differential equation discovery based on the
theory of differential invariants.

e Our approach can be easily integrated with existing symbolic regression methods, such as sparse
regression and genetic programming, and improves their accuracy and efficiency for differential
equation discovery.

o We show that our symmetry-based approach is robust in challenging setups in equation discovery,
such as noisy data and imperfect symmetry.

Notations. Throughout the paper, subscripts are usually reserved for partial derivatives, e.g. u; = du/0t,
and ., = 0%u/0x?. Superscripts are used for indexing vector components or list elements. We use Einstein
notation, where repeated indices are summed over. Matrices, vectors and scalars are denoted by capital, bold
and regular letters, respectively, e.g. W, w,w. These conventions may admit exceptions for clarity or context.
See Table [2 for a full description of notations.
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2 Related Works

Symbolic Regression. Given the dataset {(z%,y%)} C X x Y, symbolic regression (SR) aims to model the
function y = f(x) by a symbolic equation. A popular method for symbolic regression is genetic programming
(GP) (Schmidt & Lipson, 2009; |(Gaucel et al., 2014), which leverages evolutionary algorithms to explore the
space of possible equations and has demonstrated success in uncovering governing laws in various scientific
domains such as material science (Wang et al., 2019), climate modeling (Grundner et al., 2023)), cosmology
(Cranmer et all [2020), etc. Various software have been developed for GP-based symbolic regression, e.g.

Eureqa (Dubc¢akovd, 2011) and PySR 2023)).

Another class of methods is sparse regression (Brunton et al., 2016), which assumes the function to be
discovered can be written as a linear combination of predefined candidate functions and solves for the
coefficient matrix. It has also been extended to discover more general equations, such as equations in latent
variables (Champion et all [2019) and PDEs (Rudy et al [2017)).

Neural networks have also shown their potential in symbolic regression. Martius & Lampert| (2016); [Sahoo|
represents a few earliest attempts, where they replace the activation functions in fully connected
networks with math operators and functions, so the network itself translates to a symbolic formula. Other
works represent mathematical expressions as sequences of tokens and train neural networks to predict the
sequence given a dataset of input-output pairs. For example, [Petersen et al| (2019)) trains an RNN with
policy gradients to minimize the regression error. Biggio et al|(2021), Kamienny et al. (2022)) and Holt et al.|
pre-train an encoder-decoder network over a large amount of procedurally generated equations and
query the pretrained model on a new dataset of input-output pairs at test time.

The aforementioned symbolic regression methods can be improved by incorporating specific domain knowledge.
For example, Al Feynman (Udrescu & Tegmark], [2020}; [Udrescu et al., 2020) uses properties like separability
and compositionality to simplify the data. |Cranmer et al.| (2020) specifies the overall skeleton of the equation
and fits each part with genetic programming independently. The goal of this paper falls into this category —
to use the knowledge of symmetry to reduce the search space of symbolic regression and improve its accuracy
and efficiency.

Recently, Large Language Models (LLMs) have emerged as an alternative for SR, using pre-trained scientific
priors to propose sequential hypothesis (Merler et all [2024) or to guide genetic programming
, balancing the efficiency of domain knowledge with the robustness of evolutionary search. However,
current LLM-based methods often rely on memorizing known equations rather than facilitating genuine
discovery, and their guidance lacks interpretability, specifically, the reasoning behind their suggestions,
evidenced by a recent benchmark specially designed for LLM-SR (Shojaee et al) [2025). A recent effort
sought to improve interpretability by binding symbolic evolution with natural language explanations
. However, this method relies on frontier LLMs to conduct the evolution of the natural language
components, rendering the process itself opaque. These limitations highlight the need for approaches that
enhance the controllability and explainability of the prior knowledge injected, ensuring more transparent and
trustworthy discovery.

Discovering Differential Equations. While it remains in the scope of symbolic regression, the discovery
of differential equations poses additional challenges because the derivatives are not directly observed from
data. Building upon the aforementioned SINDy sparse regression (Brunton et all [2016), Messenger &/
(2021ajb) formulates an alternative optimization problem based on the variational form of differential
equations and bypasses the need for derivative estimation. A similar variational approach is also applied to
genetic programming (Qian et al [2022)). Various other improvements have been made, including refined
training procedure (Rao et al., 2022)), relaxed assumptions about the form of the equation (Kaheman et all,
[2020)), and the incorporation of physical priors (Xie et al.l [2022; [Bakarji et al.| 2022} [Lee et al.| [2022; Messenger|

et al.[, 2024)).

PDE Learning and Surrogate Modeling. Beyond symbolic regression, there is a broad line of work on
learning PDEs and their solution operators directly from data using non-symbolic surrogates. Neural operator
methods aim to approximate nonlinear operators mapping initial or boundary data to PDE solutions, providing
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highly expressive black-box solvers for families of PDEs (Lu et al., [2021; |[Li et al., |2021]). Gaussian processes
and kernel methods have also been developed to solve nonlinear PDEs and related inverse problems (Chen
et al., [2021)). A complementary body of work focuses on learning effective coarse-grained dynamics or
closures from fine-scale simulations and spatiotemporal data, including reservior-computing and recurrent
architectures (Vlachas et al.| [2020), machine-learned coarse-scale PDEs from microscopic data (Lee et al.l
2020), numerical bifurcation analysis and intrinsic-coordinate models inferred from simulators (Galaris et al.,
2022; |[Floryan & Grahaml, [2022), and multiscale frameworks that learn reduced stochastic or PDE models for
complex systems (Vlachas et al. 2022; [Lee et al., |2023; [Dietrich et al., [2023} [Fabiani et al., [2024)). These
approaches typically prioritize predictive accuracy and efficient surrogate modeling over known symbolic
structure. In contrast, our framework, along with other SR methods, seeks to recover interpretable closed-form
PDEs whose terms can be inspected and analyzed, while still leveraging data-driven tools.

PDE Symmetry in Machine Learning. Symmetry is an important inductive bias in machine learning.
In the context of learning differential equation systems, many works encourage symmetry in their models
through data augmentation (Brandstetter et al.,|2022), regularization terms (Akhound-Sadegh et al.; [2023;
Zhang et al.| |2023; |Dalton et all 2024)), and self-supervised learning (Mialon et al.| [2023). Strictly enforcing
symmetry is also possible, but is often restricted to specific symmetries and systems (Wang et al., 2021}
Gurevich et al., 2024). For more general symmetries and physical systems, enforcing symmetry often requires
additional assumptions on the form of equations, such as the linear combination form in sparse regression
(Otto et al.l |2023; |[Yang et al., [2024). To the best of our knowledge, our work is the first attempt to strictly
enforce general symmetries of differential equations for general symbolic regression methods. A more detailed
discussion of the connections and differences between our work and other symmetry-based equation discovery
methods is provided in Appendix

3 Background

3.1 PDE Symmetry

This section introduces the basic concepts of partial differential equations and their symmetry. For a more
thorough understanding of Lie point symmetry of PDEs, we refer the readers to |Olver| (1993)).

Partial Differential Equations. We consider PDEs in the form F(x,u(™) = 0, as given in . We restrict
ourselves to a single equation and a single dependent variable here, though generalization to multiple equations
and dependent variables is possible. We use x € X C RP to denote all independent variables. For example,
x = (t,z) for a system evolving in 1D space. Note that the bold x refers to the collection of all independent
variables while the regular « denotes the spatial variable. Then, u = u(x) € U C R is the dependent variable;
u™ = (u,u,, ...) denotes all up to nth-order partial derivatives of u; (x,u(™) € M™ c X x U™ where
M) is the nth order jet space of the total space X x U. M and u(™) are also known as the nth-order
prolongation of X x U and u, respectively.

Symmetry of a PDE. A point symmetry g is a local diffeomorphism on the total space £ = X x U:
g- (X, u) = (X(X7 u), ’I](X, u)), (2)

where X and @ are functions on E. The action of g on the function u(x) is induced from ({2|) by applying it to the
graph of u : X — U. Specifically, denote the domain of v as Q C X and its graph as T',, = {(x, u(x)) : x € Q}.
The group element g transforms the graph T'y as T'y == g - Ty = {(X, @) = g - (x,u) : (x,u) € T',}.

Since g transforms both independent and dependent variables, T', does not necessarily correspond to the
graph of any single-valued function. Nevertheless, by suitably shrinking the domain €2, we can ensure that the
transformations close to the identity transform I',, to the graph of another function. This function with the
transformed graph Iy, is then defined to be the transformed function of the original solution u, i.e. ¢-u =@
st. Dz =Ty. The symmetry of the PDE is then defined:
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Definition 3.1. A symmetry group of F(x,u(™) = 0 is a local group of transformations G' acting on an
open subset of the total space X x U such that, for any solution u to F' = 0 and any g € G, the function
@ = (g-u)(x) is also a solution of F' = 0 wherever it is defined.

Infinitesimal Generators. Often, the symmetry group of a PDE is a continuous Lie group. In practice,
one needs to compute with infinitesimal generators of continuous symmetries, i.e., vector fields. In more
detail, we will write vector fields v: F — TFE on E = X x U as

- 0 0
V= €j (Xvu)% + ¢(X7u)% (3)

Any such vector field generates a one-parameter group of symmetries of the total space {exp(ev) : € € R}.
The symmetries arising from the exponentiation of a vector field moves a point in the total space along the
directions given by the vector field. We will specify symmetries by vector fields in the following sections. For
instance, v = x0, — y0, represents the rotation in (x,y)-plane; v = 9, corresponds to time translation.

To analyze the symmetry of PDEs, we must know how it transforms not only the variables, but also their
derivatives accordingly. The group transformations on derivatives are formalized by prolonged group actions
and infinitesimal actions on the nth-order jet space, denoted ¢(™ and v(™, respectively. More details on
prolonged group actions are discussed in Appendix [A72] with Figure [5] visualizing a simple example. To
introduce our method, it suffices to note that the prolongation of the vector field can be described
explicitly by & and ¢ and their derivatives via the prolongation formula @[)

3.2 Symbolic Regression Algorithms

Given the data {(z%,y")} C X x Y, the objective of symbolic regression (SR) is to find a symbolic expression
for the function y = f(z). Although this original formulation is for algebraic equations, it can be generalized
to differential equations like ([L). To discover a PDE from the dataset of its observed solutions on a grid {2, i.e.
{(x,u(x)) : x € Q}, we estimate the partial derivative terms and add them to the dataset: {(x,u™):x € Q}.
One of the variables in the variable set (x,u(™) is used as the LHS of the equation, i.e. the role of the label
y in symbolic regression, while other variables serve as features. The precise set of derivatives added to
symbolic regression and the choice of the equation LHS requires prior knowledge or speculations about the
underlying system.

We briefly review two classes of SR algorithms: sparse regression (SINDy) and genetic programming (GP).

Sparse regression (Brunton et al., [2016) is specifically designed for discovering differential equations. It
assumes the LHS ¢ of the equation is a fixed term, e.g. £ = u;, and the RHS of the equation can be written
as a linear combination of m predefined functions 67 with trainable coefficients w € R™, i.e.,

((x,u™) = w I (x,u™), 67 : M™ - R. (4)

The equation is found by solving for w that minimizes the objective ||L — R||3 + A||w]o, where L and R
are obtained by evaluating ¢ and w’#7 on all data points and concatenating them into column vectors, and
lwllo regularizes the number of nonzero terms. This formulation can be easily extended to ¢ equations and
dependent variables (¢ > 1): £/(x,u(™) = W4gi(x,ul™), W € RI*™,

One problem with sparse regression is its restrictive assumptions about the form of equations. Many equations
cannot be expressed in the form of , eg. y= mia where a could be any constant. Also, the success of
sparse regression relies on the proper choice of the function library {67}. If any term in the true equation

were not included, sparse regression would fail to identify the correct equation.

Genetic programming (GP) offers an alternative solution for SR (Cranmer, [2023), which can learn
equations in more general forms. It represents each expression as a tree and instantiates a population of
individual expressions. At each iteration, it samples a subset of expressions and selects one of them that
best fits the data; the selected expression is then mutated by a random mutation, a crossover with another
expression, or a constant optimization; the mutated expression replaces an expression in the population that
does not fit the data well. The algorithm repeats this process to search for different combinations of variables,
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constants, and operators, and finally returns the “fittest” expression. GP can be less efficient than SINDy
when the equation can be expressed in the form due to its larger search space. However, we will show that
it is a promising alternative to discover PDEs of generic forms, and our approach further boosts its efficiency.

4 Symbolic Regression with Symmetry Invariants

Symmetry offers a natural inductive bias for the search space of symbolic regression in differential equations.
It reduces the dimensionality of the space and encourages parsimony of the resulting equations. To enforce
symmetry in PDE discovery, we aim to find the maximal set of equations admitting a given symmetry and
search in that set with symbolic regression (SR) methods.

4.1 Differential Invariants and Symmetry Conditions

To achieve this, our general strategy is to replace the original variable set with a complete set of invariant
functions of the given symmetry group. Since we consider PDEs containing partial derivatives, the invariant
functions refer to the differential invariants defined as follows.

Definition 4.1 (Def. 2.51, [Olver| (1993))). Let G be a local group of transformations acting on X x U. Any
g € G gives a prolonged group action pr(™g on the jet space M C X x U™ . An nth order differential
invariant of G is a smooth function 1 : M — R, such that for all ¢ € G and all (x,u™) € M),
n(g™ - (x,u™)) = n(x,u™) whenever ¢(™ - (x,u(™) is defined.

In other words, differential invariants are functions of all variables and partial derivatives that remain invariant
under prolonged group actions. Equivalently, if G is generated by a set of infinitesimal generators B = {v,},
then a function 7 is a differential invariant of G iff vg”)(n) = 0 for all v, € B. The following theorem
guarantees that any differential equation admitting a symmetry group can be expressed solely in terms of the

group invariants.

Theorem 4.2 (Prop. 2.56,|Olver| (1993))). Let G be a local group of transformations acting on X x U. Let
{nt(x,u™), .., 0" (x,ul™)} be a complete set of functionally independent nth-order differential invariants of
G. An nth-order differential equation admits G as a symmetry group if and only if it is equivalent to an
equation of the form F(n',...,n*) = 0.

Consequently, SR with a complete set of invariants precisely searches within the space of all symmetric
differential equations and automatically excludes equations violating the specified symmetry.

Our strategy of using differential invariants applies broadly to various equation discovery algorithms. For
instance, in sparse regression, we can construct the function library using invariants rather than raw variables
and derivatives. Similarly, in genetic programming, the variable set can be redefined to include only invariant
functions. In each case, the key benefit is the same: the search space is restricted to symmetry-respecting
equations by construction. The reduced complexity of the equation search also leads to increased accuracy
and efficiency.

Next, we describe how to construct a complete set of differential invariants (Section [4.2]), and how to
incorporate them into specific SR, algorithms (Section [4.3]).

4.2 Constructing a Complete Set of Invariants

Despite the simplicity of our strategy, we still need a concrete method for computing the invariants. In
this subsection, we provide a general guideline to construct a complete set of differential invariants up to a
required order given the group action.

By definition of differential invariants, we look for functions 7(x, u(™) satisfying v(") () = 0 given a prolonged
vector field v(™). This is a first-order linear PDE that can be solved by the method of characteristics. However,
in practice, if E = X x U ~ RP x R, there are (p +2_1) partial derivatives of the independent variable u
of order exactly n. Therefore, as n grows, it quickly becomes impractical to solve directly for nth-order
differential invariants. The higher-order differential invariants, if necessary, can be computed recursively from
lower-order ones by the following result:
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Proposition 4.3. Let G be a local group of transformations acting on X x U ~ RP x R. Let n*,n%, --- ,n? be
any p differential invariants of G whose horizontal Jacobian J = [D;n’] is non-degenerate on an open subset
Q c M™ . If there are a mazimal number of independent, strictly nth-order differential invariants ¢, --- (%,
Gn = (p+7'r;71) , then the following set contains a complete set of independent, strictly (n+1)th-order differential
invariants defined on €):

det(Diifly ) /det(Daa), ¥k € [p], k' € [gn], (5)

where i,j € [p] are matriz indices, D; denotes the total derivative w.r.t i-th independent variable and
ﬁ‘(]hk’) = [7717 "'777k_1a Ck 777k+17 ,,'7[)]

In practice, we first solve for pr v(n) = 0 to obtain a sufficient number of lower-order invariants as required in
Proposition [£:3] and then construct complete sets of invariants of arbitrary orders. Notably, while in theory
our framework operates on any complete set of differential invariants, the invariants computed this way may
be algebraically complicated and poorly scaled, leading to difficulties in SR optimization. In practice, we
start from such a complete set of differential invariants and then deliberately convert them into simpler,
physically interpretable invariant functions (such as Laplacians for rotational symmetry) as the feature set for
SR. Then, we evaluate invariants on the dataset only where they are well-defined. If necessary, we shrink the
domain and filter out data points that cause singularity (e.g., where the denominator of an invariant function
vanishes). In Appendix we provide two examples of different symmetry groups and their differential
invariants. Those results will also be used in our experiments.

4.3 Implementation in SR Algorithms

Our symmetry principle characterizes a subspace of all equations
with a given symmetry. Generally, this subspace partially over-
laps with the hypothesis spaces of SR algorithms, conceptually
visualized in Figure 2] As in Theorem [£.2] PDEs with symmetry
can be expressed as implicit functions of all differential invariants.
However, symbolic regression methods typically learn explicit func-
tions mapping features to labels. Some algorithms, such as SINDy,
impose even stronger constraints on equation forms. Therefore,
adaptation is needed to implement our strategy of using differential
invariants in specific symbolic regression algorithms. In general, it ’ Symmetry 1 SINDy ' Symmetry (1 SR
requires more effort to adapt our method to base algorithms with

more structured and nontrivial hypotheses about possible equation Figure 2: Venn diagram of hypothesis
forms. Below, we discuss in detail how to adapt our method to two spaces from base SR methods and our
common classes of base SR algorithms. symmetry principle.

All equations: F(x,u™) =0

General explicit SR We start with general SR methods that learn an ezplicit function y = f(z) without
additional assumptions about the form of f, e.g., genetic programming and symbolic transformer. When
learning the equation with differential invariants, we do not know which one of them should be used as the
LHS of the equation, i.e. the label y in symbolic regression. Thus, we fit an equation for each invariant as
LHS and choose the equation with the lowest data error, as described in Algorithm I We use relative error
to select the best equation since the scales of LHS terms differ.

Sparse regression SINDy assumes a linear equation form . Generally, its function library differs from
the set of differential invariants. Also, SINDy fixes a LHS term, while we do not single out an invariant as
the LHS of the equation when constructing the set of invariants.

Assume we are provided the SINDy configuration, i.e. the LHS term ¢ and the function library {67}. To
implement sparse regression with symmetry invariants, we assign an invariant n* that symbolically depends
on £, i.e. On* /0L # 0, as the LHS for the equation in terms of symmetry invariants. The remaining invariants
are included on the RHS, where they serve as inputs of the original SINDy library functions. In other words,
the equation form is 7% = @767 (n~F). Similar to Algorithm [l we can expand all 7 variables to obtain the
equation in original jet variables.
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Algorithm 1 General explicit SR for differential equations with symmetry invariants

Require: PDE order n, dataset {z' = (x/, (u(™)?) € M™}X5 base SR algorithm S : (X,y) — y = f(z),
infinitesimal generators of the symmetry group B = {v,}.
Ensure: A PDE admitting the given symmetry group.
Compute the symmetry invariants of B up to nth-order: n',---  n%. {Prop. [4.3)
Evaluate the invariant functions on the dataset: n** = n¥(z?), for k € [K],i € [Np].
Initialize a list of candidate equations and their risks: E = [].
for kin1: K do
Use the kth invariant as label and the rest as features: y = 7%, X = n~
Run S(X,y) and get a candidate equation n* = f*(n~*).
Evaluate £* = ||y — f*(X)|l1/|ly|l1 and set E[k] = (f*, £F).
end for
Choose the equation in E with the lowest error: k = argmin; E[j][2].
return n* = f¥(n~*). {Optionally, expand all 5’ in terms of original variables z.}

k,:

The above approach optimizes an unconstrained coefficient vector w for functions of symmetry invariants.
Alternatively, we can use the original SINDy equation form and implement the symmetry constraint as a
constraint on the coefficient w, as demonstrated in the following theorem. Here, we generalize the setup to
multiple dependent variables and equations.

Proposition 4.4. Let £(x,u™) = WO(x,u™) be a system of q differential equations admitting a symmetry
group G, where x € RP, u € RY, 8 € R™. Assume there exist some nth-order invariants of G, né:q and n" K,
s.t. (1) the system of equations can be expressed as o = W'0'(n), where no = [ny’Y] and n = [n¥%], and
(2) b = T*0k¢3 and (0")" = SV67, for some functions 6'(n) and constant tensors W', T and S. Then, the
space of all possible W is a linear subspace of R9*™,

Intuitively, the conditions above state that the equations can be expressed as a linear combination of invariant
terms, similar to the form in w.r.t original jet variables. Also, every invariant term in 7y and 6’(n) is
already encoded in the original library 6. In practice, we need to choose a suitable set of invariants according
to the SINDy configuration to meet these conditions. For example, it is a common SINDy setup where 6
contains all monomials on M up to degree d. In this case, any set of invariants where each invariant is a
polynomial on M) up to degree d satisfies these conditions.

The proof of Proposition [I.4] is provided in Appendix [A5] where we explicitly identify the basis of the linear
subspace for W. Then, we can use this basis to build a SINDy model for PDEs with the corresponding
symmetry, similar to how EMLP (Finzi et al., |2021b]) constructs equivariant linear layers and how [Yang
et al| (2024)) constructs equivariant SINDy for ODEs. Specifically, if the constrained subspace has a basis
Q € R™*9*™ where r is the subspace dimension, we write W7* = Q¥*3*. We then fix Q and solve 8 € R"
using the same least square optimizer in SINDy, effectively reducing the parameter space dimension from
gxXmtor.

In practice, we observe that the basis () obtained from the constructive proof of Proposition [£.4] is not
sparse. The lack of sparsity can pose a problem when we perform sequential thresholding in sparse regression.
Specifically, in SINDy, the entries in W that are close to zero are filtered out at the end of each iteration,
which serves as a proxy to the sparsity-promoting L regularization. Since we fix @) and only optimize 3, a
straightforward modification to the sequential thresholding procedure is to threshold the entries in [ instead
of those in W. However, if () is dense, even a sparse vector § can lead to a dense W, which contradicts the
purpose of sparse regression. To address this issue, we apply a Sparse PCA to @ to obtain a sparsified basis.
More implementation details and examples of the computed basis @ can be found in Appendix [B:2}

One notable advantage of converting symmetry into linear constraints with Proposition [£:4]is that it allows
us to keep track of the original SINDy parameters W during optimization. This enables straightforward
integration of symmetry constraints to variants of SINDy, e.g. Weak SINDy (Messenger & Bortz, |2021ajb)
for noisy data. For W7* = Q¥¥3?, while we directly optimize 3, we can still easily compute the objective of
Weak SINDy which explicitly depends on W. In comparison, if we use the raw invariant terms for regression,
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e.g. the equations take the form ny = W’60'(n), it is challenging to formulate the objective of Weak SINDy
with respect to W’. In Appendix we provide more details on how to implement this linear-constraint
approach on Weak SINDy.

4.4 Constraint Relaxation for Systems with Imperfect Symmetry

Our approach discovers PDEs assuming perfect symmetry. However, it is common in reality that a system
shows imperfect symmetry due to external forces, boundary conditions, etc. (Wang et al. [2022). In such
cases, the previous method cannot identify any symmetry-breaking factors.

To address this, we propose to relax the symmetry constraints by allowing symmetry-breaking terms to
appear in the equation, but at a higher “cost”. We implement this idea in sparse regression, where the
equation has a linear structure £ = W60. We adopt the technique from Residual Pathway Prior (RPP) (Finzi
et al.| [2021al), which is originally developed for equivariant linear layers in neural networks. Specifically, let Q
be the basis of the parameter subspace that preserves symmetry and P be the orthogonal complement of Q.
Instead of parameterizing W in this subspace, we define W = A + B where A% = Q¥*3% and BI* = Piikq?
where § and ~y are learnable parameters, and place a stronger regularization on  than on 5. While the model
still favors equations in the symmetry subspace spanned by (), symmetry-breaking components in P can
appear if it fits the data well.

5 Experiments

5.1 Datasets and Their Symmetries

We consider the following PDE systems, which cover different challenges in PDE discovery, such as high-
order derivatives, generic equation form, multiple dependent variables and equations, noisy dataset, and
imperfect symmetry. The datasets are generated by simulating the ground truth equation from specified
initial conditions, with detailed procedures described in Appendix [E-I}

Boussinesq Equation. Consider the Boussinesq equation describing the unidirectional propagation of a
solitary wave in shallow water (Newell, [1985):

Ut + Ullgy + uﬁ + Upgzr =0 (6)

This equation has a scaling symmetry v = 2t0; + 0, — 2ud,, and the translation symmetries in space and

time. The differential invariants are given by 71, ) = ux(a)t(g>u;(2+a+26)/3 where o and [ are the orders

of partial derivatives in z and ¢, respectively. To discover the 4th-order equation, we compute all 7, gy for
0 < a+ B <4, except for n(;,9) = 1 which is a constant.

Darcy Flow. The following PDE describes the steady state of a 2D Darcy flow (Takamoto et al., [2022) with
spatially varying viscosity a(z,y) = e~4@*+¥*) and a constant force term fl@)y=1:

—V(ei4(‘r2+y2)Vu) =1 (7)

This equation admits an SO(2) rotation symmetry v = y0, — x0,. A detailed calculation of the differential
invariants of this group can be found in Example In our experiment, we use the following complete set of
2nd-order invariants: {3 (22 +4?), u, LUy — Yy, Ty +Ylhy, Uz +Uyy, sy + 202, +u2 22 Uge + Y2ty + 20y Uy}

Reaction-Diffusion. We consider the following system of PDEs from |(Champion et al.| (2019)):
up = diViu+ (1 —u? —0?)u+ (u? + v
vy = da Vi — (u? +v*)u + (1 — u? —v?)v (8)

In the default setup, we use dy = do = 0.1. The system then exhibits rotational symmetry in the phase space:
v = ud, — vd,. The ordinary invariants (functions of variables, not derivatives) are {t, z,y,u? + v*}. The
higher-order invariants are {u - u,, ut - u, }, where u = (u, v)T and p is any multi-index of ¢, x and y.

We also consider the following cases where the rotation symmetry is broken due to different factors:
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¢ Unequal diffusivities We use different diffusion coefficients for the two components: d; = 0.1,
ds = 0.1 4+ €. This can happen, for example, when two chemical species described by the equation
diffuse at different rates due to molecular size, charge, or solvent interactions.

o External forcing The ground truth equation is modified by adding —ev to the RHS of u; and
—eu to the RHS of v;. This can reflect a weak parametric forcing on the system.

5.2 Methods and Evaluation Criteria

We consider three classes of algorithms for equation discovery: sparse regression (PySINDy, |de Silva et al.
(2020)); Kaptanoglu et al.| (2022))), genetic programming (PySR, |Cranmer| (2023))), and a pretrained symbolic
transformer (E2E, Kamienny et al.| (2022))). For each class, we compare the original algorithm using the
regular jet space variables (i.e. (x,u(™) ) and our method using symmetry invariants. Our method will be
referenced as SI (Symmetry Invariants) in the results.

To evaluate an equation discovery algorithm, we run it 100 times with randomly sampled data subsets and
randomly initialized models if applicable. We record its success probability (SP) of discovering the correct
equation. Specifically, we expand the ground truth equation into ), ¢ fi(z) = 0, where ¢! are nonzero
coefficients, z denotes the variables involved in the algorithm, i.e., original jet variables (x, u(™) for baselines
and symmetry invariants for our method, and f? are functions of z. Also, the discovered equation is expanded
as ), & fz(z) =0, where ¢ # 0. The discovered equation is considered correct if all the terms with nonzero
coefficients match the ground truth, i.e., {f?} = {f?}. We also report the prediction error (PE), which
measures how well the discovered equation fits the data. For evolution equations with time derivatives on
the LHS, we simulate each discovered equation from an initial condition and measure its difference from the
ground truth solution at a specific timestep in terms of root mean square error (RMSE). Otherwise, we just
report the RMSE of the discovered equation evaluated on all test data points.

5.3 Results on Clean Data with Perfect Symmetry

Table 1: Equation discovery results on clean data. C, standing for complezity, refers to the effective parameter
space dimension in sparse regression and the number of variables in GP/Transformer. SP and PE stands
for success probability and prediction error, as explained in Section [5.2] The entries '-" suggest that the
method does not apply to the specific PDE system, or the result is not meaningful. The arrows 1 / | mean
higher /lower metrics are better. Confidence intervals for PE are reported in Table

Method Boussinesq @ Darcy flow (|7) Reaction-diffusion ({8)
cl, st PEL C| SPt PE| C|] SPt PE |
Sparse PySINDy 15 0.00 0.373 - - - 38 0.53 0.021
Regression SI 15 1.00 0.098 - - - 28 0.54 0.008
Genetic PySR 17 0.90 0.098 8 0.00 0.114 17  0.00 -
Programming SI 14 1.00 0.098 7 0.79 0.051 16 0.81 0.023
Transformer E2E 10  0.53  0.132 8 0.00 - 17 0.00 -
SI 7 085 0.104 7 0.00 - 16  0.00 -

Table [I| summarizes the performance of all methods on the three PDE systems. For prediction errors (PE),
we report the median, instead of the mean + standard deviation, of 100 runs for each algorithm. This
is because some incorrectly discovered equations yield large prediction errors, making the mean and the
standard deviation less meaningful. We additionally report the confidence intervals for prediction errors by
[25% quantile, 75% quantile] in Table [3l Comparisons are made within each class of methods. Generally,
using symmetry invariants reduces the complexity, defined as the effective parameter space dimension in
sparse regression and the number of variables in GP/Transformer, of equation discovery, and improves the
chance of finding the correct equations compared to the baselines.

10
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Specifically, in sparse regression, our method (SI) using symmetry invariants is only slightly better than
PySINDy in the reaction-diffusion system, but constantly succeeds in the Boussinesq equation where PySINDy
fails. The failure of PySINDy is because the u2 term in @ is not supported by its function library, showing
that SINDy’s success relies heavily on the choice of function library. This exclusion of function terms also
explains why the reported complexity (C) of PySINDy is the same as that of our method (SI), which would
otherwise be smaller because symmetry reduces the hypothesis space of equations. On the other hand,
by enforcing the equation to be expressed in invariants, our method automatically identifies the proper
function library. Appendix provides results for other variants of sparse regression, where we modify the
implementation of PySINDy to include different terms in its library.

For GP-based methods, Table [I] displays the results with a fixed number of GP iterations for each dataset.
We also experiment with different numbers of iterations in Figure [3] showing that our method can identify
the correct equations with fewer iterations and is considered more efficient.

Boussinesq GP Success Probability Darcy GP Success Probability R-D GP Success Probability

-
o
=
o
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Figure 3: Success Probabilities of GP-based methods on different systems. Our method with symmetry
invariants can discover the correct equations with fewer iterations.

On the other hand, the pretrained symbolic transformer fails on two of the three datasets. We conjecture this
is because the data distribution from PDE solutions greatly differs from its pretraining dataset. However, the
symbolic transformer can discover the Boussinesq equation correctly, where using symmetry invariants leads
to a much higher success probability.

5.4 Results on Noisy Data and Imperfect Symmetry
We test the robustness of our method under two challenging scenarios: (1) noise in observed data, and (2)
PDE with imperfect symmetry.

R-D w/ noisy data 0s R-D w/ unequal diffusivities R-D w/ external forcing

1.01
—a— 5] (autotune)
0.8
Sl (default) '\.\.\.
0.8+ -#- WSINDy (autotune) 041 *\.,/—I—I
2 -4- WSINDy (default) z Eo .
3 Z = o5
0.3
T o6 3 3
< o A o
a o ®, Q
%) wn wn 0.41
& 0.4+ 027 Ammaes P — 4
9] o ;K N Is] _
o o ek Ao [ I
A a T a k- —#— Sl-relaxed
o1 —#— Sl-relaxed 0.21
0.24 : si : Sl
-A- WSINDy -4-- WSINDy
...... Perfect symmetry o Perfect symmetry
e . | ‘ ; : | | 0.01 ' ’ ’
1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0 0.1 0.15 0.2
Noise Level (%) Symmetry breaking parameter £ Symmetry breaking parameter

Figure 4: Success probabilities of sparse regression methods on the reaction-diffusion system with noisy
data (left), unequal diffusivities (center) and external forcing (right). Under noisy data, our method (SI)
consistently outperforms WSINDy under the same test function configuration. For systems with imperfect
symmetry, strictly enforcing symmetry (SI) hurts performance, but a relaxed symmetry constraint (SI-relaxed,
introduced in Section is still better than no inductive bias (WSINDy).

In the first experiment, we add different levels of white noise to the simulated solution of the reaction-diffusion
system. Since the derivatives estimated by finite difference are inaccurate with the noisy solution, we use

11
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WSINDy (Messenger & Bortz, [2021a)), which does not require derivative estimation. The success probabilities
of our method (SI) and WSINDy are shown in Figure [4] (left). We adopt two different strategies for choosing
the test function parameters in WSINDy, including the number of test functions, half-lengths of the square
subdomains in each spatiotemporal direction, and the polynomial degree of test functions: (1) following
Messenger & Bortz| (2021a), the parameters are auto-tuned based on the noise characteristic of the data;
and (2) the default parameters in PySINDy are used. In both WSINDy setups, our method consistently
achieves a higher success probability at different noise levels. Notably, when the noise level is high, our
symmetry-constrained model performs better with the default parameter setup, which, as we observe, uses
fewer test functions and lower polynomial degrees than the auto-tuned setup. We comment that choosing
test functions and related hyperparameters is known to be a challenging problem (Bortz et al.l [2023} [Tran &
Bortz, [2025)), and we leave further investigation of this phenomenon to future work.

In the second experiment, we simulate the two variants of (unequal diffusivities and external forcing)
with different values for the symmetry-breaking parameter € and add 2% noise to the numerical solutions.
We compare three models: (1) our model with strictly enforced symmetry (SI), (2) our model with relaxed
symmetry (SI-relaxed) introduced in Section and (3) WSINDy with default PySINDy parameters as the
baseline. The results for the two systems with symmetry breaking are shown in Figure |4| (center & right). As
expected, SI has a much lower success probability when the symmetry-breaking factor becomes significant.
Meanwhile, Sl-relaxed remains highly competitive. It also has a clear advantage over baseline SINDy, showing
that even if the inductive bias of symmetry is slightly inaccurate, our model with relaxed constraints is still
better than a model without any knowledge of symmetry. We also include the results on the same systems
with auto-tuned WSINDy parameters in Appendix [C.3]

More comprehensive results, e.g. variant sparse regression models, comparison with an additional D-CIPHER
(Kacprzyk et all |2023) baseline, equations with higher spatial dimensions and larger symmetry groups,
discovered equation samples, are provided in Appendix [C|

6 Discussion

We propose to enforce symmetry in symbolic regression algorithms for discovering PDEs by using differential
invariants of the symmetry group as the variable set. We implement this general strategy in different classes
of algorithms and observe improved accuracy, efficiency and robustness of equation discovery, especially in
challenging scenarios such as noisy data and imperfect symmetry.

It should be noted that our method assumes the symmetry group is already given. This assumption aligns
with common practice: physicists often begin by hypothesizing the symmetries of a system and seek governing
equations allowed by those symmetries. However, our current framework cannot be applied if symmetry is
unknown, and will produce incorrect results with misspecified symmetry. This can be potentially addressed
by incorporating automated symmetry discovery methods for differential equations (Yang et al., |2024; Ko
et al.l |2024)), which we leave for future work.

Another caveat of our method is the calculation of differential invariants. While solving for v(™) () = 0 and
applying the formula is easy with any symbolic computation package, the resulting differential invariants
may be complicated and require ad-hoc adjustment for better interpretability and compatibility with specific
algorithm implementations (e.g. conditions in Proposition . Fortunately, this only requires a one-time
effort. Once we have derived the invariants for a symmetry group, the results can be reused for any equation
admitting the same symmetry.

Broader Impact Statement

The method in this paper can potentially be used to expedite the process of discovering governing equations
from data and aid researchers in other scientific domains. Equally important, equations inferred from
imperfect or biased data may appear authoritative yet embed systematic errors. Thorough validation checks,
uncertainty quantification, and domain-expert review protocols for the discovered equations are essential.

12
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A Math

A.1 Notations

Table 2: Descriptions of symbols used throughout the paper. The three blocks include (1) basic notations for
PDEs, (2) notations for Lie symmetry of PDEs, and (3) notations for symbolic regression algorithms and
miscellaneous.

Symbols Descriptions

P Number of independent variables of a PDE.
q Number of dependent variables of a PDE.
X Space of independent variables of a PDE: X C RP. Also used to denote the feature space of
SR algorithms.
U Space of dependent variables of a PDE: U C R%. Assumed to be 1-dimensional unless
otherwise stated.
E Total space of all variables of a PDE: F = X x U.
Uy Space of strictly kth-order partial derivatives of variables in U w.r.t variables in X.
U™ Space of all partial derivatives up to mth order (including the original variables in U):
UM =Ux Uy x -+ x U
M™) nth-order jet space: M) ¢ X x U™,
M The tangent bundle of a manifold M.

X Independent variables of a PDE: x € RP.
t Time variable.
T,y Spatial variables in PDE contexts. Also used to denote the features and labels of SR
algorithms, where = can denote multi-dimensional features.
u,u Dependent variable(s) of a PDE: u € R and u € RY.
w™ u™ | The collection of all up to n-th order partial derivatives of u or u.
df The (ordinary) differential of a function. For a differential function f : M — R, df =
Zj Bandej + Za aaTJ;dua'
D;f The total derivative of a differential function f : M — R w.r.t the ith independent
variable. For example, if p=qg=1, D{f = g—i + 3o ukHaankv where uy = 0Fu/0x".
Df The total differential of a differential function f: M™ — R, i.e. Df = D;f dx'.
g A group element with an action on E .
v A vector field on the total space F , representing an infinitesimal transformation. A list

of multiple vector fields are indexed by subscripts.
pr(®g nth-order prolongation of g acting on M (™).

pr(®y nth-order prolongation of v acting on M ™).
g™, v(™ | Equivalent to pr(™g¢ and pr(™v, respectively.
prv The (infinite) prolongation of v. For an nth-order differential function f(x,u(™), pr v(f) =
prv(f).
n,(, 0 Differential invariants of a symmetry group. 7 is used by default. The other letters are used
to distinguish between invariants of different orders.
£ The LHS of SINDy equation . Often assumed to be time derivatives.
0 A column vector containing all SINDy library functions: 8 = [1,--- ,6™]
w, W The SINDy parameters. For only one equation, w = [w!,--- ,w™] is a row vector. For
multiple equations, W = [w%] is a ¢ x m matrix.
X,y Concatenated matrix/vector of features/labels of all datapoints for symbolic regression.
[N] List of positive integers up to N, i.e. [1,2,---, N]| for any N € Z*.

1: N Equivalent to [N].
LHS, RHS | Left- and Right-hand side of an equation.
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A.2 Extended Background on PDE Symmetry

References for the below material include Olver] (1993), |Olver| (1995).

Prolonged group actions Let F = X x U ~ RP x R? be endowed with the action of a group G via
point transformations. Then group elements g € G act locally on functions u = f(x), therefore also on
derivatives of these functions. This in turn induces, at least pointwise, “prolonged" transformations on jet
spaces: (%,0(™) = pr™g- (x,u™).

Let J = (j1,.--,7n), 1 < j» < p be an n-tuple of indices of independent variables and 1 < o < ¢q. We will use
the shorthand

07 u® ol lye

8:0" o ijl s 8%—"

ug =

and

DJ = Dj1 D]n
It is not practical to work explicitly with prolonged group transformations. Therefore one linearizes and
considers the prolonged action of the infinitesimal generators of G. Explicitly, given a vector field

P B, 1 9
V:;f(x,u)axl +O;180 (X,u)wa

its characteristic is a g-tuple Q = (Q?!,...,Q9) of functions with

P
. ou®

Qa(xa u(l)) = @a(xv u) - Zgz(x’ u)%

i=1
Now the prolongation of v to order n is defined by

p q

, 0 0
v =Yg+ 30 3 e 5 ®

=1 a=1#J=n

Here J ranges over all n-tuples J = (j1,...,4n),1 < j, < p and the ¢F are given by

p
¢y =DQ" + Zg"uf})i.

i=1

We remark that the prolongation of v has been described explicitly in terms of the coefficients of v and their
derivatives.

Figure [f] visualizes the group action of a Lie point transformation and its prolongation with a simple
example. Consider the total space X x U ~ R x R, and the standard rotation generator in 2D space given by
v = —ud; + x©d,. The vector field is visualized in dark red arrows in the background. We also consider a
function X — U given by u(z) = 0.5(z — 1), whose graph is visualized by the dark red solid line in Figure
left. The graph of its first-order derivative, u,(z) = 1.5(x — 1)2, is visualized by the dark green dash-dot line.

Then, we choose a random group element g = exp(6v) that rotates a 2D vector (x,u) € X x U by angle 6.
Applying this pointwise transformation to every point on the graph of u(z), we have a transformed graph
visualized by the dark red dashed line. The transformed function, @ = g - u, is defined as the function whose
graph is the transformed graph. In other words, @(x) = (g - u)(x) is visualized by the dark red dashed line in
Figure 5| left.

Next, we consider how the rotation of (x,u) transforms the first-order derivative u, = g—;. The prolonged
vector field, i.e., the infinitesimal generator of the prolonged group action, can be computed by @: vl =
v + (1 4+ u2)d,,. The projection of v(!) onto X x U is visualized in the dark green arrows in Figure
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Rotation (g) of u(x) and its prolongation to u,(x) Full view of g(l) inXxUxU,=R3
Curves = Original curve: (x, u(x), ux(x))
— lj(X) 3 II Transformed curve: (X, i(X), Ux(X))
= U(x)=(g"u)x) L Original projected to X x U and X x Uy
—Ux(X) = / Transformed projected to X x U and X x Uy
s 00 = (@M u)(x) 4
-
Vector fields / .
— V1= —Udx+ X3y /, N /
— Vo= —udc+(1+ U2y, L - R
- - .
3 - T 2 /
x| - . D
=)

Figure 5: Demonstration of the rotation v = —ud, + xd, acting on X x U, and its first-order prolongation
acting on X x U x Uj.

left. Similarly, the prolonged group action g(*) = exp(fv(?) is applied to every point on the graph of u, (),
yielding the graph of the transformed derivative function, @, (z) = $%(x), visualized in the dark green dotted

line.

The full transformation of the prolonged ¢(!) in the 3D space X x U x U is shown on Figure |5| right. The
graph of the original prolonged function u")(z) = (u(), u,(x)) is shown in the solid line, which is transformed
into the dashed line by g,

A.3 Proof of Proposition 4.3

Olver| (1995) provides the following general theorem to construct higher-order differential invariants from
a contact-invariant coframe. We refer the readers to Chapter 5 of |Olver] (1995) for definitions of relevant
concepts, e.g., contact forms and contact-invariant forms and coframes.

Theorem A.1 (Thm. 5.48, (Olver, [1995)). Let G be a transformation group acting on a space with p
independent variables and q dependent variables. Suppose w',...,wP is a contact-invariant coframe for G, and
let D; be the associated invariant differential operators defined via Df = D;f dx? = D;f wi. If there are a e
number of independent, strictly nth-order differential invariants ¢*,--- (9", g, = (erZ*l), then the set of
differentiated invariants D;C”, i € [p], v € [qn], contains a complete set of independent, strictly (n+ 1)th-order
differential invariants.

Specifically, the condition that there exist a maximal number of differential invariants of order exactly n is
guaranteed if n is at least dimG.

Our proposition is a derived result from the above theorem, which provides a concrete way of computation
from lower-order invariants to higher-order ones:

Proposition A.2. Let G be a local group acting on X x U ~RP x R. Let n',n?,--- 0P be any p differential
invariants of G whose horizontal Jacobian J = [D;n’] is non-degenerate on an open subset ) C M™) | If there
are a mazimal number of independent, strictly nth-order differential invariants ¢*,--- (9, g, = (erZ*l),
then the following set contains a complete set of independent, strictly (n + 1)th-order differential invariants
defined on §2: ‘

det Dif]] ’
Clit([);;f)))7 Vk € [p],k, € [QH]a (10)
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where i,j € [p] are matriz indices, D; denotes the total derivative w.r.t i-th independent variable and
ﬁ€k7kl) = [nl,...,nk_l,ck ,nk+1,...,n7’].

Proof. We show that the total differentials of the differential invariants n',...,nP can be used to construct a
contact-invariant coframe of G and then derive the associated invariant differential operators to complete the
proof.

First, note that for any differential invariant 1 of G, its total differential w = Dy = D;n da7 can be written as
w=uw,+0, (11)
where w, = dn = >, O 4gt + > lal<n DL du, is the ordinary differential of n : M — R and 6 is a

contact form.

Since 7 is a differential invariant, its differential w, = dn is an invariant one-form on M i.e. (g("))*wo = Wp.

Also, a prolonged group action maps contact forms to contact forms. To see this, note that a prolonged
group action ¢(™ maps the prolonged graph of any function to the prolonged graph of a transformed function.
Then, for any contact form 6, (¢(™)*@ is annihilated by all prolonged functions f(), thus a contact form by
definition:

(") ((9™)0) = (9 o f™)"0

=((g- f)"™)"0
0. (12)

Then, from , we have
(g™ w = (¢™) w, + (g F1)"0
=w, + 6
=w+ (0 —0) (13)

where €’ is some contact form and so is 8’ — 0. Thus, w is contact-invariant. For the p differential invariants

n',---,nP, we have p contact-invariant one-forms w',--- ,wP, respectively.

Next, we prove that w!, .- ,wP are linearly independent and form a coframe. Assume there exists smooth
coefficients ¢’ such that > ; ¢/w? = 0. Then, regrouping the coefficients of the horizontal forms dz’, we have

0=> Dpfda’ =Y > Dy | da’. (14)
J

7 i

Because the dz’ are linearly independent, each coefficient of dz! must vanish, i.e. Jij ¢/ = 0. Since the
Jacobian J = [D;n/] is non-degenerate, the only solution is ¢/ = 0 (on the open subset Q € M). Thus,
wh,--- ,wP form a contact-invariant coframe. According to Theorem the associated invariant differential
operators of the coframe take a complete set of same-order invariants to a complete set of one-order-higher

invariants.

The remaining step is to obtain the invariant differential operators explicitly in terms of 77. Recall the
formula in Theorem that defines the invariant differential operators:

D;f di' =D, f u. (15)

Expanding w/ = D/ = D;n? dz', we have the following linear system of invariant differential operators D;:

Dy Din* Dynp* -+ Dyn¥| [Dy
D2 DQT]I D2’f]2 cee D2,,7p DQ

ol I . . . (16)
Dy Dpn' Dyn® --- DpnP| | Dy
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Since J = [D;n’] is non-degenerate, Cramer’s rule yields

det(D; L. D; k=1 D; D; k1 D;nP
D¢ = det@in” | - | D™ | Di€ | D™ | --- | Din®). (17)
det(D;n7)
O
Remark A.3. We require that the differential invariants n',--- ,7? has a nondegenerate horizontal Jacobian

[D;n’], which is a stronger condition than functional independence. Since the differential invariants are
functions on the jet space, it is possible that a set of such functions is functionally independent, i.e., has a
nondegenerate full Jacobian [9;77], where i € [g,,] indexes the jet space variables (x,u(™), but has a lower-rank
horizontal Jacobian. For example, consider ' = u, and n? = u,. In the full Jacobian, dn’ /du, and dn’ /Ou,
form the identity, so it has full rank. However, its horizontal Jacobian containing total derivatives is given by
|:ux:c Ugy

u u } , which is not invertible on the subset of the jet space where uzzuy, — w2, =0.
zy  Uyy

zy
In practice, this non-degeneracy condition can be easily checked once we have the symbolic expressions of the
p differential invariants.

Remark A.4. When p = 1, Proposition is equivalent to the following (Prop. 2.53, |Olver| (1993))):

If y = n(x,u(™) and w = (z,u(™) are n-th order differential invariants of G, then %% = B=¢

7, = Dy isan (n+1)-
th order differential invariant of G. Specifically, if y = n(z,u) and w = {(z,u,u,) form a complete set
of functionally independent differential invariants of pr(!) G, the complete set of functionally independent

differential invariants for pr® @ is then given by

y,w, dw/dy, ...,d"  w/dy™ L. (18)

A.4 Examples of Computing Differential Invariants

Ezample A.5. Consider the group SO(2) acting on X x U ~ R? x R by standard rotation in the 2D space of
independent variable and trivial action on U, i.e. its infinitesimal generator given by v = y0, — z0,.

First, we solve for a complete set of the ordinary and first-order invariants. By definition, the ordinary
invariants n = n(z,y,u) should satisfy yd,n — x0,n = 0. Since the vector field does not involve u, an
immediate solution is 7 = u. On the othe hand, by method of characteristics, we convert the PDE to the
characteristic equations dx/ds = y,dy/ds = —x. That is, the characteristics curves (z(s), y(s)) are just circles
around origin. Because 7 is constant along characteristic curves, it must be a function of R? = 22 + y2.
Therefore, we pick the following two ordinary invariants: n(z,y,u) = %(xz +92) and na(x,y,u) = u. (5]
dictates how we construct higher-order invariants using these two functionally independent invariants and
another arbitrary invariant. For notational convenience, we convert to operators defined according to 72
and 7, respectively:

D, —yD,
O = (19)
y — YUy
D, —u,D
0, = ety (20)
TUy — YUy

Then, we need to find another new differential invariant, because applying these operators on 7; and 72
leads to trivial results. Since n; and 72 generate all ordinary (zeroth-order) invariants, we must look for the
first-order invariants. To do this, note the prolonged vector field is given by

priVv =v + Uy Oy, — Uz Oy, (21)

Solving for pr(Mv gives two first-order invariants, {; = Tuy — yu, and (2 = xu, + yu,. Note that the
differential invariant (; is exactly the common denominator in O; and Os, so we can simplify O; and Os by
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using only their numerators, i.e.

01 = ny - yDz (22)
Oy = uyDy — uz Dy (23)

Note that Os has first-order coefficients, which may complicate things in the subsequent calculation. Denoting
the space of all continuous functions of the existing four invariants as Z = C(n1,72, (1, (2), we can choose any
new operator within the Z-module spanned by O; and O, that makes things easier. Specifically, we use the
following operator
A _ G 2m
©: G Ot G ©:
=aD, +yD, (24)

Then, we apply these operators to the first-order invariants, which raise the order by one and give us the
second-order invariants. For example, applying O; to (1, we have

001G = 2Dy¢1 — yD,(y
= x(xuyy — Uy — yua:y) - y(“’y + Tugy — yuzw)

= :c2uyy + P ugy — TUy — YUy — 2TYUgy (25)

Note that {2 = 2u, + yuy is a first-order invariant, so we can further remove it from the formula and get a
simplified second-order invariant

% = xzuyy + 1y Uy — 2LYUgy (26)
Similarly, we compute O1(a, O2¢; and O2(, and obtain the following, respectively:

Oy =3 = (1 + 2y (Uyy — Uga) + (27 — Y*) ey
= xy(“w — Ugg) + (352 - yz)uzy (27)
Ya=0C+ 1'2um: + y2uyy + 2xyuzy

= 22Uy, + yzuyy + 22y Uy (28)

The above 8 invariants should form a complete set of second-order differential invariants of v = 20, — y0,.
To verify, note that the Laplacian Au = ugs + uyy, which is a well-known rotational invariant, can be written
in terms of these differential functions:

(22 + y?) (uge + uyy)
J)Q + y2

Y1+,

2y

AU = Ugg + Uyy =

(29)

Another second-order rotational invariant, the trace of the squared Hessian matrix, u2, + 2u§y + “Zy’ is
recovered by
s _ U7 4203 4+ 93

uiaﬂ + Quiy T Uy = 4772
1

(30)

On the other hand, these 8 invariants are apparently not functionally independent - note that ¥5 = O1(s
and U3 = Oy¢; are the same. While this may be some coincidence, eventually it is not surprising because we
would expect to see 3 functionally independent strictly second-order differential invariants instead of 4, since
(Ugz, Uyy, Ugy) € Uz is only 3-dimensional.
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Ezample A.6 (Scaling and translation). Consider the vector field vq = t0; + axd, + bud, . It generates the
scaling symmetry ¢t — At, z — A2, u — APu. The ordinary invariants of this symmetry are tPu~! and 2%u~".
The higher-order invariants are given by 74,5y = 2P U0y 45 u” ", where a and 3 denote the orders of partial

derivatives w.r.t t and z, e.g. Uy2)p1) = Ugyt-

Besides the scaling symmetry, we can consider other common symmetries simultaneously, e.g. translation
symmetries in both space and time, vo = J, and v3 = J;. These symmetries, along with the scaling symmetry
v1, span a three-dimensional symmetry group. There are no ordinary invariants due to the translation
symmetries. A convenient maximal set of functionally independent differential invariants is given by

b—aa—p3

Na,B) = Ugrp@m Uz “" 5 a>0,82>0. (31)

A.5 Proof of Proposition 4.4

Proposition [I.4] restated below, aligns our symmetry constraint into the SINDy framework and results in a
set of constraints on the SINDy parameters.

Proposition A.7. Let £(x,u™) = WO(x,u'™) be a system of q differential equations admitting a symmetry
group G, where x € RP, u € R?, 8 € R™. Assume there exist some nth-order invariants of G, né:q and n“ K,
s.t. (1) the system of equations can be expressed as ng = W'0'(n), where ng = [né:q] and n = V%], and
(2) né = Tk I and (6')" = S67, for some functions '(n) and constant tensors W', T and S. Then, the
space of all possible W is a linear subspace of RI*™.

Proof. (Note: In this proof, we do not distinguish between superscripts and subscripts. All are used for
tensor indices, not partial derivatives.)

For simplicity, we omit the dependency of functions and write

0 =Wgi, (32)

Combining the conditions about the differential invariants, we know that the equation can be equivalently
expressed as
Tiikgkei = (W) gIkgk (33)

/ . . . . .
for some W’ € R9*™  where m' is the number of invariant functions in 6’.

Substituting into and rearranging the indices, the principle of symmetry invariants then translates
to the following constraint on W: there exists some W' € R7*™ s.t.

T," 0, W,'0, = (W");*S,70;,vx,ul™. (34)

To solve for W, we first eliminate the dependency on the variables x and u(™ from the equation. We adopt a
procedure similar to [Yang et al.| (2024). Denote z = (x,u(™). Define a functional My as mapping a function
to its coordinate in the function space spanned by 6, i.e. Mg : (z — ¢/0;(z)) — (!, c?,--- ,c™). Before we
proceed, note that the LHS of contains the products of functions 0y (z)6;(z), which may or may not be
included in the original function library 8. Therefore, we denote 0(z) = [0(z) || {60, ¢ 8}] as the collection
of all library functions 6 and all their products 6;6;. The invariant functions 6’(n) can also be rewritten in

terms of the prolonged library: 6'(n) = S@, where Sy.,, = S.
Then, applying My to , we have

My(T,"™ 0, W,'0) = (W) 5,7 (35)
Further expanding the LHS, we have
Tzrkwv lrklj = (W/)iksk]a (36)
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where T satisfies 0,0, = I‘kljéj. In other words, the rows of the LHS fall in the row space of S. Let S+ be the
basis matrix for the null space of S, i.e. SS+ =0, we have

T; Tkerszj (‘gl)js =0, (37)
suggesting that W must lie in a linear subspace of R?*™.

O

Remark A.8. In practice, to solve for , we first rearrange into Mvec(W) = 0, where M has shape
(S.shape[Q] X ¢, ¢ x m). Then, we perform SVD on M and apply a threshold of 1076 to the singular values.
The right singular vectors corresponding to the singular values smaller than the threshold then form a basis
of the linear subspace vec(W) lies in.

B Implementation Details

This section discusses some detailed considerations in implementing the sparse regression-based methods
described in Section .3 and [£4]l Contents include:

 Appendix [BI} An algorithmic description of direct sparse regression with symmetry invariants.

e Appendix Converting the symmetry invariant condition as linear constraints on the sparse
regression parameters.

o Appendix [B:3} Using differential invariants in weak SINDy via the linear constraints, as well as other
considerations.

B.1 Direct Sparse Regression With Symmetry Invariants

The first approach to enforcing symmetry in sparse regression, as discussed in Section is to directly
use the symmetry invariants as the variables and their functions specified by a function library as the RHS
features. Similar to Algorithm [I] for general symbolic regression methods, we provide a detailed algorithm
for sparse regression below. Following the setup from SINDy, we aim to discover a system of ¢ differential
equations for ¢ dependent variables.

Algorithm 2 Sparse regression with symmetry invariants

Require: PDE order n, dataset {z’ = (x, (u(™)?) € M} SINDy LHS ¢, SINDy function library {67},
infinitesimal generators of the symmetry group B = {v,}.
Ensure: A PDE system admitting the given symmetry group.
Compute the symmetry invariants of B up to nth-order: n',--- ,n*. {Prop. |4.3)}
Choose an invariant function 7% s.t. dn*: /0¢* # 0 for SINDy LHS component ¢°.
Let no = [n*, ..., 0"

.,n¥]T and n denote the column vector containing the remaining K — ¢ invariants.
Instantiate the sparse regression model as 19 = W0(n).
Optimize W with the SINDy objective: Y, [|no(z") — W8 (n(z"))|* + A|W||o-

return g = WO(n). {Optionally, expand all 7/ in terms of original variables z.}

The configuration from the original SINDy model, i.e., the LHS £ and the function library {67}, are used to
construct a new equation model in terms of the invariants. It should be noted that the functions in the SINDy
function library does not specify their input variables. For example, in the PySINDy (Kaptanoglu et al.,
2022) implementation, a function 6 is provided in a lambda format lambda x, y: x * y. Thus, 6 can be
applied to both the original variables, e.g. 0(z1, 22) = 2122, and the invariant functions, e.g. 8(n1,n2) = n172.

B.2 Symmetry Invariant Condition as Linear Constraints

Instead of directly using the invariant functions 7 as the features and labels for regression, we can derive a
set of linear constraints from the fact that the equation can be rewritten in terms of invariant functions. As
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shown in Appendix a basis @ of the constrained parameter space can be obtained from the right singular
vectors of a constraint matrix M. We rearrange @) to a tensor of shape (r, g, m), where r is the dimension of
the constrained parameter space, and (g, m) is the original shape of the parameter matrix W. Then, we can
parameterize W by W7* = Q¥¥ 37 where 3 is the learnable parameter, and discover the equation using the
original SINDy objective as described in Section [3.2]

In practice, we observe that the basis @) obtained from SVD on is not sparse. Indeed, SVD does not
inherently encourage sparsity in the singular vectors. As mentioned in Section the lack of sparsity can
pose a problem when we perform sequential thresholding in sparse regression. Therefore, after performing
SVD, we apply a Sparse PCA to @ to obtain a sparsified basis, also of shape (r, g, m):

spca = SparsePCA(n_components=r)
spca.fit(Q.reshape(r, g*m))
Q_sparse = spca.components.reshape(r,q,m)

Figure |§| shows an example of the original basis solved from SVD (top 7 x 2 grid) and the sparsified basis
using sparse PCA (bottom 7 x 2 grid). This is used in our experiment on the reaction-diffusion system .

B.3 Using Differential Invariants in Weak SINDy

In this subsection, we discuss the formulation of weak SINDy and how to implement our strategy of using
differential invariants within the weak SINDy framework. To maintain a similar notation to the original
works on weak SINDy (Messenger & Bortz, 2021a3b), we use D,,, to denote partial derivative operators,
where a; = (s1, S2, ..., $p) is a multi-index, instead of using subscripts for partial derivatives. Thus, we no
longer strictly differentiate subscripts and superscripts—both can be used for indexing lists, vectors, etc.

Given a differential equation in the form
Dogu =Y Wi;Da, f;(u), (38)
$,J

we can perform integration by parts (i.e., divergence theorem) to move the derivatives from u to some analytic
test function and thus bypass the need to estimate derivatives numerically. First, we multiply both sides of
by a test function ¢ with compact support B C X and integrate over the spacetime domain:

/X Dayu(x)60x)dx = YW, /X De f; (u(x))$(x)dx (39)

WLOG, assume that s; # 0, and denote ay = (s1 — 1,83, ...,5p). Then, each term in the RHS can be
integrated by parts as

/X D f3(u(3))$(x)dx

/ Do, f3(u()) $(x)dx
B

_ / Do, f;(u(x)) D1 6(x)dx + / V1 Do, 3 (u()) () dx
B 0

B

- [ Do (w0 D1 o) (40)

where D denotes the partial derivative operator w.r.t the first independent variable, and v, is the first
component of the unit outward normal vector.

Repeating this process until all the derivative operations move from f;(u) to the test function ¢, we have
/x Da, fi(u(x))d(x)dx = (=1 /X fi(u(x))Da, d(x)dx (41)

Similarly for the LHS:
/ Dy u(x)$(x)dx = (=1)!! / w(X) Doy §(x)dx (42)
X X
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Figure 6: Basis for the SINDy parameter subspace that preserves SO(2) symmetry v = —v9,, + ud,. The
SINDy parameter W has dimension 2 x 19. The two
v; as the LHSs. The RHS contains 19 features, including all monomials of u,v up to degree 3 and their
spatial derivatives up to order 2. The set of symmetry invariants used to compute the basis is given by
{t,z,y,u* + 02} U{u-u,} U{ut -u,}, where u = (u,v)” and p is a multiindex of ¢, z,y with order no more
than 2. The top 7 x 2 grid displays the original basis solved from SVD, and the bottom 7 x 2 grid displays
the sparsified basis.

rows correspond to the two equations with u; and
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The final optimization problem is to solve for b = Gw, where w is the vectorized coefficient matrix W, and
each row in b and G is given by computing the integrals in and against a single test function. The
number of rows equals the number of different test functions used.

Direct integration of symmetry via linear constraints As we have discussed in Appendix [B.2] we can
enforce symmetry by converting it to a set of linear constraints on the parameter W. With this approach, we
can directly incorporate symmetry in weak SINDy. Specifically, we just parameterize W as in terms of a
precomputed basis () and a trainable vector g and directly substitute this parameterization of W into the
optimization problem of weak SINDy. We adopt this strategy in our experiments concerning weak SINDy.

Expressing the equations with differential invariants The above approach is only possible when the
conditions in Proposition [£.:4] about the selected set of symmetry invariants hold. We should note that it
is not always possible to find a set of invariants so that the symmetry condition can be converted to linear
constraints on the parameter W via the procedure in the proof of Proposition [£:4 One may ask the following
question: can we simply express the equations in terms of differential invariants and apply weak SINDy,
similar to Algorithm [2] for the original SINDy formulation? Here, we do not provide a definite conclusion for
this question, but only discuss several cases where directly using differential invariants in equations might
succeed or fail in weak SINDy.

To adapt to the weak SINDy formulation (38), it is more helpful to consider the symmetry invariants as
generated by some fundamental invariants and some invariant differential operators, instead of specifying a
complete set of differential invariants for every order. Concretely, there exists a set of invariant differential
operators {O;} and a set of fundamental differential invariants I = {n;} s.t. every differential invariant can
be written as Oj,...0;, ni. For the SO(2) symmetry group in Example one possible choice is

1
m = 5(1'2 +y2)> 2 = u, Ol = ny - me, 02 = xDz +yDy (43)

We can compose these generating invariant operators to obtain a full library of eligible differential operators up
to some order, denoted D = {D;}. The exact compositions can vary and we can choose the most convenient
one for subsequent calculations. For the above SO(2) example, for up to second-order differential operators,

we can choose {01, 0q, 0%, 03, %(O% + 03)}. Note the last operator is exactly the Laplacian.

Then, the complete set of eligible terms (respecting the symmetry) in the equation is {D;ny : D; € D, 7 € I}.
If we assume, as in SINDy, that the governing equation can be written in linear combination of these symmetry
invariants, then we can assign a weight for each D;n;, and form a coefficient matrix W = [W}]. That is,

Digite = »_, WDy (44)
(43,%)#(jo ko)

Then, multiplying each side by a test function ¢(x), we have

/X Djnked(X)dx = Y Wik /X D,npd(x)dx. (45)

(4,k)#(do ko)

The question then boils down to whether we can apply the technique of integration by parts similarly to this
set of differential operators and differential functions, since the original algorithm only deals with partial
derivative operators D, and ordinary functions f;(u).

To check this, let us explicitly write out the dependency of these operators and fundamental invariants.
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Case 1 A relatively simple case is when all invariant operators take the form D; = )" as(x)D,, and
Nk = Mk(x,u(x)). Each term in the RHS of can be expanded as

/XDjnk¢(x)dx:Z/Xas(x)DQSnk(x,u(X))(b(x)dx
= S0 [l u0) Do fon (x)6x)x (46)

Evaluating does not require estimating partial derivatives of u. Therefore, weak SINDy can be applied
to this case quite straightforwardly.

Case 2 However, it is not always possible to have all D; as classical linear differential operators and all 7
as ordinary functions. For instance, in Example there are no ordinary symmetry invariants due to the
constraint of translation symmetry.

If we still have linear operators D; = ) as(x)D,,, but on the other hand we have differential functions
M = Nk (X, u(")), we can still perform integration by parts as in , but the final result becomes

SO(=1yle! / 7 (3%, 6™) Dy [1(x) ()], (47)

p X

meaning we still have to evaluate whatever partial derivatives remain in 7. It is possible that we can decrease
the order of partial derivatives compared to vanilla sparse regression, but we cannot eliminate all partial
derivatives compared to Weak SINDy without any symmetry information.

Case 3 The most challenging case is when the invariant differential operators explicitly involve the partial
derivative, such as Dj = ) a4(x, u(™)D,,.. Then, similar to , integration by parts yields:

S (=1l / 71 (5, 1) D [y (3, u™ ) ()] . (48)

s X

In this case, we still need to compute the partial derivatives, not only those in 7, but also those arising
from as and D, (as). The latter might involve higher-order derivatives and the benefit of using the weak
formulation may further diminish.

C Additional Experiment Results

Contents of this section include:

e Appendix Extended results in Table [I] with confidence intervals for the prediction error metric
over 100 runs.

e Appendix Results for some variants of the sparse regression models considered in Table

o Appendix|[C.3} Results for the symmetry-breaking reaction-diffusion systems with auto-tuned WSINDy
parameters, complementing Figure E[

e Appendix Results on a 3D PDE system with SO(3) spatial symmetry.

e Appendix Results for the D-CIPHER, (Kacprzyk et al., [2023]) baseline and our method applied
to D-CIPHER on the Darcy flow dataset.

 Appendix [C.6} Samples of equations discovered by different methods.

 Appendix [C.7} Visualized prediction errors of equations discovered by different methods.
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C.1 Results in Table [I] With Error Estimates

Table 3: Extended results in Table |[1| with confidence intervals for the prediction error metric over 100 runs.
Each table entry is formatted as median [25% quantile, 75% quantile].

Method Boussinesq @ Darcy flow Reaction-diffusion
Sparse PySINDy  0.373 [0.367, 0.380] - 0.021 [0.020, 0.022]
Regression SI 0.098 [0.098, 0.098] - 0.008 [0.007, 0.013]
Genetic PySR 0.098 [0.098, 0.098]  0.114 [0.089, 0.169] -
Programming SI 0.098 [0.098, 0.098]  0.051 [0.031, 0.053]  0.023 [0.015, 0.036]
Transformer E2E 0.132 [0.109, 0.322] - -

ST 0.104 [0.100, 0.109] - -

C.2 Variant Sparse Regression Models

Table 4: Results of sparse regression models on the Boussinesq equation and the reaction-diffusion system. C
stands for complexity, i.e., the dimensionality of the parameter space. SP stands for success probability. The
PySINDy and SI rows present the same results as the corresponding rows in Table E

Boussinesq @ Reaction-diffusion

Method cl SP 1 cl SP 4
PySINDy 15 0.00 38 0.53
PySINDy* 21 1.00 468 0.00
PySINDy** 15 1.00 198 0.00

SI 15 1.00 28 0.54
Sl-aligned - - 14 0.56

PySINDy (de Silva et al.l |2020; |Kaptanoglu et al., |2022)) constructs its library 6 from a list of variables and
derivatives, [u || u,] (Ja] > 0) and a set of scalar functions specified in lambda format. For example, to
include up to quadratic monomial terms in the library, we can specify the following functions: z — x and
(z,y) — xy. However, their original implementation does not allow these functions to be applied to partial
derivative terms. As a result, terms such as u2 cannot be modeled. This leads to its failure to discover the

Boussinesq equation (@, as we have shown in Table

We modify the implementation and include an additional set of results with different libraries, denoted as
PySINDy* in Table[d The PySINDy* model supports a wider range of library functions, including functions
of partial derivatives, e.g., u2. Further more, we notice that the PySINDy* library while comprehensive,
contains many redundant terms, such as interactions between derivatives like wu,u,,. Therefore, we implement
another library, denoted PySINDy**, where functions such as (z,y) — ay are only applied when their
arguments do not contain at least two different partial derivatives. Therefore, PySINDy** library still includes
all the necessary terms to recover the Boussinesq equation but becomes much more compact. A complete
description of the hypothesis spaces of different sparse regression-based methods is available in Appendix [E-]

As Table [] shows, both PySINDy* and PySINDy** succeed in the Boussinesq equation. However, they fails
in the reaction-diffusion system because their parameter spaces become too large due to a higher-dimensional
total space X x U ~ R? x R?. Even with the more compact PySINDy**, there are still 198 possible terms for
the reaction-diffusion system, and the algorithm never succeeded in 100 runs. This augments the point that
SINDy’s success relies on an appropriate choice of function library. If the library is too small to contain all
the terms appearing in the equation of interest, the discovery is sure to fail. If the library is too large, the
optimization problem becomes more difficult in the high-dimensional parameter space. On the other hand,
by introducing the inductive bias of symmetry, our method automatically identifies a proper function library
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that contains all the necessary terms for a PDE with a specific symmetry group, but not other redundant
terms.

We include another model in Table [4] SI-aligned, where we derive a set of linear constraints on the sparse
regression parameters from the fact that the equations can be expressed in terms of symmetry invariants. In
this way, we still optimize the original parameters (though in a constrained subspace) as in the base SINDy
model without symmetry, effectively "aligning" the hypotheses about equations from symmetry and the base
SINDy model. This method is discussed in detail in Section and Appendix We should also note
that this method is mainly developed for incorporating the symmetry constraints into the weak formulation
of SINDy. However, it is perfectly acceptable to implement it in the original formulation of SINDy, so we
provide its results in Table [] for reference.

For the reaction-diffusion system, SI-aligned has a 14-dimensional parameter space. The basis for its parameter
space is visualized in Figure @ It achieves a slightly higher success probability than SI (regression with
symmetry invariants) and PySINDy (without symmetry information). We do not apply Sl-aligned to the
Boussinesq equation, because it is not necessary to align the hypotheses from SINDy and symmetry in this
case. We can readily convert any equation discovered from SI (regression with symmetry invariants) by
multiplying both sides by 2.

We note that the results on the reaction-diffusion system in Table [4] are for models with the original SINDy
formulation, in contrast to the weak SINDy formulation used in Figure [dl Therefore, the results in Figure [4]
should not be directly compared to those in Table [[] and Table [4]

C.3 Parameter Selection for Weak SINDy (WSINDy)

In Section [5.4] we have mentioned that different methods for selecting the test functions used in WSINDy
have a significant impact on the equation discovery outcome. As is shown in Figure 4| (left), the auto-tuned
test function parameters from the data result in better performance for baseline WSINDy (no symmetry
constraint) in all noise levels considered, and for our symmetry-constrained method under relatively low noise
levels.

In Figure [4] (center & right), we have used the default test function parameters from PySINDy for the variants
of the reaction-diffusion system with imperfect symmetry. We find that the default parameters result in
higher success probabilities of finding the correct equations in these cases. However, for comparison, we also
show the results of the same experiments using the auto-selected test function parameters in Figure [7]

R-D w/ unequal diffusivities, autotuned WSINDy R-D w/ external forcing, autotuned WSINDy
107 —m— sl-relaxed : Lo1
Sl
-A- WSINDy |
0.8 : 0844
o | Perfect symmetry > i
= £ |
a a
R 0.6 So6
o o
o o
@ 0.4+ 7N O 0.4+
I / 1 S = H
5 FARE I N 5 5 o Sl-relaxed
0 A VR A ) A —=— S|-relaxe
0.24 ’,,A, A 024+ Sl
R A i -4- WSINDy
i e Perfect symmetry
0.01¢ . . ; ; ; ; 0014 ’ ; ’
-0.03  -002 -0.01 0 0.01 0.02 0.03 0 0.1 0.15 0.2
Symmetry breaking parameter ¢ Symmetry breaking parameter €

Figure 7: Success probabilities on the reaction-diffusion system with unequal diffusivities (left) and external
forcing (right) with auto-tuned WSINDy parameters.

With the auto-tuning of test function parameters following the procedure in [Messenger & Bortz (2021a)), the
relaxed version of our method (SI-relaxed) still has superior performance over the baseline WSINDy in both
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symmetry-breaking scenarios. Notably, as the auto-tuning procedure typically suggests more test functions
with higher polynomial degrees than the default setup, the performance of Sl-relaxed is even better than its
performance shown in Figure [d] However, the baseline WSINDy does not benefit from this selection strategy
as much, while the version of our method that enforces hard constraints fails to recover any equation with
imperfect symmetry.

C.4 Equations with More Spatial Dimensions

Our previous examples focus on equations with 2 spatial dimensions at most. In this subsection, we test
whether our method works well for discovering equations with higher spatial dimensionality. We consider a
3D isotropic reaction-diffusion system governed by

ug = 0.2A8u +u — u?, (49)

where u is a scalar field, and the nonlinear reaction term is given by u — u3.

For data generation, we use a random perturbation around v = 0. Then, similar to the 2D reaction-diffusion
system 7 we simulate the solution from this initial condition using an FFT-based spectral method with
RK45 solver and periodic boundary conditions. We use 32 grid points per dimension and simulate up to
T = 10, recording the solution at every At = 0.1. After simulation, we add a 1% noise to the trajectory and
compute the derivatives from the noisy trajectory. We then split the data along the time dimension, using
t € [0, 8) for training and ¢ € [8,10) for testing.

Table 5: Results on the 3D reaction-diffusion dataset over 100 runs for each method. The prediction error
(PE) column is formatted as median [25% quantile, 75% quantile].

Method clL SPt PE |
Sparse PySINDy 286 0.51 0.216 [0.207, 0.977]
regression SI 84 1.00 0.208 [0.204, 0.210]
Genetic PySR 10 0.00  1.228 [1.227, 1.230]
programming Sl 6 0.20 1.227[0.324, 1.229]

The equation admits an SO(3) spatial symmetry. We use a set of SO(3) invariants up to second order given by
Trp-sp = {u, (Vu)?, Au, (Vu)T HVu, tr(H?),det(H)}, where H denotes the Hessian matrix H;; = u;;, and
tr and det stands for matrix trace and determinant, respectively. Note that a complete set of invariants would
also include terms with independent variables and time derivatives, e.g., {uy, us, [|x||3, x- Vu,xT Hx, xT HVu}.
However, the standard setup of SINDy excludes time derivatives and independent variables in the RHS
features. To align with the SINDy setup, we only use those 6 invariants in Zgp_sp. Similarly, for genetic
programming, even though it is possible to also include the spatial variables, we only use the standard
coordinate in the 10-dimensional jet space (excluding ¢): {u, Uz, Uy, Uz, Uzg, Ugy, -..s Uyz, Uz, }. Finally, for the
SINDy function library, we include all monomials up to degree 3 of all variables and derivatives.

Table [5| shows the results for sparse regression and GP-based methods on this 3D dataset. Our symmetry-
invariant-based method (SI), when applied to SINDy, always discovers the correct functional form of the
RHS of . In comparison, SINDy with regular variables only succeeds in about half of the 100 runs. Also,
the complexity (C), which stands for the total number of feature terms for SINDy-based methods, is much
lower with our method. As such, we comment that our method’s advantage of reducing the equation space
complexity becomes more obvious in these higher-dimensional examples.

On the other hand, genetic programming proves to be a less favorable base SR algorithm in this case due to
its overly large search space. PySR with standard jet variables completely fails to recover the correct equation.
Our method uses the invariant set Zrp_sp as PySR input features and achieves a success probability (SP)
of 20%. Finally, the symbolic transformer, which we used in the main experiments in Table [1| (E2E), has 0
success probability in this dataset, with either regular variables or symmetry invariants. We therefore do
not report its results in Table ol Again, we comment that the failure of the symbolic transformer might be
because the data distribution from the PDE solution is largely different from its pretraining dataset.
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C.5 Comparison with D-CIPHER

A main advantage of our proposed method is its compatibility with various algorithms for symbolic regression.
In the main experiments in Section [5.3]in Section [5.4] we have shown that our method works well with SINDy
(Brunton et al., 2016)), weak SINDy (Messenger & Bortz, [20214a)), genetic programming (Cranmer} [2023)), and
symbolic transformer (Kamienny et al., 2022)). To further demonstrate this advantage, we include another
base algorithm for symbolic regression, D-CIPHER (Kacprzyk et al., [2023), in this section.

Similar to weak SINDy, D-CIPHER (Kacprzyk et al.,2023) uses a variational objective for equation discovery.
It defines the extended derivative as

EMu](x) = a(x)duh(x,v),

where a and h are some functions and « is a multi-index indicating partial derivatives. Then, a library
{€%}5_, of such extended derivatives is specified by the user by providing S triples of (a, «, h). The algorithm
then optimizes for a coefficient 8 € R® and a symbolic function g(x,u) under a variational loss and outputs

the equation

S
> BE (%) = g(x, ).

As discussed in Appendix our approach can be directly used in D-CIPHER to enforce symmetry. We
demonstrate this with an experiment on the Darcy flow dataset with SO(2) symmetry. First, we obtain
the generating invariant operators of SO(2), i.e. Oy = 2D, —yD, and Oy = 2D, + yD,. To discover this
second-order PDE, we enumerate the following 5 up to second-order differential operators composed by O,
and Oz: O = {01,0,,0%,03, Tiyz((’)f + 03)}. Note the last operator is exactly the Laplacian. On the
other hand, we have 2 fundamental differential invariants 22 + y? and «. To enforce symmetry, we replace
the manually defined set of extended derivatives {£°} in D-CIPHER by all nontrivial differential functions
obtained from applying an operator in O to one of the fundamental differential invariants. Also, instead
of searching for general functions of all variables (in this case, x,y, u) for the RHS expression, we restrict
the search space to functions of fundamental differential invariants, i.e. 2 + y? and u. Since D-CIPHER
uses genetic programming to find a free-form expression g, we can simply replace the variable set in genetic
programming by {z? 4+ y?,u} to achieve this.

Table 6: Discovery results of D—CIPHER—baQsed2 methods on the Darcy flow dataset. The ground truth
equation is 8(zuy + Yuy) — (Upz + Uyy) — A +y?) — .

Method Discovered equation
D-CIPHER TUg + YUy — 2.092uy — 2.09yu, — 0.19u, = 7.982%y% + 2.51zy + 0.80
D-CIPHER-SI (ours) (U + Ytiy) — 0.13(Ugg + Uyy) = 0.13e412(7+07)

Table [6] shows the equations discovered by the D-CIPHER baseline and our method. Our method can find
the correct functional form of the Darcy flow equation, while D-CIPHER, with the original variables and
derivative operators cannot. We comment that the benefit of symmetry is even greater here for D-CIPHER
than for other SR methods like SINDy, because D-CIPHER requires the user to specify both the function
coefficient a(x) and the function to be differentiated h(x,u) for an extended derivative. Such choices of
functions can be largely arbitrary if no prior knowledge is available. On the other hand, our symmetry-based
approach automatically selects this dictionary of differential functions.

C.6 Samples of Discovered Equations

In Table [7], we list some randomly selected equations discovered by different methods for the Boussinesq
equation @ Some methods almost consistently discover correct/incorrect equations (i.e., have success
probabilities close to 1 or 0), so we only select one sample for each. For other methods with a large variance
in the discovered equations, we display two samples: a correct equation and an incorrect one.
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The ground truth equation in the original variables is given in @ The ground truth equation in the symmetry
invariants is given by
M(0,2) + 1(0,0)M(2,0) + M40 +1 =10 (50)

Table 7: Samples of discovered equations from the observed solution of the Boussinesq equation @ For
GP-based methods, we include results from different numbers of iterations (indicated by "N its"). For
transformer-based methods, we include two samples for each method because of the large variance of
discovered equations from different runs.

Method Equation sample(s)
PySINDy Uy = —1.01Ug000 — 0.79UUL,
fg’ifs‘;on PySINDy* U = —1.01Ug000 — 0.99u2 — 0.98utizy
& SI N0,2) = —1.00 = 1.0074.0) — 1.007)0.0)7(2.0)
. PySR (5 its) Ulge + 1.00us + Uzzer = 0
Gr?)ni:fnmin PySR (15 its) Uge + Ugg + U2 + 1.00Uzpp0 = 0
bros &SI (5 its) 1.007)(0,0)7(2,0) + 1.009(0,2) + 100740y + 1 =0
EOE (1) ug = —1.130tgy — 0.98ug£21wC — 0.30]uy|
Transformer (2) uge = —0.85utiyy — 0.75u2 — 0.99Uy g0

2
S (1) m00,2) = —1.057(0,0y7(2,0) — 1.007(4,0y — 0.96
(2) m(0,2) = —0.811(0,0)M(2,0) — 0-40n0,0y — 0.987(4,0) — 0.90

Table [8] lists the equation samples discovered from the Darcy flow dataset. The ground truth equation in
original variables is given in @, and the ground truth equation in symmetry invariants is given by

8¢y — Au—e*f* =0, (51)

where (o = Tuy + yuy, Au = Uy + Uy, and R? = 22 + y? are among the rotational invariants used in
symbolic regression.

Table 8: Samples of discovered equations for the Darcy flow dataset.

Method Equation sample
Genetic PySR  u — 0.472%y2 — 0.38¢0-09(uazFuuu) 10,20 = 0
programming  SI (o — 0.13Awu — 0.13¢401R* =
Teansformer  E2E Upy = —T.431/u? + 0.65u2
SI Au = —2.56u + 0.85( + 0.29

Finally, Table [9 lists the equation samples discovered from the reaction-diffusion dataset. The ground truth
equation in original variables is given in with di = ds = 0.1, and the ground truth equation in symmetry
invariants is given by

I =0.1(Iy, + Iyy) + A(1 - A)

E; = 0.1(Eyy + Eyy) — A (52)

where I, = uu,, +vv, and E,, = —vu, + uv, for any multiindex p of ¢, z,y, and A = u® + v

C.7 Prediction Errors of Discovered Equations

In Table[I] we report the prediction errors of the discovered equations on the three PDE systems. Specifically,
for the Boussinesq equation and the reaction-diffusion system, we simulate the discovered PDE from an
initial condition for a certain time period, e.g., t € [0,20] for the Boussinesq equation and ¢ € [0, 10] for the
reaction-diffusion system. Then, we compare the numerical solution with the ground truth solution from the
same initial condition at the end of the time period.
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Table 9: Samples of discovered equations for the reaction-diffusion system dataset. Each discovered result
contains two equations, since this is an evolution system with two dependent variables u, v.

Method Equation sample
PvSIND up = 0.96u — 0.97u> 4+ 1.00% — 0.97uv? + 1.00uv + 0.09uy, + 0.09uy,y
Y s = 0.960 — 1006 — 0.970% — 1.00uv® — 0.96u%v + 0.090,, + 0.090,,
Sparse PySINDv* up = 0.21u — 0.24u® + 1.00v3 — 0.23uv? + 0.99u?v
regression Y Y v, = 0.21v — 1.01u3 — 0.2403 — 0.99uv? — 0.23u3v
- I; = 0.101,, + 0.101,, + 0.96A — 0.96 A*
Ey =0.10E;; +0.10E,, — 1.00A42
SLaliened 4 % = 0-95u — 0.96u® + 1.00v* — 0.96uv? + 1.00u*v + 0.09uys + 0.09u,,
& v = 0.950 — 1.00u® — 0.96v% — 1.00uv? — 0.96u%v + 0.09v,, + 0.09vy,
=0.92
Genetic PySR { ut Y
programming v = —0.92u
oI I, =0.10I,, + 0.101,, + A — 1.00A2
E; =0.10E,; +0.10E,, — 1.00A42
9K {ut = 0.89u,
Transformer v = —0.91lu
ST L =0
E, = 0.50 arctan(0.45E, — 0.31E, /(—540.12AE, + ...) + ...) + ...
x10t Prediction error for Boussinesq equation Prediction error for reaction-diffusion system
= SINDy-SI —— SINDy-Sl-aligned
2% 10-1 SINDy 0.020 SINDy-SI-raw
—— GP-SI -—- SINDy
-—- GP — GP-SI
——— Transformer-SI / 0.015 1
w | === Transformer - ,/’ w
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Figure 8: Prediction error over time using the discovered equations.

In addition to the prediction error at the end of the simulation time, Figure [8| shows the errors at each
simulation timestep. We do not include methods whose error curves grow too fast due to the incorrectly
identified equations. The results in Figure [§ are consistent with those in Table[]] Generally, the discovered
equations with smaller prediction errors at the end of the simulation time also have lower prediction errors
throughout the entire time interval.

For Darcy flow , since it describes the steady state of a system and does not involve time derivatives, we
do not simulate the discovered PDEs. Instead, we evaluate each discovered PDE F(x,u(™) = 0 on the test
dataset {(x,u(™) : x € Q} and report the residual as the prediction error. In addition to the average error
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over all the spatial grid points reported in Table [} we visualize the error heatmaps over the grid in Figure [
It can be observed that the discovered equations with symmetry invariants have lower errors across the entire
grid.

Discovered equations with regular variables 54 Discovered equations with invariants — 0.005
= e

- 0.004 - 0.004

-0.003 - 0.003

0.002 0.002

0.001 0.001

0.000 0.000

Figure 9: Prediction error of discovered equations from genetic programming methods for Darcy flow. Left:
genetic programming with regular variables. Right: genetic programming with symmetry invariants.

D Comparison with Other Symmetry-Based Methods

In this section, we discuss the connections and differences between our work and other closely related methods
that also enforce symmetry in equation discovery (Otto et al., 2023} |Gurevich et al.l |2024; [Yang et al.| [2024)).

D.1 Comparison with Methods for ODE Symmetries

Otto et al| (2023); [Yang et al| (2024) focus on a special type of Lie symmetry: time-independent (TT)
symmetry of ODEs. In particular, the symmetry only transforms the phase variables of ODEs. In comparison,
our method can handle equations with partial derivatives and symmetries acting on the independent variables,
including time and spatial variables.

When restricted to the special case of ODEs in linear combination forms and with TI symmetry, our method
becomes equivalent to EquivSINDy (Yang et al., 2024)). More specifically, we can still follow the procedure
in Section to construct the invariants w.r.t the specified TT symmetry, and then apply Theorem to
convert the symmetry constraint into linear constraints on the SINDy parameters. This leads to the same
equivariant basis for the SINDy parameters as in EquivSINDy.

Otto et al.|(2023); Yang et al.| (2024) also introduce symmetry regularization, which is useful when computing
the exact symmetry constraint is challenging (for example, when symmetry is learned by a neural network
instead of presented in closed form). The symmetry regularization term is based on the infinitesimal criterion
of Lie point symmetries, which applies to not only ODEs but also PDEs and more complex symmetries.
Thus, the idea of symmetry regularization can be readily generalized to systems considered in our paper.
However, as our paper primarily focuses on enforcing hard symmetry constraints, we choose not to investigate
the effect of PDE symmetry regularization in great detail.

D.2 Comparison with SPIDER: Roto-Translation Symmetry in 3D Fluid Systems

SPIDER (Gurevich et al., |2024) incorporates the symmetry of rotations and translations in 3D space into
sparse regression with a weak formulation. With these specific designs, including symmetry, weak formulation,
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and sparse regression, their method is shown to successfully recover several canonical equations in fluid
dynamics. Notably, their method for enforcing symmetry is similar to ours: they manually construct a set of
invariant scalars and a set of equivariant vectors and use them as feature sets for sparse regression.

Despite this similarity, we have established a more general framework for different types of symmetries.
Examples in this paper include not only spatial rotation symmetry (Darcy flow @), but also scaling symmetry
(Boussinesq equation @) and phase-space symmetry (reaction-diffusion ) For each of these different
symmetries, we can follow the standard procedure described in Section [4] to compute their invariants. Also,
in terms of the base method, SPIDER primarily focuses on the weak formulation of sparse regression. On the
other hand, our method integrates with sparse regression (SINDy & WSINDy), genetic programming (PySR),
and symbolic transformers.

To provide a direct experimental comparison to SPIDER (Gurevich et al. [2024), we test our method (applied
to SINDy) on the same channel flow dataset specified in their Table 5 (Appendix A). The channel flow data
is retrieved from the Johns Hopkins Turbulence Database (Li et al. 2008; |Graham et al.l |2016). The ground
truth equation is given by u; = —(u- V)u — Vp + vAu, where v =5 x 107°.

The dataset contains a 3D velocity field u and a scalar pressure field p over a 4D spatiotemporal grid (z,y, 2, t).
Our method requires a set of scalar invariants of the given symmetry group. In this channel flow dataset, the
assumed symmetry is rotations and spatiotemporal translations. To align with the assumption of SINDy, we
specify the scalar invariant u - u; as the LHS, and the following up-to-second-order scalar invariants as the
RHS variables:

7= {|u\2,p7 V-u, |w|2, uw,u(u-V)u ,Tr(Sz), Tr(SS), |Vp|2, u-Vp,u-Au, Ap, Vp-Au, w-Au, |Au\2}, (53)

where S = £ [Vu+ (Vu)?] is the strain rate tensor, and w = V x u is the vorticity. We have excluded the
invariants that involve mixed derivatives (such as ugy).

Table 10: Equation discovery results of SPIDER (Gurevich et all 2024) and our method on the channel flow
dataset from the Johns Hopkins Turbulence Database.

Method Discovered equation
SPIDER (vector) 1.000u; + 1.000(u - V)u + 1.000Vp — 0.0000500Au = 0
SPIDER (scalar) u-u; = —0.994u- (u-V)u — 1.000u - Vp + 0.0000473u - Au — 0.497||[u||>V - u + 0.0000069 || Vu||?
SINDy-SI (ours) u-u =0.730V-u—1.008u- (u-V)u — 1.020u - Vp + 0.0000573u - Au

Table [L0| shows the discovered equations by our method (SINDy-SI) and SPIDER. The SPIDER results are
referenced from their Table 1 and 2. It can be seen that SPIDER with the vector library (£; in their paper)
recovers the governing equation exactly. Our method and SPIDER using an extended scalar library (£,
in their paper) discover mostly correct equations, with the pressure gradient, the convective term, and the
Laplacian correctly identified. However, our method discovers one spurious term, the divergence V - u, and
SPIDER. with the scalar library discovers two spurious terms (|Vu||? and ||u||?V - u). While the divergence
term should be zero in theory in the incompressible flow, the numerical simulation and derivative estimation
may cause a small nonzero divergence, which is then reflected in the equation discovery models.

We comment that, in this case, using the vector library in SPIDER is a natural choice, since we can easily
obtain the equivariant vectors w.r.t rotations. SPIDER with the vector library also achieves the best accuracy.
Still, we show that our framework, which requires an invariant scalar library, can also be applied to this
scenario and identify a mostly correct equation with only one spurious term.

E Experiment Details
In this section, we describe the experiment setups required to reproduce the experiments.
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E.1 Data generation

Boussinesq equation The equation is solved using a Fourier pseudospectral method for spatial derivatives
and a fourth-order Runge-Kutta (RK4) scheme for time integration. The solution is computed on a periodic
spatial domain [—10,10] with N = 256 grid points. The equation is reformulated as a first-order system in
time by introducing v = u;, and both u and v are evolved in time. Spatial derivatives are computed using
the Fast Fourier Transform, and time derivatives of u up to the fourth order are derived analytically from
the governing equation. At each time step, values of u are recorded in the dataset for equation discovery.
The simulation starts from an initial condition of u(z) = 0.5¢=*" and u; = 0 and proceeds up to a final
time T = 20 with a time step of At = 0.001. Starting from the solution at T" = 20, we simulate for another
T’ = 20 with the same configuration to obtain a test dataset for evaluating prediction errors of the discovered
equations.

Darcy flow We use the data generation codeﬂ from PDEBench (Takamoto et al., 2022) to generate the
steady-state solution of Darcy flow over a unit square. The solution is obtained by numerically solving a
temporal evolution equation

ug(x,t) — V(a(x)Vu(x,t)) = f(z),x € Q = (-0.5,0.5)?, (54)

with a(x) = e~ 4lxll3, f(x) = 1, a smooth random initial condition generated by the init_multi_2DRand
routine from PDEBench, and homogeneous Neumann boundary conditions (zero normal flux) on 92. We
integrate from ¢t = 0 to ¢ = 5 using an explicit two-stage scheme with an adaptive time step chosen from a
diffusive CFL condition, with a CFL safety factor of 0.25.

Reaction-diffusion We use the data generation codeﬂ from PySINDy (de Silva et al., [2020; [Kaptanoglu
et al.| [2022)). We solve on a periodic spatial domain of [—10,10] x [—10, 10] with a 128 x 128 Fourier spectral
grid. The initial condition is given by u(z,y,0) = tanh(r) cos(d — r),v(x,y,0) = tanh(r) sin(f — r), where
r=+/x?+y? and 0 = arg(x + iy). The simulation uses RK45 in Fourier space and proceeds up to a final
time 7" = 10 with a time step At = 0.05. We perturb the numerical solution by a 0.05% noise and record the
values of u,v to the dataset for equation discovery. Starting from the solution at 7' = 10, we simulate for
another 7/ = 10 with the same configuration to obtain a test dataset for evaluating prediction errors of the
discovered equations.

E.2 Sparse regression

Boussinesq equation For SINDy with original variables, we fix us; as the LHS of the equation and include
functions of up to 4th-order derivatives on the RHS. For PySINDy in Table[l] the library contains monomials
on U™ with degree in u no larger than 2 and degree in any partial derivative terms u, no larger than 1. For
example, u?u, is included, but u3, u2 are not. For PySINDy*, the library contains all monomials on U ™) up
to degree 2. For example, u2 and uu, are included. Note that the PySINDy* library does not contain all
functions in the original PySINDy library, e.g., u?u, is not included because it has degree 3.

Our method, SI, uses the invariant set in Example for sparse regression. Specifically, 79 2) = ust/ u? is
used as the LHS of the equation, and the rest of the invariants are included in the RHS. The function library
contains all monomials of these RHS invariants up to degree 2. Also, since the invariants contain rational
functions with u, on the denominator, we remove the data points with |u;| < 0.1 to avoid numerical issues.

We also conduct an additional experiment to investigate the impact of the threshold value for |uy|. In
Table we enumerate different threshold values from {0.0001,0.001,0.01,0.1,0.2,0.3}, and report the
resulting filtered dataset sizes (and their proportions compared to the unfiltered dataset), and the success
probability (SP) and the prediction error (PE) metrics as in Table

First of all, we notice that when the threshold value is small (¢ = 0.0001), i.e. effectively no filtering, the
success probability for SINDy using invariant functions dramatically decreases. This exactly shows the

2https://github.com/pdebench/PDEBench /tree/main/pdebench/data_gen/data_gen_NLE/ReactionDiffusionEq
Shttps://github.com/dynamicslab/pysindy/blob/master/examples/10_ PDEFIND_ examples.ipynb
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necessity of applying this numerical filter, as u, values close to zero would cause the invariant features to
have large magnitudes and make the SINDy optimization unstable.

Then, as we increase ¢, we observe that our method can achieve 100% success probability for ¢ €
{0.001,0.01, 0.1}, showing its robustness to different choices of the threshold to some extent. When we further
increase ¢, the filtered dataset becomes much smaller, and the success probability decreases. However, even
with ¢ = 0.3 and only 99 data points, our method is still able to recover the correct equation with more than
50% probability.

Table 11: SINDy with invariant functions on the Boussinesq equation when removing data points with
|uz| < ¢ for different threshold values c. In the second row, we report the number of samples in the filtered
datasets and their proportions compared to the original dataset. The success probability (SP) and the
prediction error (PE) are computed from 100 runs with different random seeds, in the same way as Table
The prediction error is reported as median [25% quantile, 75% quantile].

Threshold ¢ Dataset size SP PE
0.0001 99,756 (97.4%) 0.36  NaN [0.129, NaN]
0.001 97,956 (95.7%) 1.00 0.103 [0.099, 0.118]
0.01 85,591 (83.6%) 1.00 0.098 [0.098, 0.099]
0.1 26,231 (25.6%) 1.00 0.098 [0.098, 0.098]
0.2 1,318 (1.3%) 0.91 0.098 [0.097, 0.108]
0.3 99 (0.1%) 0.52  0.100 [0.098, NaN]

For all methods, we flatten the data on the spatiotemporal grid and randomly sample 2% of the data for each
run. The data filtering process in SI-raw is performed after subsampling. The threshold value for sequential
thresholding is set to 0.25, and the coefficient for Lo regularization is set to 0.05.

Darcy flow Sparse regression-based methods are not directly applicable to Darcy flow because there
exist terms such as e~4(@"+¥") While it is still possible to include all necessary terms in the function library
so that the equation can be written in the linear combination form , the knowledge of these complicated
terms is nontrivial and should not be assumed available before running the equation discovery algorithm.

Reaction-Diffusion For SINDy with original variables, We fix u; and v; as the LHS of the equation
and include functions of up to 2nd-order spatial derivatives on the RHS. In PySINDy, the library contains
monomials of u, v up to degree 3 and all spatial derivatives up to order 2. In PySINDy*, the library contains
all monomials of u, v and their up to second-order spatial derivatives up to degree 3.

Our method uses the invariant set {t,z,y,u? + v?} J{u - u,}U{ut - u,}, where u = (u,v)” and p is a
multiindex of ¢,z,y. We will denote I, = u-u, and E, = ul- u,. We use I; and E; as the LHS of the
equation, and the rest of the invariants are included in the RHS. The function library contains all monomials
of these RHS invariants up to degree 2.

We randomly sample 10% of the data for each run. The threshold value for sequential thresholding is set
to 0.05. The coefficient for Ly regularization is set to 0 for SINDy with original variables and 0.1 for our
method with symmetry invariants.

For the experiments with different levels of noise (Section , we use weak SINDy as the base algorithm.
We use the implementation of weak SINDy from the PySINDy package (Kaptanoglu et al., [2022]). The
function library is the same as SINDy as described above. To enforce symmetry, instead of directly using the

symmetry invariants, we derive a set of linear constraints on the sparse regression parameters to adapt to
weak SINDy. This procedure is further described in Appendix [B-3|

E.3 Genetic Programming

In all experiments, to determine if an equation matches the ground truth we first expand the prediction into
a sum of monomial terms. We then eliminate all terms whose relative coefficient is below 0.01. For each
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term in the filtered expression, we see if it matches any term in the ground truth expression. This is done by
randomly sampling 100 points from the standard normal distribution and evaluating both the prediction and
candidate ground truth term on the generated points. Note that we drop the coefficients before evaluation. If
all evaluations of the predicted term have a relative error of less than 5% from those of the ground truth, the
terms are said to match. If there is a perfect matching between the terms in the ground truth and prediction,
the prediction is listed as correct.

Rather than directly returning a single equation, PySR finally produces a hall-of-fame that consists of multiple
candidate solutions with varying complexities. To finally pick a single prediction, we use a selection strategy
equivalent to the “best” option from PySR.

Boussinesq equation For the Boussinesq equation (@, we first randomly subsample 10000 datapoints.
We configure PySR to use the addition and multiplication operators, to have 127 populations of size 27, and
to have the default fraction-replaced coefficient of 0.00036.

When running with ordinary variables, we sequentially try fixing the LHS to each variable in (x, u(4)) and
allow the RHS to be a function of all remaining variables. Similarly, runs using invariants sequentially fix the
LHS from the set given by Example and the RHS as a function of all other invariants.

For each iteration count of 5, 10, and 15, we run the algorithm using invariant or ordinary variables and
report the number of correct predictions out of 100 trials.

Darcy flow In the Darcy experiment , we eliminate all points that are within 3 pixels from the border
and then randomly subsample 10000 datapoints. We configure PySR to use the addition, multiplication, and
exponential operators; to have 127 populations of size 64; and to have a fraction-replaced coefficient of 0.1.
We further constrain it to disallow nested exponentials (e.g. exp(exp(z) +4).

We try all possible ordinary variables in (x,u(®)) for the LHS and the RHS is then a function of the unused
variables. Likewise when using invariants, we fix the LHS to each possible invariant specified in Example
and set the RHS as a function of the remaining invariants.

For each iteration count of 50, 100, and 200, we run the algorithm using invariant or ordinary variables and
report the number of correct predictions out of 100 trials.

Reaction-Diffusion For the Reaction Diffusion equation , we remove all points that are within 3
pixels from the border or have timestamp greater than or equal to 40, and then randomly subsample 10000
datapoints. We configure PySR to use the addition and multiplication operators, to have 127 populations of
size 64, and to have a fraction-replaced coefficient of 0.5.

In the ordinary variable case, we fix the LHS as either uy or vy and allow the RHS to be a function of all
other variables in (x,u(?)). When using invariants, the LHS is fixed to be either I; or E; and the RHS is
then a function of all remaining invariants.

For each iteration count of 100, 200, and 400, we run the algorithm using regular and ordinary variables and
report the number of correct predictions out of 100 trials.

E.4 Symbolic Transformer

We use the pretrained symbolic transformer model provided in the official codebaseﬂ from [Kamienny et al.
(2022). The transformer-based symbolic regressor is initialized with 200 maximal input points and 100
expression trees to refine. The variable sets used in the symbolic transformer are the same as those described
in the genetic programming experiments, except for the Boussinesq equation, where we remove all mixed
derivative terms in both the original variable set and the symmetry invariant set. We find that the symbolic
transformer can sometimes discover the correct equation under this further simplified setup, but fails when
using the larger variable sets.

4https://github.com /facebookresearch/symbolicregression/blob/main /Example.ipynb.
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We also fix the LHS of the function and use the remaining variables as RHS features. For the Boussinesq
equation, the LHS is fixed to uy for original variables and 7o 2y for symmetry invariants. For the Darcy flow,
the LHS is fixed to u,, for original variables and Aw for symmetry invariants. For the reaction-diffusion
system, the LHS is fixed to us, v for original variables and I}, F; for symmetry invariants.

E.5 Hypothesis Spaces of Equation Discovery Algorithms

Table [12] and Table [13] describe the hypothesis spaces of different equation discovery algorithms when applied
to the Boussinesq equation and the reaction-diffusion system.

Table 12: Hypothesis spaces of different equation discovery algorithms for the Boussinesq equation.

Method Hypothesis space
PySINDy uee = WOW™), {67} = {ab: a € Mono<2(U),b € {1, Uz, ..., Uszzz } }
Sparse PySINDy* ure = P(ul®) € Poly_ (U<4>)
Regression  PySINDy*™ s = WOu™), {67} = {uuf uSuBus* : ¢; > 0, Z ci <2, 21 sgn(c;) < 1}
SI Nwo,2) = P(n) € PO]Y<2({77(a,ﬁ)}\{77(0 2})
Genetic PySR 27 = f(z7) for z = (x,u™) and some j
Programming  SI Mao,B0) = f (M—(a0,80)) for 1 = {Na,p) : @+ f < 4} and some (ao, So)

Table 13: Hypothesis spaces of different equation discovery algorithms for 2D reaction-diffusion. u(™ e U™
denotes the collection of all up to nth order spatial derivatives. o = [y, o] is the multiindex for spatlal
variables. x = (z,y,t). A =u?+v%

Method Hypothesis space

PySINDy w;, = WO(u®?), {67} = Mono<3(U) U{u, : |a] < 2}
Sparse PySINDy* up = P(u®) € Poly3(U@)
Regression PYSINDy™  u, = WO (u®), {67} = {T1, . (ul) : Yo, < 3,375 sgn(ch) <1}

ST [It7Et] =P € Polyy(A,x, I, Eq;|a] <2)

Sl-aligned u; = Wo(u®), wik = Q%3 for some precomputed Q
Genetic PySR u; = f(x,u®?)
Programming  SI (I, E¢)T = £(A,x, I, Eo; o] < 2)
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