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Abstract

Existing AutoML systems have advanced the automation of machine learning
(ML); however, they still require substantial manual configuration and expert in-
put, particularly when handling multimodal data. We introduce MLZero, a novel
multi-agent framework powered by Large Language Models (LLMs) that enables
end-to-end ML automation across diverse data modalities with minimal human
intervention. A cognitive perception module is first employed, transforming raw
multimodal inputs into perceptual context that effectively guides the subsequent
workflow. To address key limitations of LLMs, such as hallucinated code gen-
eration and outdated API knowledge, we enhance the iterative code generation
process with semantic and episodic memory. MLZero demonstrates superior per-
formance on MLE-Bench Lite, outperforming all competitors in both success rate
and solution quality, securing six gold medals. Additionally, when evaluated on our
Multimodal AutoML Agent Benchmark, which includes 25 more challenging tasks
spanning diverse data modalities, MLZero outperforms the competing methods by
a large margin with a success rate of 0.92 (+263.6%) and an average rank of 2.28.
Our approach maintains its robust effectiveness even with a compact 8B LLM,
outperforming full-size systems from existing solutions.

1 Introduction

The quest to democratize machine learning has long been championed by AutoML, a field dedicated
to automating the intricate process of building ML solutions [21, 20, 19, 67, 65, 28]. However,
conventional AutoML systems often struggle to manage the heterogeneity of data formats and
modalities, requiring predefined workflows or extensive manual tuning by domain experts. Despite
advances in automating specific components, such as feature engineering [13, 53], neural architecture
search [39, 18], and hyperparameter optimization [75], such systems still fall short of providing an
end-to-end solution that spans the entire machine learning lifecycle, from data preprocessing to model
building. These challenges leave a critical gap for truly autonomous and versatile systems.

The emergence of LLMs brings new opportunities to enhance the flexibility of AutoML. Early
attempts to leverage LLMs for AutoML targeted specific pain points, such as LLM-guided feature
engineering [29, 82], hyperparameter optimization [47, 79], neural architecture search [35, 55],
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Figure 1: MLZero: An end-to-end multi-agent system that integrates specialized perception agents
with dual memory modules (semantic and episodic) to power iterative coding cycles, transforming
raw data into ready-to-use models and prediction outputs with zero human intervention.

and data preprocessing [78]. Despite advances, these approaches remain limited by their focus on
automating individual components rather than providing truly end-to-end multimodal automation.

With the advent of agentic AI, recent research has explored the broader potential of the LLM agent
system for comprehensive AutoML solutions [10, 38, 45, 70, 24], leveraging their demonstrated
strengths in planning, code generation [36, 31], and verification processes [81, 37, 73]. However, the
success rate of completing complex ML tasks remains hindered by two major challenges: (1) Current
systems exhibit a lack of automated data perception, forcing reliance on hard-coded preprocessing
logic or rigid data formats [24, 33, 45]. (2) LLMs, when relying solely on their internal parametric
knowledge, tend to produce simplistic solutions that fall short for intricate ML tasks [38]. Even
with access to advanced ML libraries and domain knowledge, their performance deteriorates when
managing long, convoluted knowledge due to the absence of efficient memory mechanisms.

To address these challenges, we introduce MLZero, a novel multi-agent system designed specifically
for end-to-end automation of multimodal ML tasks. As illustrated in Figure 1, our approach begins
with specialized agents performing comprehensive perception actions to analyze data structures, inter-
pret task requirements, and select the proper ML library, thus establishing a rich perception context
for subsequent operations. Building upon the perception context, the system leverages the semantic
memory with condensed, curated knowledge about the library to guide iterative code development,
while simultaneously utilizing episodic memory for efficient error detection and correction. The dual
memory modules enable powerful learning capabilities [83], allowing the system to retain domain
knowledge persistently while adaptively learning from past errors, thereby continuously refining
its solution through iterations. By seamlessly integrating the reasoning capabilities of LLMs with
automated perception and structured memories, MLZero not only overcomes the inherent limitations
of previous LLM-based approaches, but also represents a truly end-to-end system that consistently
demonstrates superior performance across diverse machine learning tasks. Our main contributions
are as follows:

• We introduce MLZero, a novel multi-agent system that delivers high quality end-to-end multi-
modal machine learning solutions with minimal human intervention. Our system automates the
entire workflow through the perception module, dual memory modules (semantic and episodic),
and iterative code generation, coordinated across nine specialized agents. Our primary contri-
bution lies in the synergistic integration of these components into a hierarchical multi-agent
system specifically designed for end-to-end AutoML on raw, multimodal data.

• MLZero demonstrates superior performance on the existing benchmark, MLE-Bench Lite, with
more medal counts (6 gold medal) and higher success rate.

• We benchmark MLZero with a comprehensive benchmark suite, the Multimodal AutoML
Agent Benchmark, comprising diverse datasets that incorporate challenging scenarios including
multilingual, multitable, multilabel, zero-shot inference tasks with large unprocessed data. Our
comprehensive empirical evidence from the constructed multimodal benchmark showing that
MLZero outperforms existing ML agents across all evaluated metrics, such as success rate
(+263.6%), average rank, and time complexity,

• Through detailed ablation studies, we identify key components driving these performance gains
and analyze failure cases to demonstrate both the common failures MLZero overcomes and
opportunities for future research directions.
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2 Related Work

2.1 LLM Agents for ML

Beyond component-specific applications, several frameworks have emerged for end-to-end LLM-
based ML automation [30, 33, 23, 24, 45, 38]. MLAgentBench [33] introduces a research agent
that conducts ML experiments by accessing files and executing code. DS-Agent [24] implements
case-based reasoning to leverage human expertise, but requires extensive dataset-code pairs during
development and struggles with unfamiliar domains. Both approaches lack effective perception
capabilities and require code skeleton samples, limiting their end-to-end functionality. AutoKag-
gle [45] offers a multi-agent system with iterative development and testing, but is restricted to tabular
data with hard-coded input formats. AIDE [38] frames ML engineering as a code optimization
problem with tree search in the solution space [14, 46] but underperforms without sufficient external
knowledge about ML Libraries. Despite these advances, challenges remain in developing truly
end-to-end ML automations that operate on raw data with output specifications and minimal human
intervention. Key limitations include maintaining consistency across complex workflows, utilizing
memory efficiently, adapting to evolving ML libraries, etc. For a more comprehensive evaluation, we
deliberately strengthen the existing approaches [38, 24, 45] by prompting them with selected outputs
from MLZero (Appendix C).

Meanwhile, MLE-bench [10] offers valuable but methodologically limited agent-human comparisons,
constrained by its reliance on preprocessed rather than raw data and outdated human baselines
collected under different computational and algorithmic contexts. These limitations motivate our new
benchmark’s focus on direct agent-to-agent comparisons for end-to-end ML automation.

2.2 Tool Use

Recent advances in LLM-based tool-use agents have significantly expanded AI capabilities. Tool-
former [63] pioneered an approach where LLMs learn API usage through self-supervision with
minimal demonstrations. ToolLLM [60] scaled this concept by developing a comprehensive frame-
work supporting over 16,000 real-world APIs. Chameleon [49] introduced compositional reasoning
with a plug-and-play approach for multimodal QA tasks. OctoTools [48] further introduced a training-
free agentic framework with standardized tool cards, hierarchical planning, and efficient execution
components. Other notable contributions include ToolDoc [32], which demonstrated that API docu-
mentation can effectively replace demonstrations, and ToolkenGPT [26] with tool embeddings to
avoid fine-tuning. MM-REACT [76] extended these capabilities to visual reasoning tasks, while
HuggingGPT [66] demonstrated effective orchestration of multiple models.

While these systems have made significant progress, they mainly focus on tasks with short context
lengths. Considering the autoML tasks often require perceiving a large amount of data, our work
extends beyond this paradigm by developing a multi-agent approach specifically designed for the
more complex and interconnected tasks inherent in ML automations.

2.3 Code Generation with LLMs

Large language models have demonstrated increasingly impressive capabilities in code generation and
debugging. Models such as AlphaCode [44], Codex [11], and StarCoder [43] have shown competitive
programming performance through effective solution generation and self-verification across multiple
programming languages. State-of-the-art LLMs [3, 59, 6, 22, 16] have also achieved remarkable
results on code benchmarks [12, 8]. Codex CLI [11] enables terminal-based AI coding assistance
with secure sandboxed execution. Despite these advances, significant challenges remain in producing
code that is semantically aligned with complex user intent, particularly for ML challenges that require
specialized library knowledge and intricate data perception and handling. Our work leverages these
fundamental code generation capabilities while addressing their limitations through specialized agents
and modular designs with ML library integration specifically tailored for ML tasks.

3 Methodology

We present MLZero (Figure 2), a multi-agent system F that automates end-to-end solutions for
multimodal ML tasks. The system processes input data x and optional user inputs Uopt to produce
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Figure 2: MLZero: A multi-agent system for end-to-end multimodal ML automation with zero human
interventions. During the initialization phase, the perception module selects the appropriate ML
library and generates perceptual context to initialize semantic and episodic memory. In the subsequent
generation phase, the system performs code generation, execution, and debugging iteratively with
the assistance of perceptual context, semantic memory, and episodic memory until successful output
is achieved. The surrounding panels detail the four key modules: (1) Perception (upper left) in
Section 3.1; (2) Semantic Memory (upper right) in Section 3.2; (3) Episodic Memory (lower right) in
Section 3.3; and (4) Iterative Coding (lower left) in Section 3.4.

solutions including predicted outputs y, code artifacts C, and execution logs L:

F(x,U opt) = (y, C, L). (1)

Note that our ML model building process for various tasks is achieved by generating code employing
different ML libraries and executing it. For supervised learning tasks, x typically includes labeled
training data, unlabeled test data, and a brief task description or instruction. For zero-shot tasks, x
would simply consist of unlabeled test data and the task description. For example, in a supervised
semantic segmentation task as illustrated in Figure 2, x includes training images and the corresponding
masks, a tabular file indicating the image-mask pairs, testing images, a tabular file listing the test
images, and a simple one-sentence task description. The output y would be the predicted masks
for the test images, together with a tabular file that stores the test image-mask pairs. During the
evaluation, we calculate the task-specific objective Lx on prediction y and ground truth ŷ, that is,
Lx(y, ŷ).

Our system comprises four modules, where each module is a subsystem with one or more agents,
and each agent is a specialized LLM augmented with utility functions (details of each agent in
Appendix B): (1) Perception that interprets arbitrary data inputs and transforms them into structured
context; (2) Semantic Memory that enriches the system with knowledge of the ML Library; (3)
Episodic Memory that maintains chronological execution records for targeted debugging; and (4)
Iterative Coding that implements a refinement process with feedback loops and augmented memory.

3.1 Perception

The Perception module P acts as the cognitive lens of the system (Eq. 2), orchestrating the transfor-
mation of various data inputs into actionable ML workflow specifications. Input is the raw data folder
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and optional user input. The output is the perceptual context P and the selected ML library M :

P(x,U opt) = (P,M). (2)

This module consists of three agents. File grouping and file perception agent (Appendix B.1.1)
performs structural analysis of raw data x, grouping similar files and interpreting file contents.
Task perception agent (Appendix B.1.2) extracts semantic information from raw data, derived
context, and user input Uopt to identify objectives, constraints, and evaluation criteria, generating task
context in natural language. ML Library selection agent (Appendix B.1.3) employs context-aware
reasoning to match problem characteristics with the appropriate ML Library M by analyzing the
constructed task context against the library capabilities. This integrated approach efficiently translates
user requirements and dataset properties into perceptual context P that guides subsequent iterative
processes.

3.2 Semantic Memory

The Semantic Memory Module St enhances the LLM’s parametric knowledge with domain-specific
information from external knowledge bases at each iteration t. These knowledge bases are constructed
offline by two agents. The summarization agent (Appendix B.2.2) compresses relevant knowledge
into concise paragraphs serving as queryable indices, while the condensation agent (Appendix B.2.1)
transforms this knowledge into precise and streamlined guidance. This agent-based knowledge
processing enables the Semantic Memory to incorporate documentation, API references, code
examples, and other relevant resources.

At each iteration t, given the error context Rt (both Error Summary and Suggested Fix), the Semantic
Memory Module processes this information through its retrieval agent (Appendix B.2.3) to query
the knowledge base of the selected ML library M , extracting condensed information Gt:

St(P,M,Rt) = Gt. (3)

In our case, we use tutorial documents to demonstrate the effectiveness of minimal tool initialization.
By retrieving contextually relevant tutorials according to the current task and errors encountered, the
system provides targeted guidance for iterative coding, substantially improving code quality while
reducing LLM hallucinations (Section 4.3.1).

3.3 Episodic Memory

The Episodic Memory module, Et, enhances the success rate of MLZero in ML model building
by providing error context Rt at each iteration t leveraging its chronological record of the system
execution history.

Et(P,Ct−1, Lt−1, Gt−1, Rt−1) = Rt. (4)
This component is initialized with the perception context P and progressively stores the interaction
data at each iteration. The stored information includes code artifacts Ct−1, code execution logs Lt−1,
retrieved knowledge Gt−1, and previous error context Rt−1. When invoked during code generation,
the error analyzer agent (Appendix B.3.1) distills encountered issues and contexts into concise error
summaries paired with fix suggestions. This focused approach enables subsequent coding agents to ef-
ficiently address specific problems without processing excessive contextual information, significantly
reducing token consumption while maintaining problem-solving effectiveness (Section 4.3.2).

3.4 Iterative Coding

With the support of components above, our system enters an iterative coding process Gt, where at
each iteration t it refines the solution based on execution feedback:

Gt(P,U opt
t , Rt, Gt) = (yt, Ct, Lt). (5)

For each iteration t, the system first combines the perceptual context P , optional user input U opt
t

1, error
context Rt, and the retrieved knowledge Gt to guide the coder agent (Appendix B.4.1) in producing
executable code Ct, leveraging parametric, historical, and external knowledge simultaneously. The

1Per-iteration user input is disabled in all experiments to show the performance of zero human intervention.
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system then executes the generated code in a configured environment, which the coder can further
customize or recreate as needed. During execution, the system captures logs Lt including standard
output, standard error, log messages, etc., and stores the model output yt. The executer agent
(Appendix B.4.2) analyzes these results and logs to determine the next steps: finalizing output y, C, L
upon success or identifying errors and initiating the next coding iteration t+ 1.

This iterative approach continues until either successful execution or a maximum iteration limit is
reached. Notably, the system supports optional per-iteration user input, allowing for human guidance
when required while maintaining a high degree of automation. Through this comprehensive system,
MLZero effectively bridges the gap between noisy raw data inputs and sophisticated ML solutions,
providing a truly end-to-end automated ML framework adaptive to any modalities.

4 Experiments

To evaluate the effectiveness of MLZero against state-of-the-art ML and coding agents, we conducted
extensive experiments across multiple benchmarks and datasets. We first assess performance on MLE-
bench Lite [10] with 21 diverse Kaggle competitions, then proceeded to the Multimodal AutoML
Agent Benchmark for end-to-end evaluation across 25 diverse datasets spanning various modalities
and ML tasks. We evaluate the performance using multiple metrics including success rate, average
rank, relative time consumption, and solution quality. Additionally, we performed ablation studies to
quantify the contribution of individual components within our proposed system. Finally, we conducted
a detailed error analysis to identify and categorize failure cases across high-performance methods,
providing insights into the robustness and limitations of each approach, followed by efficiency and
robustness analysis examining token consumption, cost effectiveness, and robustness across different
LLM backbones and under various noise conditions.

4.1 Implementation Details

Each agent was assigned a 3-hour time limit per dataset to produce results. By default, MLZero
uses Claude 3.7 Sonnet as its underlying LLM. It is important to note that only MLZero and
Codex CLI operate truly end-to-end, while other agents require varying degrees of preprocessing
or postprocessing to function on our benchmark. For example, DS-Agent requires manual code
execution, while results from AIDE and AutoKaggle needed manual extraction from working
directories. Complete implementation specifications, including model configurations, the prompts
used, and other details for each agent, are provided in the Appendix C.

4.2 Main Results

4.2.1 MLEbench

We first evaluate MLZero on MLE-bench Lite [10], consisting of 21 diverse challenges including
classification, regression, and generation, spanning various data modalities including image, text,
tabular, and audio (more details: Appendix A.2). The results are shown in Figure 3. MLZero
demonstrates superior performance on MLEbench-Lite with an average rank of 1.43, significantly
outperforming competing approaches including AIDE [38] (2.36), ResearchAgent (MLAB) [33]
(3.29), and CodeActAgent (OpenHands) [72] (2.93). Furthermore, MLZero achieves the highest
success rate of 86%, compared to AIDE (81%), MLAB (62%), and OpenHands (71%). This
performance advantage extends across multiple evaluation metrics, where our approach achieves
six gold and two silver medals, while also outperforming competitors in medal counts. Many tasks
in MLEBench Lite cannot be handled by the current integrated ML libraries, thus registering more
specific ML libraries, e.g. diffusion or audio models, to MLZero can further push the performance.

While MLE-Bench [10] provides valuable comparisons between ML agents and human performance
in Kaggle competitions, it relies on dedicated Python scripts to preprocess the raw data, presenting
structured rather than raw inputs. This dataset-specific preprocessing significantly simplifies the ML
workflow and may overestimate agent capabilities in real-world scenarios. Therefore, to enable more
accurate agent-to-agent comparisons in more rigorous end-to-end ML automation, we further tested
MLZero on our Multimodal AutoML Agent Benchmark, which specifically challenges agents to
handle completely raw, unprocessed data without any task-specific preprocessing assistance.
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4.2.2 Multimodal AutoML Agent Benchmark

Table 1: Performance comparison across ML agents and ?ablation configurations on Multimodal
AutoML Agent Benchmark. Colorful icons indicate data modality ( Tx : text, Tb : tabular, Im : image,
Dc : document) and problem type ( BC : binary classification, MC : multiclass classification, RG : re-

gression, FC : forecasting, SS : semantic segmentation, RT : retrieval, ML : Multi Label Classification).
↑(↓) indicates higher(lower) is better. †Dagger columns are not agents, including MLZero’s optimal
performance with current ML libraries to compare with human performance reported in recent open
sourced literature. Bold numbers indicates best ML agent performance with comparable default
configurations. For each dataset, results are reported as meanstd format across three independent runs.
Configuration descriptions: def: default settings of each agent, 8B∗: using LLama 3.1 8B [22], -ext∗:
without external knowledge, -epi∗: without episodic memory, +rea∗: with reasoning LLM [58],
+ext∗: with external knowledge. Performance metrics (Appendix A.1.13) are computed across three
runs: Avg. Rank: average position when ranking agents by their mean valid performance on each
dataset, Rel. Time: relative execution time compared to MLZero (def), Success: percentage of
successful runs. Detailed results for each run and each agent are shown in Appendix E.1.

Agent End-to-End End-to-End End-to-End
MLZero (ours) Codex CLI AIDE DS-Agent AK Human

Dataset def 8B∗ -ext∗ -epi∗ 24hrs† def +rea∗ def +ext∗ def zero-
shot

def Reported†

abalone Tb RG↓ 2.13.01 2.09.00 2.19.02 2.13.01 2.08 2.23.00 2.27.06 2.16.04 2.18.04 2.24.00 2.36.00 × ×
electric(H) Tb FC ↓ 1.42.02 × 1.75.00 1.40.01 1.30 × × × × × 11.66.00 × 1.23
nn5(D) Tb FC ↓ 0.76.00 × 1.14.32 0.76.00 0.79 × × × × 4.68.00 × × 0.76
solar(10m) Tb FC ↓ 1.49.78 × × 1.29.00 0.18 × 1.29.00 1.05.00 × × × × ×
yolanda Tb RG↓ 8.53.00 8.54.00 8.93.03 8.53.00 8.18 × 9.43.24 × 8.79.25 × × × ×
airbnb Tx Tb MC ↑ 0.43.00 0.42.01 0.24.16 0.42.01 0.45 × 0.39.00 0.39.00 0.39.03 × 0.31.00 0.32.05 ×
airlines Tb BC↑ 0.66.00 0.69.04 0.63.01 0.66.00 0.66 × 0.63.02 × 0.65.01 × 0.61.00 × ×
bio Tb BC↑ 0.81.01 0.80.00 0.83.04 0.80.00 0.82 0.79.00 0.85.04 0.87.00 0.84.04 0.79.00 0.79.00 × ×
camoseg Im SS ↑ 0.84.00 × 0.46.00 0.84.00 0.85 × × × × × × × 0.89
cd18 Im Tb RG↑ 0.46.02 -0.21.65 -1.571.850.51.06 0.15 -0.94.53-1.44.17 × -0.05.29 -1.94.00-0.64.98 -1.84.00 ×
climate Tx RT↑ 0.48.00 × 0.24.01 0.48.00 0.48 × 0.20.05 × × × × × ×
covertype Tb MC ↑ 0.98.00 0.98.00 0.88.01 0.98.00 0.98 0.96.00 0.92.05 0.88.00 0.86.09 0.96.00 0.95.00 0.94.00 ×
flood Im BC↑ 0.69.00 0.69.00 0.60.09 0.68.00 0.80 × 0.44.00 0.71.01 0.68.02 × × 0.58.00 0.79
fiqa Tx RT↑ 0.50.01 × 0.22.00 0.46.06 0.48 × 0.20.00 × × × × × 0.78
gnad10 Tx MC ↑ 0.86.04 0.85.00 0.88.01 0.83.00 0.89 0.82.03 0.85.00 0.90.01 0.58.00 × 0.80.11 0.11.00 0.90
ham10000 Im Tb MC ↑ 0.63.11 0.57.00 0.67.00 0.67.11 0.56 0.48.00 0.47.03 0.81.00 0.81.03 × × × 0.61
hateful Tx Im BC↑ 0.59.01 0.57.04 0.35.04 0.59.01 0.61 × 0.48.07 0.51.05 0.49.03 × × 0.36.02 0.60
isic2017 Im SS ↑ 0.75.00 × × × 0.76 × 0.11.00 × × × × × 0.78
funding Tx Tb BC↑ 0.45.02 0.41.06 0.36.06 0.44.00 0.51 × 0.34.04 × 0.44.00 × × 0.24.00 0.61
memotion Tx Im Tb ML↑ 0.50.01 × 0.83.17 0.51.00 0.56 0.53.00 0.76.06 0.47.00 × × × × ×
mldoc Tx MC ↑ 0.95.00 0.95.00 0.94.02 0.95.00 0.97 0.32.23 0.82.08 0.96.00 0.94.01 0.95.00 × × ×
petfinder Tx Im Tb MC↑ 0.39.00 0.40.01 0.38.02 0.39.00 0.41 × 0.40.00 0.34.00 0.38.01 0.36.01 0.27.08 0.39.00 0.41
roadseg Im SS ↑ 0.47.00 × 0.31.13 0.60.00 0.47 × × × × × × × 0.62
rvlcdip Dc MC ↑ 0.87.00 × 0.89.00 0.87.00 0.92 × × × × × × × 0.96
clothing Tx Tb RG↑ 0.75.00 0.61.11 0.66.03 0.72.04 0.77 × 0.35.23 × 0.75.00 × 0.35.00 × 0.74

Avg. Rank↓ 2.42 5.14 4.94 2.86 N/A 8.04 5.76 6.16 6.02 8.26 8.12 8.28 N/A
Rel. Time↓ 1.0 3.17 2.32 1.03 N/A 0.15 0.23 2.83 2.48 N/A N/A 4.82 N/A
Success↑ 92.0% 45.3% 69.3% 86.7% N/A 14.7% 69.3% 25.3% 45.3% 13.3% 20.0% 14.7% N/A

Table 1 provides a detailed performance comparison between MLZero and several state-of-the-art
machine learning and coding agents on our Multimodal AutoML Agent Benchmark (further details
in Appendices C, and A.1). Evaluated across 25 diverse datasets, MLZero demonstrates a significant
advantage. For each dataset, we conduct three independent runs and report the mean performance
and standard deviation of valid submissions. We further evaluate the agents based on average rank,
relative time consumption, and success rate (see Appendix A.1.13 for definition details).

MLZero with default configuration achieves a markedly higher success rate (92.0%) compared to
all competing agents. Furthermore, MLZero consistently delivers solutions of superior quality, as
evidenced by its substantially lower average rank (2.42). In addition to the primary evaluation, we
test MLZero with a smaller LLM. The 8B configuration, which uses LLama 3.1 8B [22], maintains
better performance (45.3% success rate, 5.14 rank average) than other agents despite a significantly
reduced model size. This demonstrates the robustness of our multi-agent system design. In terms of
time complexity, MLZero is significantly faster than AIDE and AutoKaggle due to the more efficient
design reducing unnecessary iterations, although slower than Codex CLI, which excels in instruction
following and success rate, but tends to give simple solutions that can be executed in a few minutes
with degraded performance. Additionally, in the 24-hour extended run-time experiment 24hrs, we
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manually extend the time constraints and improve the quality preset [19, 67, 65] to show that MLZero
can approach expert-level performance (Human Reported) given sufficient computational resources.

While Codex CLI shows limited performance with its default setting using a general-purpose
LLM [56], its performance improves substantially with the +rea configuration where it is equipped
with state-of-the-art reasoning models [58]. Without step limitations and with terminal access, Codex
CLI produces simple solutions that execute quickly and iterate efficiently, enabling easier error
correction. This approach yields a high success rate and, consequently, a good ranking. However, its
performance remains low on challenging datasets, revealing limitations in complex problem-solving.

Considering that each baseline method has different designs regarding the use of external knowledge,
we conduct different augmentations to ensure a fair comparison and evaluate methods on equal
footing. To assess our method without the advantage of its integrated external knowledge, the -ext
configuration removes all access to external ML libraries. This configuration yields a 69.3% success
rate and a 4.94 average rank, still outperforming all competitors and highlighting the efficiency of
MLZero’s other components. We also investigate the contribution of episodic memory through the -epi
configuration, which removes episodic memory but retains the LLM’s conversation history within the
coder agent. This setup achieves an 86.7% success rate with a 2.86 average rank, demonstrating that
while episodic memory provides significant benefits, maintaining a coherent conversational context
still yields reasonable performance. In contrast, we explore modifying AIDE to access external
knowledge, indicated as +ext. While it shows improvement, MLZero continued to outperform it
under these comparable conditions. This result underscores that the superior performance of MLZero
stems from its overall system design, not merely from the inclusion of episodic memory (epi) or
external knowledge (ext) in isolation.

Rank

#Gold#Silver+

#Bronze+

#Median+ Success
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MLEBench-Lite Results

Ours
AIDE
MLAB
OpenHands

Figure 3: Comparing our agent with baselines
on MLE-bench. Detailed results for each run
and each agent are shown in Appendix E.2.
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Figure 4: Ablation study for semantic memory: Im-
pact on system performance and efficiency of dif-
ferent offline indexing settings (top) and retrieval
size (0, 1, 3, 5, 10 documents) (bottom).

4.3 More Ablation Studies

To further investigate the effectiveness of an individual component in the overall system, we conduct
ablation studies in eight diverse datasets that span tabular data, multimodal data, multilingual and
multitable data, document classification, image segmentation, time series forecasting and text retrieval
(detailed information available in Appendix A.3). For each ablation experiment, we compare modified
configurations with our default system using three primary metrics: (1) success rate in generating
valid solutions, (2) token efficiency, and (3) time efficiency. Both token efficiency and time efficiency
metrics are calculated as the reciprocal of relative token usage and execution time, respectively,
measured only for valid solutions to ensure fair comparisons.

4.3.1 More Ablation: Semantic Memory

To further assess our semantic memory module, we evaluated several configurations with varying
degrees of functionality. The default configuration represents our complete system with semantic
memory using condensation, summarization, and 5 retrieved documents. w/o Condensation uses
full tutorials without the condensation process, while w/o Summary performs retrieval based only
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on tutorial titles, without summary-based indexing. We also evaluated Retrieval Size variants by
varying the number of documents retrieved (0, 1, 3, 5, 10).

Figure 4 (top) demonstrates that condensation effectively reduces token consumption while preserving
performance. Additionally, summary-based retrieval surpasses title-based retrieval, highlighting the
importance of content-aware indexing for efficient knowledge access. Figure 4 (bottom) reveals how
varying retrieval quantities affects performance. While increasing the number of retrievals generally
enhances results, benefits level off after five documents. The token and time usage increase nearly
linearly with retrieval quantity, creating a distinct trade-off between performance and computational
efficiency. In the zero-retrieval configuration, only the library name is provided to subsequent agents,
which then rely solely on the LLM’s parametric knowledge of the library.

These findings validate our design choices for the semantic memory module, demonstrating that the
combination of condensed tutorials, summary-based retrieval, and an appropriate retrieval size (5
documents) achieves an optimal balance between performance and resource utilization.

Table 2: Ablation study of episodic
memory components. Results show to-
ken efficiency and success rate across
three configurations. The default con-
figuration with both error summaries
and suggested fixes achieves optimal
success rate while maintaining reason-
able token efficiency.

Configuration Token Eff. Success
def 1.0 1.0
w/o Fix 0.81 0.75
w/o Sum & Fix 1.39 0.83

Table 3: Comparative error analysis of ML agents across
different failure categories. Error types include perception,
preprocessing, API hallucination, algorithm implementa-
tion, and postprocessing phases.

Error Type MLZero Codex CLI AIDE DS
+rea

Perception 0.0% 7.7% 2.1% 24.0%
Preprocessing 2.1% 0.0% 0.0% 20.0%
API Hallucination 0.0% 3.8% 28.2% 4.0%
Algorithm Impl. 4.3% 3.8% 4.3% 28.0%
Postprocessing 0.0% 11.5% 8.7% 0.0%
Unreported N/A N/A 8.7% N/A
Overall 6.5% 26.9% 47.8% 76.0%

4.3.2 More Ablation: Episodic Memory

To evaluate the contribution of episodic memory, we compared three configurations as shown in
Table 2. The default configuration with both error summaries and suggested fixes achieves the
best overall success rate (1.0). The w/o Sum & Fix configuration removes both components,
prompting the subsequent coder with truncated error messages and executer’s analysis instead. It
shows token efficiency advantages at the cost of decreased success rate (0.83). Interestingly, the w/o
Fix configuration, retaining error summaries but removing suggested fixes, has the lowest success
rate (0.75) with the worst token efficiency due to the increased number of iterations used to figure
out the solution, suggesting that providing over-condensed error summaries without actionable fix
suggestions may further confuse the coder. These results indicate that complete episodic memory
produces better outcomes, particularly for complex problems requiring multiple debugging cycles.

4.4 Failure Cases and Analysis

Among the cases that fail, we conduct an error analysis across MLZero, Codex CLI +rea, AIDE,
and DS-Agent (DS), categorizing failures as shown in Table 3. MLZero demonstrates remarkable
robustness with minimal errors (6.5% overall in 46 datasets), while competing methods exhibit higher
failure rates: Codex CLI (26.9%), AIDE (47.8%), and DSA (76.0%). Notably, MLZero completely
eliminates several error categories, including perception, postprocessing, and API Hallucination. It is
important to note that error frequencies may be influenced by system progression, i.e. systems that
fail earlier (e.g., at perception/preprocessing) never encounter later-stage errors that more capable
systems might face when attempting more complex solutions. A detailed discussion of error patterns
and their implications for future ML agent design is provided in Appendix E.3.

4.5 Efficiency and Robustness Analysis

To assess computational efficiency, we compared token consumption and cost across systems on the
benchmark. As shown in Table 4 (left top), MLZero achieves superior performance (92% success
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rate) while using 4.3× fewer tokens than AIDE (63k vs. 273k per dataset on average) and incurring
only 23% of its cost ($0.19 vs. $0.82 per dataset). The w/o Fix configuration demonstrates further
token reduction (51k) but at the expense of success rate.

We further evaluated robustness across different LLM backbones (Claude Sonnet 3.7, GPT-4.1, and
Llama 3.1 8B) on the eight challenging datasets spanning all modalities (Table 4, left bottom). Results
show consistent performance across all models, with the compact 8B model still outperforming all
baseline systems from Table 1. Note that X indicates execution timeout or failure, and scores with ↓
indicate lower is better for regression tasks.

To test resilience against noisy inputs, we conducted stress tests with deliberately misleading dataset
descriptions on the Abalone tabular regression task (Table 4, right). The table shows different noise
conditions: misleading information in the dataset description (Noise Des.), incorrect instructions from
the user (Noise Ins.), and removal of the correct library from available options (-Lib). The results
columns indicate whether the perception module correctly identified the task (Perc.) and whether the
overall end-to-end task was completed successfully (Succ.). Even when provided incorrect task type
hints or library suggestions, the perception module correctly identified task characteristics in all cases.
When explicitly directed to use incorrect tools via user instruction, the system successfully recovered
through restart mechanisms, demonstrating robust error detection and correction capabilities.

Table 4: Efficiency, robustness, and stress test results. Left top: token efficiency and cost. Left bottom:
robustness across LLM backbones. Right: stress tests with misleading inputs.

System Succ. Tokens Cost

MLZero (def) 92% 63k $0.19
MLZero (w/o Fix) 75% 51k $0.15
AIDE (+ext) 45.3% 273k $0.82

Dataset Sonnet 3.7 GPT-4.1 Llama 8B

camoseg 0.84 0.82 X
flood 0.69 0.64 0.69
fiqa 0.50 0.50 0.50
mldoc 0.95 0.96 0.95
petfinder 0.39 0.40 0.40
rvlcdip 0.87 0.87 X
solar (10m)↓ 1.49 X X
yolanda↓ 8.53 8.53 8.54

Noise Noise -Lib Perc. Succ.
Des. Ins.

"This is a × × X X
timeseries task"

"YOU SHOULD treat × × X X
this as a timeseries task"

"IMPORTANT: Use a × × X X
TimeSeries ML Library"

"Try to use × × X X
FlagEmbedding"

"YOU SHOULD treat × X X X
this as a timeseries task"

"Try to use × X X X
FlagEmbedding"

None X X × X

5 Conclusion

In this paper, we introduced MLZero, a novel hierarchical multi-agent system that reimagines
multimodal ML automation through the integration of multiple LLM agents with perception, semantic
and episodic memory, and iterative coding mechanisms. Our comprehensive evaluation on MLE-
bench Lite demonstrates superior performance across 21 diverse Kaggle competitions. Further
rigorous end-to-end evaluation on our Multimodal AutoML Agent Benchmark across 25 diverse
datasets confirms that MLZero significantly outperforms existing approaches with superior solution
quality and a +263% improvement in success rate, while our perception module enables truly end-to-
end automation without human intervention. This addresses the limitations of existing benchmarks
and provides a more accurate assessment of agent capabilities on raw, unprocessed data.

Broader Impact: We believe that this advancement facilitates the democratization of sophisticated
ML methodologies, enabling individuals with limited domain expertise to address complex ML
challenges effectively. The environmental impact of running LLMs warrants consideration, which
presents the need for training smaller LLMs to achieve comparable performance. More limitations
and future work can be found in Appendix G.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources to reproduce the experiments are included in Ap-
pendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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Answer: [Yes]
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research fully adheres to all its principles and guidelines.
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• The answer NA means that there is no societal impact of the work performed.
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being used as intended and functioning correctly, harms that could arise when the
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:
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• We recognize that providing effective safeguards is challenging, and many papers do
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly cited and credited.
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• The answer NA means that the paper does not use existing assets.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide comprehensive documentation alongside our code implementation,
including detailed instructions for usage and reproducibility. All components of our MLZero
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
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Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
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A.1 Details of Multimodal AutoML Agent Benchmark

Table 5: Dataset information with modality, problem types, evaluation metrics, and data splits
Dataset Modality Problem Type Metric Higher Data Samples
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abalone X X RMSE 7 3,759 - 418
airbnb X X X F1(weighted) X 18,316 - 4,579
airlines X X AUROC X 485,444 - 53,939
bio X X AUROC X 3,375 - 376
camoseg X X Sα X 3,636 404 250
cd18 X X X R2 X 2,533 - 632
climate X X Recall@10 X - - 1,535
covertype X X F1(weighted) X 522,910 - 58,102
electric(H) X X MASE 7 - - 321
flood X X F1 X 3,153 - 557
fiqa X X Recall@10 X 14,166 1,238 648
gnad10 X X F1(weighted) X 8,228 1,017 1,028
ham10000 X X X F1(weighted) X 10,015 - 1,512
hateful X X X F1 X 7,134 - 1,794
isic2017 X X IoU X 2,000 - 600
funding X X X F1 X 89,879 - 22,451
memotion X X X X Average Acc X 5,593 - 1,399
mldoc X X F1(weighted) X * 5,000 4,000
nn5(D) X X MASE 7 - - 111
petfinder X X X X F1(weighted) X 11,994 - 2,999
roadseg X X IoU X 1,107 13 48
rvlcdip X X F1(weighted) X 320,000 40,000 40,000
solar(10m) X X MASE 7 - - 137
clothing X X X R2 X 18,789 2,349 2,348
yolanda X X RMSE 7 360,000 - 40,000

The mldoc dataset has varying training set sizes (1K, 2K, 5K, 10K) across multiple languages (German,
English, Spanish, French, Italian).

A.1.1 Construction

We constructed the Multimodal AutoML Agent Benchmark (MAAB) to address a critical gap in
existing benchmarks: the ability to evaluate agents on raw, unprocessed multimodal data. To ensure
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fairness and diversity, all 25 datasets are sourced from reputable public repositories including Kaggle
competitions, UCI Machine Learning Repository, and the BEIR benchmark suite. Datasets were
selected from published machine learning research, with most lacking direct open-source solutions
to prevent contamination. The benchmark spans 7 distinct problem types (binary classification,
multiclass classification, multi-label classification, regression, segmentation, retrieval, and time series
forecasting) across multiple data modalities including tabular, text, image, document, and multimodal
combinations. We open-source the complete benchmark including all datasets, evaluation scripts, and
preprocessing specifications. Our evaluation follows standard practices: the knowledge base contains
only general library documentation with no information about evaluation datasets or their solutions,
and test sets remain completely held out during all execution stages.

A.1.2 Preprocessing

To maintain the realistic challenge of processing raw data while ensuring fair comparison across meth-
ods, we implemented minimal preprocessing interventions. Specifically, we: (1) augmented datasets
lacking descriptions with brief task specifications to accommodate baseline agent requirements, (2)
removed target columns from test files to prevent data leakage to agent.

A.1.3 Tabular Classification and Regression

We select five diverse datasets (with details below) for tabular classification and regression tasks from
TabRepo [61]. To accommodate baseline agent requirements, we augmented each dataset with brief
task descriptions. These descriptions provide minimal but sufficient context for evaluation across all
comparative systems while ensuring consistency in task. For instance, the abalone dataset includes
the description:

Description for Abalone (Tabular Classification and Regression)

Regression on Class_number_of_rings. Eval metric is RMSE.

The Abalone Dataset (abalone) [54, 61] consists of 3, 759 training instances and 418 testing
instances, totaling 4, 177 samples. Each observation contains 8 input features: sex (categorical: Male,
Female, or Infant), and 7 physical measurements including length, diameter, height, whole weight,
shucked weight, viscera weight, and shell weight. The regression task involves predicting the number
of rings in the abalone shell, which serves as a proxy for the abalone’s age. The evaluation metric for
this regression task is Root Mean Square Error (RMSE). The dataset presents a challenging regression
problem due to the non-linear relationship between the physical measurements and the target variable,
making it a valuable benchmark for assessing regression algorithms.

The Airlines Dataset (airlines) [61] consists of 485,444 training instances and 53,939 test instances
for flight delay prediction. Each instance contains 8 features: airline carrier code, flight number,
origin airport, destination airport, day of week (1-7), time of departure (in minutes), flight duration
(in minutes), and the binary target variable indicating delay status (0 for on-time, 1 for delayed). The
dataset captures commercial flight information across various U.S. airports, carriers, and time periods.
This binary classification problem represents a practical application in transportation logistics, where
accurate delay predictions can significantly impact resource allocation, scheduling decisions, and
customer satisfaction in the aviation industry.

The Bioresponse Dataset (bio) [61] contains 3,751 samples (3,375 training, 376 testing) for binary
classification of molecular biological responses. Each row represents a molecule with a binary target
indicating response presence (1) or absence (0). The feature space consists of 1,776 normalized
molecular descriptors (D1-D1776) representing chemical properties such as size, shape, and elemental
constitution.

The Covertype Dataset (covertype) [9, 61] consists of 522, 910 training samples and 58, 102
testing samples, totaling 581, 012 instances. It represents a multiclass classification problem aimed
at predicting forest cover types from cartographic variables without remotely sensed data. The
dataset encompasses four wilderness areas within the Roosevelt National Forest in northern Colorado,
characterized by minimal human disturbance, thus reflecting primarily ecological processes rather
than forest management influences. The target variable classifies areas into seven cover types,
including Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow, Aspen, Douglas-fir, and
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Krummholz. Predictor variables include elevation, aspect, slope, and various soil characteristics
represented as binary features. This dataset is particularly valuable for evaluating algorithmic
performance on high-dimensional, imbalanced, multiclass problems with geographic dependencies.

The Yolanda Dataset (yolanda) [25, 61] consists of 400, 000 total samples, divided into 360, 000
training instances and 40, 000 testing instances. This dataset was utilized for a regression task, where
the objective is to predict the values in column "101" based on the preceding features.

A.1.4 Multimodal Classification and Regression

We evaluated our system on nine diverse multimodal classification and regression datasets) [67]:
airbnb (airbnb melbourne) [1], cd18 (cd18 cellphone) [77], flood (european flood depth) [34],
gnad10 [62], ham10000 [71], hateful (hateful meme) [41], funding (kick start funding), petfinder [2],
and clothing (women clothing review) [4]. These datasets incorporate various combinations of
tabular, text, and image data, presenting distinct challenges for automated machine learning systems.
Similarly, we supplemented datasets lacking descriptions with concise task specifications to ensure
consistent evaluation across all compared methods.

Description for CD18 (Multimodal Classification and Regression)

The goal of this research is to achieve an arrangement
to predict the price of a cellphone based on its specifications.

The Airbnb Melbourne Dataset (airbnb) [1, 24, 67] consists of 22,895 listings, partitioned into
18,316 training samples and 4,579 testing samples. The dataset captures various features of Airbnb
accommodations in Melbourne, Australia. The target variable is price_label, which represents
categorized price ranges grouped into distinct bins. To prevent data leakage, the raw price feature
has been removed from the dataset. This classification task requires models to predict the price
category of a listing based on its characteristics, such as location, property type, amenities, and host
attributes, making it suitable for evaluating price prediction algorithms in the short-term housing
market.

Cellphone Dataset (cd18) [77, 67] contains 2,533 training samples and 632 testing samples, en-
compassing diverse attributes such as model information, physical characteristics (weight), technical
specifications (processor, RAM, storage, display dimensions, resolution), battery information, camera
capabilities, operating system, and market metrics (hit count). The dataset spans multiple manufactur-
ers, device generations, and price points, providing the information for developing and evaluating
predictive models for cellphone pricing based on technical specifications.

European Flood Depth Dataset (flood) [34, 67] comprises 3,710 images for binary classification,
with 3,153 samples in the training set and 557 samples in the test set. Each image is labeled as either
“Not useful for determining depth” (0) or “Useful for determining depth” (1), representing the image’s
utility in flood depth estimation. The dataset includes metadata such as image identifiers, confidence
scores, and bounding box coordinates. This dataset serves as a foundation for developing models
that can automatically identify imagery suitable for flood depth analysis, potentially enhancing rapid
damage assessment capabilities during flooding events.

The 10kGNAD Dataset (gnad10) [62, 67] consists of 10, 273 German news articles collected from
an Austrian online newspaper, categorized into 9 distinct classes: Web, Panorama, International,
Wirtschaft, Sport, Inland, Etat, Wissenschaft, and Kultur. The dataset is split into 8, 228 training
samples, 1, 017 validation samples, and 1, 028 testing samples. Article titles and text are concatenated,
with author information deliberately removed to prevent classification based on author-specific
keywords. It serves as a benchmark for German topic classification tasks, addressing the unique
challenges posed by the German language’s higher inflection rate and longer compound words
compared to English.

The HAM10000 Dataset (ham10000) [71, 67] consists of 10,015 training and 1,512 testing der-
matoscopic images collected from diverse populations using various acquisition modalities. We
removed the dx_type feature to prevent potential data leakage in our experimental setup. The dataset
encompasses seven diagnostic categories of pigmented skin lesions: actinic keratoses and Bowen’s
disease (akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (bkl), dermatofibroma
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(df), melanoma (mel), melanocytic nevi (nv), and vascular lesions (vasc). Ground truth diagnoses
were established through histopathology (>50% of cases), follow-up examination, expert consensus,
or in-vivo confocal microscopy. The dataset includes metadata on patient demographics (age, sex),
lesion localization, and unique lesion identifiers that allow tracking multiple images of the same
lesion.

The Hateful Memes Dataset (hateful) [41, 67] is a multimodal benchmark consisting of 7, 134
training and 1, 794 testing examples designed to evaluate hate detection systems. Each sample
contains an image paired with overlaid text, requiring models to understand both visual and linguistic
content and their potentially harmful interactions. The dataset is labeled binary, where 1 indicates
hateful content (targeting protected categories through harmful stereotypes, derogatory language, or
harmful contexts) and 0 represents benign content. The challenging nature of this dataset stems from
the necessity for models to comprehend cross-modal relationships, as the hateful nature often emerges
from the interaction between text and imagery rather than from either modality independently.

The Kickstarter Funding Dataset (funding) [67] consists of 112, 330 crowdfunding campaign
records (89, 879 for training and 22, 451 for testing) extracted from the Kickstarter platform. Each
record contains 10 features including campaign name, description, funding goal amount, keyword
identifiers, communication preferences, country of origin, currency type, deadline timestamps,
creation timestamps, and the target variable (final_status) indicating campaign success or failure. The
binary classification task involves predicting whether a crowdfunding campaign will successfully
reach its funding goal based on the provided features. This dataset captures the multifaceted nature of
crowdfunding dynamics across various project categories, geographical regions, and funding scales.

The PetFinder.my Adoption Prediction Dataset (petfinder) [2, 67] consists of 14, 993 samples
(11, 994 training, 2, 999 testing) designed for predicting pet adoption speed. Each entry contains pet
characteristics including type, age, breed, gender, color, size, health status, and vaccination records.
Additional features encompass textual descriptions, rescuer information, quantity of photos and
videos, adoption fees, and geographical location. The target variable, AdoptionSpeed, is categorized
on a scale indicating how quickly pets were adopted. The dataset also includes image paths for
visual analysis, making it suitable for multimodal machine learning approaches to predict adoption
outcomes.

The Women’s E-Commerce Clothing Reviews Dataset (clothing) [4, 67] comprises 23, 486 cus-
tomer reviews of women’s clothing products from an e-commerce retailer. Each observation contains
10 features: a unique clothing identifier, reviewer’s age, review title, review text, product rating
(1-5 scale), binary recommendation indicator, positive feedback count (number of customers finding
the review helpful), and three hierarchical product categorization variables (division, department,
and class names). For our experiments, we employed an 8-1-1 train-validation-test split of the data.
The dataset enables analysis of customer sentiment, recommendation patterns, and demographic
preferences across different clothing categories, making it suitable for natural language processing,
sentiment analysis, and recommendation system research.

A.1.5 Document Classification

Document classification entails the categorization of visual documents, which can be approached
as an image classification task, an OCR-based text classification task, or as a multimodal problem
integrating both methodologies. Our experiments utilize the RVL-CDIP (Ryerson Vision Lab
Complex Document Information Processing) [27] dataset, comprising 400,000 grayscale images
distributed across 16 distinct document classes with 25,000 images per class. The dataset is partitioned
into 320,000 training images, 40,000 validation images, and 40,000 test images. This dataset presents
particular challenges due to its substantial size and intricate file structure, highlighting the necessity
of effective perception rather than naïve loading of all file structures into the LLM, which would
exceed context limitations.

Data Structure and Description for RVL-CDIP (Document Classification)

Data Structure
----------
rvl_cdip/training/inference.txt
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Content:
File Size: 1.55 MB
First few lines of the file:
document
imagesr/r/g/e/rge31d00/503210033+-0034.jpg
imagesc/c/e/j/cej80d00/517306722+-6724.jpg
imagesm/m/r/r/mrr36d00/50603620-3621.jpg
----------
rvl_cdip/training/val.txt
Content:
File Size: 1.64 MB
First few lines (up to 1024 characters):
document label
imagesg/g/t/h/gth35e00/2024525661.jpg 11
imagesi/i/y/k/iyk38c00/512015827+-5827.jpg 0
imagesr/r/r/e/rre21e00/87103403.jpg 0
----------
rvl_cdip/training/train.txt
Content:
File Size: 13.09 MB
First few lines:
document label
imagesq/q/o/c/qoc54c00/80035521.jpg 15
imagese/e/w/c/ewc23d00/513280028.jpg 1
imagesw/w/b/t/wbt26e00/2053453161.jpg 7
----------
rvl_cdip/training/readme.txt
----------
Group pattern: rvl_cdip/training/images/*/*/*/*/*/*.tiff
(total 400000 files)
Example file:
rvl_cdip/training/images/imagesu/u/j/j/ujj43a00/87928159.tiff
Content:
File Size: 0.03 MB
Image Format: TIFF
Image Mode: L
Image Size: (754, 1000)
Array Shape: (1000, 754)
Data Type: uint8
Min Pixel Value: 0
Max Pixel Value: 255
Mean Pixel Value: 76.94
Standard Deviation: 116.63
----------
Description (readme.txt)
________________

RVL-CDIP Dataset
________________

The RVL-CDIP (Ryerson Vision Lab Complex Document Information
Processing) dataset consists of 400,000 grayscale images in
16 classes, with 25,000 images per class. There are 320,000
training images, 40,000 validation images, and 40,000 test
images. The images are sized so their largest dimension does
not exceed 1000 pixels.
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_______

DETAILS
_______

The label files list the images and their categories in the
following format:

path/to/the/image.tif category

where the categories are numbered 0 to 15, in the following order:

0 letter
1 form
2 email
3 handwritten
4 advertisement
5 scientific report
6 scientific publication
7 specification
8 file folder
9 news article
10 budget
11 invoice
12 presentation
13 questionnaire
14 resume
15 memo

Prediction should be saved in a dataframe with column names "document"
and "label".

The RVL-CDIP Dataset (rvlcdip) [27] comprises 400, 000 grayscale document images scanned at
approximately 100 dpi, distributed across 16 distinct semantic categories including letters, forms,
emails, resumes, and memos. The dataset is partitioned into 320, 000 training images, 40, 000
validation images, and 40, 000 test images, with each class being represented equally. The corpus is
characterized by significant quality variations typical of real-world document collections, including
scanning artifacts, noise, skew, and low resolution, making it a challenging benchmark for document
classification tasks.

A.1.6 Multilingual and Multitable Classification

We employed the mldoc (MLDoc-11000) [64] dataset for evaluating multilingual classification capa-
bilities, extending beyond the monolingual English usage in previous work [67]. Our configuration
incorporates multiple languages (German, English, Spanish, French, and Italian) simultaneously.
Specifically, we concatenated test files from all five languages to form a multilingual test set while
preserving the original structure of the remaining data files.

Description for MLDoc-11000 (Multilingual and Multitable Classification)

This is a multi lingual task.
Train a multilingual model and give the predictions.

The Multilingual Document Classification Corpus (mldoc) [64] is a cross-lingual text classification
benchmark. It encompasses eight languages: English, German, French, Spanish, Italian, Russian,
Japanese, and Chinese. MLDoc features balanced class distribution across all languages and follows
a standardized train/dev/test split. For most languages, training sets of varying sizes (1K, 2K, 5K, and
10K documents) are provided, with Spanish and Russian having 9,458 and 5,216 training documents
respectively. Each language includes a 1K development set and a 4K test set. In our experiments, we
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utilize the German, English, Spanish, French, and Italian subsets, treating this as both a multi-table
and multilingual classification task, with separate training tables for each language and combined test
files.

A.1.7 Multimodal Classification (Multilabel)

We adopted the memotion [50] dataset for multilabel classification. We incorporates all five classi-
fication dimensions: humor (Not humorous, funny, very funny, hilarious), sarcasm (Not Sarcastic,
general, twisted meaning, very twisted), offensive (Not offensive, slight, very offensive, hateful
offensive), motivational (Not Motivational, Motivational), and overall sentiment (Negative, Very
Negative, Positive, Very Positive, Neutral). We employ average accuracy as the evaluation metric to
assess performance across all dimensions.

Description for Memotion (Multimodal Multilabel Classification)

Train the model on image and corrected text to predict "humour",
"sarcasm", "offensive", "motivational", "overall_sentiment" of the meme.

humour: Not humorous, funny, very funny, hilarious
sarcasm: Not Sarcastic, general, twisted meaning, very twisted
offensive: Not offensive, slight, very offensive, hateful offensive
motivational: Not Motivational, Motivational
overall_sentiment: Negative, Very Negative,

Positive, Very Positive, Neutral

The Memotion Dataset (memotion) [50, 67] The Memotion dataset comprises 5, 593 training
and 1, 399 testing samples, each consisting of meme images paired with corrected text annotations.
This dataset is designed for multi-label classification across five dimensions: humor (four classes:
not humorous, funny, very funny, hilarious), sarcasm (four classes: not sarcastic, general, twisted
meaning, very twisted), offensiveness (four classes: not offensive, slight, very offensive, hateful
offensive), motivation (binary: not motivational, motivational), and overall sentiment (five classes:
negative, very negative, positive, very positive, neutral). The dataset enables research on automated
understanding of emotional and contextual elements in internet memes, addressing the complex
interplay between visual and textual components in multimodal sentiment analysis.

A.1.8 Semantic Segmentation

We include three semantic segmentation datasets: camoseg (camouflaged segmentation) [42], roadseg
(road segmentation) [51], and isic2017 [15]. Each dataset presents unique visual analysis challenges
requiring pixel-level prediction capabilities. To standardize evaluation, we provided descriptive task
specifications; for instance, the camoseg dataset includes the description:

Description for Camouflaged Segmentation (Semantic Segmentation)

Perform semantic segmentation to identify and delineate
camouflaged objects that visually blend with their surroundings,
outputting pixel-level binary masks.

The Camouflage Segmentation (camoseg) [67, 42, 84] dataset consists of 4, 290 images with
corresponding pixel-level binary masks, designed for identifying and segmenting camouflaged objects
that visually blend with their surroundings. The dataset is partitioned into training (3, 636 images),
validation (404 images), and testing (250 images) subsets. Each sample comprises an input image
paired with its ground truth segmentation mask, where camouflaged objects are delineated at the pixel
level. The dataset encompasses a diverse range of naturally camouflaged subjects, demonstrating
various camouflage mechanisms observed in natural environments.

The ISIC 2017 Dataset (isic2017) [15, 67, 84] consists of dermoscopic images used for automated
melanoma diagnosis, specifically focused on semantic segmentation of skin lesions. The dataset com-
prises 2, 000 training images and 600 testing images, each paired with expert-annotated ground truth
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segmentation masks, aimed at advancing computer vision techniques for dermatological applications
and improving early detection of melanoma and other skin cancers.

The Massachusetts Roads Dataset (roadseg) [51, 67, 84] consists of satellite imagery for road
segmentation tasks, comprising 1, 107 training samples, 13 validation samples, and 48 testing samples.
Each sample consists of an input satellite image paired with its corresponding ground truth road
segmentation mask. The dataset is structured to facilitate the development and evaluation of machine
learning models for automated road network extraction from aerial imagery. The input images are
stored as PNG files in designated directories, with corresponding output masks containing pixel-wise
road annotations.

A.1.9 Retrieval

We incorporated two retrieval datasets from the BeIR benchmark [68]: fiqa (FiQA-2018) and climate
(Climate Fever). The Climate Fever dataset serves as a zero-shot evaluation as it lacks a training
set, testing systems’ ability to perform retrieval without task-specific training data. To optimize
computational resources during benchmarking, we reduced the Climate Fever corpus size to one-tenth
of its original scale while maintaining the positive documents. In the description file we specify the
output format for easier evaluation:

Description for FiQA-2018 (Retrieval)

Finetune the model on training data.
And then retrieve the top 10 results for the queries.
The output should have three columns: query-id, corpus-id, score.
Each row is a retrieved pair.

e.g.
query-id corpus-id score
8 566392 0.6
8 65404 0.4
15 325273 0.7

The Climate-FEVER Dataset (climate) [17, 68] is a zero-shot fact verification dataset consisting of
1, 535 testing query-document pairs without training data. The original corpus contains 5, 418, 128
documents; however, for computational efficiency, we utilize a 10% subset of the corpus while
ensuring all ground truth documents are preserved. The dataset follows the FEVER [69] framework
but applies it to real-world climate change-related claims collected from the Internet, offering unique
challenges in natural language understanding. For our experiments, we require retrieval output using
the standard format of query-id, corpus-id, and relevance score, evaluating the recall for top-10
retrieved documents for each query.

The FiQA-2018 Dataset (fiqa) in the BEIR benchmark [68] consists of financial question-answering
data with 14, 166 training samples, 1, 238 validation samples, and 648 test samples. The correspond-
ing document corpus contains 57, 638 documents. We evaluated performance by retrieving the top-10
most relevant documents for each query in the test set and compute the recall.

A.1.10 Timeseries Forecasting

We incorporated three timeseries forecasting datasets [65, 5] with varying temporal resolutions:
nn5(D) (nn5_daily), solar(10m) (solar_10_minutes), and electric(H) (electricity_hourly). The training
data is provided in compressed JSONL format with json.gz extension. To mitigate potential confusion
regarding data format, we supplemented each dataset with detailed format specifications. For example,
the nn5_daily dataset includes the following description:

Description for nn5_daily (Timeseries Forecasting)

File Structure:
jsonl, each line is formatted as below:
{ "target":[18.13,25.46,25.11,...],
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"start":"1996-03-18 00:00:00",
"item_id":"T1",
"feat_static_cat":[0]

}
You should train models that forecast the target up to 56 days into the
future. Evaluation metric is MASE.
Note that the frequency is 1 day.
The output should be a jsonl file.

The Electricity Hourly Dataset (electric(H)) consists of 321 distinct time series representing
electricity consumption measurements collected at hourly frequency. Each series contains 8, 428, 176
time steps, spanning multiple years of observations. The forecasting task involves predicting 24 steps
(hours) into the future. The dataset is structured in JSONL format, where each record contains a
target vector of consumption values, a timestamp indicating the starting point, a unique identifier for
each series, and categorical features. Models trained on this dataset are evaluated using the Mean
Absolute Scaled Error (MASE) metric.

The NN5 Daily Dataset (nn5(D)) [65, 5] comprises 111 time series from the banking domain,
specifically recording daily cash withdrawal amounts from automated teller machines (ATMs) across
the United Kingdom. The dataset was designed to evaluate forecasting methods’ efficacy in predicting
daily ATM withdrawal patterns. To address data quality concerns, missing values in the original
dataset were imputed using a day-of-week median replacement strategy, whereby each missing
observation was substituted with the median value calculated from the same weekday across the
entire corresponding time series. The forecasting task involves predicting 56 steps (days) into the
future.

The Solar Dataset (solar(10m)) [65, 5] comprises 137 time series representing 10-minute obser-
vations of solar power production recorded per every 10 minutes in Alabama state in 2006. The
forecasting task involves predicting 60 steps (10-minutes) into the future.

A.1.11 Evaluation

We implemented a rigorous evaluation protocol to ensure fair and consistent assessment across all
systems. As previously noted, we removed target columns from test files to prevent data leakage to
agents. The complete test data remained accessible only within the evaluation environment, where
we performed strict line-by-line ordered comparisons between agent outputs and ground truth. This
protocol enforces format compliance, i.e. deviations in output structure, naming conventions, or
completeness result in evaluation failure. To facilitate consistent evaluation while maintaining the
challenge of raw data processing, we maintained a metadata file for evaluator reference (not exposed
to agents):

metadata.json for Abalone dataset

{
"dataset_name": "abalone",
"metric_name": "rmse",
"problem_type": "regression",
"label_column": "Class_number_of_rings",
"modality": ["tabular"]

}

This structured evaluation framework ensures that success metrics reflect not only predictive per-
formance but also practical usability in real-world scenarios where output format requirements are
equally critical.

A.1.12 Human Reported Results

The human reported baseline results are retrieved from established open-source benchmarks and liter-
ature: camoseg [67], electric(H) [65], flood [67], fiqa [52], gnad10 [67], ham10000 [67], hateful [67],
isic2017 [67], funding [67], nn5(D) [65], petfinder [67], roadseg [67], rvlcdip [7], and clothing [67].

33



For the remaining datasets, comparable metrics from open-source implementations are unavailable,
either due to the absence of published performance metrics, differences in evaluation metrics, or
because our modifications to these datasets preclude direct comparison.

A.1.13 Average Rank, Relative Time, and Success

The average relative time usage (Rel. Time) quantifies computational efficiency across models
by normalizing execution times against the reference model MLZero (def). For each dataset d in
the collection D, we compute the ratio of execution time tm,d for model m relative to the reference
model’s time tref,d. The average relative time usage Tm for model m is then defined as:

Tm =
1

|Dm,ref |
∑

d∈Dm,ref

tm,d

tref,d

where |Dm,ref | represents the number of datasets with valid measurements for both the evaluated
model and the reference model. Both tref,d and tm,d are averaged across valid results in three runs
for each model-dataset combination.

The average rank (Avg. Rank) measures the relative performance of each model across all datasets.
For each dataset d, models are ranked in descending order of performance, with the best-performing
model receiving rank 1. Invalid results are assigned the worst rank. The average rank Rm for model
m is computed as:

Rm =
1

|D|
∑
d∈D

rm,d

where rm,d is the rank of model m on dataset d, and |D| is the number of datasets. When multiple
models have the same performance score on a dataset, the average mode is used, where tied models
receive the same rank calculated as the average of the ranks they would have received had they not
been tied.

The success rate (Success) indicates the percentage of dataset-run combinations where a model
successfully completes the task. For model m, the success rate Sm is defined as:

Sm =
|Dm|
|D| × 3

× 100%

where |Dm| is the number of dataset-run combinations with valid results for model m, and |D| is
the total number of datasets in the evaluation. Each dataset is evaluated across 3 independent runs,
resulting in |D| × 3 total evaluation instances.

A.2 Details of MLE-bench Lite

A.2.1 Implementation Details

For the MLE-bench Lite [10] evaluation, we modified our hyperparameter configuration from those
used in the Multimodal AutoML Agent Benchmark. Specifically, we configured the agent to use
best quality preset parameters when available [19, 65, 67] with a 4-hour time limit per iteration
to thoroughly evaluate performance. We established a 24-hour overall limit for each dataset. All
experiments were conducted on an AWS EC2 p4d.24xlarge instance equipped with 8 NVIDIA A100
(40GB) GPUs and 96 vCPUs.

Since training requires substantial computational resources and time, we utilize the performance
metrics reported in the original MLE-Bench publication [10]. Although the specific LLM model is
not explicitly stated in these reports, we select the first reported results for each agent to maintain
consistency. We excluded the ranzcr-clip-catheter-line-classification dataset due to preprocessing
inconsistencies, ensuring fair comparison across all systems.

Many competitions in the benchmark closed several years ago, making the leaderboard rankings
potentially outdated compared to current human capabilities. Therefore, beyond medal counts, we
compare the relative performance ranking of each agent across all datasets and compute average
rankings. Our evaluation framework incorporates six comprehensive metrics: (1) number of gold
medals, (2) number of gold and silver medals combined, (3) number of gold, silver, and bronze
medals combined, (4) number of performances above median threshold, (5) success rate (proportion
of non-trivial submissions with non-zero performance), and (6) average rank across all datasets.
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A.2.2 Performance Thresholds for MLE-bench Datasets

Table 6 presents the performance thresholds established for each dataset’s medal and above-median
categorization.

Table 6: Dataset Indices and MLE-Bench Information
ID Dataset Name Gold Silver Bronze Median

D1 Aerial Cactus Identification (↑) 1.0000 1.0000 1.0000 0.9991
D2 APTOS 2019 Blindness Detection (↑) 0.9305 0.9197 0.9145 0.8889
D3 Denoising Dirty Documents (↓) 0.0179 0.0261 0.0452 0.0733
D4 Detecting Insults in Social Commentary (↑) 0.8332 0.8231 0.7911 0.7784
D5 Dog Breed Identification (↓) 0.0005 0.0054 0.0460 0.4721
D6 Dogs vs Cats Redux (↓) 0.0388 0.0504 0.0613 0.1222
D7 Histopathologic Cancer Detection (↑) 0.9835 0.9798 0.9738 0.9477
D8 Jigsaw Toxic Comment Classification (↑) 0.9874 0.9867 0.9864 0.9808
D9 Leaf Classification (↓) 0.0000 0.0079 0.0153 0.1083
D10 MLSP 2013 Birds (↑) 0.9353 0.9004 0.8737 0.8657
D11 NYC Taxi Fare Prediction (↓) 2.8338 2.8819 2.9237 3.5974
D12 NOMAD 2018 Conductors (↓) 0.0559 0.0623 0.0658 0.0699
D13 Plant Pathology 2020 FGVC7 (↑) 0.9784 0.9747 0.9736 0.9485
D14 Random Acts of Pizza (↑) 0.9791 0.7648 0.6921 0.5996
D15 SIIM-ISIC Melanoma Classification (↑) 0.9455 0.9401 0.9370 0.9128
D16 Spooky Author Identification (↓) 0.1651 0.2700 0.2938 0.4188
D17 Tabular Playground Dec 2021 (↑) 0.9566 0.9566 0.9566 0.9534
D18 Tabular Playground May 2022 (↑) 0.9982 0.9982 0.9982 0.9727
D19 Text Normalization English (↑) 0.9972 0.9914 0.9904 0.9904
D20 Text Normalization Russian (↑) 0.9901 0.9823 0.9759 0.9759
D21 ICML 2013 Whale Challenge (↑) 0.9896 0.9502 0.9052 0.8652

A.2.3 Limitations of MLE-bench Evaluation

MLE-bench [10] provides valuable comparisons between ML agents and human performance on
Kaggle competitions, but has notable limitations. The benchmark uses preprocessed data through
dedicated Python scripts, presenting structured rather than raw inputs, which may overestimate
agent capabilities. This contrasts with our Multimodal AutoML Agent Benchmark that specifically
tests end-to-end processing of raw data. Additionally, MLE-bench’s agent-human comparisons
face methodological issues: different data splits, evaluation conditions, and human leaderboards
that often reflect earlier computational environments with limited hardware and algorithms. These
factors introduce systematic biases that complicate performance comparisons and may not accurately
represent contemporary ML automation capabilities among human competitors. While MLE-bench
demonstrates our system’s effectiveness within established workflows, our benchmark evaluates the
end-to-end capabilities that distinguish MLZero from other ML agent approaches.

A.3 Details of Datasets used in Section 4.3 for Ablation Studies

To evaluate the contribution of individual components to our system’s overall performance, we
conducted comprehensive ablation studies across a diverse subset of datasets. We selected eight
representative datasets spanning various machine learning tasks: yolanda [61], mldoc [64], flood [34],
petfinder [2], camoseg [42], rvlcdip [27], solar(10m) [65], and fiqa [68]. We select this subset to
include a broad spectrum of domains including tabular data analysis, multimodal data analysis, multi-
lingual and multi-table tasks, document classification, image segmentation, time series forecasting,
and text retrieval.
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B Agents in MLZero

B.1 Perception

B.1.1 File Grouping and File Perception

Our file grouping mechanism (Algorithm 1) employs a hierarchical approach that analyzes folder
structures and file extensions to identify meaningful patterns within raw datasets. We first define
max group size δ (δ = 5 by default in all our experiments). For each directory level, the algorithm
dynamically determines whether to preserve specific folder names (when ≤ δ unique names exist at
that level) or abstract them using wildcards (when > δ names exist), creating a balanced representation
that captures essential structural information while avoiding over-specification.

Upon establishing these file groups, our perception system selects representative examples for detailed
analysis. For small groups ≤ δ, all members undergo comprehensive content inspection, while larger
collections are represented by carefully selected exemplars. Each file is then processed through File
Perception Agent, which dynamically generates format-appropriate loading and printing code based
on file characteristics, thereby providing structured insights into raw data content regardless of format
or organization. This two-phase perception approach forms the foundation of our system’s ability to
understand arbitrary data structures without manual preprocessing.

Algorithm 1 File Grouping

1: procedure FILE GROUPING(files)
2: depthFolders← Map from depth to set of folders

. First pass: analyze folder structure
3: for all file ∈ files do
4: paths← SplitPath(file.path)
5: for depth← 0 to |paths| − 2 do
6: depthFolders[depth].add(paths[depth])
7: end for
8: end for

. Second pass: group files
9: groups← Map from pattern to file list

10: for all file ∈ files do
11: paths← SplitPath(file.path)
12: pattern← []

. Build pattern using folder structure
13: for depth← 0 to |paths| − 2 do
14: if |depthFolders[depth]| ≤ δ then
15: pattern.append(paths[depth]) . Use actual folder name
16: else
17: pattern.append(” ∗ ”) . Use wildcard
18: end if
19: end for
20: pattern.append(GetExtension(file.name))
21: groups[pattern].append(file)
22: end for
23: return groups
24: end procedure

File Perception Agent

Context: The agent utilizes LLM capabilities to analyze file content across various formats,
enabling raw data understanding in AutoML workflows. This addresses a critical limitation
in previous systems that required pre-structured data.
Prompt:
f"""Generate Python code to read and analyze the file: "{file_path}"
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Your code should:
1. Import all modules used (e.g. import os).
2. Use appropriate libraries based on file type (pandas for tabular
data, etc.)
3. For tabular files (csv, excel, parquet, etc.):

- Display column names. If there are more than 20 columns, only
display the first and last 10.
- Show first 2-3 rows with truncated cell content
- Do not show additional index column if it’s not in the original
table
- If failed to open the file, treat it as text file
{"- Count total rows and provide basic statistics"

if self.details else "- No additional info needed."}
4. For text files:

- Display first few lines (up to {max_chars} characters)
5. For compressed tabular or text files,

show its decompressed content as described.
{"6. For other files, provide appropriate summary"

if self.details else
"6. For binary or other files, provide only file size."}

7. Keep the total output under {max_chars} characters

Return ONLY the Python code, no explanations or markdown.
The code should be self-contained and executable on its own."""

Generated Code Example:
import pandas as pd
import os

# Get absolute path and file size
file_path = "/media/agent/maab/datasets/abalone/training/test.csv"
abs_path = os.path.abspath(file_path)
file_size = os.path.getsize(file_path) / (1024 * 1024)

print(f"File Size: {file_size:.2f} MB")

# Read and analyze CSV file
try:

df = pd.read_csv(file_path)

# Display column names
print(f"Column names: {list(df.columns)}")

# Show first rows
print("First rows:")
print(df.head(3))

except Exception as e:
print(f"Error reading file as CSV: {e}")

# Try as text file if CSV reading fails
try:

with open(file_path, ’r’) as f:
text = f.read(1000)

print("File content (first 1000 chars):")
print(text)

except Exception as e2:
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print(f"Error reading as text: {e2}")
Example Output:
Absolute path: /media/agent/maab/datasets/abalone/training/test.csv
Content:
File Size: 0.02 MB
Column names: [’Sex’, ’Length’, ’Diameter’, ’Height’,
’Whole_weight’, ’Shucked_weight’, ’Viscera_weight’,
’Shell_weight’, ’Class_number_of_rings’]
First rows:

Sex Length Diameter Height Whole_weight Shucked_weight...
0 I 0.620 0.485 0.18 1.1785 0.4675...
1 F 0.645 0.525 0.17 1.3700 0.6135...
2 F 0.620 0.480 0.17 1.1045 0.5350...

B.1.2 Task Perception

The task perception in MLZero occurs in two main phases. First, the system uses an LLM to
identify potential description files from the data prompt, looking specifically for files like READMEs,
documentation, or task definitions. The LLM’s response is parsed to extract filenames and returns
both the list of files and the analysis explanation. Second, the system generates a comprehensive
task description by reading the content of the identified files and using another LLM call to extract
key information. It processes the file contents along with the original data prompt and previous
analysis to produce a structured description that includes the core data science objective, requirements,
constraints, data sources, and success metrics. These steps create a foundation for understanding
what the task requires before proceeding to ML library selection.

Task Perception Agent

Prompt to Find Description File
f"""Given this data prompt:

{data_prompt}

Please identify any files that appear to contain project
descriptions, requirements, or task definitions.
Look for files like README, documentation files, or task
description files.

Format your response as follows:
Description Files: [list ONLY the absolute path, one per line]
Explanation: [explain why these files were identified as
description files]"""
Prompt to Generate Task Descriptions
f"""Based on this data prompt and description files:

Data Prompt:
(IMPORTANT: The metadata of example files in Data Prompt may not be
representative - do not make assumptions about data statistics based
on examples.)

{data_prompt}

Description File Analysis:
{description_analysis}

Description File Contents:
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{description_context}

Based ONLY on the information explicitly stated in the provided data
prompt, description files, and analysis, provide a condensed
description of the data science task. Include only details that are
directly mentioned in the source materials.
Do not add assumptions or infer unstated information.
"""

B.1.3 ML Library Selection

The ML library selection process follows the task perception steps and uses an LLM to identify the
most suitable ML library for the data science task at hand. It takes the data prompt, task description,
and available libraries from the registry as inputs. The prompt includes the task details and formatted
information about each available library (name, version, description, and special features). The
LLM’s response includes both the selected library name and the reasoning behind the selection.

ML Library Selection Agent

Prompt to Select ML Libraries
f"""Given the following data science task:

Data Description:
{data_prompt}

Task Analysis:
{description}

Available tools and their capabilities:

{_format_tools_info(tools_info)}

Please select the most appropriate tool for this task. Consider:
1. The nature of the data (tabular, time series, multimodal, etc.)
2. The specific requirements of the task
3. Any limitations or special features of each tool

Format your response as follows:
Selected Tool: [tool name ONLY]
Explanation: [detailed explanation of why this tool is the best
choice, including specific features that match the task
requirements]"""

B.2 Semantic Memory

B.2.1 Condensation

The condensation agent processes tutorial content by breaking it into manageable chunks when
necessary, then uses an LLM to condense each chunk while preserving essential implementation
details, code samples, key concepts, critical configurations, and important warnings. It works on a
chunk-by-chunk basis to handle large tutorials, maintains the overall document structure, and ensures
the resulting condensed content stays within a specified maximum length by truncating at section
boundaries when needed.
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Condensation Agent

Prompt to Condense a Document Chunk
context = (

"This is a continuation of the previous chunk. "
if i > 0 else ""

)
f"""{context}Condense this portion of the tutorial while preserving
essential implementation details, code samples, and key concepts.
Focus on:

1. Implementation details and techniques
2. Code snippets with necessary context
3. Critical configurations and parameters
4. Important warnings and best practices

Chunk {i+1}/{len(chunks)}:
{chunk}

Provide the condensed content in markdown format."""

B.2.2 Summarization

The summarization agent generates concise summaries of the documents that help coder agent
understand the implementation knowledge, coding tasks, and key features covered in the tutorial. It
processes the already condensed content through an LLM to create a single paragraph summary of
less than 100 words that starts with "Summary: " and highlights the most important aspects of the
tutorial for practical implementation.

Summarization Agent

Prompt to Summarize the Document
f"""Generate a concise summary (within 100 words) of this tutorial
that helps a code generation LLM understand:
1. What specific implementation knowledge or techniques it can find
in this tutorial
2. What coding tasks this tutorial can help with
3. Key features or functionalities covered

Tutorial content:
{condensed_content}

Provide the summary in a single paragraph starting with
"Summary: "."""

B.2.3 Retrieval

The retrieval agent scans documents of the selected ML libraries, extracts their titles and summaries,
and uses an LLM to select the most relevant documents based on the user’s task, data description,
question, and any previous errors. The selected documents are then provided to coder agent to
correctly integrate the selected ML library.

Retrieval Agent

Prompt to Retrieve the Condensed Document
context = f"""Task: {task_prompt}

40



Data: {data_prompt}
User Question: {user_prompt}
Previous Error: {error_prompt}"""

f"""Given the following context and list of tutorials with
their summaries, select the {max_num_tutorials} most relevant
tutorials for helping with this task. Consider how well each
tutorial’s title and summary match the task, data, user
question, and any errors.

Context:
{context}

Available Tutorials:
{tutorials_info}

IMPORTANT: Respond ONLY with the numbers of the selected tutorials
(up to {max_num_tutorials}) separated by commas.
For example: "1,3,4" or "2,5" or just "1" if only one is relevant.
DO NOT include any other text, explanation, or formatting in
your response."""

B.3 Episodic Memory

B.3.1 Error Analyzer

The error analyzer processes error messages from failed code executions. It takes the original task
description, data, user prompt, previous code, and error message as input, and uses an LLM to
generate a concise error summary to identify root causes and suggested debugging steps to provide
tactical guidance. The agent is asked not to include actual code fixes, but focusing on clear, actionable
insights within strict length constraints.

Retrieval Agent

Prompt to Analyze the Error
"""{task_prompt}
{data_prompt}
{user_prompt}
Previous Python Code:
{python_code}
Previous Bash Script to Execute the Python Code:
{bash_script}
{retrieved_tutorials}
Error Message:
{error_message}
Analyze the error message and context provided. Your response
MUST contain exactly two short paragraphs as follows:

ERROR SUMMARY: Provide a brief, technical description of the error
in 1-3 sentences. Focus only on identifying the root cause and
affected component without background explanations.

SUGGESTED FIX: Offer specific debugging directions in 1-3 sentences.
Do not include actual code or commands, only tactical debugging
guidance.
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Each paragraph must be concise (maximum 3 sentences). Do not include
general advice, explanations beyond the direct debugging strategy, or
any additional paragraphs."""

B.4 Iterative Coding

B.4.1 Coder

The Coder agent creates programming solutions based on user prompts. It supports both single-turn
and multi-turn interactions. In our experiments, we use single-turn interaction by default as episodic
memory can provide information about past errors. In the ablation study of removing episodic
memory, we use multi-turn interactions where coders in all iterations run in a common session. The
Code agent also ensures code is properly formatted within language-specific code blocks (python or
bash in our experiments), extracting clean scripts from LLM responses.

For Python code generation, the prompt includes system prompt, library-specific instructions, task
perception, data perception, optional user input, error analysis from episodic memory, and retrieved
documents from semantic memory.

Similarly, the bash script generation prompt assembles contextual components including environ-
ment configuration preferences (tailored to whether environment setup is required), code execution
instructions, the generated Python code to be run, and (when applicable) previous bash scripts and
error messages.

Coder Agent

Prompt to Generate Python Code
f"""
As an AutoML Agent, you will be given a folder containing data and
description files. Please generate Python code using {tool_name} to
train a predictor and make predictions on test data. Follow these
specifications:

ONLY save files to the working directory: {output_folder}.

1. Data preprocessing:
- Remove training data samples without valid labels (unless told
not to do so).
- Remove the unneccesary index column (if applicable)

2. Model training:
- Use {tool_name} with appropriate parameters for the task
- If a model is trained, save it in a folder with random timestamp
within {output_folder}

3. Prediction:
- Make predictions on the test data
- Save the predicted results to {output_folder}, result file name
should be "results", the format and extension should be same as
the test data file
- Output column names must exactly match those in the training or
sample submission files without adding "predicted_" prefixes or
creating any new columns.

4. Documentation:
- Add a brief docstring at the beginning of the script explaining
its purpose and usage
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- Also include additional installation steps with comments at the
beginning of the script
- Include comments explaining any complex operations or design
decisions

5. Others:
- To avoid DDP errors, wrap the code in: if __name__ == "__main__":
- Ensure errors are propagated up and not silently caught - do not
use try/except blocks unless you explicitly reraise the exception.

{tool_prompt}

Please provide the complete Python script that accomplishes these
tasks, ensuring it’s ready to run given the appropriate data inputs.

Task Description: {task_description}

{data perception}

{user input (optional)}

{error analysis (from episodic memory)}

{retrieved documents (from semantic memory)}
"""
Code To Generate Prompt for Bash Script Generation

# Truncate error message if needed
if len(error_message) > max_error_message_length:

error_message = (
error_message[: max_error_message_length // 2]
+ "\n...(truncated)\n"
+ error_message[-max_error_message_length // 2 :]

)

# Build the core instructions
instructions = []
if create_venv:

instructions.extend(
[

f"Create and configure a conda environment in
{output_folder}:",
"- Python version: 3.11",
"- Activate the environment",
"- Install required packages",

]
)

elif install_packages:
instructions.append(

"The environment may not be fully configured. Install any
packages required in the python code."

)
else:

instructions.append(
"The environment is already configured. Do not install or
update any package."

)
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instructions.append(f"Execute the Python script:
{python_file_path}")

# Build the prompt with optional context
prompt_parts = [

"Generate a minimal bash script that will:",
"\n".join(f"{i+1}. {instr}" for i, instr in
enumerate(instructions)),

]

if current_python:
prompt_parts.append(

dedent(
f"""

Current Python code:
‘‘‘python
{current_python}
‘‘‘

"""
).strip()

)

if error_message:
prompt_parts.append(f"Previous error:\n{error_message}")

if previous_bash and error_message:
prompt_parts.append(

dedent(
f"""

Previous failed bash script:
‘‘‘bash
{previous_bash}
‘‘‘

"""
).strip()

)

if previous_python and error_message:
prompt_parts.append(

dedent(
f"""

Previous Python code:
‘‘‘python
{previous_python}
‘‘‘

"""
).strip()

)

# Add final instructions
prompt_parts.append(

dedent(
"""

Notes:
- Generate a minimal, executable bash script
- Focus on essential commands only
- Handle common environment and package only if there were
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errors
"""

).strip()
)

return "\n\n".join(prompt_parts)

B.4.2 Executer

The Executer agent executes generated code and captures real-time outputs with timeout protection.
Success determination is two-fold: first checking if the script execution completes with a zero return
code, then passing execution logs to LLM that evaluates deeper success criteria beyond just exit
codes. The Executer agent makes critical "FINISH" or "FIX" decisions with explainations based on
log analysis, even overriding apparent successes when it detects logical errors or poor performance in
the outputs, ensuring both technical completion and task fulfillment before concluding the execution
cycle.

Executer Agent

Prompt to Determine if Execution is Successful
"""You are an expert code evaluator. Analyze the execution results of
the following Python code and determine if the execution was
successful or if issues need to be fixed.

{task_prompt}{data_prompt}

## Python Code
‘‘‘python
{python_code}
‘‘‘

## Execution Results
### Standard Output (stdout)
‘‘‘
{stdout or "No standard output"}
‘‘‘

### Standard Error (stderr)
‘‘‘
{stderr or "No standard error"}
‘‘‘

Evaluate the execution results and decide on one of the following
actions:
1. FINISH - If the execution was completely successful and met all
requirements.
2. FIX - If there were errors, issues, or performance problems that
need to be addressed.

Provide your decision in the following format:
DECISION: [FINISH or FIX]
ANALYSIS: [Brief analysis of errors if any, or "None" if no errors]

The error analysis should be brief but informative enough for another
agent to understand what needs to be fixed.

Even if the code executed without throwing errors, it might still
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have issues with logic or not meet all requirements."""

C More Implementation and Competitors Details

C.1 Implementation Details

For MLZero, the code execution environment operates with a 3-hour timeout and a maximum of
5 coding iterations. We enforce strict prompt size constraints: 1,024 characters for files, 8,192
characters for tutorials, and 2,048 characters for user inputs. We leverage Claude 3.7 Sonnet [6] as our
LLM backbone, using temperature 0 for planning and file reading tasks, while employing temperature
0.5 for coding. All agents utilize a 65536-token context window with task-specific configurations.
For the 8B configuration of MLZero, we adjusted parameters to accommodate the smaller context
window. Specifically, we set the context window to 8,192 tokens across all agents, reduced retrieval
size to 3, and limited maximum tutorial length to 4,069 characters.

To ensure fair comparison with AIDE’s default setting (def), we standardized its configuration by
disabling automatic file copying and utilizing identical LLM backbones [6] for code generation and
feedback processes. We maintained a 3-hour timeout and 5-step reasoning process to match our
method’s 5 coding iterations. Additionally, we also conducted evaluations on an enhanced version
(AIDE +ext) that incorporates six comprehensive tutorials covering fundamental knowledge for all
tasks to facilitate coding with external ML libraries. In the enhanced configuration, we also provide
the system prompt of MLZero to optimize AIDE’s performance.

Codex CLI [57] performs end-to-end with minimal human intervention. We similarly use a 3-hour
timeout but no step limit. For other comparative systems that typically require manual data pre-
processing [33, 24, 45], we enhanced their capabilities by augmenting them with outputs from our
data perception module, providing additional data insights that enable end-to-end execution on our
benchmark. Since DS-Agent [24] lacks native code execution support, we manually executed their
generated code to obtain results; thus relative execution times are unavailable as they would not
represent true end-to-end agent performance. As both AIDE [38] and AutoKaggle [45] (AK) lack
robust mechanisms for saving results through user instructions, we manually extracted results from
their working directories for evaluation. We also standardized all description file names to accommo-
date baseline agents. For agents (Codex CLI, DS-Agent, AutoKaggle) that lack compatibility with
Claude 3.7 Sonnet [6] due to implementation constraints or outdated interfaces, we substitute with
GPT-4o [3], a general-purpose model with comparable benchmark performance.

As MLE-bench offers a longer time (24 hours) for each agent on each dataset, we prompt the
ML libraries [19, 65, 67] to use best quality preset with a 3-hours time limit per iteration for each
dataset. Other implementations in MLZero remain the same. For the implementation of AIDE,
MLAgentBench [33], and OpenHands [72], please refer to MLE-bench [10].

All experiments were conducted on an AWS EC2 p4d.24xlarge instance equipped with 8 NVIDIA
A100 40G GPUs. Computation time varied based on iterations required to achieve success. For the
Multimodal AutoML Agent Benchmark, the maximum computational cost for running one agent
is 3 hours × 25 datasets × 8 GPUs, totaling 600 GPU hours. The total computational upper bound
for Table 1 is 600 GPU hours × 11 agents × 3 runs, totaling 19,800 GPU hours. For MLE-bench,
the maximum computational cost for running MLZero once is 24 hours × 21 datasets × 8 GPUs,
totaling 4,032 GPU hours.

The operational cost of using Claude 3.7 Sonnet varies with the number of iterations required for
success. Approximately, MLZero incurs a cost of $0.25 per dataset, while AIDE averages $0.5 per
dataset. However, these figures may fluctuate significantly depending on the iterations needed to
achieve successful completion.

C.2 MLZero

The default configuration of MLZero is attached below. Please check Appendix B for the detailed
prompts and implementation of each agent in MLZero, and Appendix D for the ML libraries used.
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MLZero Default (def) Configuration

stream_output: True
per_execution_timeout: 10800

max_chars_per_file: 1024
max_num_tutorials: 5
max_user_input_length: 2048
max_error_message_length: 2048
max_tutorial_length: 8192
create_venv: false
condense_tutorials: True

# Default LLM Configuration
# For each agent (coder, etc.) you can use a different one
llm: &default_llm

# Note: bedrock is only supported in limited AWS regions
# and requires AWS credentials
provider: bedrock
model: "us.anthropic.claude-3-7-sonnet-20250219-v1:0"
max_tokens: 65536
proxy_url: null
temperature: 0
verbose: True
multi_turn: False

coder:
<<: *default_llm
temperature: 0.5
top_p: 1

planner:
<<: *default_llm
max_stdout_length: 8192
max_stderr_length: 2048

file_reader:
<<: *default_llm
details: False

C.3 Codex CLI

OpenAI’s Codex CLI represents a practical implementation of LLM-based tool-using agents for
software development. When equipped with strong reasoning models, it demonstrates effective
instruction-following capabilities and can reliably execute software engineering tasks. However, it
tends to generate simplistic solutions that underperform on complex machine learning workflows.
Moreover, its performance degrades substantially when deployed with general-purpose language mod-
els that lack robust reasoning capabilities, underscoring the limitations of current tool-using agents in
efficiently handling the sophisticated requirements of end-to-end machine learning automation.

In our experiments (Section 4.2), we evaluate Codex CLI in two configurations. The default configu-
ration (Codex CLI) uses OpenAI’s GPT-4.1 [56], a general-purpose model, to ensure fair comparison
with other agents that employ non-reasoning models. We also include an enhanced configuration
(Codex CLI +rea) utilizing o4-mini [58], a reasoning model, to demonstrate Codex CLI’s upper
performance bound. Both configurations employ the following standardized prompt:
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Prompt for Codex CLI

Solve the ml task described in folder ${TRAINING_PATH}. Do not modify
any files in ${TRAINING_PATH}. All temp or saved files should be located
somewhere under ${OUTPUT_DIR}. Save the predicted results in the same
format as training data to ${OUTPUT_DIR}. Name the result file
’results.xxx’, where the extension should be same as the test data file.

C.4 AIDE

AIDE [38] conceptualizes machine learning engineering as a code optimization problem, employing
tree search methodologies within the solution space. Similar approaches are found in SELA [14] and
I-MCTS [46], though these frameworks focus primarily on tabular data and do not provide end-to-end
solutions.

For MLE-bench [10] comparisons, we utilize the officially reported AIDE results. However, for our
Multimodal AutoML Agent Benchmark, we implemented several configuration modifications to
ensure fair and efficient comparison:

1. We disabled automatic data copying functionality, as several datasets in our benchmark are
extremely large, making this process prohibitively time-consuming.

2. Archive unpacking functionality was disabled to preserve the original data structure integrity.

3. Report generation was disabled as it increases token and time usage without affecting
performance metrics.

4. Both code generation and feedback mechanisms were changed to use Claude 3.7 Sonnet,
consistent with our system’s configuration.

To facilitate proper evaluation within our benchmark framework, we implemented additional hard-
coded configurations: (1) Description files are automatically fed into AIDE, as the system cannot
independently locate these files; (2) Output files are renamed from AIDE’s default “submission.csv”
to each dataset’s required filename, as AIDE uses hardcoded output naming conventions that would
otherwise impede proper evaluation.

For the default AIDE configuration (AIDE def), we incorporated the following additional prompt to
ensure output format consistency and proper file referencing:

Additional Prompt for AIDE (def)

Output column names must exactly match those in the training or
sample submission files without adding "predicted_" prefixes or
creating any new columns.
Always use absolute file paths when your model prediction outputs
reference files.

For the enhanced AIDE configuration (AIDE +ext), we further augmented the system with our
MLZero coder’s prompt, ML library prompts (detailed in Appendix B and Appendix D), and several
critical condensed tutorials from MLZero’s knowledge base. This enhanced configuration represents
our effort to provide AIDE with comparable knowledge resources for a more equitable performance
comparison:

Additional Prompt for AIDE (+ext)

[MLZero coder prompt]
[MLZero ML library prompts]
[Condensed Tutorials]
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C.5 DS-Agent

DS-Agent [24] leverages LLMs with case-based reasoning (CBR) to solve machine learning prob-
lems, particularly excelling in comprehending task requirements and constructing machine learning
pipelines. Unlike ResearchAgent [33] focused primarily on generating reasonable plans, DS-Agent
implements a two-stage approach:

1. A comprehensive development stage utilizing the full CBR framework to capitalize on
expert knowledge from Kaggle competitions and iteratively improve performance through
feedback mechanisms.

2. A resource-efficient deployment stage with streamlined CBR to adapt previously successful
solutions for direct code generation.

For benchmarking DS-Agent, we utilized the official records of the development stage. As DS-Agent
lacks an end-to-end execution system, we modified the Multimodal AutoML Agent Benchmark to
align with the data requirements [33], then incorporated MLZero’s perception results for each dataset
as commented paragraphs as the provided skeleton code.

For both default (def) and zero-shot evaluation settings, we followed the original implementation
without modifications. And we copied and executed the generated code within the Multimodal
AutoML Agent Benchmark environment. To ensure consistent evaluation criteria across all systems,
we also supplemented the description files with additional standardized prompts to enforce consistent
output formatting and behavior.

Additional Prompt for DS-Agent

ONLY save files to: "./".
Make predictions on the test data.
Save the predicted results to "./", result file name should be
"results", the format and extension should be same as the test
data file.
Output column names must exactly match those in the training or sample
submission files without adding "predicted_" prefixes or creating any
new columns.
Tensorflow is not installed. But you can use pytorch when needed.

C.6 AutoKaggle

AutoKaggle [45] presents a collaborative multi-agent framework for automated machine learning
solutions, comprising five specialized agents (Reader, Planner, Developer, Reviewer, and Summarizer)
working in concert throughout the solution development lifecycle. The framework implements an
iterative development methodology with comprehensive testing procedures and leverages a predefined
machine learning tools library. However, a significant limitation is its rigid input data format
requirements, as it exclusively supports evaluation of tabular datasets from Kaggle competitions
within a predefined directory structure. For AutoKaggle to process data correctly, the input files must
adhere to the following structural convention:

Required Data Format for AutoKaggle

competition/
- train.csv
- test.csv
- sample_submission.csv
- overview.txt

To accommodate these constraints while evaluating AutoKaggle within our benchmark framework,
we implemented several adaptations to preprocess data: renaming descriptions.txt files to
overview.txt; augmenting training and test datasets with sequential index columns; converting
diverse data formats to the mandatory CSV format with standardized train.csv and test.csv
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filenames; and generating appropriate sample_submission.csv files that conform to the expected
index and target column structure. These adaptations ensure fair evaluation while maintaining the
integrity of the original datasets within our comparative benchmark.

D ML Libraries in MLZero

Our system aims to minimize required human effort by leveraging ML frameworks with com-
prehensive capabilities rather than specialized libraries. Each integrated framework may contain
undocumented issues (mentioned in GitHub issues rather than official documentation), for which we
provide supplementary prompts to enhance LLM performance. These prompts were also provided
to AIDE (+ext) to ensure fair comparison. The MLZero (-ext) configuration include only general
descriptions of machine learning algorithms D.5.

MLZero incorporates only a few well-maintained ML frameworks that demonstrate state-of-the-art
performance across various modalities, keeping the ML libraries used minimal to avoid "overfitting"
the tasks. Our selection criteria prioritize frameworks that provide comprehensive automation
capabilities, robust implementation quality, and consistent maintenance to ensure reliable performance.
This approach enables our system to handle a wide spectrum of machine learning tasks with minimal
human intervention while maintaining competitive performance. Adding more ML libraries with
better performance could further improve the agent’s performance, but we intentionally limited our
selection to prevent overfitting to our evaluation benchmarks.

D.1 Tabular

For tabular data processing, we integrate frameworks with strong performance on structured data
tasks [19, 40]. The time_limit and presets parameters are specified for benchmarking purposes but
can be adjusted through user input in practical applications.

Tool Registry for Tabular Tasks

{
"name": "autogluon.tabular",
"version": "1.2.0",
"description": "AutoGluon Tabular is an open-

source AutoML framework
that automates the training and tuning of machine learning models
for tabular data, handling tasks from preprocessing to model
ensembling with minimal code required.",
"features": [

"Works best when there are only tabular data (categorical and
numerical).",
"Does not work very well on nlp tasks.",
"Does not work with image data."

],
"requirements": [],
"prompt_template": [

"Use Autogluon Tabular with the following parameters:",
"- time_limit: 1800 seconds",
"- presets: \\\"medium_quality\\\"",
"- tuning_data: only use validation if there is a validation
dataset.",
"- problem_type: binary, multiclass, or regression."

]
}
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D.2 Multimodal

For multimodal tasks, we selected AutoMM [67] due to its performance in multimodal AutoML
tasks and comprehensive support across diverse problem types. This framework excels at integrating
multiple data modalities into unified representations, providing good performance with minimal
configuration requirements.

Tool Registry for Multimodal Tasks

{
"name": "autogluon.multimodal",
"version": "1.2.0",
"description": "AutoGluon Multimodal is an open-source AutoML
framework that simplifies the training of models across multiple data
types including text, images, and tabular data, automating tasks from
preprocessing to model ensembling with minimal code required.",
"features": [

"Support multimodal classification or regression, document
classification, semantic segmentation",
"Does not work the best with pure tabular data (categorical and
numerical).",
"Does not support image or text generation tasks."

],
"requirements": [],
"prompt_template": [

"Use Autogluon Multimodal with the following parameters:",
"- time_limit: 1800 seconds",
"- presets: \\\"medium_quality\\\"",
"- tuning_data: only use validation if there is a validation
dataset.",
"The usage of document prediction is different from image
prediction.",
"Check data path carefully when encounter ValueError: No model is
available for this dataset.",
"For semantic segmentation, use single GPU by setting
CUDA_VISIBLE_DEVICES=0",
"For semantic segmentation, save the mask as greyscale JPG image
(squeeze then cv2.imwrite) in \\\"predicted_mask\\\" folder under
output folder and save its absolute path in label column.",
"No need to specify model.names, and do not increase default per gpu
batch size to avoid OOM errors.",

]
}

The selection of AutoMM aligns with our approach of leveraging well-maintained frameworks with
comprehensive capabilities. Its performance across diverse problem types (image-text classification,
document understanding, semantic segmentation, etc.) enables MLZero to handle a wide spectrum
of multimodal tasks without requiring specialized implementations for each modality combination.
In future work, more advanced multimodal ML libraries should be included to support additional
problem types and to further improve performance.

D.3 Timeseries

For timeseries forecasting, we incorporate the ML library with state-of-the-art performance [65].
Note that [19, 67, 65] share a similar API but internal logics are completely different and thus used
as three libraries.
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Tool Registry for TimeSeries Tasks

{
"name": "autogluon.timeseries",
"version": "1.2.0",
"description": "AutoGluon Timeseries is an open-source AutoML
framework that automates the training and tuning of forecasting models
for time series data, handling tasks from preprocessing to model
ensembling with built-in support for both univariate and multivariate
forecasting.",
"features": [

"timeseries forecasting"
],
"requirements": [],
"prompt_template": [

"DO NOT drop any data samples (to make sure the frequency
isregular).",
"Use Autogluon Timeseries with the following parameters:",
"- time_limit: 1800 seconds",
"- presets: \\\"medium_quality\\\"",
" - tuning_data: only use validation if there is a
validationdataset.",
"Note that the prediction is given in a column named \"mean\". You
need to rename the column in the result.",
"‘from_data_frame()‘ method of TimeSeriesDataFrame does not accept a
’target’ parameter.",
"If there are known covariates, they should be specified in both
TimeSeriesPredictor initialization AND predict."

]
}

D.4 Retrieval

Our system incorporates FlagEmbedding [74, 80] to support tasks requiring semantic search, docu-
ment ranking, and retrieval-augmented generation capabilities.

Tool Registry for Retrieval Tasks

{
"name": "FlagEmbedding",
"version": "1.3.4",
"description": "Retrieval and Retrieval-augmented LLMs",
"features": [

"retrieval",
"reranking"

],
"requirements": [],
"prompt_template": [

"DO NOT SAVE THE MODEL."
]

}

D.5 Others

When specialized frameworks are not suitable, e.g. image-to-image generation, audio tasks, sequence-
to-sequence generation, etc., MLZero can fall back to general machine learning algorithms, providing
greater flexibility for diverse tasks.
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Tool Registry for General ML Algorithm

{
"name": "machine learning",
"version": "0.1.0",
"description": "You should select this as a general reference of
machine learning or deep learning algorithms in case other tools are
not helpful.",
"features": [],
"requirements": [],
"prompt_template": [

"In the bash script, install all necessary packages."
]

}

D.6 Library Integration Process

One of the key design principles of MLZero is the ease of integrating new ML libraries into the
system’s knowledge base. Adding a new library requires approximately one minute of human effort
using our provided registration Python script. Users provide only four basic pieces of information:
the library name (e.g., "FlagEmbedding"), version number (e.g., "FlagEmbedding==0.x.x"), a one-
sentence description, and the path to the directory containing the library’s official documentation.
Users may optionally provide additional prompts or usage guidelines, though this is not required.
Importantly, no coding skills are needed for this registration process.

After this brief human setup, the system operates completely autonomously. The Summarization and
Condensation agents automatically process the provided documentation into structured, condensed
formats suitable for the Semantic Memory module. This automated processing includes extracting
relevant sections from official documentation, using LLM agents to condense lengthy tutorials into
essential information, organizing information by topics and APIs, and building retrieval indices for
efficient semantic search. While this processing requires computational time (typically 10-30 minutes
depending on documentation size), it requires zero human intervention or supervision.

Once a library is successfully integrated into Semantic Memory, MLZero operates from raw data to
final predictions without further human input. This stands in stark contrast to many existing AutoML
systems that require manual preprocessing, hard-coded logic tailored to individual datasets, expert
configuration of hyperparameters, or post-processing to extract results. Our experiments demonstrate
that this design achieves true end-to-end automation while maintaining extensibility across diverse
modalities and problem types.

E Detailed Results

E.1 Detailed Results on Multimodal AutoML Agent Benchmark

This appendix provides a detailed breakdown of all experimental runs conducted with different agents
and configurations on the Multimodal AutoML Agent Benchmark in Section 4.2. Each table presents
the complete results across three independent runs for each dataset in the benchmark suite: MLZero
def in Table 7, MLZero 8B in Table 8, MLZero -ext in Table 9, MLZero -epi in Table 10, Codex
CLI def in Table 11, Codex CLI +rea in Table 12, AIDE def in Table 13, AIDE +ext in Table 14,
DS-Agent def in Table 15, DS-Agent zeroshot in Table 16, and AutoKaggle def in Table 17.

For each run, we report the performance metric (see Appendix A.1) and the computational time
in seconds required to complete the task. The symbol × indicates runs where the model failed to
complete or with invalid outputs. These detailed results complement the aggregated performance
metrics discussed in the main paper and demonstrate the consistency and robustness of our approach
across multiple executions.
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Table 7: Three runs of MLZero (def) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.135 142 2.120 111 2.135 112
airbnb_melbourne 0.426 1202 0.428 998 0.426 1041
airlines 0.656 1285 0.658 442 0.656 1262
bioresponse 0.801 3050 0.814 497 0.801 167
camo_sem_seg 0.833 4089 0.839 2192 0.843 6358
cd18 0.445 215 0.495 501 0.445 261
climate_fever 0.476 649 0.471 342 0.479 3719
covertype 0.976 1963 0.976 2634 0.976 4556
electricity_hourly -1.436 875 -1.427 1848 -1.393 2779
europeanflooddepth 0.680 524 0.690 615 0.690 509
fiqabeir 0.482 370 0.507 416 0.505 889
gnad10 0.837 717 0.911 725 0.829 722
ham10000 0.555 815 0.555 771 0.779 1049
hateful_meme 0.571 682 0.587 663 0.600 628
isic2017 0.751 4139 × × 0.758 8440
kick_starter_funding 0.438 1330 0.471 770 0.435 1027
memotion 0.503 3852 0.483 4460 0.514 3807
mldoc 0.956 3699 0.949 3588 0.948 2836
nn5_daily_without_missing -0.765 251 -0.765 485 × ×
petfinder 0.387 701 0.387 747 0.397 791
road_segmentation 0.466 2069 × × × ×
rvl_cdip 0.871 2979 × × 0.872 2868
solar_10_minutes -2.273 800 -0.704 666 × ×
women_clothing_review 0.748 958 0.748 1068 0.751 935
yolanda 8.533 2066 8.533 2007 8.533 1902

Table 8: Three runs of MLZero (8B) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.087 385 2.087 353 2.087 374
airbnb_melbourne 0.428 3857 0.414 3054 × ×
airlines 0.731 3939 × × 0.656 6638
bioresponse × × 0.797 550 0.797 2113
camo_sem_seg × × × × × ×
cd18 -0.857 1061 0.445 506 × ×
climate_fever × × × × × ×
covertype 0.976 7634 × × 0.974 8769
electricity_hourly × × × × × ×
europeanflooddepth 0.695 738 × × × ×
fiqabeir × × × × × ×
gnad10 0.850 3453 0.843 2574 0.843 3451
ham10000 0.569 1703 0.569 1716 × ×
hateful_meme 0.607 2060 × × 0.531 5122
isic2017 × × × × × ×
kick_starter_funding 0.327 3309 0.438 4400 0.466 3382
memotion × × × × × ×
mldoc 0.947 4236 0.948 5422 0.949 7009
nn5_daily_without_missing × × × × × ×
petfinder 0.405 3355 × × 0.389 3224
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes × × × × × ×
women_clothing_review 0.724 5132 × × 0.503 2337
yolanda 8.533 7263 8.540 8669 8.533 4141
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Table 9: Three runs of MLZero (-ext) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.218 165 2.196 352 2.158 290
airbnb_melbourne 0.398 329 0.087 797 × ×
airlines 0.642 422 0.618 234 0.644 160
bioresponse 0.877 659 0.800 333 0.801 145
camo_sem_seg × × 0.464 813 × ×
cd18 -0.634 223 -4.145 2934 0.078 277
climate_fever × × 0.231 849 0.253 2808
covertype 0.887 688 0.876 120 × ×
electricity_hourly 1.753 848 × × 1.755 10422
europeanflooddepth 0.583 335 0.707 347 0.496 843
fiqabeir × × 0.225 4573 × ×
gnad10 0.883 714 0.872 219 0.873 184
ham10000 0.671 6045 × × × ×
hateful_meme 0.382 3521 × × 0.310 638
isic2017 × × × × × ×
kick_starter_funding 0.442 797 0.335 522 0.303 438
memotion × × 0.655 4394 0.999 1695
mldoc 0.961 1524 0.928 872 × ×
nn5_daily_without_missing × × 1.459 8994 0.823 165
petfinder 0.357 338 0.385 1803 0.393 3340
road_segmentation × × 0.444 10253 0.179 3866
rvl_cdip 0.886 4829 × × × ×
solar_10_minutes × × × × × ×
women_clothing_review 0.617 225 0.659 390 0.697 809
yolanda 8.892 290 8.931 307 8.974 338

Table 10: Three runs of MLZero (-epi) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.135 115 2.120 107 2.135 265
airbnb_melbourne 0.423 3217 0.415 901 0.428 1086
airlines 0.656 1232 0.658 406 0.656 1215
bioresponse 0.797 178 0.801 174 0.797 197
camo_sem_seg 0.841 2239 0.835 4304 0.840 6320
cd18 0.445 166 0.495 494 0.586 526
climate_fever × × 0.476 3001 0.475 6657
covertype 0.976 2652 0.976 1924 0.976 1948
electricity_hourly -1.406 848 -1.396 1012 -1.393 781
europeanflooddepth 0.680 504 0.680 541 0.690 475
fiqabeir 0.376 462 0.494 219 0.515 192
gnad10 0.837 709 0.837 745 0.829 690
ham10000 × × 0.555 752 0.779 669
hateful_meme 0.571 648 0.587 653 0.600 608
isic2017 × × × × × ×
kick_starter_funding 0.438 2437 0.438 742 0.438 1226
memotion × × 0.507 2696 0.514 2462
mldoc 0.948 1117 0.948 2970 0.946 4681
nn5_daily_without_missing -0.765 219 -0.764 201 -0.765 211
petfinder 0.387 714 0.387 743 0.397 757
road_segmentation × × 0.597 2047 0.601 4903
rvl_cdip 0.871 2461 × × 0.871 2570
solar_10_minutes -1.286 871 × × × ×
women_clothing_review 0.748 1073 0.657 590 0.751 957
yolanda 8.533 1908 8.533 1983 8.533 2010
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Table 11: Three runs of Codex CLI (def) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone × × 2.230 47 × ×
airbnb_melbourne × × × × × ×
airlines × × × × × ×
bioresponse 0.792 30 × × × ×
camo_sem_seg × × × × × ×
cd18 -0.412 85 -1.477 173 × ×
climate_fever × × × × × ×
covertype × × 0.955 48 × ×
electricity_hourly × × × × × ×
europeanflooddepth × × × × × ×
fiqabeir × × × × × ×
gnad10 × × 0.790 111 0.847 159
ham10000 0.484 36 × × × ×
hateful_meme × × × × × ×
isic2017 × × × × × ×
kick_starter_funding × × × × × ×
memotion × × × × 0.532 92
mldoc × × 0.094 114 0.553 85
nn5_daily_without_missing × × × × × ×
petfinder × × × × × ×
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes × × × × × ×
women_clothing_review × × × × × ×
yolanda × × × × × ×

Table 12: Three runs of Codex CLI (+rea) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.232 201 2.232 93 2.351 299
airbnb_melbourne 0.384 85 0.388 108 0.384 86
airlines 0.653 175 0.612 177 0.628 81
bioresponse 0.882 163 0.800 90 0.880 117
camo_sem_seg × × × 81 × 162
cd18 -1.288 84 -1.685 136 -1.362 125
climate_fever 0.123 1029 0.233 165 0.231 155
covertype 0.957 84 0.955 90 0.841 75
electricity_hourly × × × 75 × 101
europeanflooddepth 0.435 219 × 190 × 100
fiqabeir 0.199 171 × 204 0.199 120
gnad10 0.848 116 0.845 123 0.845 131
ham10000 0.511 471 0.451 80 0.451 75
hateful_meme 0.572 119 0.454 110 0.403 61
isic2017 0.111 473 × 440 × 391
kick_starter_funding 0.362 109 0.362 72 0.285 76
memotion × × 0.702 95 0.819 152
mldoc 0.933 221 0.788 144 0.739 172
nn5_daily_without_missing × × × 166 × 149
petfinder 0.396 115 0.396 108 0.396 67
road_segmentation × × × 131 × 154
rvl_cdip × × × 128 × 147
solar_10_minutes × × × 148 -1.286 221
women_clothing_review 0.419 73 0.029 157 0.589 127
yolanda 9.091 135 9.598 86 9.598 75
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Table 13: Three runs of AIDE (def) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.182 483 2.095 234 2.188 445
airbnb_melbourne × × 0.394 174 × ×
airlines × × × × × ×
bioresponse 0.868 434 0.877 933 × ×
camo_sem_seg × × × × × ×
cd18 × × × × × ×
climate_fever × × × × × ×
covertype × × × × 0.880 197
electricity_hourly × × × × × ×
europeanflooddepth 0.722 2170 × × 0.693 4365
fiqabeir × × × × × ×
gnad10 × × 0.908 10812 0.897 2912
ham10000 0.809 1492 × × 0.812 3839
hateful_meme 0.557 2672 0.467 1907 × ×
isic2017 × × × × × ×
kick_starter_funding × × × × × ×
memotion 0.471 1050 × × × ×
mldoc × × 0.965 10801 × ×
nn5_daily_without_missing × × × × × ×
petfinder × × × × 0.336 652
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes -1.054 2698 × × × ×
women_clothing_review × × × × × ×
yolanda × × × × × ×

Table 14: Three runs of AIDE (+ext) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.189 385 2.135 651 2.230 469
airbnb_melbourne 0.415 2689 × × 0.363 329
airlines × × 0.655 3771 0.643 155
bioresponse 0.876 7400 0.801 309 × ×
camo_sem_seg × × × × × ×
cd18 0.239 248 × × -0.335 113
climate_fever × × × × × ×
covertype 0.744 7856 0.974 7415 0.860 182
electricity_hourly × × × × × ×
europeanflooddepth 0.697 730 0.680 3784 0.659 1654
fiqabeir × × × × × ×
gnad10 × × × × 0.585 309
ham10000 0.785 813 0.796 5001 0.847 8672
hateful_meme 0.518 2045 0.501 10802 0.442 637
isic2017 × × × × × ×
kick_starter_funding 0.440 7496 0.438 1970 × ×
memotion × × × × × ×
mldoc × × 0.948 1082 0.925 195
nn5_daily_without_missing × × × × × ×
petfinder 0.382 2359 0.367 679 0.390 171
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes × × × × × ×
women_clothing_review 0.747 1134 × × × ×
yolanda 8.540 1953 × × 9.032 172
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Table 15: Three runs of DS-Agent (def) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.238 19 × × × ×
airbnb_melbourne × × × × × ×
airlines × × × × × ×
bioresponse 0.790 4 0.793 4 × ×
camo_sem_seg × × × × × ×
cd18 -1.938 137 × × × ×
climate_fever × × × × × ×
covertype 0.957 110 × × × ×
electricity_hourly × × × × × ×
europeanflooddepth × × × × × ×
fiqabeir × × × × × ×
gnad10 × × × × × ×
ham10000 × × × × × ×
hateful_meme × × × × × ×
isic2017 × × × × × ×
kick_starter_funding × × × × × ×
memotion × × × × × ×
mldoc × × 0.949 1265 × ×
nn5_daily_without_missing × × -4.682 6 × ×
petfinder 0.355 9 0.350 3 0.369 4
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes × × × × × ×
women_clothing_review × × × × × ×
yolanda × × × × × ×

Table 16: Three runs of DS-Agent (zero-shot) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone 2.362 2 × × × ×
airbnb_melbourne × × × × 0.314 16
airlines 0.612 61 × × × ×
bioresponse 0.793 4 × × 0.793 4
camo_sem_seg × × × × × ×
cd18 0.338 2 × × -1.615 3
climate_fever × × × × × ×
covertype 0.952 99 × × × ×
electricity_hourly × × × × 11.662 10
europeanflooddepth × × × × × ×
fiqabeir × × × × × ×
gnad10 0.691 14 0.903 304 × ×
ham10000 × × × × × ×
hateful_meme × × × × × ×
isic2017 × × × × × ×
kick_starter_funding × × × × × ×
memotion × × × × × ×
mldoc × × × × × ×
nn5_daily_without_missing × × × × × ×
petfinder 0.389 4 0.214 8 0.207 12
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes × × × × × ×
women_clothing_review × × × × 0.353 18
yolanda × × × × × ×
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Table 17: Three runs of AutoKaggle (def) on Multimodal AutoML Agent Benchmark.

Dataset Run 1 Run 2 Run 3
Result Time (s) Result Time (s) Result Time (s)

abalone × × × × × ×
airbnb_melbourne 0.253 2886 0.314 2409 0.383 1165
airlines × × × × × ×
bioresponse × × × × × ×
camo_sem_seg × × × × × ×
cd18 -1.840 1972 × × × ×
climate_fever × × × × × ×
covertype × × 0.941 9284 × ×
electricity_hourly × × × × × ×
europeanflooddepth × × × × 0.583 2017
fiqabeir × × × × × ×
gnad10 × × 0.105 11281 × ×
ham10000 × × × × × ×
hateful_meme 0.337 1732 0.382 1945 × ×
isic2017 × × × × × ×
kick_starter_funding × × × × 0.237 2935
memotion × × × × × ×
mldoc × × × × × ×
nn5_daily_without_missing × × × × × ×
petfinder 0.388 1881 × × × ×
road_segmentation × × × × × ×
rvl_cdip × × × × × ×
solar_10_minutes × × × × × ×
women_clothing_review × × × × × ×
yolanda × × × × × ×

E.2 Detailed Results on MLE-bench Lite

This appendix presents the comprehensive experimental results that supplement the analysis on
MLE-bench Lite provided in the Section 4.2 of main paper. Table 18 offers a detailed comparison of
our method against three state-of-the-art baseline approaches across all 21 datasets in the MLE-Bench
Lite benchmark. Note that for metrics where lower values originally indicated better performance,
we applied a negative sign to convert them, ensuring that higher values consistently represent better
performance throughout the table. See Appendix A.2 for details about MLE-bench Lite. Gold, silver,
and bronze highlighting denote the type of medal gain for each dataset, while underlined values
indicate performance above the median. The symbol ’X’ represents cases where methods failed
to produce valid solutions within the allocated time constraints or encountered critical errors. As
demonstrated in both subtables, our approach achieves superior performance on multiple datasets
across various machine learning tasks, confirming the findings summarized in the main paper. These
detailed results provide additional evidence of our method’s robustness, versatility, and consistent
performance advantages over existing techniques in automated machine learning systems.

E.3 Detailed Error Analysis

To better understand the limitations of current AutoML systems, we conducted a comprehensive error
analysis across MLZero, Codex CLI, AIDE, and DS-Agent (DS). Table 3 presents the frequency of
distinct error types observed in the final iterations of each system’s execution.

MLZero exhibits exceptional robustness, encountering minimal errors (6.5% overall) limited to
algorithm implementation (4.3%) and preprocessing stages (2.1%). The algorithm implementation
errors occurred specifically on sequence-to-sequence and audio classification tasks where the system
had insufficient knowledge of relevant ML libraries. The preprocessing errors manifested exclusively
on image-to-image tasks with heterogeneous input resolutions. In contrast, competing methods
demonstrated substantially higher failure rates: DS-Agent (76.0%), AIDE (47.8%), and Codex CLI
with reasoning (26.9%).
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Table 18: Methods Performance on MLE-bench Lite. Gold/silver/bronze highlight the gold/sil-
ver/bronze medal, underline denotes above-median. Note that for metrics where lower values
originally indicated better performance, we applied a negative sign to convert them, ensuring that
higher values consistently represent better performance throughout the table. See table 6 for the
dataset details.

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Ours 1.000 0.904 X 0.936 -0.442 -0.008 0.998 0.985 -0.242 X -5.111
AIDE 1.000 0.855 X X -0.694 -0.817 0.996 0.903 -0.801 X -5.463
MLAB 0.943 0.712 X 0.852 -4.800 -12.759 X 0.953 X X -10.022
OD 0.495 X -0.220 0.884 X -0.426 0.853 0.971 -0.934 X -1053.080

(a) Performance on Datasets from D1 to D11.

Method D12 D13 D14 D15 D16 D17 D18 D19 D20 D21

Ours -0.059 0.990 0.787 0.673 -0.384 0.963 0.960 X 0.958 0.625
AIDE -0.069 0.962 0.642 0.859 -0.426 0.958 0.899 0.991 X 0.869
MLAB -0.063 0.817 0.500 0.421 -0.555 0.943 X X X X
OD -0.542 0.494 0.684 0.635 -0.563 0.958 X X X 0.914

(b) Performance on Datasets from D12 to D22.

DS-Agent encounters difficulties at foundational stages, including perception (24.0%) and preprocess-
ing (20.0%), indicating systemic failure in data comprehension and requirement translation, despite
being provided with data perception context from MLZero. Its high algorithm implementation error
rate (28.0%) likely stems from the substantial domain gap between deployment and development
datasets.

AIDE’s predominant failure mode is API hallucination (28.2%), wherein the system attempts to
utilize non-existent or incorrectly implemented library functions. This underscores the necessity for
external knowledge of ML libraries rather than exclusive reliance on parametric knowledge embedded
in LLMs.

Notably, MLZero completely eliminates several error categories, including perception (0.0%), API
hallucination (0.0%), and postprocessing (0.0%). This achievement can be attributed to our dual-
memory architecture, which effectively anchors the LLM’s generations in factually accurate external
knowledge while maintaining execution consistency through structured episodic memory. The
preprocessing errors observed in MLZero result from the system utilizing example file metadata to
construct solutions for datasets with variable input resolutions across images, representing a conscious
trade-off between context length compression and preservation of critical information in file grouping
and perception.

It is important to note that this analysis focuses on final iteration errors and does not necessarily indi-
cate error propensities at intermediate stages. For instance, AIDE’s higher apparent API hallucination
errors compared to DS-Agent may reflect AIDE’s attempts at implementing more sophisticated solu-
tions after successfully navigating earlier stages that DS-Agent fails to complete. Additionally, AIDE
exhibits unreported errors (8.7%) in the MLE-Bench evaluation, potentially influencing comparative
assessments.

These findings highlight the significant advantages of our integrated approach, which systematically
addresses error-prone areas of the ML workflow through specialized perception agents, structured
knowledge retrieval, and iterative refinement with targeted error correction mechanisms.

E.4 Continual Improvement Beyond First Success

While the default MLZero configuration employs an early stopping strategy (terminating upon
first successful execution), we investigated the system’s capability for iterative refinement beyond
initial success. We evaluated two configurations across eight challenging datasets covering all
modalities: the default configuration with early stopping upon first success (def), and an extended
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configuration allowing up to 5 iterations regardless of initial success (def + nostop). We also evaluated
both configurations in the challenging setting without specialized external libraries (-ext) to assess
improvement potential when the first solution is typically suboptimal.

Table 19 presents detailed results showing that the extended configuration demonstrates clear capa-
bility to refine successful solutions. Notable improvements include camoseg accuracy improving
from 0.84 to 0.86 (+2.4%), flood from 0.69 to 0.74 (+7.2%), and solar RMSE dramatically reducing
from 1.49 to 0.38 (-74.5%). The improvement pattern is more pronounced in the -ext setting where
initial solutions are weaker due to lack of specialized libraries, with camoseg improving from 0.46 to
0.55 (+19.6%) and petfinder from 0.38 to 0.44 (+15.8%). These results validate that optimizing an
existing working solution is generally easier than achieving the first success.

Table 19: Continual improvement results. Allowing iterations beyond first success improves perfor-
mance but significantly increases computational cost. Metrics: higher is better for classification tasks;
lower is better for regression tasks (marked with ↓). X indicates failure.

Dataset def def + nostop -ext -ext + nostop
camoseg 0.84 0.86 0.46 0.55
flood 0.69 0.74 0.60 0.62
fiqa 0.50 0.51 0.22 0.23
mldoc 0.95 0.96 0.94 0.96
petfinder 0.39 0.38 0.38 0.44
rvlcdip 0.87 0.87 0.89 0.88
solar (10m)↓ 1.49 0.38 X X
yolanda↓ 8.53 8.54 8.93 8.75

Avg Tokens↓ 63k 186k 51k 146k
Avg Time (s)↓ 1904 5388 1731 4520

Despite performance gains, continual improvement incurs substantial computational overhead. Token
usage increases 3× from 63k to 186k tokens per dataset in the default setting, computation time
nearly triples from 1904s to 5388s per dataset, and costs increase proportionally due to additional
LLM calls. This overhead occurs because datasets that succeed in the first iteration still complete all
5 iterations rather than stopping early, continuing to explore alternative implementations even when
initial performance is already strong.

Given these findings, we chose the early stopping strategy for the main paper to prioritize efficiency
while maintaining high performance (92% success rate). The modest improvements from continual
iteration (typically 2-7% gain) do not justify tripling computational costs for most practical appli-
cations. However, for scenarios where computational resources are not a constraint and optimal
performance is paramount, the continual improvement capability remains valuable. As demonstrated
in Table 1, extending the time limit to 24 hours with the best_quality preset further improves
performance, approaching expert-level human results on several datasets.

E.5 Examples of Generated Code

E.5.1 Code generated by MLZero def on the Hateful Meme Dataset

Evaluation Score (f1): 0.5868

Time Used: 663 seconds

1"""
2Hateful Meme Classification using AutoGluon MultiModal
3

4This script uses AutoGluon ’s MultiModalPredictor to classify memes as
hateful (1) or not hateful (0)

5based on both image content and text. The model processes image -text
pairs to make binary predictions .

6

7Installation requirements :
8pip install autogluon . multimodal
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9pip install pandas
10pip install numpy
11"""
12

13import os
14import pandas as pd
15import numpy as np
16import datetime
17from autogluon . multimodal import MultiModalPredictor
18

19def expand_image_paths (df , base_path ):
20"""
21Expands relative image paths to absolute paths
22

23Args:
24df: DataFrame containing image paths
25base_path : Base directory for images
26

27Returns :
28DataFrame with expanded image paths
29"""
30df = df.copy ()
31# Convert image paths to absolute paths if they are not already
32if ’img ’ in df. columns :
33df[’img ’] = df[’img ’]. apply ( lambda x: os.path.join(base_path ,

x) if not os.path.isabs(x) else x)
34return df
35

36def preprocess_data (train_df , test_df ):
37"""
38Preprocesses training and test data
39

40Args:
41train_df : Training DataFrame
42test_df : Test DataFrame
43

44Returns :
45Preprocessed training and test DataFrames
46"""
47# Remove unnecessary index column if present
48if ’Unnamed : 0’ in train_df . columns :
49train_df = train_df .drop( columns =[ ’Unnamed : 0’])
50if ’Unnamed : 0’ in test_df . columns :
51test_df = test_df .drop( columns =[ ’Unnamed : 0’])
52

53# Drop rows with NA values in training data
54train_df = train_df . dropna ( subset =[ ’label ’])
55

56return train_df , test_df
57

58def train_model (train_data , model_save_path ):
59"""
60Trains a MultiModalPredictor model
61

62Args:
63train_data : Training data DataFrame
64model_save_path : Path to save the trained model
65

66Returns :
67Trained MultiModalPredictor
68"""
69# Initialize and train the model
70predictor = MultiModalPredictor (
71label=’label ’,
72path= model_save_path ,
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73problem_type =’binary ’, # Binary classification task
74)
75

76# Train the model with medium quality preset and time limit
77predictor .fit(
78train_data =train_data ,
79time_limit =1800 , # 30 minutes
80presets =" medium_quality "
81)
82

83return predictor
84

85def make_predictions (predictor , test_data , output_path ):
86"""
87Makes predictions on test data and saves results
88

89Args:
90predictor : Trained MultiModalPredictor
91test_data : Test data DataFrame
92output_path : Path to save predictions
93"""
94# Generate predictions
95predictions = predictor . predict ( test_data )
96

97# Create results DataFrame with the same format as test data
98results = test_data .copy ()
99results [’label ’] = predictions
100

101# Save predictions to CSV
102results_path = os.path.join( output_path , " results .csv")
103results . to_csv ( results_path , index=False)
104

105print (f" Predictions saved to { results_path }")
106

107if __name__ == " __main__ ":
108# Define paths
109output_dir = "/ media/ agent /maab/runs/ RUN_20250504_222338 / outputs /

agentsonnet37_hateful_meme_output "
110os. makedirs (output_dir , exist_ok =True)
111

112# Create a timestamped folder for the model
113timestamp = datetime . datetime .now (). strftime ("%Y%m%d_%H%M%S")
114model_dir = os.path.join(output_dir , f" model_ { timestamp }")
115os. makedirs (model_dir , exist_ok =True)
116

117# Load data
118train_data_path = "/media /agent /maab/ datasets / hateful_meme /

training / train.csv"
119test_data_path = "/media / agent/maab/ datasets / hateful_meme / training

/ inference .csv"
120image_base_path = "/media /agent /maab/ datasets / hateful_meme /

training "
121

122train_df = pd. read_csv ( train_data_path )
123test_df = pd. read_csv ( test_data_path )
124

125# Preprocess data
126train_df , test_df = preprocess_data (train_df , test_df )
127

128# Expand image paths
129train_df = expand_image_paths (train_df , image_base_path )
130test_df = expand_image_paths (test_df , image_base_path )
131

132print (f" Training data shape: { train_df . shape}")
133print (f"Test data shape: { test_df .shape }")
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134

135# Train model
136predictor = train_model (train_df , model_dir )
137

138# Make predictions
139make_predictions (predictor , test_df , output_dir )
140

141print (" Hateful meme classification completed successfully !")

E.5.2 Code generated by Codex +rea on the Hateful Meme Dataset

Evaluation Score (f1): 0.4538

Time Used: 110 seconds

1#!/ usr/bin/env python3
2"""
3Baseline script for Hateful Meme classification using TF -IDF and

Logistic Regression .
4Loads training data , trains a text -only model , and predicts on

inference data.
5Saves predictions to ’results .csv ’ in the current directory .
6"""
7import os
8import pandas as pd
9

10from sklearn . feature_extraction .text import TfidfVectorizer
11from sklearn . linear_model import LogisticRegression
12

13def main ():
14# Paths to data
15train_path = "/ media/ agent /maab/ datasets / hateful_meme / training /

train.csv"
16test_path = "/ media /agent /maab/ datasets / hateful_meme / training /

inference .csv"
17# Load datasets
18train_df = pd. read_csv ( train_path )
19test_df = pd. read_csv ( test_path )
20

21# Text vectorization
22vectorizer = TfidfVectorizer ( max_features =5000 , ngram_range =(1, 2)

, stop_words =’english ’)
23X_train = vectorizer . fit_transform ( train_df [’text ’]. astype (str))
24y_train = train_df [’label ’]
25

26# Train classifier
27clf = LogisticRegression ( solver =’liblinear ’, max_iter =1000)
28clf.fit(X_train , y_train )
29

30# Predict on test data
31X_test = vectorizer . transform ( test_df [’text ’]. astype (str))
32preds = clf. predict ( X_test )
33

34# Prepare and save results
35_, ext = os.path. splitext ( test_path )
36output_path = os.path.join(os. getcwd (), f" results {ext}")
37result_df = pd. DataFrame ({
38’id ’: test_df [’id ’],
39’label ’: preds
40})
41result_df . to_csv ( output_path , index=False)
42print (f" Saved results to { output_path }")
43

44if __name__ == ’__main__ ’:
45main ()
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E.5.3 Code generated by AIDE def on the Hateful Meme Dataset

Evaluation Score (f1): 0.5573

Time Used: 2672 seconds

1import os
2import pandas as pd
3import numpy as np
4import torch
5import torch.nn as nn
6import torch.nn. functional as F
7from torch.utils.data import Dataset , DataLoader
8from torchvision import transforms , models
9from transformers import DistilBertTokenizer , DistilBertModel
10from PIL import Image
11from sklearn . model_selection import StratifiedKFold
12from sklearn . metrics import accuracy_score , f1_score
13import warnings
14

15warnings . filterwarnings (" ignore ")
16

17# Set device
18device = torch. device ("cuda" if torch.cuda. is_available () else "cpu")
19print(f"Using device : { device }")
20

21# Load data
22train_df = pd. read_csv ("./ input/ train .csv")
23test_df = pd. read_csv ("./ input / inference .csv")
24

25# Check label distribution
26print(f"Label distribution : { train_df [’label ’]. value_counts ()}")
27

28# Define image transforms
29image_transforms = transforms . Compose (
30[
31transforms . Resize ((224 , 224)),
32transforms . ToTensor (),
33transforms . Normalize (mean =[0.485 , 0.456 , 0.406] , std =[0.229 ,

0.224 , 0.225]) ,
34]
35)
36

37# Initialize tokenizer
38tokenizer = DistilBertTokenizer . from_pretrained (" distilbert -base -

uncased ")
39

40

41# Define dataset class
42class MultimodalDataset ( Dataset ):
43def __init__ (self , dataframe , transform =None , is_test =False):
44self. dataframe = dataframe
45self. transform = transform
46self. is_test = is_test
47

48def __len__ (self):
49return len(self. dataframe )
50

51def __getitem__ (self , idx):
52row = self. dataframe .iloc[idx]
53

54# Load and transform image
55img_path = os.path.join("./ input", row["img"])
56try:
57image = Image.open( img_path ). convert ("RGB")
58if self. transform :
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59image = self. transform (image)
60except Exception as e:
61print(f" Error loading image { img_path }: {e}")
62# Create a blank image if there ’s an error
63image = torch.zeros (3, 224, 224)
64

65# Tokenize text
66text = str(row["text"])
67encoding = tokenizer (
68text ,
69return_tensors ="pt",
70padding =" max_length ",
71truncation =True ,
72max_length =128 ,
73)
74

75# Get input_ids and attention_mask
76input_ids = encoding [" input_ids "]. squeeze (0)
77attention_mask = encoding [" attention_mask "]. squeeze (0)
78

79if self. is_test :
80return {
81"id": row["id"],
82"image ": image ,
83" input_ids ": input_ids ,
84" attention_mask ": attention_mask ,
85}
86else:
87return {
88"id": row["id"],
89"image ": image ,
90" input_ids ": input_ids ,
91" attention_mask ": attention_mask ,
92"label ": torch. tensor (row[" label"], dtype=torch.long),
93}
94

95

96# Define model
97class MultimodalModel (nn. Module ):
98def __init__ (self):
99super ( MultimodalModel , self). __init__ ()
100

101# Image encoder ( ResNet50 )
102self. image_encoder = models . resnet50 ( pretrained =True)
103for param in self. image_encoder . parameters ():
104param. requires_grad = False
105self. image_encoder .fc = nn. Linear (self. image_encoder .fc.

in_features , 512)
106

107# Text encoder ( DistilBERT )
108self. text_encoder = DistilBertModel . from_pretrained ("

distilbert -base - uncased ")
109for param in self. text_encoder . parameters ():
110param. requires_grad = False
111self. text_pooler = nn. Linear (768 , 512)
112

113# Classifier
114self. classifier = nn. Sequential (
115nn. Linear (1024 , 512) ,
116nn.ReLU (),
117nn. Dropout (0.3) ,
118nn. Linear (512 , 256) ,
119nn.ReLU (),
120nn. Dropout (0.3) ,
121nn. Linear (256 , 2),
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122)
123

124def forward (self , image , input_ids , attention_mask ):
125# Image features
126image_features = self. image_encoder (image)
127

128# Text features
129text_output = self. text_encoder (
130input_ids =input_ids , attention_mask = attention_mask
131)
132text_features = text_output . last_hidden_state [:, 0, :] # Use

[CLS] token
133text_features = self. text_pooler ( text_features )
134

135# Concatenate features
136combined_features = torch.cat (( image_features , text_features ),

dim =1)
137

138# Classification
139output = self. classifier ( combined_features )
140return output
141

142

143# Training function
144def train_model (model , train_loader , optimizer , criterion , device ):
145model.train ()
146total_loss = 0
147

148for batch in train_loader :
149image = batch["image "].to( device )
150input_ids = batch[" input_ids "]. to( device )
151attention_mask = batch[" attention_mask "].to( device )
152labels = batch["label "]. to( device )
153

154optimizer . zero_grad ()
155outputs = model(image , input_ids , attention_mask )
156loss = criterion (outputs , labels )
157loss. backward ()
158optimizer .step ()
159

160total_loss += loss.item ()
161

162return total_loss / len( train_loader )
163

164

165# Evaluation function
166def evaluate_model (model , val_loader , criterion , device ):
167model.eval ()
168total_loss = 0
169all_preds = []
170all_labels = []
171

172with torch. no_grad ():
173for batch in val_loader :
174image = batch[" image"].to( device )
175input_ids = batch[" input_ids "].to( device )
176attention_mask = batch[" attention_mask "].to( device )
177labels = batch[" label"].to( device )
178

179outputs = model(image , input_ids , attention_mask )
180loss = criterion (outputs , labels )
181

182total_loss += loss.item ()
183

184_, preds = torch.max(outputs , 1)
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185all_preds . extend (preds.cpu ().numpy ())
186all_labels . extend ( labels .cpu ().numpy ())
187

188accuracy = accuracy_score (all_labels , all_preds )
189f1 = f1_score (all_labels , all_preds )
190

191return total_loss / len( val_loader ), accuracy , f1
192

193

194# Prediction function
195def predict (model , test_loader , device ):
196model.eval ()
197predictions = []
198ids = []
199

200with torch. no_grad ():
201for batch in test_loader :
202image = batch[" image"].to( device )
203input_ids = batch[" input_ids "].to( device )
204attention_mask = batch[" attention_mask "].to( device )
205batch_ids = batch["id"]
206

207outputs = model(image , input_ids , attention_mask )
208_, preds = torch.max(outputs , 1)
209

210predictions . extend (preds.cpu ().numpy ())
211ids. extend ( batch_ids .numpy ())
212

213return ids , predictions
214

215

216# Cross - validation setup
217n_splits = 5
218skf = StratifiedKFold ( n_splits =n_splits , shuffle =True , random_state

=42)
219

220# Hyperparameters
221batch_size = 16
222num_epochs = 3
223learning_rate = 1e-4
224

225# Lists to store metrics
226cv_accuracies = []
227cv_f1_scores = []
228

229# For storing test predictions from each fold
230test_predictions = []
231

232# Create test dataset and loader
233test_dataset = MultimodalDataset (test_df , transform = image_transforms ,

is_test =True)
234test_loader = DataLoader ( test_dataset , batch_size =batch_size , shuffle =

False)
235

236# Cross - validation loop
237for fold , (train_idx , val_idx ) in enumerate (skf.split(train_df ,

train_df ["label "])):
238print (f"\ nFold {fold + 1}/{ n_splits }")
239

240# Split data
241train_data = train_df .iloc[ train_idx ]. reset_index (drop=True)
242val_data = train_df .iloc[ val_idx ]. reset_index (drop=True)
243

244# Create datasets and dataloaders
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245train_dataset = MultimodalDataset (train_data , transform =
image_transforms )

246val_dataset = MultimodalDataset (val_data , transform =
image_transforms )

247

248train_loader = DataLoader ( train_dataset , batch_size =batch_size ,
shuffle =True)

249val_loader = DataLoader ( val_dataset , batch_size =batch_size ,
shuffle =False)

250

251# Initialize model , optimizer , and loss function
252model = MultimodalModel ().to( device )
253optimizer = torch.optim.Adam(model. parameters (), lr= learning_rate )
254criterion = nn. CrossEntropyLoss ()
255

256# Training loop
257for epoch in range ( num_epochs ):
258train_loss = train_model (model , train_loader , optimizer ,

criterion , device )
259val_loss , accuracy , f1 = evaluate_model (model , val_loader ,

criterion , device )
260

261print (
262f" Epoch { epoch +1}/{ num_epochs }, Train Loss: { train_loss :.4

f}, Val Loss: { val_loss :.4f}, Accuracy : { accuracy :.4f}, F1: {f1 :.4
f}"

263)
264

265# Final evaluation
266_, accuracy , f1 = evaluate_model (model , val_loader , criterion ,

device )
267cv_accuracies . append ( accuracy )
268cv_f1_scores . append (f1)
269

270print (f"Fold {fold + 1} - Final Accuracy : { accuracy :.4f}, F1: {f1
:.4f}")

271

272# Make predictions on test set
273ids , preds = predict (model , test_loader , device )
274test_predictions . append (preds)
275

276# Calculate average metrics
277mean_accuracy = np.mean( cv_accuracies )
278mean_f1 = np.mean( cv_f1_scores )
279std_accuracy = np.std( cv_accuracies )
280std_f1 = np.std( cv_f1_scores )
281

282print(f"\nCross - Validation Results :")
283print(f"Mean Accuracy : { mean_accuracy :.4f} +- { std_accuracy :.4f}")
284print(f"Mean F1 Score : { mean_f1 :.4f} +- { std_f1 :.4f}")
285

286# Average test predictions from all folds
287test_predictions = np.array( test_predictions )
288final_predictions = np. round (np.mean( test_predictions , axis =0)). astype

(int)
289

290# Create submission file
291submission = pd. DataFrame ({"id": test_df ["id"], " label":

final_predictions })
292

293# Save submission file
294submission . to_csv ("./ working / submission .csv", index=False)
295print(f" Submission file saved to ./ working / submission .csv")
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F More Related Work: AutoML with LLMs

Recent advances have demonstrated the potential of integrating LLMs into AutoML systems across
various components of the ML workflow. For feature engineering, researchers [29, 82] have leveraged
LLMs to generate meaningful features with explanations and efficiently evaluate candidate features.
In hyperparameter optimization, LLM-based approaches [79, 47] generate configurations through
dataset analysis and iterative refinement processes. For neural architecture search, researchers have
combined LLMs with Quality-Diversity algorithms to generate diverse network architectures [55] and
constructed performance predictors for estimating neural network efficiency [35]. LLMs have also
shown effectiveness for data preprocessing tasks such as error detection and imputation [78]. While
these approaches successfully apply LLMs to specific components, MLZero differs by providing an
end-to-end multi-agent solution that fully automates the entire ML workflow.

G Limitations and Future Work

Despite MLZero’s strong performance across diverse machine learning tasks, several limitations
warrant consideration. First, while our system can leverage both documentation and code examples,
its effectiveness may be limited when working with ML libraries that have minimal description in
either text or code format. Second, machine learning libraries contain unavoidable undocumented
bugs that are difficult to address through in-context learning, and LLMs cannot anticipate these
issues unless explicitly prompted. Additionally, our experiments reveal that smaller LLMs (8B
parameters) still demonstrate a significant performance gap compared to larger models despite
showing competitive results.

Future research directions should address these challenges through several avenues. First, enhancing
performance with smaller language models through improved alignment with external knowledge
and curated code examples represents a promising direction, especially considering our 8B parameter
model already demonstrates reasonable performance. Second, developing a finetuning process that
allows LLMs to actively experiment with and learn ML libraries during training could help address
both undocumented bugs and improve smaller model performance, while also expanding MLZero’s
applicability to emerging libraries with less structured documentation. This approach would enable
models to acquire practical knowledge about the ML library behavior beyond what is explicitly
documented. Finally, conducting longitudinal studies on real-world ML workflows would provide
insights for better supporting human-AI collaboration in data science processes, particularly for
iterative development scenarios where expert guidance can further improve automated approaches.
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