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Abstract—Extracting structured lab results from electronic
health records (EHRs) is essential for large-scale clinical research
and effective patient care, yet remains challenging due to the
unstructured and heterogeneous nature of EHR data. We evaluate
large language models (LLMs)—including Phi4, LL.aMa-3, and
Qwen2.5—across zero-shot, one-shot, few-shot, and fully fine-
tuned scenarios, comparing their ability to automatically extract
key lab values from unstructured clinical text. Our systematic
assessment examines prompt engineering strategies, adaptation
methods, and the impact of quantization on inference speed and
accuracy for both pre-trained and fine-tuned models.

Notably, LLaMa-3 (8B) with full fine-tuning achieved the
highest accuracy (93.79%), while LLaMa-3.3 (70B) performed
best in few-shot settings, reaching 89.56% accuracy. We also
demonstrate that incorporating additional spirometry data im-
proves the accuracy of asthma severity classification, increasing it
from 0.72 to 0.85. These results highlight that carefully designed
prompts combined with efficient fine-tuning lead to optimal
extraction performance, with model size and quantization levels
introducing predictable trade-offs between speed and accuracy.
This work offers actionable insights for deploying LLM-driven
data extraction pipelines.

Index Terms—Electronic Health Records, Natural Language
Processing, Large Language Models, Structured Data Extraction

I. INTRODUCTION

Electronic Health Records (EHRs) have transformed health-
care by providing comprehensive digital repositories of patient
data [1]. These records include both structured data, such as
laboratory results and vital signs, and unstructured narrative
text, such as clinical notes and imaging reports [2]. The
widespread adoption of EHR systems over the past decade
[3] has enabled large-scale retrospective cohort studies and
improved disease phenotyping by offering unprecedented ac-
cess to patient-level information [4]. However, this abundance
of data presents significant challenges, especially due to its
sheer volume and inherent complexity [5].

Traditional extraction methods, particularly with unstruc-
tured data elements, such as manual chart reviews and rule-
based techniques, are often labor-intensive and susceptible
to human error. These conventional approaches are not only

time-consuming but also limited in their ability to scale and
adapt to the variability of unstructured text. Furthermore, rule-
based methods tend to be error-prone when faced with the
diverse language patterns and distinctive documentation styles
encountered across different healthcare settings.

The field has witnessed rapid advancements in machine
learning (ML) and natural language processing (NLP) leading
to more sophisticated automated extraction techniques. While
recent studies have demonstrated LLMs’ potential for clini-
cal data abstraction—such as the validation-loop framework
for diagnostic reports [6] and prompt-engineered pathology
report parsing [7]. However, these approaches often rely on
cloud-based models or lack systematic evaluation of local
deployment constraints. In contrast, our work advances the
field in two key ways: First, we focus exclusively on open-
source models (e.g., LLaMa-3, Phi4) that can run on local
servers, addressing privacy and latency barriers for healthcare
applications. Second, we rigorously compare fine-tuning ver-
sus few-shot strategies across quantization levels—a critical
but underexplored tradeoff for deployments.

Beyond single-task applications, a comprehensive scoping
review has mapped a broad range of LLM applications in EHR
processing, which include named entity recognition, informa-
tion extraction, text similarity, summarization, classification,
dialogue systems, and even diagnosis or prediction [8]. More
recent efforts in the field have focused on developing end-to-
end, distantly supervised techniques that approach human-level
performance by leveraging extensive unlabeled data sets [9].
These advancements point toward a future where automated
tools can efficiently process vast amounts of clinical data while
maintaining accuracy.

II. RELATED WORKS

Recent studies have advanced the extraction of structured
data from EHRs and clinical reports using a variety of tech-
niques. For instance, [10] developed a deep-learning frame-
work for medical device surveillance using EHRs, achieving



an F1 score of 97.4% and detecting six times as many com-
plications compared to structured data alone. While demon-
strating the power of neural network approaches, their work
focused exclusively on device-related events rather than lab
result extraction.

Rule-based methods remain relevant in resource-constrained
settings, with tools like RADEX achieving a 0.94 F1 score for
radiology reports [11] and EXTEND attaining 0.92-0.96 F1 for
numerical data extraction [12]. However, these systems require
manual pattern updates for new data types and struggle with
the linguistic variability prevalent in clinical documentation
(e.g., impressions and reports with non-standardized terminol-
ogy).

The advent of LLMs has introduced new possibilities,
with [7] reporting 89% average accuracy for pathology stage
extraction using ChatGPT. Yet critical gaps persist in the
literature: Prior studies predominantly use cloud-based models,
neglecting the privacy and latency requirements of clinical
environments; no systematic comparison exists between fine-
tuning and few-shot methods for respiratory data across
model sizes; and current tools rarely evaluate how extracted
data improves guideline-based decision-making (e.g., asthma
severity classification per American Thoracic Society (ATS)
guidelines). Our work addresses these gaps by evaluating ex-
clusively locally deployable models, quantifying the accuracy-
latency tradeoffs of quantization, particularly in the context
of asthma, and demonstrating direct improvements in ATS
guideline-concordant classification (accuracy: 0.72—0.85, F1
Score: 0.70—0.855).

III. METHODS AND TRAINING PIPELINE

Our approach focuses on extracting structured data from
unstructured EHR text using locally deployed LLMs. We
demonstrate the effectiveness of the extracted data by im-
proving the accuracy of guideline-driven asthma classifica-
tion. In our previous work [13] to be included in the study
cohort, patients were required to have a sufficient range of
variables—including spirometry data, key laboratory values
(e.g., eosinophil counts), and other relevant blood tests, and
demographic information (age and sex)—all available within
a two-year observation window. Initially, strict dependence on
pre-existing structured laboratory results limited the cohort
to 1,112 eligible patients. Recognizing that the main limiting
factor was the lack of structured spirometry data, we applied
an LLM-based extraction pipeline to the unstructured clinical
notes, which yielded 14,216 additional spirometry measure-
ments across six key parameters (FEV1 Pre %, FEV1 Pre
L, FVC, FEV1/FVC ratio, FEF25-75%, and FeNO). This
approach substantially improved data completeness and ex-
panded the number of eligible patients from 1,112 to 1,687,
thereby enhancing the representativeness and robustness of the
study cohort.

The raw dataset, initially comprising 1.3 million unstruc-
tured text entries, included extraneous materials such as ed-
ucational notes and informal communications. After applying
filtering rules and keyword-based heuristics, we obtained a

refined subset of 12,818 documents authored by clinicians.
These included both valid and void entries, allowing us to
evaluate model robustness across a quality spectrum. The
dataset draws from over 30 clinical specialties, reflecting the
real-world diversity of EHR documentation within a large
health system. In total, 30 distinct specialties contributed data,
spanning primary care, subspecialty clinics, and procedural
areas. The majority of records originated from three main
specialties: Allergy and Immunology (41.23%), Pulmonology
(37.15%), and Pediatrics (6.49%). This distribution ensures the
inclusion of both adult and pediatric respiratory care, as well
as general medical and admission contexts, thus supporting
a robust evaluation of data extraction tools across a clini-
cally heterogeneous population. Notably, the EHRs analyzed
were primarily free-text physician notes. Key clinical mea-
surements, such as spirometry results, were often embedded
within narrative descriptions rather than listed in structured
formats. This format requires LLMs to accurately extract and
interpret relevant values from complex, context-rich clinical
documentation.

Figure 1 illustrates the complete pipeline. Following filter-
ing, clinical experts manually annotated the data to support
supervised learning. To assess annotation consistency, we
calculated the intraclass correlation coefficient (ICC2; absolute
agreement), which was 0.857, indicating strong inter-annotator
reliability. The exact match accuracy between annotators was
96.88%. Additionally, when the continuous annotation values
were binarized into agreement/disagreement labels, Cohen’s
kappa coefficient was 0.978, further confirming a high level of
consistency between annotators. For ambiguous cases, discrep-
ancies were resolved through discussion or adjudication by a
third expert. We evaluated zero-shot, one-shot, and few-shot
prompting, as well as fine-tuning methods. All training and
inference were performed locally on secure servers, resulting
in a high-quality structured dataset.
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Fig. 1. Overview of the LLM evaluation pipeline, from raw EHR notes to
structured output.

For prompt generation, we defined clinical targets and
parsing rules in a structured JSON format to ensure de-
terministic outputs. Prompts were iteratively refined based
on clinician feedback to improve specificity and minimize
formatting errors. Prior to dataset construction, we solicited



feedback from multiple asthma specialists to refine our anno-
tation guidelines and ensure clinical validity. We constructed
three datasets—zero-shot, one-shot, and few-shot—with aver-
age input lengths of approximately 362, 674, and 1,046 tokens,
respectively (measured using the LLaMA 3.1 8B tokenizer).
Model training was conducted using the zero-shot format in
alignment with the TestZero dataset.

Accurate data extraction from clinical texts relies heavily
on well-structured prompts. As highlighted by [14], prompt
design plays a critical role in determining the reliability and
trustworthiness of LLM outputs. To maximize accuracy in
extracting key clinical values, we developed a prompt format
that strictly adheres to JSON standards, ensuring consistent
and machine-readable responses.

Our prompting strategy includes two main components. The
first is a general task description that outlines the extraction
requirements and output format. For example:

{
"task": "Extract the FEV1 percentage and
liter values from the text",
"rules": "Output single numeric values (
float or string), not lists. No extra
text or reasoning; return only JSON."

The second component involves specific extraction rules
that guide the model in locating and interpreting individual
variables. For example: "Return the current numeric FEVI
value in liters, usually between 0 and 5 liters, sometimes
without units. The value typically follows the term 'FEVI’.
If there is a —— > symbol, use the value before it. Return it
as a single float or string. If the value is not present in the
text, return null.”

Model-wise, we focused on decoder-only architectures such
as LLaMa [15], Phi4 [16], and DeepSeek R1 [17] due to
their text-generation strengths. While encoder and encoder-
decoder models were considered, they were less suited for
structured output generation. For complex tasks requiring
multi-step reasoning (e.g., unit disambiguation), we tested
Chain-of-Thought prompting but found it inefficient for strict
JSON outputs.

We evaluated locally deployable LLMs including DeepSeek
R1, Phi4, Qwen2.5 [18], and various LLaMa-3 variants. Due
to local hardware constraints (e.g., Nvidia A100), we priori-
tized models under 70B parameters. Cloud-based APIs were
excluded due to privacy restrictions.

For training, we used BitsAndBytes (BNB) quantization
[19] and Low-Rank Adaptation (LoRA) [20] to significantly
reduce GPU memory consumption and accelerate fine-tuning.
Specifically, we applied LoRA to all major transformer com-
ponents, including all projection layers, ensuring maximum
adaptation capacity across the model architecture. We set the
LoRA rank (r) to 128, allowing the model to learn expressive
low-rank updates, and used lora_alpha = 16 to scale update
magnitude and improve training stability. A dropout rate of 0
was used to minimize regularization during adaptation.

For optimization, we primarily used the Adam optimizer
[21]. However, in cases where the model exceeded mem-
ory constraints, we opted for 8-bit AdamW, which provides
comparable performance while significantly reducing memory
usage.

To further accelerate training, we utilized the Unsloth frame-
work [22], which enabled memory-efficient optimization and
allowed us to train with longer contexts and larger batch sizes
using gradient checkpointing. Finally, we exported the trained
models to the GGUF format, enabling lightweight and fast
inference in C++ environments, which is ideal for deployment
on resource-constrained systems.

Evaluations used Ollama [23], which supports fast GGUF-
compatible inference. We compared fine-tuned outputs against
prompt-only baselines using a strict numeric equality to assess
accuracy and formatting consistency. We used two prompt for-
mats: (1) conversational (user-assistant dialogue) for complex
extraction tasks, and (2) Alpaca-style (single-turn instruction)
for efficient batch processing. The former supported complex
tasks, while the latter enabled scalable batch processing.

In adaptation, full fine-tuning updated more weights and
generally achieved higher accuracy, while few-shot fine-tuning
used 40 samples per task and offered efficient alternatives
under constrained resources.

Lastly, our pipeline incorporated ATS guidelines for asthma
severity classification. High-dose inhaled corticosteroid (ICS)
use with a controller triggered further evaluation of oral
corticosteroid (OCS) bursts. Two or more documented OCS
bursts were used to identify severe asthma cases, following
ATS guidelines¢ This logic is illustrated in Figure 2. By in-
tegrating LLLM-derived data with ATS guideline based patient
classification accuracy increased.

NO Non-Severe
Used high-dose inhaled
NO Non-Severe

Used 2 or more
Burst of OCS in
last year

Fig. 2. Decision flow based on ATS guidelines for classifying asthma severity
from structured patient data.

corticosteroids and

Asthma Patient

Additional controller
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IV. RESULT & DISCUSSION

The extracted data significantly enhanced our earlier study
by expanding the patient cohort, which led to measurable
improvements in classification model performance. Notably,
the F1 score increased from 0.70 to 0.855, while overall
classification accuracy improved from 0.72 to 0.85 [13]. This
demonstrates the effectiveness of our refined data extraction
and classification pipeline.



To clarify, all reported accuracy and F1 values in this
section represent the performance of the downstream asthma
severity classification model, enabled by improved extraction
of key clinical features (spirometry and laboratory results)
from unstructured EHR notes.

By recovering additional spirometry data from narrative
notes, we expanded the eligible cohort from 1,112 to 1,687
patients, thus enhancing both the statistical power and gen-
eralizability of our analysis. Feature importance analysis re-
vealed that several spirometry parameters—including FEF25-
75% predicted, FEV1 (L), FEV1% predicted, and FEV1/FVC
ratio—are among the most informative variables for asthma
severity classification in our multivariate model, with FEF25-
75% and FEV1 measures showing the highest relative impor-
tance.

The extracted structured data enabled guideline-based mul-
tivariate classification, and also allowed us to stratify model
performance across different specialties and feature types.

These results confirm that our structured data extraction and
classification approach leads to enhanced model performance,
increasing both reliability and accuracy in asthma severity
classification. Future work will focus on further optimizing
data preprocessing techniques, implementing additional base-
line comparisons, and exploring external validation strategies
to generalize our findings across broader clinical datasets.

V. ANALYSIS OF MODEL PERFORMANCES
A. Temperature Effects

Temperature (7) is a softmax-scaling hyperparameter that
controls the randomness of an LLM’s output. Table I pro-
vides a clear view of how temperature settings impact model
performance, as measured by extraction accuracy. Lower tem-
perature settings (e.g., 0.1) tend to yield more deterministic
outputs, which is particularly valuable for structured data
extraction. The table and additional analyses reveal several
key insights:

Size-Dependent Stability.

Larger models, such as Phi4 (14B), exhibit remarkable
robustness to temperature changes, showing less than a 1%
decrease in accuracy when moving from 0.1 to 0.9.

In contrast, smaller models like LLLaMa 3.1 (8B) suffer more
significant performance degradation, with accuracy dropping
by 5.9% from 73.2% at 0.1 to 68.9% at 0.9.

Temperature vs. Training Strategy Interaction:

Few-shot models demonstrate a higher tolerance for in-
creased temperatures compared to zero-shot models. For in-
stance, Qwen2.5 (7B) experiences only a 2.0% drop in accu-
racy in few-shot mode, whereas LLaMa3.1 (8B) shows about
an 8% decrease under similar conditions.

Structured Output Quality:

Lower temperature settings are critical for generating high-
quality, structured outputs. They help prevent numerical value
hallucinations—observed to be reduced at a temperature of
0.1—and minimize JSON formatting errors compared to 0.9.

These observations underscore the importance of carefully
selecting the temperature parameter according to the specific

TABLE I
MEAN DATA EXTRACTION ACCURACY (%) ACROSS TEMPERATURE
SETTINGS FOR SELECTED MODELS

Model Size Temp =0.1 Temp =0.5 Temp = 0.9
Qwen2.5 7B 81.2 79.6 (-2.0%) 78.4 (-3.5%)
Phi4 14B 88.3 88.1 (-0.2%)  87.6 (-0.8%)
LLaMa 3.1 8B 73.2 71.5 (-2.3%)  68.9 (-5.9%)

requirements of the task. For structured extraction tasks,
where reliability and exact formatting are paramount, lower
temperature settings offer clear benefits by reducing random-
ness, curbing hallucinations, and ensuring consistent JSON
formatting. In scenarios where a balance between exploration
and determinism is desired, a mid-range temperature may be
appropriate; however, careful calibration is essential to avoid
significant drops in performance.

B. Quantization Choices

When comparing different bit-widths, lighter quantization
(e.g., 4-bit) can significantly reduce model size and speed
up inference but may incur a noticeable drop in accuracy
especially for pre-trained models. As shown in Table II, the
degree of this trade-off varies by model. For instance, the
average accuracy of the models exhibits only a minor decline
when transitioning from 8-bit to 4-bit, whereas others show
more pronounced performance degradation. Conversely, 16-
bit often yields the highest accuracy and F1 scores, but at the
cost of increased resource usage and longer call times.

Overall, 8-bit quantization (8Q) frequently emerges as an
effective balance between memory footprint and predictive
performance. The optimal quantization strategy ultimately
depends on hardware constraints and the level of accuracy
demanded by the specific use case.

TABLE 11
MEAN DATA EXTRACTION ACCURACY, F1 SCORE, AND CALL TIME
ACROSS QUANTIZATION LEVELS (AVERAGED OVER PHI-4, LLAMA 3.1
70B, AND LLAMA 3.3 70B)

Quantization Mean Accuracy (%) Mean F1  Call Time (s)
4-bit (4Q) 85.4 0.90 0.68
8-bit (8Q) 88.2 0.93 0.79
16-bit (16Q) 89.6 0.94 1.05

C. Full Fine-Tuning vs. Few-Shot Fine-Tuning

Our experiments reveal systematic differences between full
fine-tuning (Full FT) and few-shot fine-tuning (FewTRAIN)
across model architectures, as shown in Table III. Overall,
full fine-tuning consistently yields higher performance, with
absolute accuracy gains ranging from 2.8% to 4.4% across the
tested models. For example, the Phi4 (14B) model benefits
the most from complete weight updates, exhibiting a 4.4%
improvement in accuracy compared to its few-shot counterpart.
Similarly, the corresponding increases in F1 scores (approxi-
mately 0.014 to 0.023) indicate that full fine-tuning leads to
more robust and generalizable model representations.



In contrast, few-shot fine-tuning significantly reduces train-
ing costs, often achieving an 8- to 12-fold decrease in resource
consumption. This efficiency comes at the expense of slightly
lower accuracy and F1 scores. Moreover, full fine-tuning
can enable faster inference. For instance, the Phi4 (14B)
model demonstrates a marked reduction in call time, dropping
from 1.42 seconds with few-shot adaptation to 0.82 seconds
with full fine-tuning. This improvement in inference speed
is likely attributable to more effective learned representations
and the elimination of adapter overhead, which simplifies the
generation process.

The interplay between model size and adaptation strategy
is also noteworthy. Smaller models, such as the LLaMa 3.2
(3B), tend to exhibit a narrower performance gap between the
two methods compared to larger models like Phi4 (14B). At
the same time, architectures such as LLaMa 3.1 (8B) maintain
relatively stable inference times regardless of the fine-tuning
approach employed.

In summary, the choice between full fine-tuning and few-
shot fine-tuning hinges on several factors. Full fine-tuning
demands significantly more training data—typically five to ten
times more—for stable convergence and higher computational
resources during training. However, it offers superior perfor-
mance.

TABLE IIT
PERFORMANCE COMPARISON OF FINE-TUNING STRATEGIES

Model  Size Method Accuracy (%) F1
LLaMa 8B FewTRAIN 91.24 0.95
3.1 Full FT 93.79 0.96
Phi4 14B FewTRAIN 88.01 0.93

Full FT 91.33 0.95
LLaMa 3B FewTRAIN 90.21 0.94
3.2 Full FT 93.29 0.96
Qwen 7B FewTRAIN 86.57 0.92
2.5 Full FT 91.99 0.95

1) Fine-Tuning with 4-bit and 16-bit Models: Our results
show that well-trained models of the same architecture exhibit
highly consistent performance across different quantization
levels. As illustrated in Table IV, both 4-bit and 16-bit versions
of LLaMa 3.1, Phi4, and Qwen 2.5 maintained nearly identi-
cal accuracy and F1 scores, with only marginal differences
observed. These finding highlights that 4-bit quantization
effectively preserves model performance, making it a practical
and efficient choice for real-world applications.

TABLE IV
ACCURACY AND F1 SCORE ACROSS QUANTIZATION LEVELS AND
TRAINED MODELS

Model & Quantization Accuracy F1
(%)
LLaMa 3.1 8B (4-bit) 93.79 0.96
LLaMa 3.1 8B (16-bit) 93.54 0.96
Phi4 14B (4-bit) 92.33 0.95
Phi4 14B (16-bit) 93.23 0.95
Qwen 2.5 7B (4-bit) 91.77 0.95
Qwen 2.5 7B (16-bit) 91.99 0.95

D. Comparison of Alpaca and Conversational Prompt Styles

We compared Alpaca-style [24] versus conversational
prompts when fine-tuning LLaMa-3.2-3B and LLaMa-3.1-8B
models. For the 3.2B model, the Alpaca prompt achieved
92.92% accuracy, while the conversational prompt reached
93.29% . For the 3.1-8B model, Alpaca prompts required two
epochs to converge, whereas conversational prompts achieved
93.17% accuracy in the first epoch. These results suggest
that conversational prompts may offer faster convergence and
improved performance.

E. Prompting Strategies: Few-Shot, One-Shot, and Zero-Shot

Table V compares zero-shot, one-shot, and few-shot prompt-
ing strategies across various model architectures and quanti-
zation levels. Generally, few-shot prompting achieves higher
accuracy and F1 scores for larger models.

TABLE V
ILLUSTRATIVE COMPARISON OF PROMPTING STRATEGIES ON MEAN
ACCURACY, F1 SCORE, AND CALL TIME

Models Prompt Mean Mean F1 Call Time
Strategy Accuracy (s)
(%)
Phi 4 Zero-Shot 83.2 0.90 0.56
(14B) One-Shot 87.2 0.93 0.66
(4,8,16-bit) Few-Shot 88.6 0.93 0.80
LLaMa 3.1  Zero-Shot 79.24 0.88 0.54
(8B) One-Shot 61.6 0.75 0.45
(4-bit) Few-Shot 61.6 0.75 0.67
LLaMa 3.1  Zero-Shot 78.67 0.87 0.88
(8B) One-Shot 71.47 0.82 0.66
(8-bit) Few-Shot 68.6 0.79 0.79
LLaMa 3.1  Zero-Shot 78.92 0.87 0.93
(8B) One-Shot 71.36 0.82 0.58
(16-bit) Few-Shot 68.01 0.79 0.62
Qwen 2.5 Zero-Shot 76.81 0.86 0.54
(7B) One-Shot 73.6 0.83 0.77
(4-bit) Few-Shot 80.32 0.88 0.96
Qwen 2.5 Zero-Shot 79.17 0.87 0.87
(7B) One-Shot 80.24 0.88 0.91
(16-bit) Few-Shot 84.35 0.91 1.06
LLaMa 3.3  Zero-Shot 82.46 0.90 2.44
(70B) One-Shot 85.27 0.91 2.46
(16-bit) Few-Shot 87.82 0.93 2.58

However, this trend does not uniformly hold across dif-
ferent models. For smaller models like Qwen 2.5 (7B) and
LLaMa 3.1 (8B)—particularly under 4-bit quantization—zero-
shot prompting often outperforms both few-shot and one-shot
methods. This suggests that compact, quantized models may
face difficulties with longer or more context-heavy prompts.
Conversely, larger models such as Phi-4 (14B) display stable
performance with minimal variation across all prompting
strategies, irrespective of quantization levels.

These results underline the dependence of prompting strat-
egy effectiveness on model size and computational capacity.
While larger models marginally benefit from additional exam-
ples, smaller models may be adversely affected, particularly
in quantized, resource-efficient configurations.

1. Model-Scale Dependent Trends.



The effectiveness of prompting strategies is closely tied to
model size. Smaller models, such as Qwen 2.5 (7B), gain
significantly from few-shot prompting but often see reduced
performance with one-shot prompts compared to zero-shot.
Mid-scale models like LLaMa 3.1 (8B) show marked sensi-
tivity to one-shot prompting, which can significantly degrade
their performance. Larger models, exemplified by Phi-4 (14B),
maintain consistent and modest improvements across zero-,
one-, and few-shot prompting.

2. Latency-Accuracy Trade-offs.

While few-shot prompting improves accuracy, it also in-
creases inference latency by approximately 40—70% compared
to zero-shot prompting. Larger models, such as Phi-,4 scale ef-
ficiently with longer prompts, experiencing only minor latency
increases (+0.24s). In contrast, smaller models like Qwen 2.5
incur disproportionately higher computational costs (+0.42s).
One-shot prompting generally provides limited accuracy gains
and incurs nearly equivalent latency as few-shot prompting,
making it less attractive from an efficiency standpoint.

FE. Summary of Key Findings

o Model scale dictates optimal prompting strategy: Few-
shot prompting benefits larger models but may negatively
impact smaller, quantized models.

o Quantization influences effectiveness: Lower bit-depth
(4-bit) quantization adversely impacts few-shot perfor-
mance, especially in models below 10B parameters.

« Latency-accuracy balance is critical: Simpler prompts
(e.g., zero-shot) are generally preferable for resource-
constrained environments despite the potential accuracy
trade-off.

Selecting the optimal prompting strategy requires careful
consideration of model architecture, quantization depth, and
operational constraints to balance extraction accuracy and
computational efficiency.

G. Limitations of Chain-of-Thought Models for Structured
Extraction

Chain-of-Thought (CoT) models, such as DeepSeek-R1,
are not well suited for structured clinical data extraction
(Table VI). Their mandatory <think> sections disrupt strict
JSON output. Furthermore, these models incur inference la-
tencies 35-50 times higher. Overall, CoT models prioritize
reasoning transparency at the cost of extraction precision,
making them unsuitable for production-scale clinical NLP
pipelines.

TABLE VI
PERFORMANCE OF DEEPSEEK-R1 (7B) WiTH COT PROMPTING
Strategy Accuracy (%) F1 Call Time (s) Error Rate
Zero-Shot 68.92 0.80 27.39 31.1%
One-Shot 65.34 0.77 43.11 34.7%
Few-Shot 67.33 0.79 39.68 32.7%

H. Error Analysis

The analysis of extraction errors revealed several key chal-
lenges for LLM-based clinical information extraction, par-
ticularly for spirometry measurements. The most error-prone
field was the FEVI1/FVC ratio, due to two factors: when
the FEV1/FVC ratio is not explicitly reported in the text,
the model must infer it by dividing the FEV1 and FVC
values. This type of multi-step calculation is challenging and
is not feasible for traditional clinical NLP pipelines which
generally require explicit value mentions. The ability to cor-
rectly perform such calculations serves as a clear differentiator
between advanced and basic LLMs. The second major source
of error arises from clinical texts containing multiple, often
chronologically or contextually distinct, laboratory results.
Models may inadvertently extract values from the wrong time
point, particularly when relevant measurements are reported
alongside historical or follow-up values within the same note.
This issue is exacerbated when temporal cues are subtle or
missing, leading to error. Errors also occur when the true
value is genuinely absent from the text and the model is
instructed to return null. In these situations, language models
may hallucinate plausible-sounding numbers or select similar,
but incorrect, laboratory results from the surrounding text. This
reflects a common limitation of generative models, particularly
when distinguishing between “not mentioned” and value
present but missed.”

L. Analysis of Regex Baseline Performance

The regular expression (regex) extraction method achieved a
total accuracy of 79.92% on the test set. While regex rules per-
formed with high accuracy on the training data, they showed
notable limitations when applied to the test set, particularly in
the extraction of the FEV1/FVC ratio. This reduction in per-
formance can be attributed to the high variability and narrative
complexity of real-world EHR text, where spirometry values
may appear in diverse formats and contexts not seen during
training. In particular, regex struggled when the FEV1/FVC
ratio was not explicitly stated and required calculation from
other measurements. These findings underscore the challenge
of using rule-based approaches in unstructured clinical text and
highlight the advantage of large language models for robust
data extraction across varied documentation styles.

J. Best-Performing Models Before Training

From the results, certain medium-to-large models (for exam-
ple, Phi4 14B and LLaMa 3.3 70B) exhibit relatively strong
out-of-the-box performance compared to smaller models like
Qwen 2.5 7B or LLaMa 3.2 3B. The best model without
training is the LLama 3.3 70B with a few-shot and 0.1 temper-
ature 89.66%, F1:0.94). In particular, Phi4 14B with afew-shot
prompts often maintains high baseline accuracy and F1 scores
(88.63%, 0.934), slightly exceeding smaller LLaMa or Qwen
variants before any fine-tuning. This suggests that, at larger
parameter scales, the pre-training distribution captures more
generalizable language patterns and better domain-relevant



representations, offering a solid starting point for further fine-
tuning or prompt-based adaptation.

K. Best-Performing Models After Training

After full fine-tuning, the LLaMa 3.1 8B model achieved the
highest accuracy and F1 score (93.79% and 0.96), outperform-
ing all other models. While the non-trained Phi4 14B model
exhibited strong initial performance, additional fine-tuning fur-
ther improved both Phi4 and LLaMa results. Notably, LLaMa
3.1 8B exceeded Phi4 14B and all smaller models after full
training, underscoring the importance of domain adaptation.
However, few-shot training alone provided only modest gains
across all models, suggesting that full fine-tuning is critical
for maximizing extraction accuracy from clinical text.
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