Enhancing Optimizer Stability: Momentum
Adaptation of The NGN Step-size

Rustem Islamov' Niccol6é Ajroldi> Antonio Orvieto?>># Aurelien Lucchi®

'University of Basel 2Max Planck Institute for Intelligent Systems
3 ELLIS Institute Tiibingen “Tiibingen AI Center

Abstract

Modern optimization algorithms that incorporate momentum and adaptive step-
size offer improved performance in numerous challenging deep learning tasks.
However, their effectiveness is often highly sensitive to the choice of hyperpa-
rameters, especially the learning rate (LR). Tuning these parameters is often dif-
ficult, resource-intensive, and time-consuming. Therefore, recent efforts have
been directed toward enhancing the stability of optimizers across a wide range
of hyper-parameter choices [79]. In this paper, we introduce an algorithm that
matches the performance of state-of-the-art optimizers while improving stability
through a novel adaptation of the NGN step-size method [66]. Specifically, we
propose a momentum-based version (NGN-M) that attains the standard convergence
rate of O(1/+v/K) under common assumptions, without the need for interpolation
condition or assumptions of bounded stochastic gradients or iterates, in contrast
to previous approaches. Additionally, we empirically demonstrate that the com-
bination of the NGN step-size with momentum results in high robustness while
delivering performance that is comparable to or surpasses other state-of-the-art
optimizers.

1 Introduction

Adaptive methods such as Adam [44] and RMSprop [30] are widely used in machine learning
due to their established advantages over (momentum) SGD, particularly in tasks such as training
Transformers [8, 88, 89]. These methods adaptively scale the step-size across different dimensions
(parameters) based on their respective statistics, effectively acting as a diagonal preconditioning.

Although these methods perform well in practice, existing theoretical analyses typically require strin-
gent assumptions on the noise structure of the stochastic gradients, such as sub-Gaussian noise [49] or
affine noise models [90, 106]: Relaxing these assumptions remains an open challenge. Another well-
known issue of Adam is its performance sensitivity to the LR hyperparameter [96, 10], particularly
when training Transformers, where loss spikes are commonly observed [60, 97]. This often necessi-
tates careful adjustments of the hyperparameters throughout the training process [107, 11], which can
be costly in terms of computational resources [64]. Consequently, there has been growing interest in
developing optimization methods that are more robust to hyperparameter selection [79]. In addition
to adapting LR, Adam and other state-of-the-art optimizers also rely on momentum [71], a broadly
used technique that has been shown to enhance performance both theoretically [14, 19, 35, 36] and
practically [10, 21, 38]. Besides speeding up convergence, momentum is known as a technique to
reduce the variance of stochastic algorithms [57, 15], improving stability as well as generalization in
some settings [38].

In this work, we address the aforementioned drawbacks of Adam by developing a new algorithm
based on the recently proposed NGN step-size [66], an improved variant of the Stochastic Polyak
Step-size [54] that has demonstrated strong resilience to LR hyperparameter tuning. In particular,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

NGN was shown never to diverge for any choice of the LR hyperparameter in the convex setting, and
to exhibit strong curvature adaptation properties strengthened by theoretical guarantees. However, the
step-size of Orvieto and Xiao [66] simply adapts the LR through a scalar multiplier, leaving to future
work the incorporation of momentum and coordinate-wise variants — needed in complex problems
such as optimizing transformers, as motivated above. Here, we develop a momentum and step-size
adaptive version of NGN designed to enhance robustness' in terms of hyperparameter selection. We
also present a theoretical analysis alongside a practical evaluation of this approach, showcasing its
improvements over current state-of-the-art methods.

In summary, our contributions are as follows:

1. We introduce a new algorithm named NGN-M that combines the NGN step-size with momen-
tum. We theoretically show that NGN-M achieves a convergence rate O(1/vx) in the convex
regime without the typical requirements of interpolation or bounded gradient assumptions
found in earlier works on Polyak step-size;

2. We focus on the problem of adapting the step-size rule towards a coordinate-wise diagonal
preconditioning. By integrating this diagonal step-size strategy with momentum, we develop
a new variant of NGN, called NGN-MD;

3. The theoretical results are supported by extensive empirical validation in various deep
learning settings where we demonstrate that NGN-M and NGN-MD not only preserve the
robustness property of the NGN step-size, but improve it further in many cases. LR hyperpa-
rameter resilience comes together with better or comparable performance to state-of-the-art
algorithms.

2 Related Works

Polyak Step-size. When training a deep network with standard optimizers, a tuned LR is crucial
but time-consuming and resource-intensive [26]. This issue is at the root of recent research focusing
on transferring hyperparameters across architectures at different scales, therefore avoiding expensive
tuning pipelines [99, 100, 7]. Yet, in the convex setting, choosing LR can already be difficult — an
issue that was studied already in Polyak [72] and gave rise to the first adaptive method: the Polyak
Stepsize (PS). Recently, there has been a renewed interest in adapting PS to modern settings [54,
67, 39], delivering a theoretically principled way to scale the gradient magnitude during training
adaptively. PS-inspired methods have gained increasing interest for their simplicity and adaptability,
as they utilize local curvature and smoothness information to accelerate algorithms and facilitate faster
convergence. Orvieto and Xiao [66] recently introduced a variant of the Stochastic Polyak step-size,
called NGN, which further enhances the robustness to LR hyperparameter and solidifies the link
to Gauss-Newton preconditioning. The theoretical analysis in Orvieto and Xiao [66] demonstrated
that NGN does not diverge regardless of the choice of LR hyperparameter, and converges fast when
the LR is appropriately tuned. In contrast, the current theory of the SPS step-size with fixed LR
hyperzparameters [54] proves convergence to the exact solution only if the interpolation condition
holds~.

Polyak Step-size and Heavy-ball Momentum. Heavy-ball momentum methods, stemming from
the work of Polyak [71], have gained significant attention over the years due to their benefits,
including acceleration on convex quadratics [37, 48, 6], convex-like [92], and non-convex problems
[14], as well as their variance reduction abilities [57, 15]. This has led to growing interest in the
combination of Polyak step-size and heavy-ball momentum, which is an active area of research
[3, 77, 3, 93, 63, 28]. Recently, Schaipp et al. [79] demonstrated that a geometrically principled
combination of SPS and momentum leads to lower sensitivity to LR hyperparameter, although they
did not provide strong theoretical convergence guarantees.

Diagonal Polyak Step-size. Coordinate-wise adaptive step-sizes are essential in training Trans-
former architectures due to the varying parameter-wise scaling and conditioning of the problem

'Tt is worth emphasizing that the terms robustness and stability have been used in a different sense in the
literature [12, 103]. In this work, we focus on the stability of the choice of the LR hyperparameter.
2In our notation, this means that ok, =0.

Table 1: Summary of existing methods exploiting Polyak-type adaptive step-sizes and their conver-
gence guarantees. Mom.=Supports momentum; Diag.=Supports diagonal step-sizes. o2, is defined
in Section 4. O notation hides absolute, problem-dependent constants and logarithmic factors.

Method Rate (@) Mom. Diag. Comments
> Conv. to non-vanishin,
SPSmax [54] O(l/K + Uiznt) X X neighbourhood £

Strong convexity
ALR-SMAG [93] O((1—p)K + U?m) v X Conv. to non-vanishing
neighbourhood

Bounded stoch. gradients

Momo [79] O(YVE) v X Interpolation
Momo-Adam [79] X v v MOrT%grf'ro':lér;%work
MOMSPS, 0 63 Okt v x Com.lononvanishing

NGN [66] O(Y/VE) X X -

IAM [28] O(Y/VE) v X Knowledge of f;(z*)
NGN-M (Alg. 1) _
[This work] O(/VE) v X -
NGN-MDv1 and NGN-MDv2 (Alg. 2) X v v Combination of
[This work] NGN-M and NGN-D
NGN-D (Alg. 3)]
[This work] O(/VE) X v -

[62, 108]. Algorithms employing parameter-wise LR, such as Adam and SignSGD [4], typically
outperform non-diagonal methods in language modeling tasks by addressing issues such as class
imbalance (where certain words appear more frequently than others) [46, 47] and heavy-tailed
noise [104, 105, 13]. It is, therefore, paramount in current setups to deliver adaptive LR improve-
ments targeted to the coordinate-wise (diagonal) regime. However, most Polyak-step-size-based
algorithms only focus on a single LR for all parameters [54, 93, 27, 63, 66]. Only a few works
propose a diagonal-wise modification of Polyak-step-size by either using Adam preconditioner [79]
as a weight matrix or incorporating second-order information from the objective function [51, 76].

Quantitative Measure of Robustness. To quantify robustness, we adopt the learning-rate (LR)
sensitivity metric of Wortsman et al. [97]. Let £, denote the final performance metric (e.g.,
negative test accuracy) when training with LR -, and ¢, the value at initialization. We define
£* == min, |4 p) £~ as the best achievable metric within the LR range [a, b]. The LR sensitivity is
then E (4,4 [min{lo, £, } — £*]. We estimate this expectation by averaging over the LR values in our
sweep grid for each algorithm and task.

Comparison to prior work. Table 1 provides a theoretical comparison of various Polyak step-size-
based algorithms that incorporate momentum and/or diagonal step-size, highlighting the differences
between the theoretical results presented in this work and those from prior works.

3 Algorithm design of NGN-M and NGN-D

In Orvieto and Xiao [66], the NGN step-size is derived by applying a Gauss—Newton update on
a regularized first-order expansion of r(z) := \/f(x). At the current point x*, they linearized
r(z* + p) = r(z¥) + Vr(2F) Tp. Thus the next iterate is given as x5+ = z* + p* where

] 1
p" = argmin,, |(r(z*) + Vr(z*)p)® + %HPHQ : @)

It turns out that the problem above has a closed-form solution
c

I+ 576m VTR

with 7, representing the NGN step-size. In Orvieto and Xiao [66], convergence guarantees were
established for both convex and general non-convex settings. Importantly, the convex analysis shows

P =—wVf(=") where ;=

that NGN exhibits a non-divergence property, regardless of the step-size hyperparameter c (see
Theorem 4.5 in [66]). Due to this property, the NGN step-size is a strong candidate to achieve better
robustness w.r.t. the choice of LR hyperparameter.

3.1 How to Add Momentum and What to Expect?

There are several approaches to combining the adaptive Polyak-type step-size with heavy-ball
momentum. Broadly, existing algorithms can be divided into two categories: the first category
involves computing the Polyak step-size in the usual manner and incorporating it into the standard
heavy-ball update [63]. In contrast, algorithms from the second category first determine an update
direction using exponential weighted averaging of the stochastic gradient and momentum variable,
and then compute the Polyak-type step-size based on the computed direction [93, 79]. Following this
principled approach, we test two possible versions for combining the NGN step-size and momentum:

e = T [V T, GO mt = Bmt 4 (1= BV fi, (")
. f,sk(z) L Ve = < I
Ver.l: q ,,k — BmF=1 4 (1= B)%Vfs, (xk) Ver.2 : 1+W|\m, I
kbt = gk —mk 2kt = gk — ypmk

Before we proceed, we should answer the question: “What do we expect from the combination of
NGN step-size and momentum?”. First, we aim to preserve, and ideally enhance, NGN’s robustness
to the LR hyperparameter. To this end, we propose incorporating (heavy-ball) momentum, which is
known to increase the range of LR that leads to convergence [71]. Additionally, we seek improved
performance, achieving accelerated convergence akin to the advantage of SGD with momentum
(SGDM) over standard SGD in convex settings. With these goals in mind, we now show that version
1 meets all of these criteria, while version 2 is less suitable. To gain some intuition regarding the
performance of these two variants, we start by conducting a simple experiment on a quadratic function
f(x) = 1||Az — b||? where A is a data matrix from the normalized Diabetes dataset [85] and b is
a vector of labels. Based on the results from Figure 1 (first), we observe that variant 1 achieves
accelerated convergence as SGDM for middle-range step-size hyperparameters (¢ € {10%,10%})
and does not diverge for large LR hyperparameter (¢ € {103}). Conversely, version 2 has a worse
convergence rate than version 1 for middle-range LR hyperparameters and diverges for large ones
(c € {10%}): see Figure 1 (second). Therefore, we theoretically analyze and practically test version
1, which we call NGN-M.

3.2 Evidence of Robustness of NGN-M

To illustrate the advantages of the design choice of NGN-M, we first consider the Rosenbrock function
f(z,y) = (z — 1)? 4+ 100(y —)2, whose minimizer is at (1, 1). Starting from (—1.2, 1), we run
both NGN-M and SGDM over a wide range of LR hyperparameters {1073,...,102}. As shown in
Figure 1, we observe that (i) for small LR hyperparameter both methods successfully converge to
(1,1); (i) SGDM already diverges for LR hyperparameter 10~2; By contrast, NGN-M remains stable
even up to ¢ = 102, thanks to its adaptive LR that automatically adjusts with the local curvature.
Figure H.3 further traces the optimization trajectories: NGN-M converges reliably for every tested
value of ¢, whereas SGDM fails outside its narrow stability window. Finally, in Appendix H.1 we
repeat these experiments on a synthetic multi-modal function and find that NGN-M consistently finds
the global minimum, while SGDM typically becomes trapped in a nearby suboptimal local minimum.

3.3 Diagonal Step-size for NGN

We propose two alternatives to make NGN step-size parameter-wise adaptive. In the first approach,
we modify an approach of (1): The next iterate 2T is obtained by minimizing an approximation of
the regularized first-order Taylor expansion of r(z) := \/f(x) around =¥, namely, z¥+1 = z¥ + pk
where for a preconditioning matrix Xy,

. 1
ok = argmin,, (r(xk) 4 Vr(xk)Tp)2 + ?c“pH%k) 2)

The intuition is that 3;, € R%*? can penalize each parameter with its own weight while in vanilla
NGN the penalization is the same for all parameters, and f is an objective function we aim to minimize.

10* M v o 10° —NGNM o= 10 T NGNM e 10t
10*
10*

1
10° 10° >
-2

10 10-2
107 104 0
1070 1076

10° Wi — o

Train Loss
Train Loss

-2

0 40 80 120 160 200 0 40 80 120 160 200
Iterations Iterations
SGDM Ir 10° —§— NGN Ir 10° NGN-M Ir 10* Ver. 11r 10° Ver. 2 Ir 10*
SGDM Ir 10* ¥~ NGN Ir 10* NGN-M Ir 10 Ver. 11r 10 Ver. 2 Ir 10
SGDMIr10' @~ NGN Ir 10' NGN-M Ir 10" Ver. 11r 10! Ver. 2 Ir 10
SGDMIr10° —¥- NGN Ir 10 NGN-M Ir 10" Ver. 11r 10" Ver. 2 Ir 10"

Figure 1: First: Comparison of SGDM, NGN, NGN-M for linear regression on normalized Diabetes
dataset varying a step-size hyperparameter. Second: Comparison of two options on how momentum
can be used in combination with NGN step-size. Third and fourth: Comparison of SGDM and
NGN-M on the Rosenbrock function.

Performing simple derivations (see Appendix F), we obtain the following update rule

k+1 _ _k c -1 k
gl = gk _ 2V ("), 3)
e T

Note that by choosing 3, to be an identity matrix, the step-size 7 in (3) reduces to the vanilla NGN
step-size.

Alternatively, we can adopt a simpler, parameter-wise rule: For each parameter j, we replace
the full gradient norm in the NGN step-size with its own partial derivative V, fs, (z¥). Both of
the described per-coordinate variants can be further adjusted by an RMSprop-style preconditioner
Dy = diag((D#));---, (Dx))) and lead to the following update rule (see Alg. 2 for a full
description)

_ .
Vo = T [V, P V= cmﬂj Lo o2
NGN-MDv1 : » 2f<~’j1 R p NGN-MDv2 : 1+ 27 (ijsk@:i)
2y =Dy . =diag(hl”, .. A

2 = ok — (1= BBV f, (2) + By(at — a*)

We highlight that both versions have the same number of hyperparameters as Adam. From an
empirical evaluation of the two versions of NGN-MD in Figure 2, we observe that the first choice
improves the performance of NGN-M while maintaining robustness to the LR hyperparameter. A more
detailed discussion on the two versions of NGN-MD algorithms is deferred to Appendix F.1. However,
the robustness of NGN-MD also depends on the choice of preconditioner. When the preconditioner is
sensitive to variations in the loss landscape or hyperparameters, NGN-MDv may be less robust than
NGN-M. In our experiments, we find that the RMSprop preconditioner performs well in practice. Other
preconditioners, such as AdaFisher [25], could be integrated into NGN-MD, potentially providing
more accurate curvature approximations and improved stability with respect to the LR. We leave a
systematic study of these alternatives to future work.

In the special case $; = 0 and X = I, NGN-MDv2 reduces to NGN-D (Algorithm 3). To the best of
our knowledge, NGN-D is the first algorithm that uses a per-parameter Polyak-type step-size while
achieving the standard O(1/v/K) rate under smoothness and bounded noise variance assumptions;
see detailed discussion in Appendix C.

4 Theoretical Analysis of NGN-M

4.1 Problem Formulation and Notation

We consider the classic Empirical Risk Minimization (ERM) problem that typically appears when
training machine learning models, namely,

min [f (x) = %Z fi(ff)] ; @

reRd

Algorithm 1 NGN-M

1: Input: 27! = 2% € RY, step-size hyperparameter ¢ > 0, momentum parameter 3 € [0, 1)
2: fork=0,1,...,K —1do

3: Sample Sy C [n]
4

C
IV fsy (@F)I?

0l rv—
2fs,, (=)
500 gt =gk — (1= By Vs, (%) + Aot — 2b 1)
6: end for

Algorithm 2 NGN-MD

1: Input: 2° € R? step-size hyperparameter ¢ > 0, momentum parameters 31,32 € [0,1),
stabilization parameter € > 0, second-order momentum v" = 0

2: fork=0,1,..., K —1do

3: Sample Sy, C [n]

4 vk = BovF Tt 4 (1 = B2)(V s, (2%) © Vs, (2F))

5: Dy =diag(el + \/v* /(1 — %))

6 For NGN-MDv1: v =

U arsy@m 1V 5 (@I
© k
7. For NGN-MDv1: £, ' = 4, D; !
8: For NGN-MDv2: ;! = diag(1\", ..., 7\") where 1\ = /(D)
k (k k) k 1+W(vjfsk(xk))z

9: ahtl =zk — (1 - B2 Vs, (2F) + Bi(zF — 2F1)
10: end for

where x are the parameters of a model we aim to train, n is the number of data points in the dataset,
d is the number of parameters, x* denotes the solution to (4), and f; represents the loss associated
with the i-th data point/batch. We assume that each f; is differentiable and non-negative® and that the
global optimal value is bounded, i.e. f* = argmin, f(z) € R. Moreover, we assume that we have
access to mini-batch stochastic losses fg during training such that f§ := argmin fs(z) < oo for
any S C [n] picked uniformly at random.

We analyze the convergence of NGN-M under assumptions that are often used in the analysis of the
Polyak step-size [54, 67, 66, 63, 79].

Assumption 4.1. Each f; is convex and L-smooth, i.e., for all z,y € R andi € [n] we have
(Vii(@),y —x) = fi(e) = fily) and ||V fi(z) = Vfi(y)[|< Ll = y]-

Assumption 4.2. The interpolation o7, = Eg[f* — f&] and positive o2, := Eg|fZ] errors are
bounded. We say that the interpolation holds if o2, = 0, where S is a sampled mini-batch.

4.2 Convergence Guarantees

Theorem 4.3. Let Assumptions 4.1, 4.2 hold. Let the step-size hyperparameter ¢ > 0 and the
momentum parameter [3 = p%\ be constants where A < min{cL, 0.5(1+cL)~!(1+2cL)~'}. Then
the iterates of NGN-M (Algorithm 1) satisfy

E[f@* 1) - f(z¥)] < W + 8cL(1 + 2¢L)?02, + 2cLmax {2cL — 1,0} 02

int pos’

where T5 =1 is chosen uniformly at random from {2°, ..., x5 =1}, Moreover, if we set c = O(1/VE)

then we obtain E [f(z% 1) — f(z*)] < O(Y/VE).

The convergence of NGN-M is provided in the convex setting, which is motivated by recent works
that observe convex-like structures in the landscape of networks [34, 31] and agreement between
convex theory and practice [80]. Importantly, we show that (i) when the constant c is sufficiently
small, NGN-M attains the same convergence rate as SGDM [22]. Moreover, for any choice of c,
we demonstrate that the NGN-M iterates provably converge to a neighborhood of the optimum and

3Common losses, e.g. cross-entropy, satisfy this condition.

it 0 100
§ . o § , NGN SGDM Momo NGN-M
80 e 80
5 60 5
2w 3 2w Resnet20, CIFAR10
b Sa0 < 18 26 20 12
8 40 NGN i NGN o 40 NGN
= oo a0 scon g Resnetl10, CIFAR10
2 Momo E Momo 2 Momo
‘L% o NGN-M = NGN-M L% NGN-M 3 l 36 3 l 24
104 1072 10° 102 U 1072 10° 102 M0t 10° 10° 10° :
Stepsize Stepsize Stepsize VIT’ CIFAR10
27 28 31 1
0 100
gso 9 g Adam __ Momo-Adam ___ NGN-MDvi
] 560 °
oo 3 S w0 Resnet20, CIFAR10
<
< - <0 < — 37 27 13
£ 0 M:mmn -Adam E Adem ﬁ 0 Moammﬂ -Adam
— fh M -Ad " Q
©20 NGN-MDv1 520 N;’,:,DMDVim T 2 NGN-MDv1 Resnet110, CIFAR10
T NGN-MDv2 £ NGN-MEv2 £ NGN-MDv2 32 32 27
10°10910°10210 " 10° 100 10° “10° 109 10 10" C0t 10°° 10°° ViT, CIFAR10

Stepsize Stepsize Stepsize

21

Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10

Figure 2: Stability performance of algorithms varying LR hyperpa- Table 2: Test accuracy LR sen-
rameter (¢ for NGN-M, NGN-MDv1 and NGN-MDv2, g for Momo and sitivity of the different opti-
Momo-Adam, and LR for SGDM and Adam). We refer to Figures I.1 mizers shown in Figure 2.

to 1.3, 1.5, and 1.8 for the results on additional workloads.

thereafter remain within it; (¢¢) Unlike prior works on Polyak step-size, our analysis does not rely
on strong assumptions such as bounded gradients, interpolation, or a bounded domain; (i4i) For
small values of ¢, NGN-M converges to the exact solution while algorithms such as MomSPS and
ALR-SMAG were shown to converge up to a non-vanishing neighborhood of the solution only, due to
an inherent limitation of the stochastic Polyak step-size [65]. Regarding the momentum parameter /3,
the typical (large) value 5 = 0.9 performs well in our own experiments. Theoretically, however, (3
is recommended to be chosen sufficiently small to ensure convergence with the NGN step-size [63].
This discrepancy between theoretical guidance and practical implementation has also been observed
in prior works on momentum [23, 53, 93, 92, 63]. Interestingly, under the additional interpolation
condition o2, = 0, we can establish convergence even for large momentum values, including the
commonly used choice § = 0.9 (see Appendix D.2). This suggests that the small-/3 requirement
may reflect limitations of current proof techniques rather than an intrinsic restriction of NGN-M.
Extending the analysis to arbitrary 3 in the stochastic regime without interpolation remains an open
problem. Our intuition, however, is that simultaneously choosing both ¢ and S without restriction is
not feasible: fixing one hyperparameter arbitrarily necessitates imposing constraints on the other to
prevent divergence; (v) Theorem 4.3 requires the total iteration count K to be specified in advance;
this assumption is standard in the complexity analysis of optimization algorithms [24, 61]. Since
this can be impractical, we also establish convergence under a diminishing step-size of order 1/ VEk
in Appendix D.3, which removes the need to preset K; (vi) Finally, we corroborate our analysis
as we run NGN-M with the theory-derived values of ¢ to a quadratic problem that satisfies all our
assumptions: We observe NGN-M’s rapid convergence with theoretical step-size hyperparameters in
practice—see Appendix H.3 and Figure H.4 therein.

Key Ingredients of the Proof. We discuss the key steps of the proof to highlight the main challenges
in the analysis. First, we make use of the Iterative Moving Average (IMA) formulation of momentum
[81]. Specifically, we define a sequence of virtual iterates {z*} whose update rule is of the form

A 1 A
= b — Vs, (aF), 2FT = Y)\:ck 1T)\zkﬂ, where 2° := 2" and 8 = o

Next, one of the key technical strategies we follow is splitting the step-size ~yj, into two parts: a fixed

term p = Gooryirac) — O(c) and a changing term 7, < f’_f% = O(c?). This decomposition

of the step-size 5 enables us to regulate the balance between the descent term, which drives
improvement in the objective, and the error term, which reflects possible inaccuracies. More precisely,
the descent term is weighted by ¢ while the error term proportional to o2, is weighted by ¢, which
suggests that ¢ has to be chosen to tradeoff the two terms to lead to the exact convergence similarly to
the standard analysis of SGD [22]. In contrast, MomSPS and Momo algorithms achieve the exact
convergence only under the interpolation regime.

Z60 Z60. 370 SGD NGN SGDM Momo NGN-M
3 8 86
E El ‘ggg Resnet18, ImageNetlk
K40 s6p £10 <40 18 5 6 6 5
2 NGN O Adarn: 830 Adam Momo-Adam NGN-MDv1
Fo SGDM Foo Momo-Adam F 2 Adam
E] Momo [NGN-MDv1 E Momo-Adam Resnet18, ImageNet1k
i NGN-M i NGN-MDv2 i 1? NGN-MDv1 16 16 12
09— o1 0 T 3 0755 1 =3 =) = =1 =3 =
10 10 Stelgsize 10 10 10 10 Sté‘;’) e 10 10 10 Stlé)ps‘ze 10 ViT-Tiny, ImageNetlk
S 29 26 18
Resnet18 for Resnet18 for ViT-tiny for
ImageNetlk ImageNetlk ImageNetlk

Figure 3: Stability performance on ImageNetlk varying the LR Table 3: Test accuracy LR sen-
hyperparameter. NGN-M and NGN-MDv1 achieve higher accuracy for sitivity of the different opti-
a wider range of the LR hyperparameters. We refer to Figure 1.4 for mizers shown in Figure 3.
results on train loss stability and additional results on ImageNet32.

@ e
& &
%)
8k
Y]
=]

Adam
NGN-MDv1

Adam
NGN-MDv1

Adam
NGN-MDv1

3
=S
[
5
15

Adam
NGN-MDv1

=

%
=

Final Test Perplexity'

s
Final Test Perplexity

=3
Final Test Perplexity

g
Final Test Perplexity

oo o W

=
=
&

> S

1077 102 107° 1072 Y1070 10 0% 1072
Stepsize Stepsize Stepsize Stepsize

70M Transformer++ 160M Transformer++ 410M Transformer++ 1B Transformer++

Figure 4: Comparison of stability to the LR hyperparameter across model sizes and optimizers in
language modeling. We refer to Figures I.11 to .14 for the results that report update magnitude when
training 160M model and training dynamics across all model sizes.

5 Experiments

We now turn to the empirical evaluation of the proposed algorithms against several benchmarks. The
detailed experiment setup, including the choice of hyperparameters as well as additional experimental
results and details, can be found in Appendix I. The best performance of algorithms is reported
in Tables 7 (momentum-based algorithms), 8 (algorithms with momentum and component-wise
step-size), and 9 (algorithms with component-wise step-size). For clarity and quick reference, all
links to the paper’s empirical results are summarized in Table 6, while Appendix I provides additional
details about the training and tokenization pipeline.

Comparison on Standard Benchmarks. First, we test the performance of NGN-M against other
methods that use momentum, such as SGDM, Momo, MomSPS, ALR-SMAG, and NGN. The tests
include the training of Resnet20 [29] and ViT [17] on the CIFAR10 dataset [45], and Resnet110
on CIFAR100. Second, we test the performance of NGN-MD against Adam and Momo-Adam that —
contrary to NGN-M — both use component-wise preconditioning. All experiments in this section do
not use LR schedulers or weight decay.

From Tables 7 and 8 we observe that NGN-M and NGN-MDv1 exhibit competitive performance across
all settings we tested, matching the best performance of other algorithms. Importantly, NGN-M and
NGN-MDv1 demonstrate significantly greater robustness to the choice of the LR hyperparameter.
Indeed, Figure 2 shows that the range of LR hyperparameter that allows NGN-M and NGN-MDv1 to
perform optimally is much wider: We can, for instance, use step-sizes that are 1-2 orders of magnitude
larger than the optimal one without a significant drop in performance. This is particularly evident
when training ResNet20 and ViT models. Besides, we clearly observe that momentum consistently
improves the stability of NGN across all settings. A similar trend can be observed when considering
the LR sensitivity metric: see Table 2. We refer to Appendix I for additional ablation studies against
other optimizers and results when training small-scale NLP models.

Vision Experiments on ImageNet. Now we switch to larger tasks and datasets. We train a
ResNet18 on ImageNet1k [16]. This represents the first task in which we pair our proposed algorithms
with LR schedule. As illustrated in Figure 3, NGN-M and NGN-MDv1 achieve the highest test accuracy,
while exhibiting higher robustness across larger LR, improving over both NGN and Momo. Among
adaptive methods, NGN-MDv1 compares favorably against Adam and Momo-Adam, while once again

0.0001 —— 0.000316 0.001 0.00316 0.01 0.0316 0.0001 —— 0.000316

o
3
8

0.00316 0.01 0.0316

10* 10? 107! 107!

101

>
&

100- 100-

T —

1071

Effective Stepsize
Effective Stepsize
Effectlve_Stepsme
Eﬁectlv%step5|ze

Y

1072
0

5 10 52 0o 5 0 15 2 ; 10 15 2 0 5 10 1520
Iterations, x10* Iterations, x10° Iterations, x10* Iterations, x10*

Momo NGN-M Momo-Adam NGN-MDv1

Figure 5: The step-size of Momo, NGN-M (two left), Momo-Adam and NGN-MDv1 (two right) during
the training of ViT on CIFAR10. We demonstrate the step-sizes 7, for Momo and Momo-Adam and -y,
for NGN-M and NGN-MDv1 varying step-size hyperparameters o and c of the algorithms (indicated
in the legend). We refer to Figures 1.9 and I.10 for the results in training Resnet20.

achieving higher performance on a wider range of LR (Table 8). Appendix 1.4 reports additional
ablations on ImageNet32 and train loss stability results.

Next, we test the effectiveness of the algorithms when training ViT-Tiny on ImageNet1k. This model
is trained for a longer horizon, making it notoriously sensitive to the initial LR and requiring an
adaptive step-size. We follow the protocol of Schaipp et al. [79]. As highlighted in Figure 3 and
Table 8, NGN-MDv1 achieves the highest test accuracy across adaptive methods. Moreover, at a
larger LR, Adam diverges, whereas both Momo-Adam and NGN-MDv1 maintain more stable training
dynamics. The LR sensitivity metric reported in Table 3 supports our observations.

Language Modeling. Pre-training Large Language Models represents a challenging optimization
task. To achieve competitive performance, optimizers with adaptive step-size are needed, and
preventing instabilities in low-precision training often requires careful hyperparameter tuning. To
evaluate the capability of NGN-MDv1 in this setting, we train decoder-only transformers [74] with
70M, 160M, 410M, and 1B parameters around Chinchilla optimum [33] on SlimPajama-627B [86].
For each model, we retune the LR, using 3 seeds for the first three models and 1 seed for the 1B.

As reported in Figure 4 and Table 8, we note that NGN-MDv1 matches the performance of Adam across
all model sizes. However, NGN-MDv1 achieves competitive performance even for LR hyperparameter
¢ = 102 while Adam’s performance drops significantly. This phenomenon is consistent across all
scales we tested, suggesting that the optimal LR of NGN-MDv1 is shifted towards larger values, but
also that the algorithm is less sensitive to such a hyperparameter. We additionally discuss how to
introduce weight decay in NGN-MDv1 and report additional ablations on its role in this training task
in Appendix G. Moreover, we report the ablation studies when varying the momentum parameter in
Appendix 1.12, demonstrating the improved stability to momentum parameters.

Effective Step-size of NGN-M and NGN-MDv1. As shown in Figure 5, the effective LR of NGN-
M and NGN-MDv1 is inherently adaptive: it rises sharply at the start, and then gradually decreases,
resembling annealing schedules commonly used in practice. By contrast, the effective step-size
of Momo and Momo-Adam is largely fixed for large «, effectively reducing them to SGDM and
Adam and limiting their resilience. Evidence across ResNet20 training (Figures 1.6, 1.7, 1.9 and 1.10)
and large-scale language modeling (Figures 1.11 to 1.13) shows that the NGN step-size is more
conservative, automatically decreasing when needed to stabilize training—even for large c. This
adaptivity underlies the LR robustness of NGN-M and NGN-MDv1.

Table 4: Train time of Adam and NGN-MDv1 when training language models.

Model Method Time per Iteration (sec) Time per Optimizer Update (sec)
70M AdamW 1.6340.01 0.00480.0002
NGN-MDv1 1.6540.01 0.01300.0002
160M AdamW 3~33i0.03 0.0088i0,0003
NGN-MDv1 3-37:{:0.02 0.0239:{:0'0003
410M AdamW 8.4140.06 0.083810.0009
NGN-MDv1 8.68i()‘06 0.2154i()‘0007

Computation Cost of NGN-MD. Implementing NGN-MDv1 can be slightly more expensive, but
the overall cost is modest as we show next. First, we emphasize that the implementation does not
even require additional matrix—vector products since the preconditioner is diagonal; the only extra

work is computing ||V f(z) ||]23_1 , which amounts to an additional pass over the gradient. This can
k

also be incorporated into the update of Dy, avoiding extra matrix operations. In practice, our naive
implementation is about 2.5 slower per update than PyTorch’s AdamW (see Table 4) due to the
need for two passes over the gradient. However, since forward/backward computations dominate
runtime, the overall training speed remains largely comparable. Since our focus is on demonstrating
the stability benefits of the NGN step-size, we leave efficiency improvements to future work. The
extended discussion is reported in Appendix F.2.

6 Conclusion and Future Work

This work introduced several novel adaptations of the NGN step-size method, incorporating support
for momentum and/or diagonal step-size. We provided a theoretical analysis of the convergence
rates for these algorithms and conducted an extensive empirical evaluation of their performance. The
experimental results show that combining momentum with the NGN step-size yields high robustness
to step-size hyperparameter choices and performs competitively with state-of-the-art algorithms
across various settings.

Given the significant complexity of the task, we defer the theoretical explanation of the step-size
resilience properties of NGN-M for large values of /3 and analysis in the non-convex setting to future
work, including classes of structured non-convex functions such as PL [73], a-S-condition [34], or
Aiming [52]. It would also be worthwhile to study NGN-M under weaker smoothness assumptions
[104, 1]. Furthermore, while the two proposed methods for incorporating weight decay into NGN-
MDv1 outperform AdamW in training language models, they still exhibit some sensitivity to the
step-size hyperparameter. This may, in part, be due to the limited understanding of the expected
effects of the weight decay technique, a topic that requires further investigation. We acknowledge that
computing NGN step-size at a large scale may cause runtime overhead, and discuss this limitation in
Appendix F.2. We also recognize that integrating NGN-MDv1 with advanced parallelism schemes,
such as Tensor Parallelism [83] or ZeRO-2 [75], introduces additional compute and communication
overhead, and will require further adaptation of the algorithm. Nevertheless, our results provide
valuable guidance for developing inherently more stable optimizers. As a next step, it would be
fascinating to investigate whether the resilience of emerging methods like Muon [40] can be further
improved by incorporating the NGN step-size.

Acknowledgement

Rustem Islamov and Aurelien Lucchi acknowledge the financial support of the Swiss National
Foundation, SNF grant No 207392. Antonio Orvieto acknowledges the financial support of the Hector
Foundation.

References

[1] Foivos Alimisis, Rustem Islamov, and Aurelien Lucchi. Why do we need warm-up? a
theoretical perspective. arXiv preprint arXiv:2510.03164, 2025. (Cited on page 10)

[2] Maksym Andriushchenko, Francesco D’ Angelo, Aditya Varre, and Nicolas Flammarion. Why
do we need weight decay in modern deep learning? arXiv preprint arXiv:2310.04415, 2023.
(Cited on pages 45 and 48)

[3] Mathieu Barré, Adrien Taylor, and Alexandre d’ Aspremont. Complexity guarantees for polyak
steps with momentum. In Proceedings of Thirty Third Conference on Learning Theory, 2020.
(Cited on page 2)

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, 2018. (Cited on pages 3 and 25)

10

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-
neox-20b: An open-source autoregressive language model. arXiv preprint arXiv: 2204.06745,
2022. (Cited on page 51)

Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch
heavy ball momentum. arXiv preprint arXiv:2206.07553, 2022. (Cited on page 2)

Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv preprint
arXiv:2309.16620, 2023. (Cited on page 2)

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,
2020. (Cited on page 1)

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization
algorithms. Advances in neural information processing systems, 2024. (Cited on page 53)

Dami Choi, Christopher J Shallue, Zachary Nado, Jachoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019. (Cited on page 1)

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 2023.
(Cited on page 1)

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gra-
dient descent on neural networks typically occurs at the edge of stability. arXiv preprint
arXiv:2103.00065, 2021. (Cited on page 2)

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio
Orvieto, and Aurelien Lucchi. Adaptive methods through the lens of SDEs: Theoretical insights
on the role of noise. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ww3CLRhF1v. (Cited on page 3)

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International
conference on machine learning. PMLR, 2020. (Cited on pages 1 and 2)

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. Advances in neural information processing systems, 2019. (Cited on pages 1 and 2)

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition. leee, 2009. (Cited on page 8)

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021. (Cited on

page 8)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 2011. (Cited on page 55)

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtarik. Momentum provably improves error
feedback! Advances in Neural Information Processing Systems, 2024. (Cited on page 1)

Simon Foucart. Lecture 6: Matrix norms and spectral radii. lecture notes for the course
NSTP187 at Drexel University, Philadelphia, PA, Fall, 2012, 2012. (Cited on page 43)

11

https://openreview.net/forum?id=ww3CLRhF1v

(21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

Jingwen Fu, Bohan Wang, Huishuai Zhang, Zhizheng Zhang, Wei Chen, and Nanning
Zheng. When and why momentum accelerates sgd: An empirical study. arXiv preprint
arXiv:2306.09000, 2023. (Cited on page 1)

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023. (Cited on pages 6, 7, 25, 27, 30,
and 36)

Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence
of the heavy-ball method for convex optimization. In 2015 European control conference
(ECC), 2015. (Cited on page 7)

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM journal on optimization, 2013. (Cited on page 7)

Damien Martins Gomes, Yanlei Zhang, Eugene Belilovsky, Guy Wolf, and Mahdi S Hos-
seini. Adafisher: Adaptive second order optimization via fisher information. arXiv preprint
arXiv:2405.16397, 2024. (Cited on page 5)

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
(Cited on page 2)

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. Sgd for structured nonconvex functions:
Learning rates, minibatching and interpolation. In International Conference on Artificial
Intelligence and Statistics, 2021. (Cited on page 3)

Robert M Gower, Guillaume Garrigos, Nicolas Loizou, Dimitris Oikonomou, Konstantin
Mishchenko, and Fabian Schaipp. Analysis of an idealized stochastic polyak method and its
application to black-box model distillation. arXiv preprint arXiv:2504.01898, 2025. (Cited on
pages 2 and 3)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016. (Cited on page 8)

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Lecture notes, 2012. (Cited on page 1)

Tran Hoang, Qinzi Zhang, and Ashok Cutkosky. Empirical tests of optimization assumptions
in deep learning. arXiv preprint arXiv:2407.01825, 2024. (Cited on page 6)

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
1997. (Cited on page 51)

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022. (Cited on page 9)

Rustem Islamov, Niccolé Ajroldi, Antonio Orvieto, and Aurelien Lucchi. Loss landscape
characterization of neural networks without over-parametrization. In Advances in Neural
Information Processing Systems, 2024. (Cited on pages 6 and 10)

Rustem Islamov, Yuan Gao, and Sebastian U Stich. Near optimal decentralized optimization
with compression and momentum tracking. arXiv preprint arXiv:2405.2011, 2024. (Cited on
page 1)

Rustem Islamov, Samuel Horvath, Aurelien Lucchi, Peter Richtarik, and Eduard Gorbunov.
Double momentum and error feedback for clipping with fast rates and differential privacy.
arXiv preprint arXiv: 2502.11682, 2025. (Cited on page 1)

12

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford.
Accelerating stochastic gradient descent for least squares regression. In Conference On
Learning Theory, 2018. (Cited on page 2)

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization
in deep learning. In International Conference on Machine Learning, 2022. (Cited on page 1)

Xiaowen Jiang and Sebastian U Stich. Adaptive sgd with polyak stepsize and line-search:
Robust convergence and variance reduction. Advances in Neural Information Processing
Systems, 2024. (Cited on page 2)

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan.github.io/posts/muon/. (Cited on page 10)

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv: 2001.08361, 2020. (Cited on page 51)

Andrej Karpathy. char-rnn. https://github.com/karpathy/char-rnn, 2015. (Cited on
page 51)

Andrej Karpathy. Nanogpt. https://github.com/karpathy/nanoGPT, 2022. (Cited on
page 51)

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. (Cited on pages 1 and 55)

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from
tiny images. Scientific Report, 2009. (Cited on page 8)

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not
the main factor behind the gap between sgd and adam on transformers, but sign descent might
be. In The Eleventh International Conference on Learning Representations, 2023. (Cited on
page 3)

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-
tailed class imbalance and why adam outperforms gradient descent on language models. arXiv
preprint arXiv: 2402.19449, 2024. (Cited on page 3)

Kiwon Lee, Andrew Cheng, Elliot Paquette, and Courtney Paquette. Trajectory of mini-batch
momentum: batch size saturation and convergence in high dimensions. Advances in Neural
Information Processing Systems, 2022. (Cited on page 2)

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed
assumptions. Advances in Neural Information Processing Systems, 2024. (Cited on page 1)

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on
accelerating data parallel training. arXiv preprint arXiv:2006.15704, 2020. (Cited on page 45)

Shuang Li, William J Swartworth, Martin Tak4¢, Deanna Needell, and Robert M Gower. Sp2:
A second order stochastic polyak method. arXiv preprint arXiv:2207.08171, 2022. (Cited on
page 3)

Chaoyue Liu, Dmitriy Drusvyatskiy, Misha Belkin, Damek Davis, and Yian Ma. Aiming
towards the minimizers: fast convergence of sgd for overparametrized problems. Advances in
neural information processing systems, 2023. (Cited on page 10)

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent
with momentum. Advances in Neural Information Processing Systems, 2020. (Cited on page 7)

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic
polyak step-size for sgd: An adaptive learning rate for fast convergence. In International
Conference on Artificial Intelligence and Statistics, 2021. (Cited on pages 1, 2, 3, and 6)

13

https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/char-rnn
https://github.com/karpathy/nanoGPT

[55] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv: 1711.05101, 2019. (Cited on page 46)

[56] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
dynamic bound of learning rate. arXiv preprint arXiv:1902.09843,2019. (Cited on page 53)

[57] Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. arXiv
preprint arXiv:1810.06801, 2018. (Cited on pages 1 and 2)

[58] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proceedings of 4th International Conference on Learning Representations (ICLR
2016), 2016. (Cited on page 52)

[59] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur.
Recurrent neural network based language model. Proceedings of the 11th Annual Conference
of the International Speech Communication Association, INTERSPEECH 2010, 2010. (Cited

on page 51)

[60] Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal,
Punit Singh Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam
instability in large-scale machine learning. arXiv preprint arXiv:2304.09871,2023. (Cited on

page 1)

[61] A.Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 2009. (Cited on page 7)

[62] Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of
rank collapse. Advances in Neural Information Processing Systems, 2022. (Cited on page 3)

[63] Dimitris Oikonomou and Nicolas Loizou. Stochastic polyak step-sizes and momentum:
Convergence guarantees and practical performance. arXiv preprint arXiv:2406.04142, 2024.
(Cited on pages 2, 3, 4, 6, 7, and 25)

[64] Sharir Or, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900, 2020. (Cited on page 1)

[65] Francesco Orabona and Ryan D’Orazio. New perspectives on the polyak stepsize: Surrogate
functions and negative results. arXiv preprint arXiv:2505.20219, 2025. (Cited on page 7)

[66] Antonio Orvieto and Lin Xiao. An adaptive stochastic gradient method with non-negative
gauss-newton stepsizes. arXiv preprint arXiv: 2407.04358, 2024. (Cited on pages 1, 2, 3, 4, 6,
and 26)

[67] Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic
polyak stepsizes: Truly adaptive variants and convergence to exact solution. Advances in
Neural Information Processing Systems, 2022. (Cited on pages 2 and 6)

[68] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of the ACL, 2005. (Cited on page 52)

[69] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NIPS 2017 Workshop Autodiff, 2017. (Cited on page 51)

[70] Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel,
Leandro Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the
finest text data at scale. Advances in Neural Information Processing Systems, 2024. (Cited on
page 58)

[71] Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 1964. (Cited on pages 1, 2, 4, and 42)

[72] Boris T Polyak. Introduction to optimization. New York, Optimization Software, 1987. (Cited
on page 2)

14

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal vychisli-
tel’noi matematiki i matematicheskoi fiziki, 1963. (Cited on page 10)

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. Technical report, OpenAl, 2019. (Cited on page 9)

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mizations toward training trillion parameter models. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1-16. IEEE, 2020.
(Cited on pages 10 and 45)

Peter Richtérik, Simone Maria Giancola, Dymitr Lubczyk, and Robin Yadav. Local curvature
descent: Squeezing more curvature out of standard and polyak gradient descent. arXiv preprint
arXiv:2405.16574, 2024. (Cited on page 3)

Samer Saab, Shashi Phoha, Minghui Zhu, and Asok Ray. An adaptive polyak heavy-ball
method. Machine Learning, 2022. (Cited on page 2)

Mher Safaryan and Peter Richtarik. Stochastic sign descent methods: New algorithms and
better theory. In International Conference on Machine Learning, 2021. (Cited on page 25)

Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M. Gower.
MoMo: Momentum models for adaptive learning rates. In Proceedings of the 41st International
Conference on Machine Learning, 2024. (Cited on pages 1, 2, 3,4, 6,9, and 51)

Fabian Schaipp, Alexander Hédgele, Adrien Taylor, Umut Simsekli, and Francis Bach. The
surprising agreement between convex optimization theory and learning-rate scheduling for
large model training. arXiv preprint arXiv:2501.18965, 2025. (Cited on page 6)

Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for
stochastic gradient descent and stochastic heavy ball. In Conference on Learning Theory, 2021.
(Cited on pages 7 and 25)

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv: 2002.05202, 2020.
(Cited on page 51)

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-Im: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019. (Cited on pages 10 and 45)

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014. (Cited on page 51)

J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes. Using the
adap learning algorithm to forecast the onset of diabetes mellitus. In Symposium on Computer
Applications and Medical Care, 1988. (Cited on page 4)

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan
Dey. SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. (Cited
on pages 9 and 51)

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864,
2023. (Cited on page 51)

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, 2021. (Cited on page 1)

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv: 2302.13971, 2023. (Cited on pages 1 and 51)

15

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap
between the upper bound and lower bound of adam’s iteration complexity. Advances in Neural
Information Processing Systems, 2024. (Cited on page 1)

Jun-Kun Wang, Chi-Heng Lin, and Jacob D Abernethy. A modular analysis of provable
acceleration via polyak’s momentum: Training a wide relu network and a deep linear network.
In International Conference on Machine Learning, pages 10816—10827. PMLR, 2021. (Cited
on page 43)

Jun-Kun Wang, Chi-Heng Lin, Andre Wibisono, and Bin Hu. Provable acceleration of heavy
ball beyond quadratics for a class of polyak-lojasiewicz functions when the non-convexity is
averaged-out. In International conference on machine learning, 2022. (Cited on pages 2 and 7)

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized polyak step size for first order
optimization with momentum. In International Conference on Machine Learning, 2023. (Cited
on pages 2, 3, 4, and 7)

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. Journal of Machine Learning Research, 2020. (Cited on page 27)

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. (Cited on page 51)

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. Advances in neural informa-
tion processing systems, 2017. (Cited on page 1)

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, 1zzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for
large-scale transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023. (Cited on
pages 1 and 3)

Lechao Xiao. Rethinking conventional wisdom in machine learning: From generalization to
scaling. arXiv preprint arXiv: 2409.15156, 2024. (Cited on pages 45 and 48)

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.
(Cited on page 2)

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv preprint arXiv:2310.17813, 2023. (Cited on page 2)

Biao Zhang and Rico Sennrich. Root mean square layer normalization. arXiv preprint
arXiv:1910.07467, 2019. (Cited on page 51)

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight
decay regularization. arXiv preprint arXiv:1810.12281, 2018. (Cited on page 45)

Hongyang R Zhang, Dongyue Li, and Haotian Ju. Noise stability optimization for finding flat
minima: A hessian-based regularization approach. arXiv preprint arXiv:2306.08553, 2023.
(Cited on page 2)

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.
(Cited on pages 3 and 10)

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances
in Neural Information Processing Systems, 2020. (Cited on page 3)

Qi Zhang, Yi Zhou, and Shaofeng Zou. Convergence guarantees for rmsprop and adam
in generalized-smooth non-convex optimization with affine noise variance. arXiv preprint
arXiv:2404.01436, 2024. (Cited on page 1)

16

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

[107] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022. (Cited on page 1)

[108] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why
transformers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024. (Cited
on page 3)

[109] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. In Advances in Neural Information Processing Systems, 2020. (Cited on
page 53)

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a novel scheme how to combine NGN step-size with momentum
and component-wise step-size. We provide extensive theoretical and numerical analysis of
NGN-M and NGN-MD to support the claims made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a discussion on the limitations of our work in the conclusion and
appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

17

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide all assumptions used in the analysis in Section 4 and Appendix C.
The proofs of convergence and stability are deferred to Appendix C, D.1, D.3, and E.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the Pytorch-based implementation in the supplementary. We use an
open-source implementation of models and public datasets in our experiments. All training
details are reported in Appendix 1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

18

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use only publicly available code and datasets and provide links to them in
Appendix I.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all training details in Appendix I and Table 6.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each experiment, we plot the mean and a standard deviation across at least
3 random seeds (if the opposite is not stated). We do not include error bars when training
1B language model due to a limited resource availability which is necessary to run this
experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide a description of compute resource we used for each experiment in
Appendix I.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted following the NeurIPS instructions, including the
regulations regarding anonymity.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

20

https://neurips.cc/public/EthicsGuidelines

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

21

13.

14.

15.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

22

paperswithcode.com/datasets

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

Appendix

Contents
A Equivalent Formulations of NGN-M
B Technical Lemmas and Definitions
C Convergence of NGN-D
C.1 Convergence in General Non-convex Setting
C.2 Convergence under PL-condition,
D Convergence of NGN-M
D.1 Convergence of NGN-M in Stochastic Setting
D.2 Convergence of NGN-M under Interpolation
D.3 Convergence of NGN-M with Decaying Step-size
E Stability of NGN-M on a Simple Problem
F How to Derive Diagonal NGN-based Step-size?
F.1 Design Comparison of NGN-MDvl and NGN-MDv2
F2 Computation Cost of NGN-MD,
G How to add weight decay to NGN-MDv1?
G.1 Combining NGN-MDv1 and Weight Decay Regularization
G.2 Empirical Validation of the Proposed Combinations
H Additional Experiments on Toy Problems
H.1 Additional Experiments on the Problem with Many Minima
H.2 Comparison on Rosenbrock Function
H.3 Comparison on Quadratic Function with Theoretical Step-size
I Additional Experiments and Training Details

I.1
1.2
I3
1.4
L5
1.6
L7
I.8

Training Details
Comparison Algorithms that Support Momentum
Comparison of Algorithms that Support Momentum and Diagonal Step-size
Additional ImageNet Experiments
Additional Comparison against Lion, Adabelief, Adabound
Comparison of Adaptive Step-sizes of Adam, Momo-Adam, and NGN-MDvl1 . . .
Extended Comparison of Momentum-based Algorithms on NLP Tasks

Comparison of Algorithms with Diagonal Step-size

24

25

25

26
28
29

30
30
34
36

40

44
44
45

45
46
48

49
49
49
49

51
51
51
51
52
53
53
54
55

1.9 Effective Step-size of NGN-M, Momo, NGN-MDv1, and Momo-Adam 56

1.10 Effective Updates in Training Language Models 58
I.11 Training Dynamics in Training Language Models 58
[.12 Ablation Study of Momentum Parameters 58

A Equivalent Formulations of NGN-M

We remind that the iterates of NGN-M are the following
M=ok — (1= BV fs, (aF) + B(a" —2*7)

— k1 ¢ k ko k—1

We can rewrite the update rule using Iterative-Moving Average (IMA) approach presented in Proposi-
tion 1.6, Sebbouh et al. [81].

Lemma A.1 (Proposition C.8 [63], Lemma 7.3 in [22]). The iterates {x*} generated by NGN-M are
equivalent to the sequence {z*} generated by IMA update

) A) 1 .
= -y Vs (2F), oM = T)\xk 1)\zkH, ®)
where \
8= Ton AL = R NP —2R), and 27t =20 =20 6)

Proof. Let the sequences {z*} and {2*} be defined according to Equation (5). Let 3 be defined as

25 Then we have
ot = H%xk + 1_'1_)\Zk+1
- H%w" + T Vs (@)
= (et et Vs, ()
=k - . i)\%stk(ﬂfk) 1T)\(mk — k7).
It remains to use (6) as we have 8 = 14%\ and1 - f3=1- 1-%\ = 1%\

B Technical Lemmas and Definitions
Definition B.1. We say that the function ¢ admits L-smooth with parameters L =
(L1,...,La), L > 0Vj € [d], if the following inequality holds for all z, h € R?

o (xz+h) <olx)+ (Vo(x), h) + %hTLh. @)
Remark B.2. If we set for all j € [d] L; := L then Definition B.1 reduces to standard L-smoothness.

This assumption is typically used in the context of coordinate adaptive algorithms such as SignSGD
[4, 78].

Definition B.3. The function ¢:R? — R satisfies PE-condition with constant ;i > 0 if for all

z,y € R we have

IV£@)12= 2p(f () = f7)- ®)
Assumption B.4. We assume that the coordinate-wise variance of the stochastic estimator is bounded,
i.e. forall z € R% and j € [d] we have

Es [[(V,fs(x) = Vif(2)]?] < o2 ©

25

Lemma B.5 (Lemma 4.9 from [66]). Let each f; be L-smooth for all i, then the step-size of NGN
satisfies

c

. 10

'Yk€|:1+chc:| (10)

Lemma B.6 (Lemma 4.2 from [66]). Let each f; be L-smooth for all i, then the iterates of NGN
satisfy

4cL 2¢2L 2cL — 1
2 k 2< kY _ px _— X . 11
RIVIs P a0 - f5) + T max { S 10 f5. D

Lemma B.7 (Gradient Upper Bound). Let ¢: R? — R satisfy Definition B.1. Then, for all x € R?
and all j € [d] we have

2L;(f(x) = f*) = (V; f(2))*. (12)
Proof. From Definition B.1 we have

L,
* fr— 1 < 1 @ < 1 . . 7J 2
f min, f(z) < ;Il?éléf(m+h7€7) < f(x) Jr}%}é% [ij(a:)h] +5 hj] .

Now we can explicitly compute the minimum in the right-hand side. The optimal value is achieved at

. 1
hi = —fjvjf(ﬂf%

therefore,
o < fl@)+V,f(a)h;] +?](hj)2
_ L e 4 (Vs)
= @)= (Vi@ + 5 (Vi)
- 1 2
= @)~ 5 (VT @),
which is equivalent to the statement of the lemma. O

C Convergence of NGN-D

First, we provide NGN-D pseudocode and the main convergence results.

Algorithm 3 NGN-D

1: Input: 2° € R?, step-size parameter ¢ > 0
2: fork=0,1,...,K —1do
3: Sample a batch Sj, C [n] and compute fs, and V fs, (")

. (1) _
4: Compute v~ = o C($k>(cvjf5k C)E
k
5. Update
wift = aty =0V fs)
6: end for

Theorem C.1. Let each f; satisfies Definition B.1. Assume that Assumption B.4 holds. Then the
iterates of NGN-D (Algorithm 3) with step-size parameters {c; }‘jzl such that ¢; < 1/2L; satisfy

. 120£(2%) = f1) | 1 <
ky|12] < S 18120
o?;ilfKE IV fEM))7] < Cmin K * Cmin 7= 1shiciess 4

where Cuin ‘= minje(g ¢;. Moreover, if ¢; = O(e?) for all j € [d] then after K = O(c™*) we
obtain_min_E [||[Vf(z")[?] < O(e?).
0<k<K

26

NGN-D converges with classic rate O(1/vK) similar to Adagrad [94]. We highlight that, to the best
of our knowledge, NGN-D is the first algorithm that uses diagonal Polyak-type stepsize and converges
under standard smoothness and bounded variance assumptions without requirements of bounded
gradients and interpolation.

Theorem C.2. Let f satisfies PL-condition and each f; satisfies Definition B.1. Assume that
Assumption B.4 holds. Then the iterates of NGN-D (Algorithm 3) with step-size parameters {c; }?zl
such that ¢; < min{/2r;,6/u} satisfy

E [f(2) = f] < (1 = mewnfs) ¥ (f(2°) - Z Ljcjo?, (14)

C
M min j=1

where cunin = minjepg c;. Moreover, if ¢; = O(e) for all j € [d] then after K =
max{O(e~*),0(1)}loge ™! iterations we obtain E [f (z™) — f*] < O(e).

To the best of our knowledge, this is the first result of the convergence of the Polyak-like step-size
algorithm under the PE-condition. The convergence guarantees are similar to that of SGD [22].
Now we are ready to derive the step-size bounds.

Lemma C.3 (Step-size Bounds). Let fs, (z):R? — R be a stochastic loss of batch S}, at iteration k.
Let fs, (x) satisfy Definition (B.1). Consider 7]]? as in NGN-D (Algorithm 3), then we have

k Cj
= [c} (15)
J 1 + Cij J
Proof. From Lemma B.7 we have 2L;(fs, (z*) — f5,) > (V;fs, (2*))?. Since we assume that
each f§ >0, then 2L, fs, (z%) > (V, fs, (z%))?, or equlvalently,
_ 2
o< Tufs @) _
2fSk (.’L‘)
Therefore, for all j € [d] we have
k i G
v = S - = (4,
Tl g (Vifs (@) 7 1 !
and
k G G
v = >)
! 1+2f5 k)(V fsi (@F))? 1+¢L;
which concludes the proof. O

Lemma C.4 (Fundamental Equality). Consider 7]’? as in NGN-D (Algorithm 3). Then the following
equality holds

k k\\2 G _%k k
(Vi 75.0) =2<c> (o). (16)

Proof. From NGN-D (Algorithm 3) we have

(14 57 (Vs (4 o =

which one can rewrite as
Co
J

ZfSk (xk)
. .. . 2fsk (xk)
It is left to divide both sides by — O

(Vifs. (@) =c; —+F.

27

C.1 Convergence in General Non-convex Setting

Theorem C.1. Let each f; satisfies Definition B.1. Assume that Assumption B.4 holds. Then the
iterates of NGN-D (Algorithm 3) with step-size parameters {c; };_121 such that c; < 1/2L; satisfy

12(f (°
i E95a1] = U 5o a3)

CminK Cmm

where Cmin = minjeq) ¢;. Moreover, if ¢; = O(e?) for all j € [d] then after K = O(e~*) we
obtain_min_E [||[V f(z*)[?] < O(£?).
0<k<K

Proof. First, we write separable Definition B.1

d
FEHY) = f@h) = f 2P =YV fs @Mes | - f2")
j=1
d
< =N OVifER) AV fs ZL Vs, (%))
j=1
d
< —ZVJf(a: V fSk ZL U V fSk())2 (17)
j=1

Note that both 'yJ’-“ and V; fs, (x*) depend on the realization S, thus we can not directly apply
conditional expectanon with respect to ¥, as 1n this case we would have to analyze the product
'yj’?'Vj fs, (z¥). Given bounds of the step- s1ze 'yj from Lemma C.3, we can write the step-size as
follows)

CR
L4l 14¢Ly

where 1/j’<c € [0, 1] is a random variable. Varying the value of I/JI»C from O to 1 we cover the whole range

7=

of 7]’?. Thus, we continue as follows

YV, (@)Y fs, ()
= L) - T 0
< H—Lv FPI3 1508+ 2 A s, ()
S LI)+ e 9)

Now we use the inequality |ab|< 1a? + b + |a — b|?, and derive

2E;, |V, f(a")V;fs, (z")]] < [Vif (@) P+Eg |V fs (2] +Ex [V (a*) =V, fs, («*)]
< 2V, f(@M)P+2Ex [|V;£(2") = Vj fs, (")]
< 2|V, f(a")>+207.

Therefore, we get

4 2
—Ex [’Y]kvjf(xk)vjfsk(fﬂk)] < —%éijjf(ﬂ?k)F‘*‘m (|V [z)|2+UJ2)
1 CZLJ
=~ (e e et as)

28

We plug in (18) into (17) and get

d 02
Ex [f(a*)] - fa¥) < =) (Ek ViV @)V fs (a*)] + Lici

J

Ex [IV;fs, (xk)|2]>
=1

d 1 —Cij LJC
j; o <1+Cij) "

IN

IV f(2*)P?

2 2
n Cij LjCj 0'2.
]. + C]'LJ 2 J)
If ¢; < 2L , we get
d Ci LjC2-
E k+1 k _ V ky\|2 J 2 .
R N e B
O
We continue as follows
c d c?
B[] - F@*) < —IIVIEIP+ Z 5, (19)
=1
Taking full expectation and unrolling the recursion above for all iterations {0, ..., K — 1}. Thus, we
obtain
K—-1 d
1 12 0 N 18 9 9
02%12 E [va E[IVf(aM)]?] < m(f(x)—f)+ " Ljcjoy.
k:O J=1
If we choose each ¢; = \}% such that ¢y ; < 57— we ensure that ¢; < 2ij as well. Plugging this
step-size into the bound we get
12 18 & c?
* 0,7
OQ%IHKE [V f(a™)]I?] < W(f(l“o) =)+ ZLjUJQ'?J
VK VK =1
12
< ———(f(z%) — f* L; o .,
B CO,min\/E(f() f C() mln Z 07

where ¢ min = ml[n] ¢, ;- If we choose K = O(e~%) we get that
JjEld

min_E [[|Vf(2")|?] = 0(1/VEK) = O(=?).

0<k<K

C.2 Convergence under P¥L.-condition

Theorem C.2. Let f satisfies PL-condition and each f; satisfies Definition B.1. Assume that
Assumption B.4 holds. Then the iterates of NGN-D (Algorithm 3) with step-size parameters {c; }?zl

such that ¢; < min{/2r;,6/u} satisfy

E[f(%) = f] < (1 = mewnnfs) ™ (f(2°) - Z Licia3, (14)

Mcmln j

where cmin = minjecq cj. Moreover, if ¢c; = Ol¢g) for all j € [d] then after K =
max{O(e~1),O(1)}loge™! iterations we obtain E [f(z*) — f*] < O(e).

29

Proof. We obtain (19) and use Definition B.3

Ex [f(@1)] = (") < — |V £ (") +Z o]

. 4 3L;c2
Hemin))y 0 2

4 2
j=1

IA

Subtracting f* from both sides of the inequality above and taking full expectation we obtain

d
3L; c
E[f(@") = £7] < (1= newnfo)E [f(+Z o2,
Unrolling the recursion above for {0, ..., K — 1} iterations we derive
d 2
E[f(@") =] < (1= pemnfe) (£(a°) = 1)+ — D" =2
min 577 1%
A

Now we follow the proof of Lemma A.3 in Garrigos and Gower [22]. Let us choose ¢; =
min{l/2r;,¢/2d44,}. Together with the choice of K > maxmax { 1124, 12L; } log M

i€ld] peon
we get

(1 — memin/e) ¥ (f(a%) = £*) <

w\m

Now we have two cases:

1. cmin does not depend on ¢, then we have

Ac <O(e)

len

2. Cpmin does depend on ¢, i.e. cpin = (9(5), then we have

Ac < O(e).

cmm

Therefore, combining all together we get
E[f(z") - [*] <O(e)

. . -O — * . .
after K > ma[u]c max { 1 %, %} log M iterations.
jeld

D Convergence of NGN-M

D.1 Convergence of NGN-M in Stochastic Setting

Theorem 4.3. Let Assumptlons 4.1, 4.2 hold. Let the step-size hyperparameter c > 0 and the
momentum parameter 3 = . be constants where X < min{cL, 0.5(1+cL)~'(1+2¢cL)~'}. Then
the iterates of NGN-M (Algonthm 1) satisfy

E[f@1) — flar)] < 2=l B0E2eL)” | 9or (1 4 2¢L)202,, + 2L max {2¢L — 1,0} o2

pos?

where TE 1 is chosen uniformly at random from {z°, ... x5 =1} Moreover, if we set c = O(1/VK)

then we obtain E [f(z" 1) — f(z*)] < O(Y/VE).

30

Remark D.1. In fact, if A <
for any = > 0.

then it implies that A < — because

S N T
(14+cL)(1+2cL)> (14z)(1+22)

Proof. To prove the convergence of NGN-M we consider IMA formulation Equation (5):
A 1

el =20 =20 Aok Vg (aF), ot = 1+)\xk 1 +)\Zk+1’

where 8 = 125, 2T = b1 4 A (@t — 2).

At iteration £ = 0 we have
Zl = ZO - /Yovfso ($0) = xO - ’YOVfSo (wO)

Therefore, we get

[= 12° = 2*[|* =270 (V f5, (2°), 2° = 2*) + 73|IV £, (%) |2
Lem. B.6 . . 4cL .
< HZO - H2*2’YO<VfSO(IO),IO —z") + m%(fso(fvo) - fso)
2¢°L 2cL — 1
—— 0, fS . 20
+1+chaX{2(:L+17 }fso (20)
Let o = p + 7o where p = m Then we have
Yo =" —p
Lem. B.5 c
< c

= (14 cL)(1+2¢L)
_ cl +3cL + 2202 — 1
7 (L+eL)(1+2cl)

9 3+ 3cL
O ¥ L)1 1 20L)
3c2L
T 142eL
Using the above we continue from (20)
et — a2 € 120 — 2P ~270(fs, <x°> — o) + g o) — f3,)

4 2¢2L 2cl — 1
T+cL ™\ 2eL 11" So

< 2% = 2% =20(fs, (2°) = fso(27)) = 270(fsy (2°) = £5,) + 290 (fs, (@7) = £5,)

2
+ gl - f5) + oo max{ 310} 7,
= (120 — 2P —2p(f5, (a°) — s, (2)) — 2 (70 —p- M%) (Fso(a®) - 13,)
1+ 2¢L 0 0
2
Bl a”) = £3)+ g mox {570} @1
Here we have
2¢cL 1
WP T e O T T2 0P
1 c
T 1420 (T+eL)(1+2¢L)
Lem. B.5 1 c e
= T1+2Ll+cL (1+cL)(1+2cL)

207

31

Yo < 1+20L’ and fs,(z") — f§, > 0. Hence, we get
6c2L

" =2 < [12° = 2" [P=2p(fs, (2°) = (@) + T7gop

2¢2L 2¢L — 1
il maX{C ,0} f3,-

———(fs,(z") = f35,)

1+cL 2cL +1

Rearranging terms and taking expectation we get

208 [£(a”) - £(")] < E I — "] - [12° - 2" P+
- 1+ 2¢L 7
2¢2L 2cL — 1 9
: 22
+1+chaX{26L+1’O}Upos (22)

Next, for k > 0 we can use the relation 2% = 2% + X\(2* — 2%~1). We expand ||2*+1 — z*||?
|25 — |2 = 125 — a2 =27V fis, (), 25 — &%) + RV fs, (")
Lem. 41 k _ ky Lk * N k—1
= 127 = 2" [P =2 (V [, (27), 2" — 27) = 2% MV [, (27), 2" — 2777)
+ IV £, (M)

TS = P2 (0) — fsu(0) — 2A (i (@) — fi, (@)
+ 2V fs, ()]
Lem. B.
Pk P2 fs, () — (@) — 23eA(fs, <xk> — fo (zF1))
4cL * 2¢%L 2cL —
+ 1+2CL7k(fsk($k)—fsk)+m {2 1 }fsk

Let v = p + 7k, where p, 7, > 0, and p is a constant step-size independent of Sy, which will be
defined later. Therefore, we have

15— a2 < leF = 2" |P=20(Fs, (27) — fo, (27)) — 23 fs, (2%) = fs,.(27)
— 2%k (fs, (%) — f5,) + 2% (fs, (2" 1) — £8,)

4cL " 2¢2L 2cL
b U e = 15 + P max 20} 7,

= |I2F — 2P =2p(fs, (@) = fs, (")) — 2% (fs, (&%) = £5,) + 29k (fs, (z*) — f5,)
— 2% A(fs, (%) = f&,.) + 2% (fs, (2" 1) = £5,)

4cL " 2¢%L 2cL
g s) — 15+ g max{ 30 A

o) Usi(a) - 15.)

* . % - 2c
= 1= P20l () - f o) ~2 (B A - g

+ Xk(fs, (%) = £5,) + 2mA(fs, (2" 1) = £5,)

2¢2L 2cL -1
e — 3 . 23
1+chaX{2cL+1’0}fSk @3)
We need to find p such that
AN 2cL
Ve T Uk 1+ 2CL%€ =
Since v = vy — p, then we have
2c
— A ——— >
e — P+ Yk 1+26L’Yk_0

e (1eas 2 S
Tk 1+2¢L) ="

32

The inequality above is satisfied if it is satisfied for the lower bound on 7y, (which is ¢/1+¢L), i.e.

¢ L a)>
1+cL \1+2cL =P

We can take p = m since A > 0.

Ve =Tk — P
<c— ¢
- (14 ¢L)(1+4 2cL)
 1+43cL+2¢2L% -1
(1 +cL)(1 + 2¢L)
<2 3+ 3cL
= AT L)1 + 2¢L)
3L
142l

Using the above, we get from (23)

125 — 2|12 < (|28 — 2| =2p(fs, (&%) — f5, (7)) + 2eA(fs, (2" 1) = fs,(2))
6¢L

+ 2eA(fs, (z") = f5,) + m(fsk (%) = fs,)

2¢2L N 20L710 £
T+el "\ 2eL 11 [150

Taking expectations we get

Efllz"" =] < E[llz" —a"|?] = 20E [f(a*) — f(a*)] + 2eAE [f(2"71) — f(a™)]

6¢2L 262 L 2L — 1
2\ 2 0vo2 . (24
+ <C +1+2cL)U““+1+chaX{20L+1’ }UP% 24)

Rearranging terms we get

20E [f(2¥) = f(a*)] = 2cAE [f(a"1) = f(2")] S E[||z" —2*|])] = E[|"*! — 2|7

’L
+ (20)\+ Ge >afm

14 2cL
2¢2L 2cL -1 9
. 25
i 1+chaX{2cL+1’O}UP°S (25)

Combining Equation (22) and Equation (25) for iterations {1,..., K — 1} we get

K—-1 K—-1
20E [f(2°) — f(a*)] +2p Y E[f(a¥) = f(a*)] —2eA D E[f(@*") = f(a7)]
k=1 k=1

K-1 K—2
=2p Y E[f(@*) = f(z")] —2eA Y E[f(z¥) - f(a")]
k=0 k=0

K_
< @2 3 E[f(H) fa)]

k=0

6c2L n 2¢2L ma 2cL —1 2
T+ 2eL 0 T T M\ 2en 1107 [Tpes

2 2621 2L — 1
+ <2c)\+ 60) (K — 1)o2, + (K —1)- Cmax{ c 0} 020

1

<l2” = 2* |+

14+ 2¢l 1+cL 2¢L +1’°

6c2L 202 L 2cL —1
< 12° — 2*|1?+ { 2eA Kol + K- 2 26
< |l- x|+(c T ger) B TR T X g O Tres (20)

33

We need to ensure that p — ¢\ > 0 which is satisfied for A such that

p c > cA
== c
2 2(1+cL)(1+ 2cL)

&1 > 201+ cL)(1 + 2cL).

Note that we also assume that A < cL. Therefore, from (26) we get

K—

[

1 |20 — z*|? 1 6L
= E ky — 1< 2eA + ——— | of
= g @) = 1@ < 50— R T o ey 2 T) o
n 1 2¢2L e 2¢L -1 ol 2
20p— N 1+l "\ 2eL 110 [Tres
|20 — 2*||? 8L
= + Oint
20— cANK = 2(p—c))
1 2¢2L 2¢L -1 9
—_ — . 27
+ 2(p—c)\)1+chaX{20L+1’O}Up°S @7
Since p — cA > £ and setting 7" be uniformly at random chosen from {z, ..., 25 ~1} we get
O—gz*|? 8L 1 2621 2cL -1
[f(aj) f(l‘)] — pK + p Ulnt+p1+CLmaX 2CL+1’ Upos’ ()

where we use the convexity of f and Jensen’s inequality. Plugging the value of p = (1+0L)(++20L)
inside we get

E[f@") — f(z")] < %(1 +cL)(1 4 2¢L) 4 8cL(1 + cL)(1 + 2cL)o?,
+ 2cLmax {2cL — 1,0} o5 (29)
Choosing ¢ = O(1/VK) we get
E[/(@") — f(z")] <O (lzo_\/;z 17/2% + f/g? max {2cL — 1,0}) . (30)
Therefore, if K > O(c~2) then E [f(z*) — f(2*)] < O(e). It remains to notice that 2 = 2° to
derive the statement of the theorem. 0

D.2 Convergence of NGN-M under Interpolation

In this section, we show that NGN-M provably converges for large momentum values S—including the
default § = 0.9—provided the LR hyperparameter c is chosen sufficiently small. This is natural: if
the step-size is too large, the momentum term accumulates excessive past error, which the algorithm
may be unable to correct, potentially causing divergence. In short, convergence can be ensured in two
complementary ways: () use a small momentum parameter while allowing any LR hyperparameter ¢
(Theorem 4.3); or (i4) restrict the LR hyperparameter ¢ while permitting a large (near-1) momentum
parameter /3 (Theorem D.2).

Theorem D.2. Let Assumption 4.1 hold. Assume that there exists a minimizer x* shared across all
functions f;, i.e. fF = f(x*) foralli € [n]. Let NGN-M is run with momentum parameter 3 = HLA

A€ (0,A], A > 9, step-size ¢ < min {ﬁ, ﬁ } Then the iterates of NGN-M satisfy

1= o 3120 — 2|24/ (£ (20) — f(a*))
% g E[f(z") — f(z")] < e :

Remark D.3. Note that the requirement A > 9 allows setting the momentum parameter 3 = 0.9,
which is a default choice in practice.

34

Proof. The proof is similar to Theorem 4.3, but we take into account the additional interpolation
assumption. We start with

I —ar? = 125 = 2*[|” =27k (V fs, (%), 2" — 2 >+%€||stk(£v’“)ll2
=00 |1 P2V fs (a), 2 + A2t -2t —a%)
+7k||stk («)]?
= [= 2 P2 (Vs (@) 0k — %) — 23NV fis, (a8, 2F — F)
IV s (=)
Asm. 4.1

< | = a P2 (fs, (2F) — fs, (27)) = 29kA(fs, (2F) — fs, (2FTT))
+2L77 (fs, (%) = f5,)

127 — 2|2 =29k (fs, (&%) = Fs, (&%) = 29A(fs, (%) = fo, (2 71))
2Ly (fs, (z%) = fs,.(x*))

= 125 = 2* P27k (1 + A — L) (f(z*) = f(z%))

2 (f (@) = f(2%). 31

we have

Interp.

Since fs, (z*) — fs, (z*) > 0, with the choice ¢ < 5,

1
1+)\—L’7k21+>\—LCZ)\—|—§.

Moreover, by Lemma B.5 we have v, > Hﬁ and 7, < c. Thus, we continue the bound (31) on the

k+1 _x*||2

distance ||z as follows

4 =P < 8 = P O N s ())
+2eA(fs, (a"71) = fs,(a)).
Taking the expectation, we obtain the final bound on the distance
(/2 + NE [f(2*) = f(z")]
+2eAE [f(zF 1) — f(29)] . (32)

Note that for £ = 0, the bound is simpler, since the momentum term is zero

E [sz+1 _ LL'*||2] S E [sz _ $*||2] _ : +CL

B[l — ") < 12 — 2" [P~ 57 (F@) = ()
= [l2° — " |~ (1) = S (")), (33)
where we use 2° = 2°. Summing the bounds (32) and (33) for iterations k € {0,..., K — 1}, we
obtain
c 0 * 20 1/2+)‘ 1E * K712 M\E k—1 *
U E) = Fe + = Zl fla)]—];2 CAE [[(2*71) = f ()]
A
= (1) — 1) + LN g [y g
242\~ .
20(1+CL A) ,;1 B/ — S

K—
< Z (2% = *|]?] = E [|2"F" = 2*)1?]) + 2eA(f(2°) — f(z¥))
< || O — 2*|P+2eA(f(2°) — f(z¥)).

35

Note that
a4+ A 1 AcL

=
1+cL — (1+cL) 1+ L
where the last inequality holds by the choice of ¢ < A 7 <

1
<:> > AcL,

Therefore, we obtain

4)\L
c/2 K-1 . c . 2¢(1/2 + \) - .
el 2 E[f(z") - fa")] < 1+6L(f(x0)7f() WEU(%K 1)~ fa")]
1/4 K-2
+2eqp 2 ELEH —167)]
< 1) = 7@) fo;MEU<)~ f(a")]
1/2+)\ K—-2 .
e <1+cL)k—1E fa™)]
<l — 2¥]242eA(f (2°) — f(2*)).

Thus, we obtain the rate

K—1
1 2(1 + cL)(J|l2° — 2*[*+2eA(f(2°) — f(27))
- E AN *
7 2 Bl) < =
o B(l° — [P+ /20(f () — f(a)
— CK b
where the last inequality holds by the choice of c.
O
D.3 Convergence of NGN-M with Decaying Step-size
Lemma D.4. We have
K- E-1 4
Z og(K +2), > VK + 1. (34)
k=0 imo VE+1
Proof. We refer to Lemma A.8 from Garrigos and Gower [22]. O

To prove the convergence of NGN-M with decaying c;, we consider IMA formulation (see Section A
in the paper):

Ck
2fs 2fs, (zF) vask()H2

k+1 _ /\k-i-l 2k 1 SRl
14+ Mg 14+ Mg

gt =20=2" AT =28 Vs (), =

1+

whereckf\/m,)\o 0.

Theorem D.5. Assume that each f; is convex and L-smooth, and that Assumption 3.2 holds. Let the
step-size hyperparameter is set ¢y, = %, momentum parameter A\, < min{cyL,0.5(1+ ¢, L)1 (1+

2c;, L)1}, Then the iterates of NGN-M satisfy

K1 . 5(1 + coL)(1 + 2¢oL)||2° — ||
E[f(l‘)—f(l‘)]g 400\/?

+ IOLC()(l + CoL)(l + QCOL)U

o log (K + 2)
int \/?

log(K +2
MmaX{QCOL 1,0} o2

WK

Zk 0 ZK 1 . a*, pr, = (1+ck,L)c(kl+20kL)'

+ 5¢oL(1 + coL) (35)

pos?

where 3%

36

Proof. Atiteration k = 0 we have
2 =20 — Vs, (20) = 2° — %V fs, (2°).

Therefore, we get

Izt = 2*||? = [12° — 2% (|2 =270 (V fs0 (z°), 2° — %) + 13|V f5, (%) 2
Lem. B.6 . . deoL i}
< [[2° = 2 ||P=270(V f5, (2°), 2° — z*) + m’m(fso(xo) - f3,)
2¢2L 2c0L — 1

—— .0 - 36

+1+60L maX{200L+1, fSO ()

Let o = po + Yo Where py = (1+c0L)C(—01+2c0L) Then we have
Yo =" — Po
Lem. B.5 o
S Co —

(L4 coL)(1 + 2¢oL)
1+3coL +2c3L? — 1
(14 coL)(1+2¢L)
_ Cg 3+ 3CQL
(L4 coL)(1+2¢oL)
_3¢L
14 2¢oL

= Co

Using the above we continue from (36)

4COL

1 *QCOélV. 0o_ *2_2 0y * v
I =P <112 = 2P =290 (Fso(2”) = fso (@) + 5

2¢2L 2coL — 1 N
1+ coL max{200L+1’0} T30
<12 = 2*[]P=2p0(fs, (2°) — fso (2%)) — 290(f50 (2°) = £5,) + 290 (f5, (z*) — [3,)
4COL

262 L 2c0L — 1
0 * 0 0 *
R — - D — - - . 0

+ 1 260[’Y0(fso(x) 730) + 1+ col max{Qco[K }fso

0(fs0 (=) = £5,)

= [12° — 2*|IP=2p0(fs, (z°) — fs,(x*)) — 2 (’Yo —po — 1_?_c;fOL%) (fso(2%) — f5,)

2¢2L { 2c0L — 1

. 37
T+l 2c0L+1’0}fS“ 7

+ 2% (fso (2%) — f35,) +

Here we have
2¢coL 1
1+ 260 0 " 1+2¢L 70
1 Co
1+2cL " (1+ coL)(1+ 2c0L)
Len;Bﬁ 1 o co
= T1+42L1+cl (1+cL)(l+2eL)
=0,

Y0 — pPo — Po

2
Yo < %, and fs, (2°) — f& > 0. Hence, we get

6c2L

2 = 1P < 1120 = 2" P=2p0(fsu(2°) = fio (@) + g

2¢2L 2coL —1
| 3
1+c0LmaX{zcoL+1’ T30

(fso(x%) = [3,)

37

Rearranging terms and taking the expectation we get

. . . 6c2L
2mE [12%) f(a")] < E (121 = 7]~ 110 = P+ OB,
2¢2L 2coL — 1 9
_— . 38
1+c0LmaX{2cOL+1’O Tpos (38)

Next, for k& > 0 we can use the relation z* = x* + A\ (zF — 2¥~1). We expand || 251 — 2|2
254 — 22 = 125 — &[] =27k (V fis, (), 2% — &) + 7|V £, (")
= 12 — & |2 =27 {V fis (), 2% — 2%) = 20 M (V fs, (2F), 2 — 1)
+ 7kl V fs ()12

S et P2 s (0F) — fs(27) — 29 (F, (@) — Fi (25
+ 2|V fs, (2F) ||
Lem. B.6
T a2 () — F () — 2v (s, (0) — f, (2F))
depL i . 2¢; L 2c,L -1 x
A s) =)+ e ma { S 0 g,

Let v, = px + Yk, where p, 7, > 0, and p is a constant step-size independent of S}, which will be
defined later. Therefore, we have

25—z (]? < 1 — 2P =20k (fs, (2%) = fs,(27)) — 29 (fs, (2%) — fs, (7))
— 2%k (fs, (%) — f5,) + 2% (fs, (2" 71) — £8,)

4cp L & 20%[/ 2c,. L — 1
_ * 0 *
+ 71+2ckL%(fsk(I) = f5,)+ 17 oL "\ 20L 11 I35,

= |I2F = 2*|P=2p(fs, (@) = fs, (")) — 2% (fs, (&) = £5,) + 29k (fs, (z*) = f5,)
— 2% A(fs, (%) = f&,.) 4+ 2nmA(fs, (2"71) = £5,)

4dep L k 2ciL 2c, L — 1
TR _ * 0 *
e s (o) = f5,) + e max { ST 0L £

= 1 P20l () = f) =2 (B A -) (s) - £3)

+ 25 (fs (@) = £5.) + 2% (fs, (z71) = £5.)

221 20, — 1
% ax{ck 0} f5.. (39)

T+ el "\ 200 L + 17
We need to find py, such that

>0

~ + A QCkL
Ye T Vk 1+20kL% 2

Since v = v — pk, then we have

2¢i L
’Yk*PkJr’Yk)\k*m’YkzO
QCkL
& 1+ ——— | > pp.
’Y/c(+ Ak 1+20kL>_pk

The inequality above is satisfied if it is satisfied for the lower bound on 7y, (which is ¢/1+-<L), i.e.

Ch L)
1+ cnl \1+2erL =P

38

We can take pg, = (1+c;cL)C(—k1+2ckL) since A > 0.
Ve = Yk — Pk
Ck
<cp—

(1 + CkL)(l =+ QCkL)

1 +3c, L +2c3 L% — 1

"0+ eoL) (1 + 262 L)
3+ 3ci L

(L4 crL) (1 + 200 L)
3c2L

T 11200

<clL

Using the above, we get from (39)

250 — 2 ||® < (|27 — 2*[]P =20k (fs,, (&) = Fs, (7)) + 26 Ak (fs, (25 71) = fs, (7))

4 20 (0) F3) 4 ol (s 0) ~)

ZC%L 2¢ L —
ST 0 fn
T el aX{QckLJrl’ Ts

Taking expectations, we get

EJI" —a"|?) < Efll2" = 27P] = 2mE [f(2") = f(a")] + 2cr i [f(w'“’l) — f@@")]

6¢; L 2¢2L 2¢ L —
2ek 0k + ——2—) o £ — 4
+<C’“’“+1+2 L) i T 1oL 2ckL+1 Tpor40)
Rearranging terms, we get
20E [f(e*) = f(2")] =20 ME [f(a*71) = f(a*)] S E[|l2" —2*|°] —E[|lz"" —a*|?]
6c3
2 k 2
(ck:)\k + 1+ 2¢ L) Oint
QCiL 2c, L — 1 9
———,0 .-
1+ cnl aX{2ckL—|— 17 f Tvos
41)
Combining (38) and (41) for iterations {1, ..., K — 1} we get
K-1 K-1
200E [f(2°) = f(a")] +2 > pkE [f(@*) = f(2")] =2) e ME [f(="71) = f(2")]
k=1 k=1
K—-1 K—2
=23 pE[f(*) = f@)] =2) eME [f(2F) = f(a")]
k=0 k=0
K—1
<2 (pr — ciMi)E [f(2¥) — f(z¥)]
k=0
6c2L 2L 2coL — 1
< 1150 _)2 0 2 0 0 2
<0 - P e ot iy max SO o a2,
K—1 K—1
6ci L 2¢2L 2c,L — 1
21\, + —E——) o2 k = 2. 42
+};<C’“’“+1+2 L> lnt+;1+ckLmaX 2erL+ 170 Tpos *2)

Note that choosing Ay = min {¢L,0.5(1 + ¢xL)~*(1 4 2c, L)'} ensures that 25 > ¢ \. In-
deed, we have

Pk Ck

— = > CcpA

2~ 2(1+nl)(1+20,L) ~

& 1> 206(1 4 e, L)(1 + 2¢,L).

39

Therefore, from (42) and the facts that A\g = 0 and \;, < ¢ L we get

K-1 K-1 62 L
D aE[fEb) = f@)] < 12° =2 P+) (2%“ + 1+§L> o
k=0 k=0
K—-1
2¢2L 2cL -1 9
* Z 1+ cil ax{chH’O}JPOS
K-1
<||2° =2 |*+8Laf, Y
k=0
K—-1
2cpL — 1)
221 0402 . 43
+kZ:0 ciLma {2%“1 }ap% (43)
We have by Lemma D.4
= o = Ck S Kl Cr - deoVK
2P U L)1+ 26, L) © & (14 coL)(1+ 2¢0L) = 5(1+ coL)(1 + 2¢oL)’
K-l 2LemD.4 5
Ck < Co log(K+ 2)7 (44)
k=0
= 2, L 2oL — 1 2oL — 1
2 k 2 0 2 ol —
< 0% < 2log(K +2 e
kzockma {QCkL+1 } chmax{ 2L 11 }_co og(K +)max{200L+1, }

Therefore, using (44), z° = 2 in (43) and dividing both sides in (43) by Zf;ol pr. we derive

K—-1 0 * |2
i o 20— a7 log (K +2)
> LEE[fEh) = f@)] € e + 8L ot —
k=0 2k=0 k=0 Pk k=0 Pk
log(K + 2) 2c0L — 1
22— _— 2 45
MR o Prv s s L

With an lower bound on ZkK:_Ol and Jensen’s inequality we conclude that

5(1+ coL)(1 + 2c0L) 2° — a*||?
4(}0\/?

E /@) - fa")] <

5 log (K +2)
+ 10Lco(1 + coL)(1 + 2¢9 L))o ———F——
oL+ L) (1+ 2e0 Lo, BV
log(K + 2)
+ 5C(]L(1 +COL)W maX{2COL 1 0} Jpos? (46)
~K—1 K-1 Pk k
where & D ko SR,

E Stability of NGN-M on a Simple Problem

We consider 1D convex functions of the form f(z) = La?(1 + p?(x)) that satisfy the following
assumption.

Assumption E.1. There exists a constant C such that C(1 + p?(x)) > zp(x)p' ().
Note that 1+ p?(z) > 1 and deg(1 + p?(x)) = deg(xp(z)p’ (z)). Therefore, this assumption is mild.

Remark E.2. For example, the function f(z) = 2%(1 + 22) (i.e., p(x) =) is convex and satisfies
Assumption E.1 with C' = 1.

40

Remark E3. Let p(z) = >0, ajz’. Then for large values of x in magnitude, p(z) ~

amz™, p'(x) ~ ma,,x™ . Therefore, the constant C should be expected of order C' ~ m, where
m = deg(p(z)).

The function f(z) is non-negative for any « € R and its minimum f* = 0 is attained at z = 0 by
design. Let us compute a step of NGN-M on this problem

pE =k — c 'k ok _ k1
(B)1+ 2f(cxk)(f/($k))2f()JFB()

2Lc(1 4 p?(zF) + aFp(z®)p' (aF))
)

_CL’ _(1_B) 4L2c[zF]? xk+5($k_$k_l>

1+ —QL[wk]z(1+p]2(m'))(1 + p2(z*) + xhp(xk)p' (zF))?
2Lc(1 + p*(a*) + 2t p(a®)p! (a*))
1t o5ty (14 p2(ak) + abp(ak)p («+))2

=k

=" —(1-B) ab + Bk —2FTh. @)

Note that the convexity of f implies that
£0) = f(z) + f(x)(0 — x)
0> La?(1 +p*(2)) — 2La* (1 +p?(2) + ap(z)p'(2))
0> —La*(1 + p*(z)) — 2La’p(2)p’ (z)
1
wp(a)p (z) = =5 (L+p*(2)). (48)

In particular, (48) implies that 1 + p?(z) + zp(z)p'(z) > (1 4 p*(x)) > 0. Therefore, we can
obtain lower and upper bounds on Ay.

Lemma E 4. Let Assumption E.1 hold with a constant C > 0 and f(z) = x2(1 + p?(x)) be convex.
Let ¢ > 57. Then we have 4y, € {m, 2}.

Proof. Indeed, the upper bound on 4j, follows from the following inequality

2Lc(1 + p*(2") + a*p(a®)p' (%))
T 2R (U P () + atplat)p (oF))?
2Le(l +p?(2) + aFp(ah)p' ()
ity (L4 p2(ak) + ahp(ak)p' (aF))?
1 4 p2(zk
G e < “
due to (48). The lower bound can be obtained as follows
2Le(1 +p?(a*) + a¥p(ah)p' ()
1t 25y (14 p2(ak) + abp(ak)p/ (2F))2
_2Lc(L+pP (k) + aFp(at)p! (@) (1 + p*(2))
(1+p(a¥)) + 2Le(1 + p? (2¥) + abp(ak)p! (aF))?

9 =

S 2Lc(1 4 p?(«) + ap(a®)p/ (2%)) (1 + p* (=)
= 2(1 + p2(ak) + akp(ak)p! (k) + 2Le(1 + p?(a*) + aFp(ak)p/ (zF))?
_ Le(1 4 p? ("))
1+ Le(1 4 p?(aF) + akp(ah)p/ (a*))
_ Le(1 4 p? ("))
1+ Le(1 + p?(zF) + C(1 + p2(xF)))
Le(1 —|—p2(xk)) B 1 (50)
~ 2Le(1+ C)(1 +p2(z))) 2(1+0)
O

41

The update rule of NGN-M can be rewritten as
o =gk — (1 - B)Apat + B(ah — 2P). (51)

Let us consider the joint dynamics of w* := ([#*]T, [x*71]T)T € R2?. We have that

wh = < at > = <xk — (1= B)Aa* + B(z* — x’f—l))
T \zkt) T !

o _ k
_ (1 (1=)il + 61 gl) <xf> — Gut T, (52)
where

o (1 (- ﬁlml + I —(?I) _ (53)

Now we are ready to prove the convergence of NGN-M on this simple problem for any value ¢ > %

Theorem E.5. Let f(x) = x?(1+p?(x)) be convex and Assumption E.1 holds. Let 3 > %

and c > ﬁ Then the iterates of NGN-M on f(x) converge to the minimum f* = 0.

Proof. We follow the standard proof of SGD with Polyak momentum [71]. At this stage, we need
to estimate the eigenvalues of G. To do so, we will proceed with a permutation matrix IT* which
transforms the matrix G to the block-diagonal matrix as

G, 0 ... 0
G:()7 (54)
0 0 ... Gy

where

Since the matrix G is a block-diagonal matrix, we have |G|/ < max;||G;||. Therefore, the problem
is now simplified to bounding the spectral radii of the individual blocks G;, fori = 1,2,...,d. The
two eigenvalues u; and us of G are the roots of the quadratic

qu) ==vu* — (1+ B — (1= B))u+ B =0, (56)

which take different values depending on the discriminant A := (1 4+ 8 — (1 — 8)%)? — 4/3. Let us
find the values of 3 when the discriminant is negative. We need to satisfy the inequality

I+B8-(1=PWw)?—48<0& (1+8)°+ (1 —-B)*% —2(1+8)(1 - B)jr —48 <0
& (1-B)°+(1-8)*4% —2(1+B)1—B)% <0
& 1-81+4%) <21+ B

1+48 1
0 148 57)
2% 1-p
2
Since the function % fory € {m, 2} attains the maximum 4(411Zr1i)0)+1 aty = 5 (110), then
we satisfy the last inequality, and consequently the discriminant is non-positive, if we choose
41+0)*+1 1
(1+C)* + L+ B (58)
41+ C) 1-p
1 dodd,j=1
*The permutation matrix IT is defined as IT;; = { 1 i even,j = 2n + 4. Note that permutation matrices
0 else

preserve eigenvalues.

42

(2(140)—1)* 1
ea+0)+1)2°
of 8 we have A; < 0 for all ¢ € [d]. Therefore, the zeros of the quadratic q(u) are complex, and are
equal in absolute value

The above inequality is satisfied for 8 € [) . Therefore, we obtain that for such choice

|U1|: |UQ|= \/B < 1. (59)

This gives us that ||G;||< /B < 1. Therefore, the algorithm converges for any value of 3 in this
range.

It remains to use Lemma 11 from Foucart [20] which says that for a given matrix A € R%*?, and
€ > 0, there exists a matrix norm ||-|| such that

[A[[< p(A) + e, (60)
where p(A) = max{|A|: A eigenvalue of A} (spectral radius of A).

Asymptotically 3 (as k — oo, one can show (see Theorem 12 in [20]) that
lw*l2= O(p(G)"), (61)

where p(G) < /B < 1 in our analysis. Therefore, NGN-M with hyperparameters ¢ > % and 8 > %
converges. 0

Remark E.6. For example, NGN-M converges on f(z) = %(1 + %) forany ¢ > $ and 8 > 2.

Theorem E.5 shows that NGN-M remains stable even with an arbitrarily large step-size hyperparameter
c. Thanks to the adaptive nature of NGN step-size, the actual update scale is automatically shrunk
when necessary, preserving convergence. Importantly, this is possible with a choice of momentum
parameter /3 close to 1, which extends the results of Section 4. We acknowledge that our current
analysis is restricted to the special convex class of 1D functions f(z) = x%(1 + p?(x)) satisfying
Assumption E.1. Extending such stability guarantees to wider function classes with large momentum
[remains a significant open challenge.

To support the theoretical result, we test the performance of NGN-M and GDM (Gradient Descent
with Momentum) on the problem f(x) = 2%(1 + 2?), which is convex and satisfies Assumption E.1;
see Figure E.1. We run both algorithms, varying the step-size hyperparameter in {1074, ... 10%}.
We run algorithms for 10° iterations. We stop training if the loss reaches a threshold 1071° or
exceeds 1010 for the first time. We observe that (i) for small step-size hyperparameters, both methods
converge but do not reach the threshold 10~1?; (i) NGN-M reaches the threshold even for extremely
large values of the step-size hyperparameter while GDM diverges. (iii) the fastest convergence
of GDM is achieved with the step-size hyperparameter 102 after 691 iterations while the fastest
convergence of NGN-M is achieved with ¢ = 10! after 269 iterations. In other details, NGN-M
achieves faster convergence and much more stable to the choice of the step-size hyperparameter.
These results align well with our theoretical analysis.

1025,
0
0
3 10"
£
g 10°
— NGN-M
2 1079 GDM
ic
10715,

10-410-310-210-110° 10* 102 103 10*
Stepsize

Figure E.1: Comparison of SGDM and NGN-M when minimizing a function f(z) = 22 + x%.

>A non-asymptotic version of the analysis can be derived using Theorem 5 by [91]

43

F How to Derive Diagonal NGN-based Step-size?

Here we provide derivations of how combine NGN and diagonal step-size following Section 3.3 for
completeness.

We consider the following model

P = gt e | (e) = () + VoG 0P 4 gl 6
where 7(F We compute the gradient of RHS of (62) w.r.t. p and equal it to zero:
fogk_rc(xk +p)=2 (r(xk) + Vr(ack)Tp) Vr(xk) + EEkp
= <2VT(xk)Vr(xk)T + i2k> p+ 2r(x®)Vr(a").
Therefore, we have
pk=— <2V7’(zk’)V7‘(:l:k)T + izk) - 2r(x®)Vr ().

Using Shermann-Morrison formula (A +uv)™t = A~1 #Aﬁ;l with A = 1/c3 we derive

225 IV (2F)Vr(2*) T,
k - _ 271 _ k k > 2 k \V4 k
P <C g 1+ 2cVr(zk) T2 ' Vr(zh) r@)vr@)

_ i 2eVr(zF) T2 Vr(2) 1 &
= ~2er(@) (1 1+ 2CVT($’€)§]€];1VT(x’C)) % Vr(@)
2cr(z*)

= — E—lv k)
14 2¢Vr(zF) 2, ' Vr(zk) e Vr)

Now we plug-in 7(z*) = \/f(x*) and Vr(z*) = 2\/va(%) and obtain

E_ 2cy/ f(z%) 71

p = 1+204f(k)Vf()Tzklvf) 2\/7 V()
= C Eilv |
o VA o)

F.1 Design Comparison of NGN-MDv1 and NGN-MDv2

The derivations in (3) are used to provide an intuition of how one can add a diagonal step-size into
NGN by choosing the regularization matrix ¥;. By choosing ¥, = Dj we recover the update
direction of NGN-MDv1. In this case, we have only one global NGN step-size in front of Dj. The
design of NGN-MDv2 follows a more straightforward intuition. In particular, it can be seen as a direct
extension of NGN to diagonal case by replacing the squared gradient norm ||V fs, (%)||? by the
squared partial derivative (V, fs, (z*))? for each parameter j € [d].

The main difference in comparison with Adam is the order in which the preconditioning and mo-
mentum is applied. In both NGN-MDv1 and NGN-MDv2 we average the preconditioned updates
2,;1v fs, (z%), i.e. we first apply preconditioning and momentum later. In contrast, in Adam the
stochastic gradients are averaged to construct new momentum term, and then the momentum is pre-
conditioned. In other words, the momentum is applied first and then it is followed by preconditioning.
We believe this change might be one of the reasons behind the step-size hyperparameter resilience as
well.

In practice, we found out that the tuned performance of NGN-MDv1 is slightly better than that of
NGN-MDv2. Moreover, NGN-MDv1 demonstrates higher resilience to the choice of the step-size
hyperparameter than NGN-MDv2.

44

Table 5: Train time of Adam and NGN-MDv1 when training language models.

Model Method Time per Iteration (sec) Time per Optimizer Update (sec)
70M AdamW 1.63+£0.01 0.0048 £ 0.0002
NGN-MDv1 1.65+0.01 0.0130 £ 0.0002
160M AdamW 3.33+£0.03 0.0088 = 0.0003
NGN-MDv1 3.374+0.02 0.0239 £ 0.0003
410M AdamW 8.41 £ 0.06 0.0838 £ 0.0009
NGN-MDv1 8.68 & 0.06 0.2154 £ 0.0007

F.2 Computation Cost of NGN-MD

Implementing any version of NGN-MD in practice might be slightly more computationally expensive.

However, we highlight that computing a step of NGN-MD does not involve matrix-vector operations

since the preconditioner is a diagonal matrix, and the matrix notation is used only for the convenience

of presentation. The additional computation cost that we have in NGN-MDv1 is the computation of

IV fs, (%) ||2D,1. This can naively be done by one additional pass over the gradient and summing
k

the terms ﬁ(vj fs, (z%))? for j € [d]. This operation does not require additional matrix multipli-

cation. However, it can be computed more efficiently while updating Dy, The rest of the NGN-MDv1
implementation does not add any significantly costly operations in comparison with Adam.

We compare in Table 5 the time per iteration and optimizer update when training language models
from Section 5 using AdamW and NGN-MDv1. We notice that our naive implementation of NGN-
MDv1 is about 2.5 times slower than PyTorch’s AdamW. This is expected since our algorithm requires
two passes over the gradient. Nevertheless, in this setting training time is dominated by forward
and backward computations, keeping NGN-MDv1 competitive with AdamW. Moreover, as noted
above, this overhead can be largely eliminated by computing the weighted gradient concurrently with
the second-momentum v* update. We do not aim to provide the most efficient implementation of
NGN-MDv1 as the primary goal of our work is to highlight the stability advantages that NGN step-size
brings in the training of neural networks.

F.2.1 Distributed Training

2 .
HDlzl 1S
straightforward since gradients are replicated across devices. We only require an additional all-reduce
to synchronize fs, (z¥) across devices, which is, however, a lightweight communication (just a single
float) and, in principle, can even be overlapped with the backward pass.

In a vanilla DDP implementation [50], computing the weighted gradient norm ||V fg, (z¥)

However, with more sophisticated types of parallelism, like Tensor Parallel [83] or ZeRO-2 [75],
computing the weighted gradient norm introduces additional communication, as gradients are sharded
across devices. This could still be implemented efficiently by accumulating squared gradient entries
in each device and all-reducing only a single float, but it will, nevertheless, result in a computation
and communication overhead for NGN-MDv1. We acknowledge that our methods might not be
scalable to large distributed training, and adjustments are needed to make NGN-MDv1 work in this
case. Nonetheless, we believe that our findings offer useful insights toward designing more stable
optimization algorithms.

G How to add weight decay to NGN-MDv1?

Regularization techniques serve a fundamental purpose in minimizing generalization error. Or-
thogonal to their role for generalization, modern deep learning tasks often benefit from the use of
weight decay [98]. Despite its widespread application, the role of weight decay is poorly understood.
Andriushchenko et al. [2] suggested that it might provide implicit regularization by stabilizing the loss
in over-parameterized neural networks and helping to balance the bias-variance tradeoff that leads
to lower training loss in under-parameterized networks. However, even in the case of SGD, there
is still uncertainty regarding how the weight decay mechanism should be incorporated, as various
implementations may exist [102].

45

We propose two ways of adding weight decay to NGN-MDv1. The first variant follows the approach
of [55], adding decoupled weight decay A:

Pt =2k Nea® — (1 - BBV s, (2F) + Bo(a® — 2P 1), (63)

In this update rule, the weight is added separately from the update direction zglv fs, (%), We call
the resulting algorithm (63) Dec-NGN-MDv1, that stands for decoupled NGN-MDv1.

G.1 Combining NGN-MDv1 and Weight Decay Regularization

We now discuss how to combine NGN-MDv1 and weight decay, following the idea that weight decay
should perform weight regularization.

We consider the following model
1 A
Fooa(@® +p) = (r(@") + Vr(@) Tp)? + ol +5 2" + pl%, -
By taking the gradient of f5;, w.r.t. p we get

0

2(r(z*) + Vr(z®) Tp)Vr(z®) + %ka + AZ (2" + p)

1
= <2Vr(xk)V7‘(xk)T + Ezk +)\Ek) p 4 2r(x®)Vr(zh) + AZ 2t
Therefore, we get
1 -1
pF=— <2Vr(xk)VT(xk)T + Ezk +)\Ek) (2r(2®)Vr(zF) + AZpab).

Using Sherman-Morrison formula (A +uv)™t = A= — % with A = (A4 1/c)X}, and
u=v = 2Vr(z*) we get that

1 —1
<2Vr(xk)Vr(xk)T + -3 + A2k>
C
2 _ —
c o 7(1?30)2 SV (k) V() Tt

1Ak 1+ 125 Vr(ah) S, 'Vr(ah)

Therefore, we have

.2 _ —
. ¢ o1 s S V(@) Vr(ah) s

= - >
b T+ Ack 1+ (25 Vr(2h)S, TV (2k)

_2cr(xk) (1 13_3\CV7‘(mk)TZI;1V7‘($k)

(2r(2®)Vr(zF) + AZpa®)

T+de | 1+ 25 Vr(eh) s, 'Vr(zh)

> . Vr(zh)

Ae o, ZEASIIVr(ER)Vr(ah) Tk

TT1rael 0 + 2 Vr(zk) B, ' Vr(zk)

1+Xc
2cr(zk) 1 1 &
=— 3. Vr(x
L+ Ae 1+ 12 Vr(ah) S ' Vr(ak) ")
ey, 280 5 I (28 Vi (k) Tk
1+ A 14 25 Vr(ah) 2 ' Vr(ak)

46

Algorithm 4 NGN-MDv1W

1: Input: 2° € R, step-size parameter ¢ > 0, momentum parameters 31, o € [0,1), weight decay
parameter A > 0, stabilization parameter € > 0

2: fork=0,1,..., K — 1do

3: Sample a batch Sy, C [n] and compute fs, and V fs, (z%)

4: Compute v* = Bov* 71 + (1 — B2)(Vfs, (z%) © V fs, (2F))

5. Compute Dy, = diag(eI + \/v*/(1 — 85))

6 Compute

c cA ENT ..k
(T+x0) [1_ zfsk(xk)vfsk(x) @ .

Vk = c
L+ sreama IV s (@9)lIE,

7. Update 281 = loab — (1— B)3D; 'V fs, (aF) + Bi(a* — 2F71)
8: end for

[-]+ denotes max{0, - }.

Using the connection Vr(z*) = 5 WV f(z¥) and r(2) = \/f(a*) we get

2cy/ f(x¥) 1 _ 1
k 1 k
p=- D V(")
LHAe 14 gremtomg V(@) T2y 1Vf(fﬁ’“) 2./ (")
c —1 k
o, aabang Sk VAEH VI T
1+ Xe 14+ va(xk)TE 1Vf(xk)
C/(1Jr)\c k cA k
c Ekvf(x) - €
1+W||Vf(x’“)\l27l 1+ Ac

cA 2f(xk)vf()

To summarize, the update of NGN-Dv1W is the following

gF L = gk gk

_]. $k+ CA Qf(cl'k)vf(xk)—rxk E_IVf(xk)
1+ AXc 1+)\cl+m‘|vﬂxk)”2 -1 g

+ V().

B ¢/(14+xec)
1+W|Wf(xk’)
T oM G D)

= zF — SOV F(ER). (64)
L+ Ac 1+W\|Vf(mk)||2;1 v VI

2 _12,;1Vf(xk)

To prevent the step-size next to 2,;1v f(z¥) from being negative, the final update has the form

S - Vf()Ty
Lo 12 | 2“) LE SV (), (65)

k+1 _ T

where [-]; = max{-,0}. Now we can add momentum on top and obtain the following update of
NGN-MDv1W

i1 1, Thac {1 - 7CA:€ Vf(ah) Tk]+ 19 et 4 Bat - ab)
= " — ¥, Vf + B(x" —z"). (66)
1+ Ac 1+ 2f(yk)(1+,\c)|‘vf($k)”

This combination of NGN-MDv1 and weight decay is summarized in Algorithm 4. We highlight
that now the weight decay is incorporated inside the adaptive step-size as well as regularizing the
coefficient next to z*.

47

AdamWw Momo-AdamW —e— NGN-MDv1W Dec-NGN-MDv1

LN

"

10°% 1072 1072 1072 10°° 1072 10°% 1072
Stepsize Stepsize Stepsize Stepsize

)
&
)
&

Validation Perplexity
w o ow

g 8
Validation Perplexity
w o w

8

Validation Perplexity
— M
Validation Perplexity
& .5 .8

)
&
)
&

A=0 A=10"3 A =102 A=10"1

Figure G.1: Adding weight decay when pretraining a 70M Transformer+-+. When properly tuned,
a value of weight decay > 0 enhances the performance of all algorithms. NGN-MDv1 retains his
characteristic stability, and achieves smaller perplexity in all scenarios.

G.2 Empirical Validation of the Proposed Combinations

Having two possible ways of adding weight decay to NGN-MDv1, we test them on pretraining a 70M
transformer on language modeling. The validation perplexity at the end of training is reported in
Figure G.1. We note that when weight decay is turned off, both NGN-MDv1W and Dec-NGN-MDv1
reduce to NGN-MDv1.

First, we observe that when weight decay is properly tuned, all algorithms improve over the baseline
case with no weight decay, which is consistent with the observation of Xiao [98] and Andriushchenko
et al. [2] on AdamW. We also note that Dec-NGN-MDv1 and NGN-MDv1W require a smaller weight
decay value compared to the other algorithms. Finally, the stability and performance of NGNMDv1
are preserved by both variations, allowing training with larger LR, and significantly improving over
AdamW and Momo-Adam.

We do not observe a substantial difference between the two proposed modifications of NGN-MDv1
for this task. We remark however that these two versions serve substantially different purposes, and
pretraining language models might not be the most representative task to evaluate the effect of adding
regularization.

48

H Additional Experiments on Toy Problems

H.1 Additional Experiments on the Problem with Many Minima

Now, we provide a simple example of minimizing a function
f(2) = (sin(1 + cos(—m 4+ z)) — 0.22)? + (sin(1 + cos(7 — x)) + 0.2x)* (67)

that has many sharp sub-optimal local and flat global minima. We compare the performance of
NGN-M and SGDM varying the step-size hyperparameter in {10°,10!,102, 103} and the starting
point in [—20, 20] with a step 4/30°. Based on the results in Figure H.1 (right), we conclude that
(i) for small step-sizes, both methods likely get stuck at sub-optimal local minima and reach the
global minima only if they are initialized close enough to it; (i¢) for large step-sizes, we observe less
runs of SGDM reaching the global minima; (4i¢) in contrast, for NGN-M with large step-sizes, we
observe more runs reaching the global minima. This is possible due to the adaptive nature of the
NGN step-size that forces NGN-M to converge to the flatness of the global minima.

300 300
s SGDM 10! s NGN-M 10!
SGDM 10" NGN-M 10°
SGDM 10" 200 NGN-M 10’ 200
SGDM 10* o NGN-M 10* 1)
>200 2 200 2
g - 2
s s 2 5
S =
o 1008 o 1008
100 S 100 5
w ('
il
[| !
0—20 —1i 10 ZUO 0—20 —1i 10 200

0 0
Parameter =

0 0
Parameter z

Figure H.1: Comparison of SGDM and NGN-M when minimizing function in (67).

H.2 Comparison on Rosenbrock Function

Now we present the results where we compare NGN-M and SGDM when minimizing the Rosenbrock
function. We report the trajectories of optimizers and training dynamics in Figure H.2 and Figure H.3.

We observe that NGN-M converges for all values of ¢, indicating its high resilience to the choice
of step-size hyperparameter. In contrast, SGDM already diverges for the step-size hyperparameter
10~2. This can be explained by the adaptive nature of NGN step-size, which decreases the effective
step-size of NGN-M for a more stable convergence. This is especially evident from the trajectories
of algorithms. Indeed, NGN-M effectively moves in the complex valley of the Rosenbrock function,
adapting to the local curvature.

TR} —O T
e NGN-M ¢=10"° e NGN-M ¢=10"?
SGDM Ir=10"* SGDM Ir=10"2

’ N
/ \

—ITTIW TR

e NGN-M c=10""

> 1 > 1 > 1
01 0 01
-5 2 15 -1 0 1 2 15 -1 0 1 2
xr T xr

Figure H.2: Trajectories of NGN-M and SGDM when minimizing the Rosenbrock function and
varying the step-size hyperparameter.
H.3 Comparison on Quadratic Function with Theoretical Step-size

Next, we run NGN-M with theoretical choice of step-size hyperparameter ¢ = 1/ VK and¢, =1 / VE
(see Theorem 4.3 and Theorem D.5 for more details) against fixed choices ¢ € {1073,1074}. The

SThis step is chosen small enough so that the initial point can be close to any local minima within [—20, 20].

49

NGN-M SGDM Eff. Stepsize of NGN-M

0 0.5 1 1.5 p 0 0.5 1 15 2 0 0.5 1
Iteration k, x 10% Iteration k, x 10% Iteration k, x 10*

107° % 1072 1070 - 10° 100 -e— 10%

Figure H.3: Training dynamics of NGN-M and SGDM when minimizing the Rosenbrock function and
varying the step-size hyperparameter.

comparison is made on quadratic function f(z) = 3|/(A + rI)z — y||?, where A € R400%400 and

y € R0 are sampled from standard normal distribution. The constant r controls the condition
number of the problem.

We test the performance of NGN-M varying the condition number of the problem and the number of it-
erations; see Figure H.4. We observe that in all the cases, the choice 1/ Vk leads to faster convergence,
supporting our theoretical claims. The choice 1/v/K demonstrates competitive performance as well,
but it is slightly pessimistic at the beginning of training. In contrast, the choice ¢ € {1073,107},
which is a default value in practice, is too small and does not lead to fast convergence.

These experiments demonstrate that when the problem satisfies all assumptions needed in the analysis,
the choice of the step-size hyperparameter c given by the convergence theorems is a good starting
point in practice and can serve as a baseline when tuning c.

103Cond. number k=3 Cond. number k=99 16:1ond. number x=1000
i
—_— 2] 1]
AU 10 /
==
| | S ——
2301l A
g \2101 / 100’
f 100,
1004 V
0 50 100 0 50 100 0 50 100
Iteration k& Iteration k Iteration k&
,Cond. number k=3 Cond. number k=99 &ond. number x=1000
10— ———— 100, —————— 1
:;‘ :: 10734 1099 10°4
==
IR NGN ¢=10"°
$1§ 10781 —%— NGNc=10"* i 1]
212] 10
=" NGN c=1/VK 10
NGN ¢=1/Vk
=131 [-2 | =21 |
10 0 500 1000 10 0 500 1000 10 0 500 1000
Iteration k& Iteration k Iteration k&
Cond. number k=3 1Cond. number x =99 Cond. number x =1000
10
0] T~ 1
10 10—
g a2 —5 | 04
o 10711 10
& %107107 10714
1072,
10-1° ; 1077 ‘ : ‘
0 5000 10000 0 5000 10000 0 5000 10000
Iteration k Iteration & Iteration &

Figure H.4: Training dynamics of NGN-M with several choices of the step-size hyperparameter
varying the condition number of the quadratic problem.

50

I Additional Experiments and Training Details

I.1 Training Details

The detailed experiment setup with hyperparameters and training details is presented in Table 6.
We provide links to the exact model architectures used in our experiments (the links are clickable)
as well as links to the tables and figures for each workload. We demonstrate the results averaged
across 3 different random seeds for small and middle-range size experiments. We use standard
values of momentum parameters (31, 82) = (0.9,0.999) if the opposite is not specified. The step-
size hyperparameter is tuned across powers of 10 (for some workloads we add additional values
of the step-size hyperparameter shown in the step-size resilience plots). We use PyTorch [69]
implementation of Adam. The implementation of MomSPS, Momo, Momo-Adam are provided in the
corresponding papers. Finally, when employing SGD-M, we set dampening equal to 0.9.

For vision transformers experiments, we follow the setup of Schaipp et al. [79], and use Pytorch
Image Models codebase [95]. We train a vit_tiny_patch16_224 for 200 epochs on Imagenet1k,
using a cosine LR schedule with a linear warmup of 5 epochs. Differently than Schaipp et al. [79],
we train in bfloat16, instead of £1loat16, and do not employ weight decay regularization.

For pre-training Transformers on Causal Language Modeling, we build upon the nanoGPT [43]
implementation, augmenting it with Rotational Positional Embedding [87], RMSNorm [101], and
SwiGLU [82]. We call this enhanced version Transformer++. Models are trained with a batch
size of 256, context length of 2048 tokens, vocabolary size of 50280 and make use of GPT-Neox
tokenizer [5]. We adopt an enhanced training recipe, made popular by large language models such as
LLaMa [89]. These modifications include: training in bfloat16; employing a linear LR warm-up
for 10% of the training steps, followed by cosine annealing to 10~°; omitting biases from linear
layers; using (81, 52) = (0.9, 0.95) for all algorithms; clipping gradient norms above 1; no weight
tying between embedding and last linear layer. All models are trained on SlimPajama-627B [86], a
cleaned and deduplicated version of RedPajama We report validation perplexity on a separate subset
of Slim-Pajama consisting of 10M tokens. The total compute is estimated following Kaplan et al.
[41], where the estimated number of floating-point operations (FLOPs) is 6 x Number of Parameters
x Number of Tokens.

Experiments of small and middle size are performed on 1XxXRTX 4090. We perform ImageNet32
experiments on 2xA100-40GB, and ImageNet1k experiments on 4xA100-SXM4-40GB. For pretrain-
ing Transformers on Language Modeling, we employ 8xH100-HBM3-80GB GPUs. With multiple
devices in use, we employ Distributed Data Parallel to parallelize the training process.

L2 Comparison Algorithms that Support Momentum

In the main paper, we provided the test performance only. Now we additionally illustrate the
performance of algorithms w.r.t. training loss convergence. Figure I.1 demonstrates that NGN-M is
the most robust algorithm for the choice of the step-size hyperparameter from this perspective as
well. In Figure 1.1, we additionally demonstrate the performance of the algorithms on (VGG16 [84],
CIFAR10) and (MLP, MNIST) workloads where NGN-M matches the performance of the state-of-the-
art algorithms in this setting and archives higher resilience to the step-size hyperparameter choice.
The best performance results are reported in Table 7 and showcase that NGN-M always matches the
performance of other optimizers or improves it.

I.3 Comparison of Algorithms that Support Momentum and Diagonal Step-size

Next, we illustrate the performance of the algorithms that support both momentum and diagonal
step-size. According to the results in Figures 1.2 and 1.3, NGN-MDv1 achieves the best resilience to
the step-size hyperparameter choice among all considered algorithms. Again, NGN-MDv1 is the most
stable algorithm to the choice of step-size hyperparameter w.r.t. training loss convergence. Its best
performance is competitive to that of other algorithms but the step-size hyperparameter range that
gives such performance is wider.

Moreover, we support our claims about stability on additional workloads such as (VGG16, CIFAR10)
(in Figure I.1), (MLP, MNIST), (LSTM [32], PTB [59]), and (Transformer [43], Tiny Shakespeare
[42]) workloads. We observe that NGN-MDv1 attains higher robustness to the choice of the step-size

51

Table 6: Summary of experiment setup with all the details on hyperparameters used in each case.

Effective

Performance Stability Epochs / Batch

Model Dataset Results Results 5[{555;:: Iterations Size Comments
Resnet20 CIFARI0O Tab. 7, 8,9 Fig. 2,1.1,1.2,15 Fig. 1.9, 110, 1.6 50 128
Resnet110 CIFAR100 Tab. 7, 8 Fig. 2, L1,12, L5 100 128
VGG16 CIFARI0 Tab. 7, 8 Fig. I.1,1.2 50 128
T
MLP MNIST Tab. 7,8 Fig. 11,13 10 128 2 hidden layers
ViT CIFAR10 Tab. 7, 8 Fig. 2,1.1,1.2,15 Fig. 5,1.9,1.10, 1.7 200 512
LSTM PTB Tab. 8,9 Fig. 1.3 150 20 #layers 3
LSTM Wikitext-2 Tab. 8,9 Fig. 1.8 150 20 #layers 3
o Rotten s Y # heads 8
Transformer Tomatoes Tab. 8,9 Tab. 1.8 2000 16 # layers 24
) Tiny . # heads 8
Transformer Shakespeare Tab. 8,9 Fig. 1.3, 1.8 2000 16 # layers 24
Resnet18 TmageNet32 Tab. 7. 8, Fig. 1.4 45 128 SLhZ‘m‘;";(‘f\j‘g‘:gﬁ Gocay

learning rate decay every
Resnet18 ImageNetlk Tab. 7, 8 Fig. 2,14 90 256 30 epochs by 0.1
no weight decay

cosine learning rate
ViT-Tiny ImageNetlk Tab. § Fig. 3 200 512 schedule with liear arm-up
no weight decay, bfloat16

dim=512, # heads 8
layers 6, context length 2048
70M Transformer++ SlimPajama-627B Tab. 8,5 Fig. 4,G.1,1.14 2400 256 (B1,82) = (0.9,0.95), bfloat16
clipping norm 1, linear warm-up
for 10% of iterations
dim=512, # heads 8
#layers 6, context length 2048
70M Transformer++ FineWeb Tab. 10, 11,12, 13 4800 128 (B1.B2) = (0.9,0.95), bfloat16
clipping norm 1, linear warm-up
for 10% of iterations

dim=768, # heads 12
layers 12, context length 2048
160M Transformer++ SlimPajama-627B Tab. 8,5 Fig. 4,114 Fig. L11,L12,1.13 4800 256 (81.B2) = (0.9,0.95), bfloat16
clipping norm 1, linear warm-up
for 10% of iterations
dim=1024, # heads 16
layers 24, context length 2048
410M Transformer+-+ SlimPajama-627B Tab. 8,5 Fig. 4,1.14 13500 256 (B1,82) = (0.9,0.95), bfloat16
clipping norm 1, linear warm-up
for 10% of iterations
dim=2048, # heads 8
layers 16, context length 2048
IB Transformer++ SlimPajama-627B Tab. 8 Fig. 4, 1.14 13500 256 (B1.B2) = (0.9,0.95), bfloat16
clipping norm 1, linear warm-up
for 10% of iterations

Table 7: The best validation score (with one standard deviation across 3 runs; accuracy for computer
vision tasks; perplexity for NLP tasks) for the best learning rate choice for each method that supports
momentum.

Model Dataset NGN SGDM NGN-M MomSPS Momo ALR-SMAG
Resnet20 CIFAR10 88.3040.20 85424070 88.7640.05 87.2040.38 88.8640.14 88.8840.19
Resnetl10 CIFARI00 64.761026 57.161206 64.981020 63372071 64.81i033 64.73115
VGG16 CIFARIO 90.211010 89.671045 90421006 87.261021 90.4310.17 90494035
MLP MNIST ~ 98.041007 97.631010 97-97200s 97.7310.00 97.974001 97.6410.06
ViT CIFARI0O 83.34102s 83.741011 84.95:0020 83.77i027 85471027 85.5440.30
Resnet18 ImageNet32 48.63 48.56 48.29 N/A 48.68 N/A
Resnetl§ ImageNetlk 67.00 66.73 67.12 N/A 67.09 N/A
Transformer g MY 927aons 873013 T0Tser NA 880s NA
Transformer qronen . 0.0lio2e 8.75:001 7124003 N/A 8.65.40.03 N/A
LSTM Wikitext-2 75.331015 82071016 75.5li020 N/A 7609194 N/A

hyperparameter. Finally, the performance results on (LSTM, Wikitext-2 [58]) and (Transformer,
Rotten Tomatoes [68]) are reported in Table 8. The results demonstrate competitive performance of
NGN-MDv1 against other benchmarks across all considered workloads.

I.4 Additional ImageNet Experiments

Now we turn to the experiments involving training Resnet18 on ImageNetlk and ImageNet32. In
Figure 1.4 we provide the train loss curves and results on (Resnet18, ImageNet32) workload that
demonstrate that NGN-M and NDN-MDv1 attain better resilience to the step-size hyperparameter

52

https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py
https://github.com/fabian-sp/step-back/blob/main/stepback/models/basic_models.py
https://github.com/lucidrains/vit-pytorch
https://github.com/fhueb/parameter-agnostic-lzlo/tree/main/model
https://github.com/fhueb/parameter-agnostic-lzlo/tree/main/model
https://github.com/karpathy/ng-video-lecture/blob/52201428ed7b46804849dea0b3ccf0de9df1a5c3/bigram.py
https://github.com/karpathy/ng-video-lecture/blob/52201428ed7b46804849dea0b3ccf0de9df1a5c3/bigram.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://github.com/huggingface/pytorch-image-models/blob/e3242a52584bbc69f848f762d254e8a23932832c/timm/models/vision_transformer.py#L2071
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

Table 8: The best validation score (with one standard deviation; accuracy for computer vision tasks;
perplexity for NLP tasks) for the best learning rate choice for each method that supports diagonal
step-sizes and momentum.

Model Dataset Adam Momo-Adam NGN-MDvi NGN-MDv2 Lion Adabelief ~ Adabound
Resnet20 CIFAR10 86961070 89411036 89.531011 87.801016 88.094027 87.47i04s 85.0040.56
Resnet110 CIFAR100 64.12:004 67101053 66.101045 64.332040 61.85:077 65321043 61.2820.30
VGG16 CIFAR10 90.261025 90951025 90.641015 90.070.37 N/A N/A N/A
MLP MNIST 97441010 97961010 98101005 97.670.17 N/A N/A N/A
ViT CIFAR10 85.961005 85.741012 85.651010 86561011 86.89:010 85.05:047 80.32i0.47
Rott , 3 v v oo
Transformer TOI]'(I)’dteOK;S 6.80+0.07 6.8140.05 6.9040.05 6.8310.05 N/A N/A N/A
) Ti
Transformer Shak;‘;‘gem 6.8010.05 6.800.05 6.891006 6.8210.05 N/A N/A N/A
LSTM PTB 70.95100s 71.091005 70.841020 71.371017 N/A N/A N/A
LSTM Wikitext-2 81494149 82.2340.64 75241021 81.9940.78 N/A N/A N/A
Resnet18 ImageNet32 48.11 48.09 48.06 47.55 N/A N/A N/A
Resnet18 ImageNetlk 67.17 67.06 67.15 67.32 N/A N/A N/A
ViT-Tiny ImageNetlk 71.054016 71.22:036 71.34510.92 N/A N/A N/A N/A
Transformer £+ Slimpajama-627B 34.384012 34960001 33.84w0. N/A N/A N/A N/A
Tf"‘"sfg{)“l\}[e”* SlimPajama-627B 24.031002 24.294010 23.3240.06 N/A N/A N/A N/A
Transformer++ Sli . =
110M imPajama-627B 16.65100s 17.07=005 16.4810.03 N/A N/A N/A N/A
Tf"‘"“‘i‘é“”** SlimPajama-627B 13.09 N/A 13.11 N/A N/A N/A N/A

choice than competitors not only from the train loss point of view as well. The best performance
of algorithms is provided in Table 7 and 8. According to them, both NGN-M and NGN-M achieve
competitive performance against considered benchmarks.

L5 Additional Comparison against Lion, Adabelief, Adabound

This section compares algorithms from Section 5. Moreover, we include the comparison against Lion
[9], Adabound [56], and Adabelief [109]. The results are presented in Table 8.

We observe that NGN-MDv1 and NGN-MDv2 both achieve competitive performance across various
Deep Learning workloads. In Figure 1.5, we observe that Lion, Adabound and Adabelief algorithms
do not match always the performance of NGN-MDv1 and Adam: Adabelief has worse performance
on (Resnet20, CIFAR10) workload; Adabound has worse performance on (Resnet20, CIFAR10),
(Resnet110, CIFAR100), and (ViT, CIFAR10) workloads; Lion has worse performance on (Resnet110,
CIFAR100) workload. Moreover, their resilience to the step-size hyperparameter choice is lower than
that of NGN-MDv1. To summarize, NGN-M and NGN-MDv1 are the most robust algorithms to the
choice of step-size hyperparameter.

.6 Comparison of Adaptive Step-sizes of Adam, Momo-Adam, and NGN-MDv1

Next, we conduct experiments to compare the adaptive step-size of Adam, Momo-Adam, and
NGN-MDv1. Note that ResNet20 model consists of 3 base blocks, and each block has 3
convolution layers. In Figure 1.6 we plot the average adaptive step-size of the layers j €
{layer1.0.convl, layer2.0.convl, layer3.0.conv1} of ResNet20 that corresponds to the first convolu-
tion layer within each base block. Similarly, in Figure 1.7 we plot the average adaptive step-size of
the layers j € {layer0.0.fn.to_qgkv, layer3.0.fn.to_gkv, layer5.0.fn.to_qkv} that corresponds to the
attention layers of the first, fourth, and sixth base blocks.

Since the adaptivity of Adam is only in the second-order momentum applied as a normalization, in
our experiment we compare the following quantities

i Tk

——— for Adam, -——— for Momo-Adam,
(D)) (D))

where 1y is the step-size hyperparameter of Adam.

Vi

for NGN-MDv1, (68)
(D))

53

NGN SGDM Momo NGN-M

10° 10? 10!
%] %] wn
8 10! 8 10! 8
— - - 1011
£ c <
c 10° © 10° ©
= = = .
= - =0
210 210 2
[w w
. -2 -2
ST 102 10° 10? ST 1072 10° 10° 10755 10° 10! 102
Stepsize Stepsize Stepsize
Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10
1
> 10
880 "
5 g
1o} - 0
&,60 z 10
D40 i
% T 107!
g £
w
05 102 10° 10% TR 102 10° 10?
Stepsize Stepsize
VGG16 for CIFAR 10 VGG16 for CIFAR 10
100 10°
9
© 80 @
=)
o —=107!
O 60 c
s [
%] A =
[0 1072
S 20 £
e 3
079-s 10! 10t 10° T 10! 101 10°
Stepsize Stepsize
MLP for MNIST MLP for MNIST

Figure I.1: Stability performance of algorithms supporting momentum varying step-size hyper-
arameter (c for NGN and NGN-M, «y for Momo, and step-size for SGDM). We observe that NGN-M
achieves the training loss close to the best possible for a wider range of the step-size hyperparameter.

Let us first describe the results for ResNet20 in Figure 1.6. We observe that NGN-MDv1 tends to set
smaller effective step-size compared to two other algorithms. This is especially visible for the large
step-size hyperparameter values where the adaptive step-size of NGN-MDv1 is by several orders in
magnitude smaller than that of Adam and Momo-Adam. In contrast, the coordinate-wise adaptive
step-size of Momo-Adam is mostly follow that of Adam. Considering that the stability performance
of NGN-MDv1 is much higher for this task, this happens mainly due to the fact that the adaptation
mechanism of NGN-MDv1 step-size is more conservative than that of Momo-Adam.

Now we switch to the results on ViT model in Figure 1.7. Here both Momo-Adam and NGN-MDv1
tend to utilize smaller effective coordinate-wise step-size, by several orders in magnitude smaller
than that of Adam. However, the adaptation mechanism of NGN-MDv1 is still more conservative
than that of Momo-Adam, especially for large step-size hyperparameters. We also highlight that in
this experiment the best performance of NGN-MDv1 is achieved with ¢ = 10~3. When we vary the
step-size hyperparameter c, the effective coordinate-wise step-size does not change dramatically,
especially for layers.0.0.fin.to_gkv layer.

1.7 Extended Comparison of Momentum-based Algorithms on NLP Tasks

We switch to comparison of NGN-M, Momo, NGN, and SGDM on NLP tasks. In particular, we
consider the training of Transformer (based on NanoGPT) on the Tiny Shakespeare and Rotten
Tomatoes datasets and LSTM on the Wikitext-2 dataset from Appendix 1.3. We report the results
in Figure 1.8 while the best performance is shown in Table 7. First, note that all algorithms do
not match the best performance of those that incorporate diagonal step-size and momentum (see
Table 8). Such results are expected since the training of NLP models has significantly different
coordinate-wise conditioning. Nonetheless, NGN-M algorithm achieves better resilience to the step-

54

Adam Momo-Adam NGN-MDv1 NGN-MDv2

10? 10° 10!
7)) "] 2 w0
2 10! g 10 2
- - - 100
£ £ 10! c
T 10 © ©
= E o100 E
T, ® T 107!
£10 S0 £
-2 -2 -2
O 107107 10210 100 107 102 10755 10°° 1071 10! 1075 10°° 102 107!
Stepsize Stepsize Stepsize
Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10
9
G80 @ 10!
> o
360 =
f, = 100
40 =
E) R
220 i
£
U 101 102 10° 10755 10 102 10°
Stepsize Stepsize
VGG16 for CIFAR 10 VGG16 for CIFAR 10

Figure 1.2: Stability performance of algorithms supporting momentum and diagonal step-size varying
step-size hyperparameter (c for NGN-MDv1 and NGN-MDv2, oy for Momo-Adam, and step-size for
Adam). We observe that NGN-MDv1 achieves the training loss close to the best possible for a wider
range of the step-size hyperparameter.

Adam Momo-Adam NGN-MDv1 NGN-MDv2

10°

—
o
S
=
S
B

80

=
o

60

40

Final Test Perplexity
5 &8 & &
Final Test Perplexity

20

Final Test Accuracy

=
o
>

=
1S

TR 102 10° 102 101 1079 102 10! 107°107410% 1072107 10° 10! 10?

Stepsize Stepsize Stepsize
Transformer for

MLP for MNIST LSTM for PTB Tiny Shakespeare

—
o
=
o
= =
=) =)
9 W

Final Train Loss
=
Final Train Loss
—
(=]

Final Train Loss

—
=)
>
—
=)
|

104 102 10° 102 104 10-° 102 107! 10°° 107! 10t
Stepsize Stepsize Stepsize

Transformer for

MLP for MNIST LSTM for PTB Tiny Shakespeare

Figure 1.3: Stability performance of algorithms supporting momentum and diagonal step-size varying
step-size hyperparameter (¢ for NGN-MDv1 and NGN-MDv2, oy for Momo-Adam, and step-size for
Adam). We observe that NGN-MDv1 achieves the training loss close to the best possible for a wider
range of the step-size hyperparameter.

size hyperparameter choice, especially in the training of Transformer models. Therefore, NGN-M
across various model architectures and task domains.

L8 Comparison of Algorithms with Diagonal Step-size
Now we compare algorithms with diagonal step-size such as NGN-D, Adagrad [18], and RMSprop

[44]. Since NGN-D requires to find constants {c; }‘jzl where d is the size of the model. Finding
sufficiently good constants c; might be a challenging task since d is a large number. Therefore, we

55

. 12 5
360 SGD SGD
o 7 10 NGN a 1 NGN
3 S SGDM S SGDM
£40 SGD £ Momo £ Momo
© 3 ©
g NGN 26 NGN-M ;'__3 NGN-M
; 20 SGDM T 4 E ,
2 Momo iT iT
ic NGN-M 2
02 107 10° 101 10% 107 107 1072 10° 102 52 107! 10° 10t 102
Stepsize Stepsize Stepsize
Resnet18 for ImageNet32 Resnet18 for ImageNet32 Resnet18 for ImageNetlk
50 12 5
> Adam Adam Adam
©40 Momo-Adam 7?10 Momo-Adam a 4 Momo-Adam
3 NGN-MDv1 S NGN-MDv1 S NGN-MDv1
£30 NGN-MDv2 £ NGN-MDv2 £ NGN-MDv2
2 S 6 03
@20 = =
© 4 ©
T g < £2
C w w
£ 2
R TIRCET SR ST 10% 0% 10* 10?2 10° 102 Yor w0 108 10 100
Stepsize Stepsize Stepsize
Resnet18 for ImageNet32 Resnet18 for ImageNet32 Resnet18 for ImageNetlk

Figure 1.4: Stability performance of algorithms supporting momentum (first row), and momentum
with diagonal step-size (second row) varying step-size hyperparameter (c for NGN, NGN-M, NGN-
MDv1, and NGN-MDv2, g for Momo and Momo-Adam, and step-size for SGD, SGDM, and Adam).

NGN Momo Adam NGN-MDv1 Lion Adabound
SGDM NGN-M Momo-Adam NGN-MDv2 —@— Adabelief
80 100
50 o)
e e, T 80
a60 A 3
o v
2 g 2 60
s =40 =
D40 4] O 40
3 &20 i
2% 2 T 20
i ? iC \ ic
T T AT 10! 10° TR T BT T\ 10° 005 10~ 1071021077 100 16" 10
Stepsize Stepsize Stepsize
10 10 10°
%] %] w
8 10! 8 10! 8 f
S a = 10°
£ £ £
© 10° © 10° ©
= = =
T T T107!
107! c107! k=
w w w
-2 -2 -2
BT T T 10! 10° U T S T e T ST LRT(e 0 5 10107 102107 107 100 10
Stepsize Stepsize Stepsize
Resnet20 for CIFAR10 Resnet110 for CIFAR100 ViT for CIFAR10

Figure 1.5: Stability performance of various optimizers for (Resnet20, CIFAR10), (Resnet110,
CIFAR100), (ViT, CIFAR10) workloads.

use RMSprop preconditioner Dy, to set them as ¢; = ¢/(Dy)(;). We leave the exploration of how to
set constants ¢; properly for future research.

For each method, we tune its learning rate hyperparameter over the powers of 10: {1074, ..., 10%}
and present the best performance averaged across 3 random seeds in Table 9. We observe that NGN-D
performs similarly to RMSprop. NGN-D has slightly worse performance on (LSTM, PTB) dataset
but significantly better on (LSTM, Wikitext-2) workload. Besides, Adagrad always has the worst
performance. Moreover, these algorithms do not have high resilience to the choice of hyperparameter.
Therefore, we omit their comparison from this perspective.

L9 Effective Step-size of NGN-M, Momo, NGN-MDv1, and Momo-Adam

Next, we compare the effective step-size applied throughout the training with NGN-M, Momo, NGN-
MDv1, and Momo-Adam in Figures 1.9 and I.10. First, both NGN-M and Momo perform a warm-up

56

0.0001 — 0.001
10"
(V)
N
2 10
2 /
v ot
[
>
S 10!
()
t 9
"“10’2
5 10 15 20
Iterations, x10%
layer1.0.convl
Adam
10"
(V)
N
2 10
2 /
[ZITE
[
>
S 10!
()
=
LlJlO 2
0 5 10 15 20
Iterations, x10°
layer2.0.convl
Adam
1010
()
N
2 10 /
9
& 10t /
[
>
o 10!
()
=
LL]10 2
0 5 10 15 20

Iterations, x10°

layer3.0.conv1
Adam

Effective Stepsize

—

Effective Stepsize

—

Effective Stepsize

10"
107
10"
10t

02

101(»
107
10*
10!

02

1010

0.01 — 0.1 1.0
10%
[V}
N -
2 10
g
// @ 10t
Q
>
g 10!
(3
t 5
LIJlofz
5 10 15 20
Iterations, x10%
layer1.0.convl
Momo-Adam
101(1
[V}
N
2 10
9
'/,___.-.—f—""""' @ ot
Q
>
g 10!
[
I oy &
LI.IlO 2
0 5 10 15 20
Iterations, x10%
layer2.0.convl
Momo-Adam
101(1
Q
. N
/ 2 10
9
Q
>
g 10!
(9
e ke
LI.IlO 2
0 5 10 15 20

Iterations, x10%

layer3.0.conv1
Momo-Adam

— 10.0 100.0
Ll
Gt
5 10 15 20

Iterations, x10%
layer1.0.convl

NGN-MDv1
' i
—
0 5 10 15 20
Iterations, x10%
layer2.0.conv1
NGN-MDv1
“w;‘v'wwn
’; !
I
0 5 10 15 20

Iterations, x10°
layer3.0.convl

NGN-MDv1

Figure 1.6: The adaptive stepsize of Adam (first column), Momo-Adam (second column), and
NGN-MDv1 (third column) algorithms in training ResNet20 model on CIFARIO dataset. We plot the
average stepsize [(for Adam),)
first convolution layer w1th1n each of 3 base blocks of ResNetZO arch1tecture varying the step-size

hyperparameter of the algorithms (c for NGN-M and NGN, «g for Momo, and learning rate parameter
for Adam).

Table 9: The best validation score (with one standard deviation; accuracy for image classification;
perplexity for language modeling) for the best learning rate choice for each method that supports
diagonal step-sizes.

Model Dataset Adagrad RMSprop NGN-D
Resnet20 CIFAR10 85.901030 86.711064 86.9840.15
Transformer Rotten Tomatoes 7.77+0.02 6.8710.05 6.9210.03
Transformer Tiny Sheaksper 7.77+0.05 7.00+0.13 6.9010.05
LSTM PTB 99.244913 69.001017 71.5440.11
LSTM Wikitext-2 113194436 79.484045 75.4410.12

in the beginning: the effective step-size increases at the beginning of the training. Then we observe
the main difference between the two algorithms above: effective step-size of Momo for sufficiently
large step-size hyperparameter is not adaptive within some part of the training, it always hits the
upper bound. Consequently, during that part of the training Momo reduces to SGDM. In contrast, the
effective step-size of NGN-M is always adaptive: it gradually decreases after a short warm-up. This
trend is similar to the state-of-the-art learning rate schedulers used in practice. Similar observations
can be made in comparison of NGN-MDv1 and Momo-Adam.

57

0.0001 — 0.000316 0.001 — 0.00316 0.01 — 0.0316

10° 10 10°
(V)) (9] [}
N 107 N 10% N 107
8_ 3 a 3. 8 103
g g g
o 10? n 107 n 10?
g 0 ¢ 10 g 10t
B 0 —_— 5 () - B 0
E 10] E 10I ;:'j 101 ;
10 10 E10 4% A
1072 1072 : 1072
5 10 15 20 0 5 10 15 20 0 5 10 15 20
Iterations, x10° Iterations, x10* Iterations, x10%
layers.0.0.fn.to_gkv layers.0.0.fn.to_gkv layers.0.0.fn.to_gkv
Adam Momo-Adam NGN-MDv1
10° 10° 10°
(V) 4 (] 4 [V}
N 107 N 107 N 107
2 2 2
g g! 3
O r— o 10° 0 10?
g 10‘;_/_/ 2 100 g 100
b= =1 MY My 3
9 10(1’ 9 10‘1’] % 10‘1J i e
S10- S0~ S0~ \\\
1072 1072 1072 T ————
5 10 15 20 0 5 10 15 20 0 5 10 15 20
Iterations, x10* Iterations, x10* Iterations, x10*
layers.3.0.fn.to_gkv layers.3.0.fn.to_gkv layers.3.0.fn.to_gkv
Adam Momo-Adam NGN-MDv1
10° 10° 10°
(V) (0] [V}
N 101 N 101 N 101
& 108 g 108 8 108
g - gu b5
n 10° »n 10° »n 10°
g 101!_/ < 0 a < 10
S 10 B 100 : B 100 Y
F10! H1o! F10! \
1072 1072 1072
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Iterations, x10% Iterations, x10% Iterations, x10%
layers.5.0.fn.to_gkv layers.5.0.fn.to_gkv layers.5.0.fn.to_gkv
Adam Momo-Adam NGN-MDv1

Figure 1.7: The adaptive stepsize of Adam (first column), Momo-Adam (second column), and
NGN-MDv1 (third column) algorithms in training ViT model on CIFAR10 dataset. We plot the
average stepsize m (for Adam), ﬁ (for Momo-Adam), and (DZﬁ (for NGN-MDv1) for the
attention layer within each of the first, fourth, and sixth base blocks of ViT architecture varying the
step-size hyperparameter of the algorithms (c for NGN-M and NGN, oy for Momo, and learning rate
parameter for Adam).

L.10 Effective Updates in Training Language Models

In this section, we demonstrate the magnitude of updates when training 160M language model
with Adam and NGN-MDv1 and varying the step-size hyperparameter across different layers of the
model: see the results in Figures .11 to I.13. We demonstrate that NGN-MDv1 is a more conservative
algorithm: the effective update is smaller than that of Adam due to the adaptive nature of the step-size.
This is especially evident when training 160M language model with a step-size hyperparameter 0.03:
The updates of Adam become considerably larger than the update of NGN-MDv1. This property is
a key factor behind the difference in training dynamics: NGN-MDv1 can stabilize at a significantly
lower training loss.

LI.11 Training Dynamics in Training Language Models

Now we report the training dynamics in the training language across all tested sizes.

I.12 Ablation Study of Momentum Parameters
In this section, we study the sensitivity of NGN-MDv1 and Adam to the choice of the learning rate

and momentum hyperparameters, when training 70M language model on FineWeb dataset [70]. To
do that, we fix $; = 0.9 (or 2 = 0.95) and make a sweep over the learning rate hyperparameter and

58

9 9 NGN 9 NGN
a a SGDM a SGDM
] 7 9 7 Momo S 7 Momo
< < NGN-M < NGN-M
© © ©
=5 NGN =5 =5
© SGDM © ©
-uE_ 3 Momo uE_ 3 I_% 3

NGN-M
g 1072 10° 102 10t Yo 10 107t 10t 10° Yo 1w0s 10 10t 10%
Stepsize Stepsize Stepsize

10° 10% 10%
Foy NGN 2 NGN NGN
3 10t SGDM & SGDM o SGDM
= Momo 2102 Momo S10? Momo
[NGN-M 7 NGN-M + NGN-M
£ g
%] %] }_
('D () 1 e 1
= 102 [10 .g 10
© © w
£ £
S 3 3 S 100 3 3 10%-5 3 3

10! 102 10° 102 10t 107° 10°% 10! 10! 10% 107° 10°% 10! 10t 10°
Stepsize Stepsize Stepsize
LSTM for Transformer for Transformer for
Wikitext-2 Tiny Shakespeare Rotten Tomatoes

Figure 1.8: Stability performance of algorithms supporting momentum and diagonal step-size varying
step-size hyperparameter (c for NGN-M and NGN, a9 for Momo, and step-size for SGDM). We observe
that NGN-M achieves the training loss close to the best possible for a wider range of the step-size
hyperparameter.

0.0001 — 0.001 0.01 0.1 — 1.0 10.0 100.0 1000.0
10% 10% 10% 10°
g - g 8 I
2 10! 2 10 2 10- 2 10
[[GJ [
& T —————— Y 1 & 9 & I
O — - 1
L1071 210! Q107 H g1
=] = J =1 4 o
g g 5 5
g0 E107% %10 3 £107
0 5 0 15 2 0 100 200 300 400 500 o 5 10 15 " 20 0 100 200 300 400 500
Iterations, x10* Iterations Iterations, x10* Iterations
Momo for Resnet20 for CIFAR 10 NGN-M for Resnet20 for CIFAR 10
0.1 — 0.316 1.0 — 3.16 10.0 — 316
10% 10% 10% 10%
8 8 i g
2 10! 2 10" 2 10" a 10"
$ 2 9
o 10% o 10% o 100 < 10%
= 2 = J 2
2T e S T we—— AR
310" * 310! 10! = 210!
& g & £
-2, + + i i i + i 2, H -2, ; ; i + i i 21, H
107% 5 15 2 970 100 200 s00 400 so0 00 5 10 5 20 70 100 200 300 400 500
Iterations, x10* Iterations Iterations, x10* Iterations
Momo for ViT for CIFAR 10 NGN-M for ViT for CIFAR 10

Figure 1.9: The step-size of Momo and NGN-M during the training. We demonstrate the step-sizes 7
for Momo and v for NGN-M varying step-size parameters oy for Momo and ¢ for NGN-M.

B2 (or learning rate hyperparameter and (31). We report the final test perplexity averaged over 3 runs
for each set of hyperparameters.

We summarize our findings from Table 10, Table 11, Table 12, and Table 13 as follows:

e Low Ir (3e-3): NGN-MDv1 and Adam show similar sensitivity to changes in both 3, and 5.

* Moderate Ir (1e-2): NGN-MDv1 is noticeably more robust than Adam to extremes of 1,
while both optimizers perform similarly across 35 (though Adam’s performance degrades
slightly at B2 = 0.999).

* High Ir (3e-2): Both methods suffer when 3; is small (or (5 is large), but NGN-MDv1
recovers lower perplexity at larger 81 values (smaller B2 values), whereas Adam fails to
reach comparable performance.

59

1000.0

—
f=1
(=]
=
(=3
(=]
(=]

0.0001 — 0.001 0.01 0.1 — 1.0

10% 10% 10%

10"
1 ‘W“ﬂ"’r"r*w"'r””ﬂm Mw
M

1071

S

-

10" v
N ”f‘”y"'\";,«"‘uf

AR

| PR e et
/

107"

153
1,

0

Effective Stepsize
Effective Stepsize
53
L
Effective Stepsize
Effective Stepsize
S

10-1

i

ot

5 o 15 0 400 800 1200 1600 20 0o 5 0 15 400 800 1200 1600 2000
Iterations, x10* Iterations Iterations, x10* Iterations

Momo-Adam for Resnet20 for CIFAR 10 NGN-MDv1 for Resnet20 for CIFAR 10
0.0001 —— 0.000316 0.001 0.00316 0.01 0.0316

107Y 107! 107" 107"

Effective Stepsize
S
Effective Stepsize
s
Effective Stepsize
S
Effective Stepsize
S

‘ 10" . 10!
W R S
107% 5 h 1 % w0 w0 a0 a0 ¢ 00 5 0 15 7% i a0 a0 40 500
Iterations, x10* Iterations Iterations, x10* Iterations
Momo-Adam for ViT for CIFAR 10 NGN-MDv1 for ViT for CIFAR 10

Figure 1.10: The step-size of Momo-Adam and NGN-MDv1 during the training. We demonstrate the
step-sizes 7 for Momo-Adam and -, for NGN-MDv1 varying step-size parameters oy for Momo and
¢ for NGN-MDv1.

Optimizer
Adam NGN-MDv1
s Training Loss Embedding Weight Layer 1 Attention QKV Proj Layer 1 MLP In Proj
g g £1.25
7 8 508 £
” 23 z Z 1.00
2 s s <
36 k| g 0.6 k]
o g, < T 0.75
= a a =)
Es 2 204 =
] 4] o 0.50
E) E :
= 2] 2] k<l
1 6 ©0.2 S 025
3 0 0.0 0.00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step ep Step Step
Layer 1 MLP Out Proj Layer 7 Attention QKV Proj Layer 7 MLP In Proj Layer 7 MLP Out Proj
0.8
g 08 g g]
g £ 10 5
z 206 z z
2 0 2 g 08 A 0.6
] g g]
= 2,04 206 204
504 5 =) =
S02 5 B2 502
& £ = &
=00 0.0 o0 =00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step Step Step
Layer 12 Attention QKV Proj Layer 12 MLP In Proj Layer 12 MLP Out Proj LM Head
1.0 El
E £ Eos £
Z 06 Zos z z3
2 2 2 2
© < o o
0.6 0.4
Zos z i %
=] =} =] =]
2 g 2 g
So2 k<l 502 51
] S 02 o o
& & & &
oo o0 oo o
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step Step Step

Figure I.11: Magnitude of updates when training 160M language model with Adam and NGN-MDv1
and step-size hyperparameter 0.003.

To conclude, NGN-MDv1 demonstrates greater robustness to changes in momentum parameters at
high Ir, and consistently attains lower perplexity than Adam, even when both methods’ performance
deteriorates (we refer to the cases when both algorithms cannot achieve perplexity around 50).

60

Optimizer

Adam NGN-MDv1
s Training Loss Embedding Weight Layer 1 Attention QKV Proj Layer 1 MLP In Proj
E12s E g
7 S S3 S4
@ Z z Z
2 5 100 - o
36 =} =, w3
o B 75 B B
£ =)) =P
g E N s
=y 8 45 © o1
& & &
3 = 00 =y EIN
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step Step Step
Layer 1 MLP Out Proj Layer 7 Attention QKV Proj Layer 7 MLP In Proj Layer 7 MLP Out Proj
3.0 4
£ £ g Eas
S S, S 3
z Z 25 Z z
B e a @ 2.0
T2 5 2.0 bl k|
= s Z2 B1s
=) o118 =) =)
S S S 5
5 5 0.5
0 0.0 0 0.0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step Step Step
Layer 12 Attention QKV Proj Layer 12 MLP In Proj 30 Layer 12 MLP Out Proj LM Head
3.0 -
g Ea g g 125
525 3 825 s
Z Z Z Z10.0
220 83 820 2
]] E g 75
815 A, als e 7
=] o2 =} =)
210 2 210 g 50
B ol] °
g0s & g 05 & 2.5
o0 o o0 = 00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step Step Step

Figure 1.12: Magnitude of updates when training 160M language model with Adam and NGN-MDv1
and step-size hyperparameter 0.01.

Table 10: Test perplexity of NGN-MDv1 when Table 11: Test perplexity of Adam when varying
varying the learning rate and 3, hyperparame- the learning rate and 3, hyperparameters when
ters when training 70M language model on the training 70M language model on the FineWeb

FineWeb dataset. dataset.

Ir (=06 /=08 (=09 S =099 Ir £ =06 B =08 =09 B =099
3e-4 49.9+02 474+02 47.0+02 49.7+0.3 3e-4 494+02 465+0.1 462403 57+1
le3 415402 39.9+02 386+0.1 40.2+0.3 le3 414402 39.6+01 385+0.1 45.0+0.2
3e3 40+1 369403 359+01 37.2+0.1 3e-3 40.7+£0.1 37.0+0.1 36.0+£0.1 220+70
le2 54416 37+2 347+0.3 359+0.1 le2 160+60 4142 362 2104110
3e2 27846 129042 34.6+01 35.6+0.1 3e2 420+£20 340450 32060 330 + 130

Table 12: Test perplexity of NGN-MDv1 when Table 13: Test perplexity of Adam when varying
varying the learning rate and (3o hyperparame- the learning rate and /35 hyperparameters when
ters when training 70M language model on the training 70M language model on the FineWeb

FineWeb dataset. dataset.

It B,-06 =08 B—=09 Bo=095 F=0999 It B,-06 =08 B2—=09 B2=095 F=0999
3e-4 51.8+0.6 492404 478+0.3 47.04+0.2 47.0+0.2 3e-4 46.1+0.2 46.6+0.1 465+0.2 46.2+03 46.5+0.1
le-3 42.6+0.3 40.5+0.1 39.3+0.2 38.6+0.1 38.9+0.1 le-3 38.8+0.1 39.0+0.2 389+0.1 385+0.1 39.5+0.6
3e-3 394+0.2 375402 363+0.1 3594+0.1 365+04 3e-3 388+0.3 36.3+0.1 36.1+0.2 36.0+01 36.7+£0.8
le2 37.8+0.2 359+0.1 351403 34.7+03 35.0+0.3 le-2 354+0.2 35.04+01 34.9+0.3 36 +2 41+3
3e2 37.8+03 358+0.1 349+01 346+01 250=+50 3e2 5504250 120480 160+£5 210460 500 %20

61

P
> w o

Training Loss
o o
>

o
o

Effective Update Norm
N ke o ® O

o

Effective Update Norm
N e o o

o

0

Layer 12 Attention QKV Proj

Optimizer

—— Adam
Training Loss Embedding Weight
£ g,
S 20 S
Z Z
e e
= 15 =6
= °
=3 =3
210 D4
© ©
£ E
T 5 S 2
& &
= o
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step

Layer 1 MLP Out Proj

o

)

Effective Update Norm
[N

)

Layer 7 Attention QKV Proj

S ®

Effective Update Norm
oo @

1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Step Step

Effective Update Norm
N oA o ®

o

Layer 12 MLP In Proj

Now oA o o

Effective Update Norm

°

1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Step Step

Layer 1 Attention QKV Proj

~—— NGN-MDv1

Layer 1 MLP In Proj

Effective Update Norm
o N o w5 B
o v o v o w

1000

Layer 7 MLP In Proj

2000 3000 4000 5000 0 1000 2000
Step

3000

Step

4000 5000

Layer 7 MLP Out Proj

Effective Update Norm
o N & o

Layer 12 MLP Out Proj

1000

2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step

Step

LM Head

Effective Update Norm
N w w
° 5 3 g

0

1000

2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step

Step

Figure 1.13: Magnitude of updates when training 160M language model with Adam and NGN-MDv1
and step-size hyperparameter 0.03.

Training Loss

Training Loss

0.2 0.4 0.6 0.8 1.0 1.2
Tokens 1e9

70M Transformer++

2.80 VAN
AR el
oy AN

1 2 3 4 5 6 7
Tokens 1e9

410M Transformer++

Optimizer
Adam
NGN-MDv1
LR

0.003

0.01

0.03

Optimizer
Adam
NGN-MDv1
LR

0.003

0.01

0.03

Training Loss

Training Loss

DWW e e
w o w o w

o o o
v oo w

b
=)

0.0

0.5

1.0 1.5 2.0 2.5
Tokens 1e9

160M Transformer++

0.0

0.5

1.0 1.5 2.0
Tokens lel0

1B Transformer+-+

Figure 1.14: Training dynamics when training language model at different sizes.

62

Optimizer
Adam
NGN-MDv1
LR

0.003
0.01
0.03

Optimizer
Adam
NGN-MDv1
LR

0.001
0.003

- 0.006

	Introduction
	Related Works
	Algorithm design of NGN-M and NGN-D
	How to Add Momentum and What to Expect?
	Evidence of Robustness of NGN-M
	Diagonal Step-size for NGN

	Theoretical Analysis of NGN-M
	Problem Formulation and Notation
	Convergence Guarantees

	Experiments
	Conclusion and Future Work
	Appendix
	Equivalent Formulations of NGN-M
	Technical Lemmas and Definitions
	Convergence of NGN-D
	Convergence in General Non-convex Setting
	Convergence under PŁ-condition

	Convergence of NGN-M
	Convergence of NGN-M in Stochastic Setting
	Convergence of NGN-M under Interpolation
	Convergence of NGN-M with Decaying Step-size

	Stability of NGN-M on a Simple Problem
	How to Derive Diagonal NGN-based Step-size?
	Design Comparison of NGN-MDv1 and NGN-MDv2
	Computation Cost of NGN-MD

	How to add weight decay to NGN-MDv1?
	Combining NGN-MDv1 and Weight Decay Regularization
	Empirical Validation of the Proposed Combinations

	Additional Experiments on Toy Problems
	Additional Experiments on the Problem with Many Minima
	Comparison on Rosenbrock Function
	Comparison on Quadratic Function with Theoretical Step-size

	Additional Experiments and Training Details
	Training Details
	Comparison Algorithms that Support Momentum
	Comparison of Algorithms that Support Momentum and Diagonal Step-size
	Additional ImageNet Experiments
	Additional Comparison against Lion, Adabelief, Adabound
	Comparison of Adaptive Step-sizes of Adam, Momo-Adam, and NGN-MDv1
	Extended Comparison of Momentum-based Algorithms on NLP Tasks
	Comparison of Algorithms with Diagonal Step-size
	Effective Step-size of NGN-M, Momo, NGN-MDv1, and Momo-Adam
	Effective Updates in Training Language Models
	Training Dynamics in Training Language Models
	Ablation Study of Momentum Parameters

