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Abstract
The efficiency of low-rank adaptation (LoRA)
has facilitated the creation and sharing of hun-
dreds of custom LoRA modules for various down-
stream tasks. In this paper, we explore the com-
posability of LoRA modules, examining if com-
bining these pre-trained modules enhances the
generalization of foundation models to unseen
downstream tasks. Our investigation involves
evaluating two approaches: (a) uniform composi-
tion, involving averaging upstream LoRA mod-
ules with equal weights, and (b) learned com-
position, where we learn the weights for each
upstream module and perform weighted averag-
ing. Our experimental results on both vision and
language models reveal that in few-shot settings,
where only a limited number of samples are avail-
able for the downstream task, both uniform and
learned composition methods result in better trans-
fer accuracy; outperforming full fine-tuning and
training a LoRA from scratch. Our research un-
veils the potential of composition strategies for
enhancing the transferability of foundation mod-
els in low-shot settings.

1. Introduction
In recent years, foundation models have demonstrated their
effectiveness across a diverse set of tasks in natural lan-
guage understanding, computer vision, and other fields
(Bommasani et al., 2021). The widespread adoption of
these models, coupled with their zero-shot capability, has
spurred a trend toward standardization in training models
for new tasks. Both the training methodology, often involv-
ing transfer learning from popular foundational models, and
the model architecture itself have conformed to established
norms, typically following a few influential foundation mod-
els (Dosovitskiy et al., 2020; Chung et al., 2022; Radford
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Figure 1. Performance of fine-tuning strategies relative to classifier
tuning in the one-shot transfer learning setting. Both learned (blue)
and uniform (orange) composition methods mostly outperform reg-
ular LoRA (green) and full fine-tuning (red) baselines, suggesting
that the linear interpolation of pre-trained LoRA modules helps
few-shot transfer to an unseen downstream task. For each dataset,
we use each of the rest of the dataset as an upstream task. Refer to
Section 4.1 for experiment details.

et al., 2021; Touvron et al., 2023). This standardization
has given rise to numerous publicly available fine-tuned
models, all sharing the same architecture. With the availabil-
ity of numerous fine-tuned models derived from the same
foundation model, recent studies have focused on merging
multiple fine-tuned models originating from a set of up-
stream tasks (Matena & Raffel; Choshen et al., 2022; Ramé
et al., 2023; Davari & Belilovsky, 2023).

Simultaneously, due to the substantial computational cost
of fine-tuning foundation models, there has been a surge in
proposals for efficient adapter modules, enabling parameter-
efficient fine-tuning of these models (Lester et al., 2021; Hu
et al., 2021; Liu et al., 2022). Notably, low-rank adapta-
tion (LoRA) (Hu et al., 2021) has emerged as an efficient
fine-tuning technique. LoRA involves adding and training
lightweight modules to a frozen pre-trained model, achiev-
ing good performance on the downstream task. By alleviat-
ing high memory demands and computational costs, LoRA
has become the standard for fine-tuning Large Language
Models (LLMs), diffusion models, and vision transform-
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ers across various downstream tasks (Dettmers et al., 2023;
Xu et al., 2023; Gandikota et al., 2023; Shah et al., 2023).
LoRA’s efficiency has empowered developers to create and
share custom models trained on their unique data, resulting
in the availability of hundreds of publicly accessible LoRA
modules tailored for diverse downstream tasks.

This paper explores the possibility of leveraging pre-trained
LoRA modules for efficient fine-tuning on a new task. In-
spired by the literature on model merging (Wortsman et al.,
2022; Choshen et al., 2022; Ilharco et al., 2022), we explore
the composability of LoRA modules, examining whether
knowledge from multiple upstream tasks can be combined
for tackling new tasks. Specifically, we aim to answer this
question: Does combining pre-trained LoRA modules en-
hance transfer accuracy on unseen tasks?

To answer this question, we adopt a few-shot transfer setting,
where we train LoRA modules on diverse upstream tasks
and subsequently evaluate various composition strategies
on a downstream task with a limited number of samples.
We evaluate two combining strategies: (a) uniform compo-
sition, where upstream LoRA modules are averaged with
equal weights, and (b) learned composition, where we learn
weights for each upstream module for weighted averaging.

Our findings in vision and language models demonstrate that
the combination of pre-trained LoRA modules enhances gen-
eralization in a few-shot setting. Specifically, both uniform
and learned composition methods yield superior transfer ac-
curacy, outperforming full fine-tuning and training a LoRA
from scratch as shown in Figure 1. Furthermore, our results
indicate that as the number of samples in the downstream
task increases, learned composition maintains performance
on par with full fine-tuning and regular LoRA training while
utilizing significantly fewer trainable parameters.

2. Problem Definition
Low-Rank Adaption (LoRA) Starting from a pre-trained
model Θ0, regular fine-tuning learns a different set of param-
eters Θ for each downstream task with |Θ| = |Θ0|. Instead,
LoRA tries to learn a set of task-specific parameters ∆Θ
with a much smaller-sized set of parameters compared to
Θ0 with |∆Θ| ≪ |Θ0|. Given a pre-trained weight matrix
W0 ∈ Rd×c of the pre-trained model Θ0, LoRA adds a
trainable low-rank decomposition matrix ∆W as adapter
modules to the original weight matrix W0:

Ŵ = W0 + α∆W,
where ∆W = AB⊤ represents a low-rank matrix with rank
r ≪ min(d, k) where A ∈ Rd×r, B⊤ ∈ Rr×c and α is a
weighting coefficient. Then finding the value of ∆Θ can
be formulated as the standard maximum-likelihood training

with cross-entropy for conditional language modeling:

max
∆Θ

∑
(x,y)∈D

|y|∑
t=1

log (PΘ0+∆Θ (yt | x, y<t))

Few-shot Transfer Setup The goal is to build a single
model, personalized for a novel domain utilizing the pre-
trained LoRA modules from upstream domains. To evaluate
the usefulness of the upstream pre-trained LoRA modules
for the downstream tasks, we consider the few-shot transfer
learning setting. Assuming that we have N distinct upstream
tasks denoted as T = {T1, ..., TN} each having a set of
trained LoRA modules. We evaluate the performance of
several merging approaches of these upstream modules on a
new unseen target domain T ′ /∈ T. Each upstream domain
Tn is defined by a set of data points Xn, a set of ground truth
labels Yn, and a distribution Dn over Xn and Yn. Similarly,
the target domain T ′ is defined by a set of data points X ′,
a set of ground truth labels Y ′, and a distribution D′ over
X ′ and Y ′. The few-shot learning task in the target domain
consists of a very small subset of training data or support
set from D′:

SK = {(xk, yk)}Kk=1 ∼ D′, yi ∈ Y ′

where K represents the number of adaptation samples per
class, used to fine-tune the model on downstream task T ′.
For the evaluation, we use all of the samples in the test or
query set of the downstream dataset D′.

Objective Assume for each upstream task Tn ∈
{T1, ..., TN}, we have a set of fine-tuned LoRA modules
denoted as ∆Wn ∈ {∆W1, ...,∆WN}. The objective is
to find a combination of the upstream LoRA modules using
the K samples in support set SK of the unseen task T ′ to
improve the performance on the query or test set. For the lan-
guage modeling experiments, we follow the procedure from
(Raffel et al., 2020) and formulate each task as a text-to-text
problem, enabling standard maximum-likelihood training
with a cross-entropy loss.

3. Combination Methods
This section highlights different strategies for combining
pre-trained LoRA modules. Our objective is to effectively
merge these pre-trained low-rank modules, which were
originally trained on disjoint auxiliary tasks, to enhance
performance in a new unseen downstream task with a
limited number of samples. We consider two major recipes
for merging the pre-trained adapters: uniform and learned.

3.1. Uniform Composition

We begin with a pre-trained foundation model Θ0 that has
undergone fine-tuning with LoRA for various auxiliary tasks.
Denoting each weight matrix of the foundation model as
W0, LoRA fine-tuning adds a low-rank matrix ∆Wn for
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Figure 2. Method overview. We start with a foundational model that has undergone LoRA fine-tuning on various tasks. During the
few-shot adaptation phase, we apply a uniform (left) or learned (right) weighted averaging over the pre-trained upstream LoRA weights.

the auxiliary task Tn. The uniform composition is con-
structed by averaging all fine-tuned LoRA modules as:

Ŵ = W0 +
1

N

N∑
n=1

∆Wn.

3.2. Learned Composition

We also explore a more advanced learned composition
recipe that optimizes LoRA interpolation weights by
gradient-based minibatch optimization. The learned compo-
sition allows determining a specific interpolation of LoRA
modules that best suits the downstream task T ′. It’s worth
noting that this procedure requires loading all LoRA weights
into memory simultaneously. However, due to the low di-
mensionality of LoRA parameters, this operation is feasible,
unlike learning interpolation parameters across large fine-
tuned models (Wortsman et al., 2022). Specifically, we learn
a weighting vector parameter v ∈ RN , where vn ∈ R de-
notes to the n-th element of v representing the weighting
coefficient for the adapter of upstream task n as follows:

Ŵ = W0 +

N∑
n=1

v̂n∆Wn, (1)

where v̂n = evn∑N
j=1 evj

is the softmax operation applied on

the weighting vector v.

4. Experiments
Our experimental analysis aims to answer the following
question: Does combining pre-trained LoRA modules en-
hance transfer accuracy on new tasks? We first explain our
benchmark setup, then try to answer this question based on
our observations.

Setup For all of the experiments, learning takes place in
three phases. The first phase is considered as pre-training of
the foundation model Θ0. For all of the vision experiments,
we considered ViT-base (Dosovitskiy et al., 2020) with a
patch-size of 32×32, pre-trained on ImageNet-21K (Ridnik
et al., 2021). For the NLP experiments, we use the pre-
trained Flan-T5 large (Chung et al., 2022); refer to the
original paper for more information. The second phase
consists of fine-tuning a set of LoRA adapters, on the set

of disjoint auxiliary tasks. We refer to this phase as the
upstream training stage. The third and final phase consists
of a few-shot adaptation to a new unseen task. For the vision
task, we focus on the image classification problem, reporting
top-1 accuracy as our evaluation metric. For the NLP task,
we focus on multi-choice question answering and report
exact match. We summarize the datasets in Table 2 and
report the hyperparameter selection method in Appendix B.

4.1. Results

We conducted experiments under task shift for both vision
and natural language understanding domains.

Vision Results For vision experiments, we use a subset of
the 6 datasets, as used in previous work (Kornblith et al.,
2019). We assessed few-shot transfer accuracy across Stan-
ford Cars (Krause et al., 2013), Food101 (Bossard et al.,
2014), Sun397 (Xiao et al., 2010), Eurosat (Helber et al.,
2019), Flowers (Nilsback & Zisserman, 2008), and CI-
FAR100 (Krizhevsky et al., 2009). Our task shift exper-
iments were conducted in 6 rounds, where each round con-
sidered one of these datasets as the downstream task and
the others as the upstream tasks. The results can be seen
in Figure 3 for Flowers and CIFAR100. We report the
Food101 and EuroSat results in the Appendix. Note that
the few-shot downstream adaptation is the third phase of
our experimental setup, with the second phase involving the
auxiliary training of upstream adapters on the remaining
datasets mentioned earlier.

From Figure 3, we can observe that the uniform composition
improves the model’s performance in the low-shot setting.
Specifically, uniform composition outperforms both LoRA
and regular fine-tuning methods when we have only 1 or
2 samples per class. On the other hand, the learned com-
position not only performs better in low-data situations but
also maintains good transfer performance across the entire
spectrum. This observation answers our initial question:
pre-trained LoRA modules on different tasks can indeed
enhance the model’s performance on new, unseen tasks.

NLP Results For the NLP experiments, we consider a
subset of CrossFit benchmark (Ye et al., 2021). We fo-
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Figure 3. Vision results Few-shot transfer results with different number of adaptation samples. We observe that both uniform and learned
composition methods significantly improve the performance with few number of adaptation samples, while maintaining comparable
performance against regular LoRA fine-tuning in the full-shot scenario.

Method ARC-Challenge

K=1 K=2 K=3 K=4 K=5 |Θ|
Zero-shot 49.31 ±0.0 49.31 ±0.0 49.31 ±0.0 49.31 ±0.0 49.31 ±0.0 0
Full Fine-tuning 57.05 ±1.02 59.06 ±0.98 59.71 ±0.42 60.94 ±0.58 62.13 ±0.61 787M
LoRA 56.48 ±1.20 58.44 ±0.93 58.95 ±0.34 59.47 ±0.42 60.16 ±0.65 471M

Uniform Composition 59.11 ±0.0 59.11 ±0.0 59.11 ±0.0 59.11 ±0.0 59.11 ±0.0 0
Learned Composition 59.40 ±0.87 59.97 ±0.61 60.39 ±0.30 60.67 ±0.39 61.12 ±0.43 1.6K

Table 1. Task shift results (NLP). We can observe that the uniform composition method improves the transfer performance of Flan-T5
large by 9.8% in the zero-shot setting. Also, the learned composition method beats the full and LoRA fine-tuning baselines with less than
3 and 5 adaptation samples respectively. Note that |Θ| represents the number of trainable parameters.

cus on multi-choice question answering problems using
SciQ (Bhakthavatsalam et al., 2021), CommonSense (Welbl
et al., 2017), QuAIL (Rogers et al., 2020), and ARC (Bhak-
thavatsalam et al., 2021) datasets. We evaluate the few-shot
transfer accuracy of Flan-T5 large. Table 1 presents our re-
sults on the ARC dataset. We consider SciQ, CommonSense,
and QuAIL as the upstream tasks. Note that the uniform
composition method is also evaluated in a zero-shot setting.
We can observe that the uniform merging of the upstream
adapters significantly improves the zero-shot performance
of the model. Additionally, the learned composition outper-
forms regular LoRA fine-tuning when less than five samples
are available for training.

Effect of Scaling In Figure 4, we explore how the number
of pre-trained upstream LoRA modules affects the transfer
accuracy to a new dataset under task shift setting. Figure 4
presents our results on the Food101 dataset in a full-shot
scenario and shows that, as the number of pre-trained up-
stream modules increases, the learned composition of these
modules significantly enhances the performance, narrowing
the gap compared to full-finetuning. Interestingly, our anal-
ysis reveals that the performance achieved by the learned
composition of all five upstream LoRA modules surpasses
that of the best individual module, suggesting that lever-
aging a linear combination of LoRA modules can notably
improve transfer accuracy across diverse tasks.
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Figure 4. Effect of scaling The results on the Food101 dataset in
full-shot (K = all) show that increasing the number of pre-trained
upstream modules enhances the performance..

5. Conclusion
Our investigation into the composability of LoRA mod-
ules demonstrates their efficacy in enhancing transferability
for downstream tasks. Both uniform and learned compo-
sition approaches prove advantageous, particularly in few-
shot settings, surpassing traditional fine-tuning methods and
even outperforming training a LoRA from scratch by up to
10.23%. This research underscores the potential of uniform
composition for improving transfer accuracy in low-shot set-
tings without introducing additional learnable parameters.
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A. Datasets
In this section, we provide a summary of datasets used for each evaluation setting in Table 2.

Dataset # Train Task Setting

CIFAR100 50,000 Vision Task Shift
Food101 75750 Vision Task Shift
Stanford Cars 12948 Vision Task Shift
SUN397 108,754 Vision Task Shift
Flowers 7,169 Vision Task Shift
Eurosat 27,000 Vision Task Shift

SciQ 13,679 NLP Task Shift
CommonSense 12,102 NLP Task Shift
QuAIL 15,000 NLP Task Shift
ARC 7,787 NLP Task Shift

Table 2. Summary of datasets used for each evaluation setting.

B. Hyperparameter selection
In all our experiments, we train LoRA with a rank of 16 for the query, key, and value weight matrices. This practice applies
to both the ViT-base and Flan-T5 models unless stated otherwise. In our vision experiments using the ViT-base, we warm
up the classifier head for 50 epochs at the beginning of training. For each method, optimal hyperparameters were selected
via a grid search performed on the validation set. The selection process was done on a per-dataset basis, where we picked
the configuration that maximized the accuracy averaged over different settings. We report performance with the mean and
standard deviation, calculated over three random seeds.

C. Results
In this section, we provide our complete experimental results for task and domain shift settings in table format.

C.1. Task Shift Results

Method
Food101 |Θ|

K=1 K=2 K=5 K=10 K=20 K=50 K=all

Classifier Tuning 30.94± 1.62 40.21± 1.59 51.77± 0.68 58.43± 0.11 63.17± 0.16 67.52± 0.25 75.89± 0.03 0
Full Fine-tuning 32.92± 1.67 43.31± 1.47 59.29± 0.57 67.25± 0.21 72.40± 0.32 76.36± 0.20 84.23± 0.15 86M
LoRA 31.02± 1.72 41.30± 1.80 55.71± 0.54 64.40± 0.28 70.19± 0.14 75.27± 0.19 83.76± 0.64 0.88M

Uniform Composition 33.71± 0.26 47.50± 0.37 60.06± 0.50 65.50± 0.12 69.33± 0.06 72.78± 0.23 79.93± 0.04 0
Learned Composition 36.09± 0.24 49.88± 0.50 63.03± 0.61 68.37± 0.49 72.03± 0.79 76.26± 0.57 82.31± 0.49 108

Method
Eurosat |Θ|

K=1 K=2 K=5 K=10 K=20 K=50 K=all

Classifier Tuning 43.88± 1.62 58.27± 0.83 70.98± 1.48 75.50± 0.23 78.32± 1.00 85.78± 0.28 95.72± 0.05 0
Full Fine-tuning 53.14± 3.39 68.58± 0.78 83.41± 0.13 87.65± 0.35 92.56± 0.10 95.37± 0.34 98.84± 0.03 86M
LoRA 44.37± 2.03 58.21± 0.14 72.29± 1.76 76.96± 0.44 80.05± 0.64 88.54± 0.40 98.37± 0.02 0.88M

Uniform Composition 52.20± 4.02 66.86± 3.30 80.23± 0.42 82.24± 0.41 85.32± 0.59 90.76± 0.20 96.68± 0.30 0
Learned Composition 55.68± 4.24 70.53± 3.47 85.16± 0.66 87.50± 0.71 91.13± 0.27 95.21± 0.12 98.05± 0.46 108
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Method
Flowers |Θ|

K=1 K=2 K=5 K=10 K=20 K=50 K=all

Classifier Tuning 87.49± 0.82 90.09± 0.67 93.85± 0.73 95.45± 0.22 95.45± 0.22 95.45± 0.22 95.62± 0.07 0
Full Fine-tuning 89.23± 0.41 93.26± 0.85 97.22± 0.38 98.02± 0.19 98.02± 0.19 98.02± 0.19 98.42± 0.02 86M
LoRA 87.83± 1.09 90.63± 0.80 95.24± 0.49 96.97± 0.21 96.97± 0.21 97.07± 0.26 97.55± 0.04 0.88M

Uniform Composition 91.29± 0.21 94.35± 0.59 96.46± 0.53 97.40± 0.19 97.37± 0.17 97.39± 0.17 97.63± 0.07 0
Learned Composition 91.95± 0.46 94.80± 0.58 96.86± 0.50 97.75± 0.11 97.75± 0.11 97.81± 0.09 98.08± 0.08 108

Method
CIFAR100 |Θ|

K=1 K=2 K=5 K=10 K=20 K=50 K=all

Classifier Tuning 41.37± 1.00 50.71± 2.17 60.69± 0.41 66.54± 0.16 69.86± 0.19 72.69± 0.09 77.70± 0.02 0
Full Fine-tuning 46.74± 0.80 59.93± 1.53 74.53± 0.92 82.26± 0.37 85.26± 0.25 86.73± 0.22 89.97± 0.04 86M
LoRA 41.59± 0.92 51.92± 2.17 65.37± 0.68 75.59± 0.18 80.93± 0.29 84.36± 0.18 89.76± 0.06 0.88M

Uniform Composition 49.65± 0.39 59.20± 1.61 68.81± 0.44 74.02± 0.28 76.48± 0.23 78.77± 0.18 81.95± 0.46 0
Learned Composition 51.60± 0.65 62.51± 2.02 72.74± 0.41 77.54± 1.27 80.30± 0.61 81.82± 0.59 84.64± 0.74 108

Table 3. Task shift results. Here K represents the number of training samples for each class and |Θ| presents the total number of trainable
parameters excluding the classifier head.

D. Analysis
D.1. Visualization of Learned Composition Weights

In Figure 5, we present visualizations of the learned composition vectors v and the CKA heatmap for the “query” and
“value” weight matrices of attention modules across all layers of the ViT-base model. For this analysis, Food101 serves as
the downstream task, while Stanford Cars, SUN397, Eurosat, CIFAR100, and Flowers are selected as the upstream tasks.
The CKA values are normalized across the upstreams (x-axis).
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Figure 5. Visualization of the learned composition weights v (a) and the CKA similarity map (b) for the Query and Value weight matrix
of ViT-base. Here, the x-axis represents the upstream LoRA module and the y-axis represents the layer number. We can observe a high
correlation between the upstream module picked by learned composition and the CKA similarity of upstream and downstream tasks.
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