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Abstract

Restless Multi-Armed Bandits (MABs) are a general framework designed to handle
real-world decision-making problems where the expected rewards evolve over
time, such as in recommender systems and dynamic pricing. In this work, we
investigate from a theoretical standpoint two well-known structured subclasses
of restless MABs: the rising and the rising concave settings, where the expected
reward of each arm evolves over time following an unknown non-decreasing and a
non-decreasing concave function, respectively. By providing a novel methodology
of independent interest for general restless bandits, we establish new lower bounds
on the expected cumulative regret for both settings. In the rising case, we prove a
lower bound of order (7"%/3), matching known upper bounds for restless bandits;
whereas, in the rising concave case, we derive a lower bound of order Q(T3/ 5),
proving for the first time that this setting is provably more challenging than sta-
tionary MABs. Then, we introduce Rising Concave Budgeted Exploration
(RC-BE(«v)), a new regret minimization algorithm designed for the rising concave
MABSs. By devising a novel proof technique, we show that the expected cumulative

regret of RC-BE(q) is in the order of O(T7/11). These results collectively make a
step towards closing the gap in rising concave MABs, positioning them between
stationary and general restless bandit settings in terms of statistical complexity.

1 Introduction

Multi-Armed Bandits (MABs, Lattimore and Szepesvari, 2020) are a well-known framework to model
decision-making problems, where, for each round, an agent chooses (pulls) an action (arm) among a
set of available actions and observes a reward, i.e., numerical feedback which represents the goodness
of the choice. In this setting, the goal of the learner is to minimize the expected cumulative regret
accumulated during the interaction, i.e., the sum over time of the difference between the expected
reward of the optimal arm and that of the chosen one. The standard MAB setting considers stationary
reward distributions. However, in many real-world decision-making problems, the expected rewards
of available actions can vary over time due to changes in the surrounding environment, such as
shifting in consumer preferences for online marketplaces (Wu et al., 2018) or evolving health status
of patients in treatment selection during clinical trials (Aziz et al., 2021). To address such dynamics,
the restless MABs framework (Tekin and Liu, 2012) has been introduced. This model generalizes the
classical MAB setting by explicitly incorporating the non-stationarity of the arms.!

'With a slight abuse of terminology, we will use the words non-stationary and restless interchangeably.
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The arrow — points from the previous best result to the improved one presented in this paper.

Non-stationarity in bandit problems has been addressed through a variety of models and methods,
such as restless bandits with abrupt changes in the reward distribution (e.g., Garivier and Moulines,
2011), smoothly evolving expected rewards (e.g., Trovo et al., 2020), and settings where the total
variation of expected rewards is bounded over time (e.g., Besbes et al., 2014). These frameworks
allow the expected rewards to fluctuate in complex ways, such as increasing and then decreasing,
without constraints on their direction of change. In contrast, there are important classes of bandit
models that enforce monotonicity on the expected rewards. These include rising bandits (Heidari et al.,
2016; Metelli et al., 2022), where expected rewards are non-decreasing, and rotting bandits (Levine
et al., 2017; Seznec et al., 2019, 2020), where they are non-increasing. Such models are well-suited
for capturing structured real-world dynamics, including online model selection (Metelli et al., 2022),
hyperparameter optimization (Mussi et al., 2024), and recommendation systems (Levine et al., 2017).

Motivation. In this work, we focus on the restless rising bandits and restless rising concave bandits
and we aim to characterize them from a theoretical standpoint since several fundamental questions
remain unresolved. In the general restless bandit setting, where the expected rewards may vary over
time with bounded variation over 7" rounds, the minimax regret is known to be lower bounded by
Q(T?3) (Besbes et al., 2014).> However, no regret lower bound has been derived for the specific
class of non-decreasing (rising) or non-decreasing concave (rising concave) restless bandits yet,
making the classical lower bound for stationary bandits, Q(Tl/ 2) (Lattimore and Szepesvari, 2020,
Thm. 15.2), the best available reference, and leaving the following question open.

Question 1: Is it possible to conceive regret lower bounds for restless rising and restless rising
concave bandits that are strictly larger than the Q(T"/?) bound for stationary bandits?

The currently available algorithms for restless rising bandits are those designed for general restless
bandits with bounded variation, which achieve a regret upper bound of order O(T'*/?) (Besbes et al.,
2014). When incorporating concavity, more specific algorithms have been proposed (Metelli et al.,
2022), but unfortunately, they fail to improve the regret order. This generates the following question.

Question 2: Is it possible to devise algorithms for restless rising and rising concave bandits whose
regret upper bounds are strictly smaller than the O(T%/3) bound for general restless bandits?

Original Contribution. In this paper, we aim to provide an answer to the research questions
presented above, making a step towards the complete statistical characterization of restless rising and
restless rising concave bandits. The contribution is summarized as follows:

* In Section 3, we provide a general recipe for deriving regret lower bounds for restless bandits,
which generalizes the construction of Besbes et al. (2014) and is of potential independent interest
(Lemma 3.1). We then specialize this construction to the cases of rising and rising concave bandits.
First, we derive a lower bound of order Q(72/ 3) for rising bandits, showing that this setting shares
the same statistical complexity as general restless bandits (Theorem 3.2) and answering negatively

*We use Q(-) and O(-) to highlight the dependence on T in the lower and upper bounds, respectively,
omitting constant factors. For upper bounds, we also use O(-) to suppress logarithmic dependencies on 7" too.



to Question 2 for rising bandits. Second, for restless rising concave bandits, we show that the
regret is at least of order Q(7"%/), showing that this setting is more challenging than stationary
MABs (Theorem 3.3). These results provide a positive answer to Question 1 for both settings.

* In Section 4, we present Rising Concave Budgeted Exploration (RC-BE(«)), a novel
regret minimization algorithm for restless rising concave MABs, which extends Budgeted
Exploration (Jia et al., 2023). By devising a novel analysis, we provide an upper bound
on its regret of order @(T” 11y (Theorem 4.4) with no requested knowledge of the learning
horizon or of the total variation. This result improves upon the current best upper bound of order
O(T?/3) and provides a positive answer to Question 2 for rising concave bandits.

Numerical simulations are provided in Section 5. Related works are discussed in Appendix A.
Omitted proofs are provided in Appendices B and C for lower and upper bounds, respectively. A
summary of known and new results presented in this paper is provided in Table 1.

2  Setting

A restless K-armed MAB (Tekin and Liu, 2012; Lattimore and Szepesvari, 2020) is defined as a vector
of probability distributions v = (v;);e[x], Where v; : N>y — A(R).? Let T’ € N> be the learning
horizon, at each round ¢ € [T7, the agent selects an arm I, € [K] and observes a reward R, = X7, 4
where X; ; ~ v;(t) forall i € [K], t € N5;. We denote the random table with all possible rewards
as X = (Xit)ie[K], teNs, - For every arm i € [K], we define its expected reward ji; : N>; — R as
the expectation of the reward obtained by pulling such arm, i.e., u;(t) = Ex ., ) [X] and denote
the vector of expected reward functions as gt = (f4);e[x7. We assume that the expected rewards are

bounded in [0, 1], and that the realizations are o-subgaussian.*

Rising Bandits. We revise the rising bandits notion, i.e., MABs with non-decreasing expected

rewards (Heidari et al., 2016). Such a property is captured by the following assumption.

Assumption 2.1 (Non-Decreasing expected reward). Let v be a restless MAB. For every arm i € [ K]

and round t € N1, the function u;(t) is non-decreasing in t. In particular, defining the increments:
Yi(t) = pi(t +1) — pa(t) = 0.

We introduce a further assumption on the concavity of the expected rewards (Heidari et al., 2016).

Assumption 2.2 (Concave expected reward). Let v be a restless MAB. For every arm i € [ K| and
round t € N1, the function u;(t) is concave in't, i.e.:

vi(t+1) —(t) <0.

Formally, we call restless rising a restless MAB in which Assumption 2.1 holds, and restless rising
concave a restless MAB in which both Assumptions 2.1 and 2.2 hold. From now on, we omit the
adjective restless for the sake of conciseness.

Learning Problem. Let ¢ € N>, be a round, we denote with H, = (I;, R;)j_; the history of
observations up to t. A (non-stationary deterministic) policy is a function 7 : H;_1 +— I; mapping a
history to an arm, that is abbreviated as 7 (t) := 7w(H;_1). We define the performance of a policy 7
in a restless MAB v as the expected cumulative reward collected over the T" rounds, formally:

Jon.T) = B [iu a

A policy 7 is optimal if it maximizes the expected cumulative reward: 7% € arg max, {J, (7, T)}.
In restless MABSs, the optimal policy does not explicitly depend on 7" and consists of pulling in each
round the arm with the highest expected reward: 77 (t) € arg max;.[x pi(t) for every t € Nx1.

Denoting with J*(T') := J, (w5, T) the expected cumulative reward of an optimal policy, the
suboptimal policies 7 are evaluated via the expected cumulative regret:
R, (m,T) == J3(T) — Ju(m,T). €))

*Leta,be N>y, b > a, we denote with [a,b] == {a ...,b}, with [a] := [1,a], and with A(X) the set of

probability measures over the measurable set X'.

o2

2
*A random variable X is o-subgaussian if E[eA(X_]E[XD] <e 2 ,forevery A e R.



Instances Characterization. To characterize an instance v, we introduce the following quantity,
namely the cumulative increment, defined for every ¢1,t, € N5 with ¢ < ¢5 as:

to—1

Yo (t1,to) = Z max 7; ().
= €[ K]

The cumulative increment extends to an arbitrary interval with ¢; and ¢ as extremes the analogous
notion Y, (T, ¢) employed in (Metelli et al., 2022), restricting to ¢ = 1. It is immediate to show

that T, (1, t2) € [0, K] since T, (1, t2) < D)2, iegr) V(1) < Yiegxy 1 = K. Analogously to
what is done in (Besbes et al., 2014), we consider the class of instances whose cumulative increment
over the learning horizon 7 is bounded by a variation budget Vi € (0, K], which we assume known,
formally Y, (1,T) < V. Then, we call, respectively, £7 (T, Vi) and EZ (T, Vi) the set of rising
MABEs and rising concave MABs instances, with o-subgaussian rewards, whose T, (1, T) satisfies
the previous inequality.

3 Lower Bounds

In this section, we analyze the statistical complexity of the learning problem in both the rising and
rising concave settings. To this end, we provide a regret lower bound suffered by any deterministic
policy 7 on a class of instances which are rising and rising concave, respectively.’ In particular, we
show that rising MABSs are not easier than restless MABs with bounded variation (Besbes et al., 2014,
Thm. 1) and that rising concave MABs are harder than stationary MABs (Lattimore and Szepesvri,
2020, Thm. 15.2). The analysis is carried out as follows. We develop a general recipe for regret lower
bound construction on a richer class of restless MABs, described in Section 3.1. Then we specialize
it to both the settings of interest (Sections 3.2 and 3.3).

3.1 General Recipe for the Lower Bound

We consider a class of restless MABs with the following structure. The set of rounds N is split into
windows. Let (A, )wen., Where A,, € N3 be a sequence of window widths. A window consists
of a set of rounds [[s,,, €,,] © N>; where s, := ;”:_11 A+ 1lande, = >, Ay, forw € Nxj.
For each window index w € N1, we define two functions fi,,, fi,, : [Aw] — [0, 1], which we call
base and modified trend respectively, that describe how the expected rewards of the arms evolve in
[$w;ew]- In particular, in each window, at most one arm among the K has expected reward that
follows the modified trend, while all the others have expected rewards that follow the base trend. The
arm whose expected reward follows the modified trend can change between windows. We further
enforce Ji,, (t) < Ji,(t) forall w € Nx1, t € [A,],% so that the arm whose expected reward follows
the modified trend is the optimal one. More formally, let w(t) := min{w € N> s.t. e,, = t} be the
index of the window which contains the round ¢ € N ;. For each sequence 0 = (0.)wen,, With
oy € [0, K] in each window of index w and for each subgaussian parameter o > 1, we define an
instance vy = (Vg ;)ic[x] as follows:

Vo (1) = {Wuw(t)(t = Sw(r) T 1),0) ifi# oy )

o 1p(/jw(t) (t — Sw(t) + 1)70) ifi = Ow(t) ’

where (1, o) is a probability distribution with parameters . € [0, 1], 0 = 1such thatif X ~ ¢ (u, o),

then:
3 1,
Y _ 50 W.p. 7+ 55
T )—ly wp. 23— s
2 P17 2

First of all observe that i € [0,1], ¢ = 1 imply p/(20) € [0,1/2], so that the distribution is well-
defined. Furthermore, if X ~ v (u, o), then, in virtue of Hoeffding’s lemma, X is o-subgaussian, and,
by direct calculation, it has expected value equal to x. Notice that, if o,, = 0, all the arms follow the

3Since we are considering stochastic bandits, our lower bounds can be generalized to stochastic policies,
yielding analogous results, at the cost of additional notational complexity.

We consider i, (t) and fi,,(t) both in the domain ¢ € [A,,] instead of in the domain [s.,, €], for the sake
of simplicity in the notation, as every window is defined independently from the others.



base trend, otherwise, o,, corresponds to the only arm following the modified trend. We denote with
Tt = (i) wens, and [t = (i, )weN-, the sequences of base and modified trends respectively, and
with E% i= {vg s.t. o € [0, K]N=1} the class of instances that they induce by varying the sequence

o of optimal arms in each window. The following result, whose proof is deferred to Appendix B,
holds.

Lemma 3.1 (General Lower Bound). Under the assumption that Ti,,(t) < fi,,(t) for all w € N3,

t € [Ay], for any deterministic policy w, subgaussian parameter o > 1, and learning horizon
T € Ny, it holds that:

w(T) w,n,T,0
1 In(2)DEAT\
sup Ry (m,T) = Z 1——= —A\|———— | A", 3)
Veigﬁ =1 K 2K
where:
o min{e, T}
DERTS SN D (7, (¢ — 50+ 1), 0) [0t = 50+ 1),0)),
t=sqy

o min{e, T}

ABBRT = N (it = $0 + 1) = Ty (t — 50 + 1)),

t=54

Sfor all w € [w(T)], with Dky,(+||-) being the Kullback-Leibler divergence of the two distributions
(formally defined in Appendix B).

This result highlights the trade-off in designing a “challenging” restless instance. On the one hand,
we do not want to make the base and modified trends too far apart, otherwise it would be easy for the
agent to discern one from the other. This is reflected in Equation (3), as the term D-AT:7 increases
when the two trends diverge and contributes to reducing the regret lower bound since A%AT is
non-negative by construction. On the other hand, we want to maximize the area A% between the
two trends. In this way, under the assumption that D#-#7:7 is small enough so that the factor that

multiplies A%#T" is non-negative, we increase the regret lower bound.

3.2 Specializing the Lower Bound for the Rising Setting

In this part, we apply Lemma 3.1 to provide a regret lower bound for the class £7 (T, V), holding for
any deterministic policy 7. To this end, we construct sequences of window widths (A, ) wen., and
of base and modified trends 7z, fi, such that Egﬁ g S E? (T, Vr). A representation of the structure
of the instances is depicted in Figure 1. We choose windows of the same width. In each window, the
base and modified trend are both constant, the latter is greater than the former by a quantity €, > 0
and the value of the modified trend in a window corresponds to the value of the base trend in the
next window. In this way, we guarantee that the instances are rising no matter which arm follows the
modified trend. In Appendix B, we formalize the instances and we prove that the following holds.

Theorem 3.2 (Lower Bound for the Rising Setting). For any deterministic policy m, subgaussian
parameter o > 1, and learning horizon T € Nx1, T > o? K min{1, V7 } 2, it holds that:
1 2,2 .1 1
sup R,(m,T) = —o03T35K5 min{l, Vr}s.
ve€s (T,Vr) 64

The orders of growth for T, K, and V7 in this result match the upper bound for the general restless
case with bounded variation (Besbes et al., 2014, Thm. 2) when Vi < 1.7 This implies that rising
MABs are not easier than general restless MABs with bounded variation despite the additional
assumption. Thus, the characterization of the statistical complexity of this setting is completed.

3.3 Specializing the Lower Bound for the Rising Concave Setting

In this part, we provide a regret lower bound for the class 7 (T, V) holding for any deterministic
policy 7. In analogy to Section 3.2 for the rising setting, we construct sequences of window widths

"We believe this is an artifact of the analysis since, in our the lower bound construction, we have Y(1,7T) < 1.
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of the instances is depicted in Figure 2. We choose again windows of the same width. In each window,
the base and modified trends share the same starting and ending values. Furthermore, the end value
of expected rewards in a window matches the start value of expected rewards in the next window.
The end value is greater than the start value to guarantee that the instances are rising. The base trend
joins the two endpoints of the expected rewards of each window with a single segment, while the
modified trend uses two segments. At the beginning, it rises with a slope greater than that of the base
trend until half the window. At this point, the distance between the base and the modified trend in the
window is maximum. Then, the modified trend keeps rising, but with a slope that is smaller than that
of the base trend, until the two trends meet at the end of the window. The pattern repeats and the
slopes are chosen in such a way that the slope of the second part of the modified trend in a window
(which is the smallest slope in a window) corresponds to the slope of the first part of the modified
trend in the next window (which is the greatest slope of an expected reward in a window). In this way,
we guarantee that the instances are rising and concave, no matter the choice of which arm follows the
modified trend. In Appendix B, we formally present the instances and we prove the following result.

Theorem 3.3 (Lower Bound for the Rising Concave Setting). For any deterministic policy T,
subgaussian parameter o > 1, and learning horizon T € Nx1, T > 2192 K min{1, V3}~2, it holds
that:
sup Ry (m,T) =2 "“6*5T3 K% min{1, Vy}5.
ueé‘g (T,VT)

This result proves that regret minimization in rising concave MABs represents a harder learning
problem w.r.t. stationary MABs which are characterized by the usual Q(7"%/?) lower bound.

4 Upper Bound for the Rising Concave Setting

In this section, we present a novel regret minimization algorithm, Rising Concave Budgeted
Exploration (RC-BE(«)), designed for rising concave MABs (Algorithm 1), and analyze its perfor-
mance by providing an upper bound of the expected cumulative regret suffered on a generic instance
v e EZ(T, V). We show that this upper bound attains a strictly smaller rate w.r.t. the lower bound
on the expected cumulative regret on a generic restless MAB with bounded variation (Besbes et al.,
2014), and thus that rising concave MABs are indeed an easier setting w.r.t. them.

Algorithm. RC-BE(«) is an improvement of the Budgeted Exploration (BE) algorithm (Jia et al.,
2023), originally designed for 2-armed general restless bandits.® The original BE algorithm works
as follows. The learning horizon 7T is split in windows of A € N3 ; rounds each. In each window,
the algorithm restarts. At the beginning of each window, the agent carries out an exploration phase
which consists of several round-robin cycles. In particular, the agent keeps track of the arms alive in

8The extension of BE to K -armed bandits is proposed in the unpublished preprint (Jia et al., 2024) for the case
of smooth MABs. However, we have found soundness issues in the analysis proposed there (see Appendix F).
For this reason, we will develop an independent analysis which overcomes these issues.



Algorithm 1 RC-BE(«).
1: Input: @ > 1, K € N>»o
2: Initialize w « 1, d < 1, A« [K], B— A, S; < 0,Vie [K]
3: for ¢t € [T] do
4 ifd=A + 1 then
5 Increment w «— w + 1 .
6 Resetd < 1, A [K], B« A, S; < 0,Vie [K]
7 end if
8 Pull I; € B
9:  Remove B «— B\{I;}
10 Observe Ry = X7, +
11 Update 5'1, — S'It + Ry
12:  if B = {} then
13: Compute 5* — maxies S
14:
15
16
17
18
19
20

for i € [K] do
ific Aand S; + BSY < S* then
Remove A «— A\{i}
end if
end for
Reset B «— A
: end if
21: Incrementd «— d + 1
22: end for

the current window in a set A < [K], initialized to [K] at the beginning of each window, and, in
each round-robin cycle, pulls each of these arms once. The agent cumulates the observed rewards for
each arm in the variables S; with i [K]. At the end of each round-robin cycle, the agent compares
the cumulative reward of each alive arm with the maximum cumulative reward among alive arms
S = maxX;e A S;. If fori € A we have S; + B < S*, where B > Oisa parameter of the algorithm,
we say that arm ¢ has run out of budget and the agent removes it from the set of alive arms. It can
happen that, after several round-robin cycles, the set of alive arms becomes a singleton: A = { i*} In
this case, no more eliminations can happen and the agent will commit to the remaining arm 7*.

RC-BE(«) extends the original algorithm as follows. It exploits the concavity of the instance
through increasing window widths AEE“) = [w®] and corresponding budgets Bz(uo‘) = 2(1 +
QJ(A&O‘) In(2K AE&"’))V 2). The rationale is the following. The algorithm suffers a high regret
in windows during which the optimal arm changes. Indeed, in windows where no change happens,
the algorithm is likely to commit to the best arm, suffering no regret after the initial exploration
phase. Conversely, in windows where the optimal arm changes, the algorithm could commit to
an arm that then becomes suboptimal, or it could fail in estimating the optimal arm. In this case,
the regret increases with the distance of the expected rewards of * and the actual optimal arm in
round #: i € arg max;cxq fi(t). Thanks to the concavity, the maximum increment max;ex i(t)
decreases as t increases. Thus, as time passes, if the optimal arm changes, it takes longer for the
expected rewards of 7* and iy to diverge significantly. Hence, we can restart the algorithm with a
lower frequency, which is equivalent to having windows with increasing width.

Regret Analysis. RC-BE(«) partitions the set of rounds N> in windows [[51(1?), e,(ua)]] with (%) =
vt Al(a) +landeld =", Al(a), forw € Noy. Let w(®(¢) = min{w € Nx s.t. el > ¢}
be the index of the window that contains the round ¢t € N5 ;. Thus, the learning horizon 7' is split in

w(® (T) windows. In what follows, we bound the regret suffered by RC-BE(«x) on the set of windows
W which enjoy certain properties that we introduce later. To this end, we denote the regret suffered

by a policy 7 on a set of windows W < Nx1, [W| < o0 as:
egf)
RymW)i= 3, 3 B e =, (0)]
wew (o) =7



Now, we present the properties which induce the classes of windows of interest for the analysis. In
particular, we need to formally characterize the fact that, in a window, the optimal arm can change.
To this end, we introduce the following definitions, in analogy to what is done in (Jia et al., 2024).

Definition 4.1 (Overtaking). An arm i € [K]| overtakes an arm j € [K] at time t € Nxy if
it —1) < p(t —1) and pi(t) = p;j(t). Formally, we write i 1, j (note that i 14 ).

Definition 4.2 (Crossing). Two arms i,j € [K] cross at time t € Nxo, if i 1¢ j or j 14 i. Formally,
we write © Xy j (note that i X 1).

We introduce a binary relation for arms that cross in the w-th window. For w € N>, 4,5 € [K]:
i,xj iff ix,jforsomete s + 1,el¥].

Let ., x* be the transitive closure of ,, x. , x* is an equivalence relation since ,, x is reflexive and
symmetric. For an arm i € [ K], we denote with [i] ,+ its equivalence class w.r.t. ,x T. Let:

T} = {i € [K] s.t. there exists t € [[SEU‘”, eﬁf‘)]] with i € arg max e[k i (1)},
be the set of optimal arms in window w. Furthermore, we define Z; := [i}] .+ for some i, € 7).
Observe that the definition is well posed since, in virtue of Lemma C.2, it does not depend on the
choice of i¥ . For w € N5, 7 € [ K], we define the diamefer of its equivalence class w.r.t. ,x T as

d (i) = max - (0 = )]

gokeli] 4, telsi? el

We use the shorthand d¥ for d,, (i) where i* € Z*. The following lemma decomposes the regret
suffered by RC-BE(«) during the w-th window as the sum of the regret due to the exploration phase
plus the regret due to the commitment phase.

Lemma 4.1. For all restless rising concave MABs v, o > 1, w € Nx1 we have that:

R, (RC-BE(a), {w}) < 3KB{™ + A®@da* .
— ——

Exploration ~ Commitment

)

Thus, the regret due to exploration is proportional to the budget Bﬁ,f‘ , while the regret suffered during

the commitment phase depends on the width of the window AS,?) and on the diameter d of Z.X. In

windows where the optimal arm does not change, Z,; is a singleton and, thus, its diameter is 0. This
reflects the fact that, in such windows, the algorithm suffers only the regret due to the exploration.

We now provide an upper bound for d,, (7) with w € N>1,¢ € [K] which exploits concavity.

Lemma 4.2. For all restless rising concave MABs v, o = 1, w € Nx, i € [K], we have that:

du(i) < 8(1+a) (|[i] x+| — 1) wTu(1,el)) < 16aKw™ T, (1,elM).

Recall that T, (1, eSS‘)) is upper bounded by K. Thus, as expected, eventually the upper bound of the
diameter decreases as w increases. This reflects what we informally stated before. As time goes, due
to the concavity, it takes more time for the expected rewards of arms which have crossed to diverge
significantly. Thus, it makes sense to increase the width of the windows over time.

We now discriminate between two kinds of windows: those in which the expected rewards of arms
which cross (and thus of the arms which belong to Z.;) do not diverge significantly and those in
which, instead, the converse happens. More formally, let d € (0, K]:

Wea(T) = {w e [w®(T)] st dy(i) < dforallie [K]},

W= a(T) = {w e [w®(T)] s.t. dy(i) > dfor some i € [K]}.

In the second class of windows, we have no upper bound to the diameter d7, other than that of
Lemma 4.2, which considers a worst-case scenario in which the divergence of the expected rewards
of the arms which cross is the maximum possible. We now show that this scenario, in the rising
concave setting, can happen only a limited number of times. In particular, this is translated into an
upper bound to the number of windows in W- 4(T"), which is captured by the following lemma.



Lemma 4.3. For all restless rising concave MABs v, « > 1, T € N5, d € (0, K|, we have that:

W=a(T)| < 9In (3e§§1)(T)K/d) K343,

Informally, this lemma states that, in the rising concave setting, it cannot happen in too many windows
that the expected rewards of arms which cross diverge significantly (i.e., more than d).

We use this fact to conclude the analysis. In particular, observe that we can always upper bound
the regret suffered on a set of windows W as R, (m, W) < [W|maxyew Ry (7, {w}). We use
this to upper bound the regret suffered on both W<4(T") and W~4(T). In the first case, we ob-
serve that [Weq(T)| < w(®)(T) and use the definition of W 4(T') together with Lemma 4.1 to
bound max,eyy_, (1) Ry (RC-BE(a), {w}). In the second case, we use Lemma 4.3 to upper bound
|W=.4(T)| and Lemma 4.1 together with Lemma 4.2 to deal with max,eyy_, (1) R (RC-BE(ar), {w}).
These observations lead to the following result which is formally proven in Appendix C.

Theorem 4.4 (Upper Bound for the Rising Concave Setting). For all restless rising concave MABs
v, a > 1,T € Nyoy, we have that:

5/

R, (RC-BE(a), T) < 2'50° (In (aKT?))* ((1 +o)K3T s 4+ K375 1, (1,T)

+(1+ a)KTlfff>.
In particular, for o/ = 8/3, we get:
R, (RC-BE(a),T) = O <aK3T% +KSTHY,(1,T) + aKT%) .

Furthermore, for

8 — 4logy (Iij_‘f)

3+ 4log, (KQVT

"
«

9

1+o0

under the additional assumptions v € EZ(T, V),

T o i 4 (LT OV PETERY
= 1+ 0)—8/5K16/5V7§/5

we get:
_

R, (RC-BE(a),T) = O (U%K%T%VT T to

9
1
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2
1

By looking at the algorithm and at Theorem 4.4, we observe how by selecting o = 8/3, we achieve

a regret of order @(T” 1) without the knowledge of either the total variation V7 or the learning
horizon T, making it an anytime algorithm, at the price of a worse dependence on K and V7. This
result shows that the regret minimization problem in rising concave MABs is indeed easier w.r.t.
general restless MABs with bounded variation (Besbes et al., 2014) and rising MABs. Indeed, the
regret @(T” 1Y in our upper bound is smaller than that of the lower bound for restless MABs with
bounded variation (Besbes et al., 2014, Theorem 1) and rising MABs (Theorem 3.2), i.e., Q(T%/3).

5 Numerical Simulations

In this section, we present the results of numerical simulation of RC-BE(«) compared to state-of-the-
art algorithms for restless, restless rising concave, and stationary MABs.?

Baselines. We consider the baseline algorithms: Rexp3 (Besbes et al., 2014), an algorithm for
restless MABs based on a variation budget; R-1less-UCB (Metelli et al., 2022), an algorithm for
restless rising concave MABs; and UCB1 (Auer et al., 2002a; Bubeck, 2010), one of the most effective

°Additional simulations are reported in Appendix E. The code to reproduce the results is available at
https://github.com/mlgwings/rcbealpha-experiments.


https://github.com/m1gwings/rcbealpha-experiments
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Figure 3: Instance and results of the experimental validation.

algorithms for stationary MABs. The choices of the parameters of the algorithms are reported in
Appendix E.

Setting. The algorithms are evaluated for 7' = 5 - 105 rounds on synthetic instances with K = 5
arms. The stochasticity is realized by adding Gaussian noise with standard deviation o = 0.1. The
curves of the expected rewards have the functional form f(t) = ¢(1 — exp(—sat/T)) for t € [T]
where a, ¢ € (0,1], s = 50, and are reported in Figure 3a. We compare the algorithms in terms of

empirical cumulative regret I%l, (7, t) which is the empirical counterpart of the expected cumulative
regret R, (,t) at round ¢ averaged over multiple independent runs. In each simulation, the parameter
a of RC-BE(«) is set to o = 8/3, as suggested by Theorem 4.4.

Results. The empirical cumulative regret suffered by the algorithms is shown in Figure 3b. We
observe that RC-BE(«) is the algorithm that achieves the lowest regret at the horizon. UCB1 has
the lowest regret in the first rounds, afterwards its regret starts increasing when the optimal arm
changes. This is consistent with the fact that we are violating the stationarity assumption on which the
algorithm relies. Rexp3 is an algorithm which restarts at a fixed frequency. In particular, the number
of restarts has order 7V/3. Thus, in this simulation, there are ~ 102 restarts, and, by looking at the
figure, it is not possible to appreciate the behavior of the algorithm between one restart and the next.
For this reason, Rexp3 shows a cumulative regret which increases linearly. This is consistent with
the fact that the algorithm is not anytime. R-1ess-UCB, consistently with its theoretical guarantees,
shows a sublinear growth of the cumulative regret. Its estimator relies on a rested model of the
evolution of the expected rewards of the arms, penalizing the empirical performance.

6 Discussion and Conclusions

In this paper, we studied the restless rising and rising concave MABs, where the expected rewards of
the arms are non-decreasing and non-decreasing concave in the number of played rounds, respectively.
We derived lower bounds to the expected cumulative regret in both settings. The lower bound in the
rising setting has order Q(TQ/ 3) and implies that the non-decreasing expected reward assumption
does not simplify the learning problem w.r.t. the general restless setting with bounded variation, and
so that all the algorithms which are optimal for the general setting are optimal also in this special
subclass, closing in this way the gap present in the literature. Thus, for the rising setting, we provided
a positive answer to our Question 1 and a negative answer to our Question 2. The lower bound
in the rising concave setting has order Q(T3/ ®) and implies that rising concave MABs represent a
statistically harder problem w.r.t. stationary MABs. After having presented two statistical barriers
for these settings, we developed a learning algorithm with the goal of exploiting the more structured
model of rising concave MABs. To this end, we designed RC-BE(«), and we derived an upper bound

to its expected regret of order (5(T7/ 11 This result implies that the non-decreasing expected reward
assumption, together with the concave expected reward assumption, simplifies the learning problem
w.r.t. the same setting without concavity. Thus, for the rising concave setting, we provided a positive
answer for both Question 1 and Question 2. The natural future research direction includes closing
the gap in rising concave MABs which is now only 7/11 — 3/5 = 2/55 in the exponent of T'.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: —
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limits of the paper and the future research directions in order
to address them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the statements are provided with proofs in the appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The compared algorithms and the structure of all the simulated instances are
listed in Section 5 and Appendix E. Additional details needed to reproduce the results, like
all the seeds of pseudo-random generators used in the simulations, can be found in the code
which is made available in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is made available in the supplemental material. All the simulations
are on synthetic instances, thus no external data is needed.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The parameters of all the compared algorithms are explicitly listed in Ap-
pendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 95% confidence intervals on the cumulative regret curves used to
compare the algorithms.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information is provided in Section E.2.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper is coherent with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: —
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: —

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works

Restless Bandits. In the original restless MAB setting, introduced by Tekin and Liu (2012), the
evolution of the expected reward of each arm was described by a Markov chain. Several algorithms
have been proposed to deal with this new framework, e.g., Restless-UCB (Wang et al., 2020), which
relies on the optimistic estimation of the transition kernel of the underlying chain. Over time, the
term restless acquired a broader meaning, encompassing all bandits in which the expected reward
changes as time passes. Such arbitrary evolution can be described by a function that maps each round
to the expected reward of a given arm. This is the type of restless bandit we target in this work. There
are two families of methods to tackle restless MABs: passive (e.g., Garivier and Moulines, 2011;
Besbes et al., 2014; Auer et al., 2019; Trovo et al., 2020) and active (e.g., Liu et al., 2018; Besson
et al., 2022; Cao et al., 2019). Passive methods base their estimates on the recent feedback, forgetting
obsolete observations. Active methods try to detect the changes in arms’ expected rewards and use
only the observations gathered after the last change. Among the most common passive approaches we
find methods based on discounted rewards, e.g., D-UCB (Garivier and Moulines, 2011), or adaptive

sliding window, e.g., SW-UCB (Garivier and Moulines, 2011). Both algorithms suffer a O(T%/2)
regret in the setting in which expected rewards change abruptly a fixed number of times over the time
horizon, and such number is known. Auer et al. (2019) obtained a similar result in the same setting,
without knowing the number of changes, by resorting on the doubling trick (Besson and Kaufmann,
2018). Another common setting is the one that allows the expected rewards to evolve arbitrarily, with
the only constraint that the maximum absolute difference between the expected rewards of an arm
in one round and the next, summed over the time horizon, is smaller than or equal to a variation
budget V1 (Besbes et al., 2014). The Rexp3 algorithm (Besbes et al., 2014), a modification of the
Exp3 (Auer et al., 2002b) policy, originally designed for adversarial MABs, shows a regret bound
of O(T?/3) under the knowledge of the variation budget V. The need for the knowledge of such
quantity has been removed by Chen et al. (2019) by means of the doubling trick. In (Trovo et al.,
2020), an approach which combines a Thompson-Sampling-like algorithm with a sliding window,
shows theoretical guarantees in both the abruptly and smoothly changing settings.

Rising Bandits. Rising concave MABs have been introduced in the deterministic setting by Heidari
et al. (2016) and Li et al. (2020), where the rewards observed by the agent in each round are not
affected by noise. In their formulation of the problem, the rewards of an arm are non-decreasing
in the number of times such an arm has been pulled and satisfy the decreasing marginal return
assumption, i.e., the increment in the reward observed between one pull and the next of the same arm
is non-increasing in the number of pulls. The online algorithm designed by Heidari et al. (2016) to
minimize the regret relies on an optimistic estimate of the cumulative reward that can be obtained
by pulling a given arm. Indeed, in this setting, Heidari et al. (2016) show that the optimal policy
consists of repeatedly pulling the arm with the highest cumulative reward over the horizon. Li et al.
(2020) use the rising concave MAB framework to model the problem of parameter optimization
in machine learning and design an algorithm based on iterative elimination of unpromising arms
that has good empirical performance. Cella et al. (2021) consider a setting in which the reward is
increasing in expectation and the observations are affected by noise. However, in their framework,
the expected rewards are constrained to follow a specific parametric form known to the agent. The
authors analyze the setting under both the regret minimization and best arm identification frameworks.
Anyway, the given parametric form makes this setting not applicable to an arbitrary expected reward
evolution that satisfies the non-decreasing assumption. Recently, a surge of approaches has been
designed for addressing other learning problems in stochastic rising concave MABs, including regret
minimization (e.g., Metelli et al., 2022) and best arm identification (e.g., Takemori et al., 2024; Mussi
et al., 2024). Finally, Genalti et al. (2024a,b) proposes a novel framework that interpolates between
rested and restless MABs, still assuming the rising concave condition.

B Lower Bounds
In this appendix, we provide the proofs of the results presented in Section 3 in the main paper.

B.1 General Recipe for the Lower Bound

The goal of this section is to prove Lemma 3.1. Remember that we work with rewards which follow
the distribution (1, o) defined in Section 3.1. The result is obtained through techniques from the
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adversarial literature in which the instance is also affected by randomness. Thus, we define two
probability distributions over [0, K]">1, which induce probability distributions over the instances in

S%ﬁ. In particular, let &, £ € A([J0, K1) defined as:

eop = {7 o
1.

g({o}) ;: {K TfoE[[K]]a
0 ifo=0

for o € [0, K]). We can extend € and £ to probability distributions over [0, K]N>" via infinite product
(see Example 1.63 of Klenke 2020):

7o = (815'€) ® (8 %8) forall we Ny,

F = ®wEN >1 g
7 models a random instance in which, in each window, we choose independently and uniformly one
arm whose expected reward follows the modified trend, while the expected rewards of all the other
arms follow the base trend. 7, instead models a random instance which behaves like 7 up to window
w € N3 (excluded); from window w onward all arms follow the base trend. For technical reasons
which will be clear in what follows, we need to build a probability space in which the randomness
over the instance and the randomness over the rewards are unlinked. Observe that with the current
construction this is not the case. Indeed, X is sampled from v/J, but o is also a random element. To
this end, let s = (5,¢)ie[k],teNay ~ A = Qie[k],tens, Unif(0, 1) where Unif(0, 1) is the uniform
distribution with support [0, 1]. Then, we can redefine:
1 i (t 1

Xit(o,8) =20-1|si; < 1 + uo;a()] ~ 5%
where i, ;(t) is defined in analogy to Equation (2). In this way, we moved the dependency from o
inside the definition of the random variables, preserving their distributions. Indeed, once o is fixed,
we have X; ; ~ ¥(1o4(t), o). For consistency with the notation, we introduce the random variables
O = (Oy)wens, Where O, (0) = 0,,. The probability distributions that we just defined, induce
probability density functions over finite reward sequences taking into account the randomness both in
the instance and in the rewards. In particular, let

Do (r1y..oyrp) = OLP; [R1 =71,...,Rr =7r7],
s~)\w
ﬁwﬂ'(’/’l, . ,’I“T) = HDN[Rl =T1,.. .,RT =Trr | Ow = 7;],
o~T
S~A

for w € Nyy, ¢ € [K], r1,...,rr € {—1/20,3/20}. We use p,, and D, ; to denote also all
the conditional and marginal distributions; disambiguation happens through the arguments, e.g.,
B (P | 715+ s Tou—1)-
To obtain the result, we use the following tools from information theory (Cover and Thomas, 2006).
Definition B.1 (L' Distance of Two Discrete Probability Density Functions). Let p, q be two discrete
probability density functions defined over the finite set X, we define their L' distance as:

Ip—glx = D] Ip() — q(x)].
reX
Definition B.2 (Kullback-Leibler Divergence of Two Discrete Probability Density Functions). Let

P, q be two discrete probability density functions defined over the finite set X, we define their
Kullback-Leibler divergence as:

B og. (P&
Dict,(plg) = ZX p(x)log, <q<m>) '

By extension, we define:
Dxr(v[|€) == Dxr(pype)

where v, { are probability distributions with discrete support and p,, p¢ are their corresponding
discrete probability density functions.
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We now state and prove a generalization of Lemma A.1 in (Auer et al., 2002b) which we then use to
derive Lemma 3.1.

Lemma B.1. Let w e [w(T)], i € [K], f : {—1/20,3/20}™{ew T} — [0, M| with M > 0. Then:
Ew[f(Rla ) Rmin{ew,T}) | Oy = Z] - E [f(Rlv s 7Rmin{ew,T})]

o~T O~Ty

s~A S~

@) Y PRt —su+ D)@t —su+1),0) P [ =i @)
=Sw s~

Proof. To simplify the notation, let t; = s,,,t2 = min{e,,T}. The lhs of Equation (4) can be
written as:

> Fry ey m) Buwi(T1, o3 T) = B (71, - -5 T1y)

r1,...,Tty€{—1/20,3/20}

<M Z (pW,i(rlﬂ"'7Tt2)_Tjw(rh'“ﬂ'tz))
71,07ty €{—1/20,3/20}
St Duw,i (P15ees Tty ) 2Py (715, Tty)

M, _ -
=?pr(rh---’ﬁz)—Pw,z‘(T17~--77“t2)|\1, 5)

where line (5) can be found in (Chapter 11, Cover and Thomas, 2006). Again, from (Lemma 11.6.1
Cover and Thomas, 2006), we have that:

||T?w(7‘1, s 7Tt2) _ﬁwﬂ'(Tlv s ,th)”% < 2ln(2)DKL<pw(r1= s 77"152)“1710,1'(7"17 e 'ﬂrt2))-

From the chain rule of entropy:

to
DKL(T?w(Tl» sy Tt2)”§’w,i(r17 sy Ttg)) = Z DKL(ﬁw(rt ‘ T1,... a'rtfl)Hﬁw,i(Tt | T1y0.. 7Tt71))
t=t1

(a)
+ DKL(ﬁw(rlv ey Th*l)”ﬁw,i(rlv ey Ttlfl)z .
(b)

Because of how 7, and 7 are defined, we have that:
Duw,i(T15 oy Tey—1) = Doy(r1, ..., 7y—1) forall r,...,ry, 1€ {-1/20,3/20}

and thus term (b) is 0 because of the properties of Dk, (+||). To deal with term (a) we need to

work on the expressions of Py, ;(r¢ | 71,...,7—1) and B, (r¢ | 71,...,7r4—1) for ¢ € [t1,t2]. First
of all observe that the arm that the agent pulls at round ¢ is fully determined by the past sequence
of observed rewards 7y, ..., r;—; since the policy 7 is deterministic. As remarked in Section 2, we
denote it through 7(t), omitting the dependence on 7, ..., 7;_;. Now:!'”
ﬁw7i(7‘17...,7“t) = ]P)~[R1 = Tl,...,Rt =Tt | Ow = Z]
<X
= O]:E)_T_[Xﬂ'(l),l =715, Xa)t = 7t | Ow = 1]
s~A
= OIE’%[XTr(l),l =715 Xap—1),t=1 = Tt—1 | Ow = 1]
S~

(1w (t) =]
+ 17w (t) # i|v
= Puw,i(T1,- - Te—1)
+ 17w (t) # |y

—~

T | T (t — S0 + 1), 0)

Tt | Ty (t = 5w + 1), 0)) (6)
1[m(t) = i (re | uw(t — sw +1),0)

Tt | fi(t — 80w + 1),0)),

o~

'"With slight abuse of notation, we will use the symbol 1(x | i, o) to denote the p.d.f. associated to the
distribution 1 (u, o).
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where line (6) follows from the fact that, under the event O,, = i, X‘n’(t),t is independent from
Xa1),15- -+ » Xr(t—1),+—1 and follows distribution 9 (fi,, (t — s, + 1), 0) if 7(t) = 4, P (7L, (t — 50 +
1), o) otherwise. Thus, we conclude:

Puw,i(re|r1, . orem1) = 1 m(t) = i (re | fiw ((=80+1),0) +1[m(t) # i|P(re | Fy (=50 +1),0).

From analogous calculations, it is possible to derive:

Du(re |11, rem1) = V(re | Ty (t — 80w + 1), 0).
Thanks to the last results and the definition of Dky, (+||):

to

DKL(pw(le"artz)”ﬁwﬂ(rlw'-artz)) = Z Z pw(rla-"art)

t=t1rq,...,ri€{—1/20,3/20}

o V| Tt = 0+ 1),0) )
B2 \[n(0) = 0000 | Bt — 5w+ 1),0) + 1[x(8) # iJ0(re | Ayt — 5w + 1),0)
to
= Z Z Do (T1y - oy Te—1) 17 (t) = d] Z Y(re | P, (t — 80w + 1), 0)
t=t1ry,...,re_1€{—1/20,3/20} rie{—1/20,3/20}

o (Tl = 50 1),
: 52 <¢(Tt | ﬁw(t — Sw + 1)’0'))

S Dkt (@t — s + 1, )Pt — 50+ 1),0)

t=t1

Z ﬁw(rlw"v’rt—l)l[ﬂ—(t) = Z]
r1,...,rt—1€{—1/20,3/20}
min{e,,, T}
= Y DKLt s+ D, Yt = s+ 1),0) P [L =],
t=sy s~/\w
The lemma follows by chaining the results. O

We are ready to prove Lemma 3.1.

Lemma 3.1 (General Lower Bound). Under the assumption that Ti,,(t) < Ji,,(t) for all w € Nx 1,

t € [Ay], for any deterministic policy w, subgaussian parameter ¢ > 1, and learning horizon
T € N3, it holds that:

w(T) w,n,T,0
1 mepEETe)
. R T > 1— — — ——— | A ) 3
o ez 2 we ) :
where:
o min{e,,, T}
DEATT = N DRy (T (t — $w + 1),0) [ (fiu(t — 500 + 1), 0)),
t=5q
s min{e,,, T}
AZ’”’T = 2 (ﬁw(t — Sw + 1) - ﬁw(t —Sw+ 1))7
t=sw

Sforall w € [w(T)], with Dky,(+||-) being the Kullback-Leibler divergence of the two distributions
(formally defined in Appendix B).

Proof. Foro € [0, K[">1, t € [T], leti} , € arg max;c[x] flo,i(t). Then:

T
sup Ry(r,T)= sup E lZ (uo,z-;t@)—uo,z,,(t))]

veES o oef0,K]N=1 s~A i—1
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li (o, () - uom)].

T (t) forall w e N3y, t € [A, ], we have:

g:K
Under the assumption [i, () >
(t) — — Pa(t)(E = Sw@ey + 1))

Ho,i¥ , to,1,(t) = [Ou(ty # 0, Oty # L] (Bu(t) (t — Sw(ry + 1)

Then, observing that O,, = 0 has probability 0 under 7:

w(T) min{e,,T}

sup Ry(mT)= Y. Y (fiw(t—sw+1) =i, (t—su +1)) E[1[0, # I]]
vees o w=1  t=s, g:X
w(T) min{e,,T}
= (Fiw(t = 5w + 1) =y (t = S0 + 1)) E [1[Iy # 4,0, =]
w=1 t=sqy iE[K] aA
w(T) min{e.,, T} Eo~z[1[1; # i, Oy = i]]
-2 t_z (Bl (t — 80 + 1) = Ty (t — 84 + 1)) | P [0y =] SNA]P’ON;[OW —
w= =S i€[K] s~A s~
w(T) min{e,,, T} 1
= (ﬁw(t_sw‘*'l)_ﬁw(t_sw‘kl))* Z Ew[l[lt?éi:HOw:i]
w=1 t=5q €[ K] g:}:
w(T) min{ew 1
- Z Gialt = o+ 1)~ it — o0 + DESY (1 B[ =] 0w - i])
webotee ie[K] s

w(T) min{e,, T}

> Z (P (t = 8w + 1) = o, (£ = 50 + 1))E Z 1- OLE?,U [1[1: = 1]]
w=1 t=54, ’LE[[K]] T
1 min{e,T'}
-7 In(2) Dir, (Y (T, (' — 8w + 1), 0) [ (flw(t' — 80 + 1),0)) P [y =]
t'=Sw OSNNTAW
(N
w(T) min{e,,, T} .
> Z (B (t — S0 + 1) — i, (t — 50 + 1)) 1- =
w=1 t=54
min{e,,, T}
1 K
K Q ) 3 Dbt — s+ DG~ ) |6

where line (7) follows from Lemma B.1 with f corresponding to the function from the observed
rewards to the arm I; pulled in round ¢, which is well defined for deterministic policies, and line (8)
follows from Cauchy-Schwarz inequality applied to a vector of K ones and the vector of the terms
under square root. The result follows from the definitions of D77 and AT, O

B.2 Specializing the Lower Bound for the Rising Setting

The goal of this section is to prove Theorem 3.2.

Theorem 3.2 (Lower Bound for the Rising Setting). For any deterministic policy m, subgaussian
parameter o = 1, and learning horizon T € N3, T > 2K min{1, VT}*2, it holds that:

1
sup R,(n,T) > — STIKs

o min{l, Vp}3 5.
ve€s (T,Vr) 64
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Proof. First of all, we need to formally define the sequences of window widths, base, and modified
trends. Let A, ,, = A, = [02/3T2/3K1/3 min{1, VT}’Q/BJand:

er(w—1) ifw<
exw(T) ifw >

T)

Fie(t) = { tquT) ’
. (ew  ifw<w(T)
ir () = {srw(T) if w > w(T)’

for all w € N> where &, := § min{1, Vp}/w(T) > 0. Observe that i, ,, (Ar) < i, 41 (1) for all

w € N1, hence, for any choice of 0 € [0, K ]]N>1, Vr(f o satisfies Assumption 2.1. Furthermore, for all

o€ [0,K ]]N>1 , the expected rewards of the arms change at most between one window and the next,

i.e., w(T) — 1 times in the learning horizon, and the magnitude of the increment is at most 2¢,, thus:
Yoo (1,T) <2(w(T) —1)e: < Vr.

Hence £2 . < E7(T, Vr) indeed holds. Finally, it is easy to verify that 0 < T, ,, (t) < fir,w(t) < 1
for all w € N5 1, t € [A,], so that the assumptions of Lemma 3.1 are satisfied. From Lemma D.1, we
have that:

2
ﬁ-vﬁr7T10 261‘
DF: < LA,
In(2)c

The choice of A, ,, = A, implies &, < %02/3T_1/3K1/3 min{1, V7}'/3 once we observe that
w(T) = [T/A,]. Then:

o 1 K
DFwebnTo 2 for all w € [w(T)].
81In(2)
Thus, observing that K > 2, we have
ﬁr,ﬂr,T,O'
1 [mE@DET 1
K 2K 4

Since Afrfr T — ¢ (min{e,,, T} — s, + 1), by plugging the previous results in Lemma 3.1, assuming

that T’ > 0 K min{1, Vr} =2 which guarantees T' > A,, we have:

1 1
sup R,(m,T) = -, T

2 2 1 1
> —o3T3K3min{l, Vp}3,
veEs (T, Vr) 4 64 { }

where the last step follows from the definition of €, and the fact that || > x/2 and [z] < 2z for
x> 1. O

B.3 Specializing the Lower Bound for the Rising Concave Setting

The goal of this section is to prove Theorem 3.3.
Theorem 3.3 (Lower Bound for the Rising Concave Setting). For any deterministic policy T,
subgaussian parameter o > 1, and learning horizon T € Nx1, T = 2192 K min{1, Vz} =2, it holds
that:
sup Ry (m,T) =2 Yo*5T8 K3 min{l, Vi}s.
ve€s (T,Vr)

Proof. First of all, we need to formally define the sequences of window widths, base, and modified
trends. Let N, == [0~ 2TV K=Y min{1, Vp}?°], Acw = Ac == [T/N] for all w € Nx;.
Observe that A is defined in such a way that w(T) = [T/A.| < [T/(T/N.)| = N.. Furthermore,
being o, K > 1, we have:

N, < [T%] <[T) =T,

so that T/N. > 1 and A, < 2T/N, since [z] < 2z for z > 1. Let mg := § min{1, V7}/T € (0, 1),
My = (2Ne — w)mg/(2N,) for w € [2N.]. (my,)2Ne, are the slopes of the segments which

w=0
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constitute the trends. Observe that mg > mq > - -+ > man,—1 > man, = 0. We are ready to define
the trends:

w—1
A. Z Moj—1 + tmoy—1 fw < ’LU(T)
ﬁc,w(t) = 127’11“) ’
JAVS Z Mar—1 ifw > w(T)

( w—1 +
A .
A Z Moj—1 + tmoyw—_2 + (t — 2C> (mgw — May—2) ifw < w(T)
fie,w(t) = ol ;
A, Z mMoj—1 ifw > w(T)

for all w € Nxp. In what follows, with a slight abuse of notation, we will regard 7. ,, and fic
as defined on [0, A.]. Observe that, as we informally stated before, i ,,(0) = fic.(0), and
e (Ac) = ficw(Ac) = Jic 441(0) for all w € N>;. Furthermore, it is easy to check that the slope
of the second segment of the modified trend in a window is equal to the slope of the first segment
of the modified trend in the next window. Thus, because of what we remarked when we informally
introduced the construction, for any choice of o € [0, K]\>1, v?, satisfies Assumptions 2.1 and
2.2. Furthermore, in each window with index w € Jw(T')], the maximum increment of the expected
reward of an arm, corresponds to the slope of the first half of the modified trend 72,,_2. Thus:

w(T Ne A mo
u” A Z Moyw—2 X Ac Z Mmoyw—2 = (N + 1)

T lmln{l Vr}
N, 4 T

Hence 52 e S EY(T, Vr) indeed holds. Finally, by calculations analogous to what we did above to
bound the cumulative increment, one can verify that:

1
< AcmoNe <2 - N, = §m1n{1,VT} < Vr

w(T)
Ac Z Mow—1 < mm{l Vr} <

which, together with the previous remarks, implies 0 < 7i,. ,, () < fic,o(t) < 1 forall w € N3,
t € [A.], so that the assumptions of Lemma 3.1 are satisfied. The maximum distance between the

two trends in a window is attained for t = % and has value:

- Ag . A, Acmg 1 min{l, Vr}
Ec = MHe,w = Hew = S 2 2 :
2 2 AN, ©8 N

Hence, in virtue of Lemma D.1, we have:

Do < 2¢2 1 min{1, Vg }°T LK
T In(2)02" ¢ 16 In(2)o2N? 16 In(2)

for all w € [w(T)]. Thus, remembering that K > 2, we get:

ﬁc$ﬂCiT7a
1 1 [In(2)Dy S 1
K 2K 4
Now, let’s lower bound the expression of AbiebeT for 4 e [w(T) —1]:
|5

Ad
_ A
ABBT — N (mgy_g — maw-1)t + Z (Maw — Maw—1)t = == (Maw — mzw—z)]
A
T

2
t=1 t= J
mo (13 1(%]+1) | (A= 1%]-1) (Ac-|%
2NC([ J(l2J+)+( 5] ;)( | J))



mo 5 2 AC mo 5 2 4 2 moAg
> —AI-—=) > AL - AL =
4N, <16AC 4 ) 4N, <16AC 62 64N, ©

- moT?  min{l, Vp}T

~ 64N3  256N3

where line (9) follows from the fact that |z| > x/2 for > 1 together with A./2 > 1 being T' > N,
when T' > 4 (which is guaranteed by the constraint on 7'), and that z < 2 for > 1. Finally,
T > 292K min{1, Vy}~2 guarantees w(T') — 1 > N./4, and thus, by Lemma 3.1 in conjunction
with the results we just proved, we have:

w(T) .
= 1 min{l, Vp}T
Ry(m,T) = 7 >, Aliebel > — (w(T) — 1) — —"—
vege (1vr) v(mT) > 5 w; w 7 () =1 —55Ns
min{l, Vp}T _ 3,2 1
> 2{12NC2T} > 2753 K min{l, V)3, (10)
where line (10) follows from our choice of N, and from the fact that [z] < 2z for z > 1. O

C Upper Bound for the Rising Concave Setting
In this appendix, we provide the proofs of the results presented in Section 4 in the main paper.

C.1 Additional notation

We begin by introducing the additional notation required for the analysis. Let:

s +d—1 s{) +d—1
Sz}w,d = Z 1[_[,5 = ’i]Rt, Si,w,d = Z l[It = i]ui(t),
. t=st

be respectively the cumulative reward and cumulative expected reward by RC-BE(«x) for arm i € [ K]

in the first d € [0, Aq(ﬂa)]] rounds of window w € N> . Let IV,, be the number of round-robin cycles
of window w € N1, where we also count the degenerate cycles in which we pull the only remaining

alive arm *. Let tw, be the round in which the {-th round-robin cycle (with [ € [N, ]) is started
during window w € Nx4. Analogously, let N; ,, be the number of times arm ¢ € [K] is pulled in
the w-th window (with w € N> 1) and ¢; ,, ; the round in which arm ¢ is pulled for the [-th time (with

l € [N; w]) during window w. For simplicity in the notation, we define d,, ; = ¢, — s&,f‘) + 1 and
diwi = tiwi — si(ya) + 1. Finally, we define the good events:

Giwds = { S’Lw’d — gi’w}d) < 0\/2A£Ua) <ln (2KA7(UO‘)) +1n (;)) } )

fori e [K], we Nxy, d e [ALY], 5 € (0,1], and

gw,é = ﬂ gi,w,dﬁ

€[ K]
de[A0]

fori e [K],d € (0,1].

C.2 Concentration

We start the analysis with a concentration result for 5}-7w,d.

Lemma C.1 (Concentration). For every w € Nx1, 6 € (0,1], we have that:
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Proof. Forie [K],de[0,Al], A eR, let:
Miywﬁd(A) = €xXp (A (Si.,w,d - gi,w,d)) )

X

]:w,d ::J(Xl'rl"’"XKvl”"’Xl,sgua)erfl’"”

K,sg‘)+d71) :

Lett := 555‘) + d — 1 to ease the notation. Observe that I/ is Fy, 4—1-measurable and that X; , is
independent from F,, 4—1. Furthermore, we can rewrite S; ,, 4 as
t/
Siw,d = Z 1[1; = i] X4
()

t=sy,

Then:

B M aN) | Fuwaa] = Miwaa(N) E (1[I = i]exp (A (Xip — (1))
+ 1 1[Iy = i] | Fua-1]

)\2 2 /\20_2
< M w,a—1(\) exp ( Ly = 1] 5 ) < M w,a—1(X\) exp ( 5 ) ;

where in the last line we use the properties of conditional expectation (Klenke, 2020) and the
sub-gaussianity of X ;. Thus, by induction:

2 2 2 2
E, [ma V] < exp (427 ) < o (a2 70)).

X~v 2
Then, thanks to Markov inequality, for every € € R:
P (S = Siwa>e| = P [Miga(d) > exp(re)]

X~v
< E [Miwa(N)]exp(—Ae)
X~v

By choosing € = a\/QA(a) (ln <2KA(Q)> +1In (%)) A= A2 Ve get
A > 0
P [Si,w,d - Si,w,d > E] < oA ()
X~v 2K Ay,

An analogous bound holds for

Then, thanks to a union bound,

X]Izu [gi,w,d,é] < m-

Xﬂi gwé Z Z 1wd6 < 6.

ie[K] de[[A<")]]

Finally:

C.3 Proof of Lemma 4.1

The goal of this section is to prove Lemma 4.1. To this end, we need several intermediate results. We
start by proving that Z; is indeed well-defined.

Lemma C.2. Leti* €Ik, theni¥ , xj&

w7.]w w*
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Proof. If p;x (t') = g (") for some t' € [[sg,jl), ew ]] then it must be ¥ , xj¥*

frgx (') < pyx (') for some t' € [s57, e{]. If i* and j} do not cross, then

. Thus, assume

fi% () < pyx (£) forall ¢ € [s$), el]

which is a contradiction with the fact that i% € Z%. O

We now prove a very useful property of , x*.

Lemma C.3. Leri,j,k € [K]. Ifi,,x%j and there exists t' € [[35,?), egf,l)ﬂ such that p;(t') <
pr(t') < ('), then k € [i] o+

Proof. If uk(t) i (') or pg(t’) = w;(t’) then the statement is trivial. Consider p;(t') <
ur(t) < uj( ). 'We proceed by contradiction. Assume that it is not true that &k, x 4. Let
I, = {l E wX+ S.t. ,ul(t’) < Mk(t/)} and 7, = {l € [i]w><+ S.t. ,ul(t’) > /Lk(t/)}. Since Z; uZy
[z’]wx+,Il NIy ={},T1,Z> # {} there must be i1 € 73, iz € Ty such that iy ,, xio. But, since it is
not true that k ., x ¥4, it cannot be k , x7; nor k ,, Xi5. Thus it must be

iy (£) < pui(t) < puay (¢) forall € [s£, ().

But this is absurd since 7; ,, X 42, concluding the proof. O

This leads to the following corollary.
Corollary C4. Letie L, j ¢ 1, then:

w?

11;(t) < pi(t) forall t € [, e{].

Proof. By contrapositive, if 11;(t") > p;(t') for some ¢’ € [[sw el )]] then there exists k €
arg max, ey fr(t') such that p1;(t') < p1;(t') < px(t') and thus j € Z); by Lemma C.3. O

w

We are ready to prove Lemma 4.1.

Lemma 4.1. For all restless rising concave MABs v, o > 1, w € N3 we have that:

Ry (RC-BE(a), {w}) < BKBYY + Alds
—

Exploration ~ Commitment

Proof. We start by proving that, under event G (2KAL)-1> at least one arm in Z;; is always alive

in each round-robin cycle. We need to cons1der all the eliminations which happen at the end of
a round-robin cycle, except for the last, in which eliminations are irrelevant (remember that the
window ends at the end of the last round-robin cycle and the algorithm is restarted). To this end, let
n € [N,, — 1]. For an arm ¢ € [ K7, to eliminate an arm j € [ K] at the end of the n-th round-robin
cycle, it must be:

O «
Sivwidumii—1 > Sjwdunsi—1 + B

which, under eventg )—10 implies

LKA

§i7w:dw,n+1_1 + 40’\/A7(‘?() 1n (QKAq(l?)) > §ij;dw,n+1_1 + BQ(,UOI)

if and only if

Z [.ui(tw,l) + Ni(ti,w,l) - /Li(tw,l)] + 40’\/A£ua) In (2KA1(Da))

=1

Z wl +:uj( Jw,l)iuj(tw,l)] +B1(ua)
=1
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which implies, being the instance rising:

2 wi(tw,) + 1+ 40\/A£Ua) In (2KA7(E“)) > 2 11 (tw) + B
=1 =1

and thus, because of the choice of Bl(ua), it must be:

n n
D miltw) > Y it ).
=1 =1

Thus, in virtue of Corollary C.4, it cannotbe i ¢ Z.5, j € Z.5. But, to eliminate all alive arms in Z;,

we would need at least one cycle in which an elimination of the kind above happens. Hence there
will always be at least an arm in Z{ alive. Let 4.5 ,, be such arm during the n-th round-robin cycle.

Let’s bound the regret of a generic arm j € [ K] dliring the w-th window, under event G KAL) -1

Njw Njw—1
[Mz‘j“ (tij,l) - Hj (tj,w,l):| < /le;k (tj,w,l) — Wy (tij_’l):| +1
1=1 Jot L e
Njw—1
S I PP G B R
=1 L T
Nj,m_l r
= 1:21 Hix (tz:f}yNij,w,l) — M (fj,w,z)]
Njw—1
+ 2 [Mzerij (bgawt) =g (i )]
+ Nj,wdi, +1
S8 g =1 T Shwnduy <1 T L+ Njwdy, +1

= Sjw,dun, ,~1 T Njwdy,
=B 4+ 5.

w,Nj 4

*
= Sjwdung -1 T Njwdy,

W, N, —1
(a) g
< 2ByY 4+ Njwdy,

where the last line follows from the fact that we have not eliminated arm j at the end of the (N;, ., —1)-
th round robin cycle. Thus, the regret during the w-th window, under event G KAL) -15 is upper

bounded as:

el Ny,w
)y [“if (t) = o, (t)] =2 X [M?‘. (tjw) = Mj(tme)] <2KB{ + AlYdE,.
el jeliy =1 b

Finally, in virtue of Lemma C.1:

R, (RC-BE(a), {w}) < 2KB{® + Al@g* + Al &2 [gw,@mww]

1
<2KB® + Ak + 75 < 3KB + A gk

C.4 Proof of Lemma 4.2

The goal of this section is to prove Lemma 4.2. To this end, we need several intermediate results. We

start with a lower bound to egf ).
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Lemma C.5. Forany a > 1, w € N3 it holds that

@ w1+a
el > —
2(1+ «)
Proof. If w = 1, we trivially have
1> L
! 2(1+ )

Now, suppose w > 2, then

w w 1+a 1+«
(o) _ () « a _ w . 1 w
“w _ZAZ >Zl >J a:da:—(1+a 1+« 22(1+a)'

=1 =1 1
O
Now we introduce the results through which we exploit the concavity of the instance.
Lemma C.6. For any restless rising concave MAB v, t1,t2 € Ny, to > t1 = 2, we have:
ta —t1
Yo (t1,ts) < —————T,(t; — 1,t3).
At1,t) € T (0~ L)

Proof.

to—1

Yol ta) = ), }GHH%%‘(Z)
=ty
to—1 to — ¢t 1 to—1
< ax (1) + ———— ax v;(t1 — 1) — ax v; (1
20 e e g
=ty =t
to—1
to — 11 to —ty
== - ax v;(I) = ————=",(t1 — 1,t9).
tz—t1+1l=§1iem[[;§§]%() o1 vt bt
O

Before proving Lemma 4.2, we need an intermediate upper bound to d,, (7).

Lemma C.7. For all restless rising concave MABs v, a > 1, w € Ny, i € [K], we have that:

A < (e[ = 1) max () = (o).

€ N
Jikeli] .+ stj

tE[[sfﬂo‘) ,eguw]]

Proof. If j,, <"k, there must exist distinct i1, . . . , 4, different from j and & (n € [0, |[i] .+|—2])

such that j ,, X41, 41 4, X102, « - « s bn—1 o Xin, iy, ¥ k. Then, for t € [s§3>, eﬁﬁ)]], we have:
1 () — g ()] < g (8) — gy ()] + [piy (8) — pip (O] + -+ i, (8) — pre(2)]
<1, max () e ld)

j/,k’e[z']wXJr s.tg’ X
t'e[s$,e(V]
i -1 max 0 (t) — t].
(1], x+1 )j,7k,e[i]wx+s.t'j,ka, e (8) — g ()]

t'elsy) (]

N

We are ready to prove Lemma 4.2.

Lemma 4.2. For all restless rising concave MABs v, a« > 1, w € Ny, i € [ K], we have that:

du (i) < 8(L+a) (|[i] x+| — 1) wTu(1,el)) < 16aKw™ T, (1,elM).
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Proof. Let j 1y k for some j, k € [i] «+.,t' € [[s(a) +1, el )]] Lett >t te [[sq(f),egua)]],then
p50) = 1 (8) < 15(8) = et = 1) < puy®) = s = 1) < T (520, e0)

() = (1) < ) = s (0) < gunt) — () < T (0,0

Analogously, if t < t', we have
g (0) = p(8) < p(t = 1) = ue®) < et = 1) = guet) < T (5, el

pt) = 15 (8) < () = 13 (8) < g1y (#) = s (0) < L (6,6 )
We conclude that, if 5, x k, then | () — pp(t)] < Yo (sq(ﬂa), eﬁu")) forall t € [s%5”, e{]. Thus, in
virtue of Lemma C.7, if j ,, x 'k, then:
145(8) = 1 ()] < (], | = 1) T (56,6
For w > 2, by applying iteratively Lemma C.6, we have
(a) (a) (a)
T, (s( ) (a)) < Cv TSy (17 egﬁ) <oBv y (1, ng}a))

v e&a) -1 eg,?)

< 8(1 +a)wwj T, (1 e<a>) =8(1+ a)w™'T, (1,6550)

where in the last line we used Lemma C.5, the fact that [2] < 2z for 2 > 1, and the definition of

A,(Ua). The same upper bound holds trivially for w = 1 since sg @) eg @) 1. O

C.5 Proof of Lemma 4.3

The goal of this section is to prove Lemma 4.3. To get the result, we start by providing an upper
bound to the number of times an arm ¢ overtakes arm j and the expected rewards diverge by a quantity
greater than G > 0. To this end, we need to prove two auxiliary results.

Lemma C.8. Lett! i, tt e Noy, tt > ¢ > 1", G € (0,1], i,j € [K] such that

i o Gopa () = pi(8) + G, j 1y i

Then:
Yilth = 1) > 5;(t) = 7(th), (11)
. 1
t—t'-1)=>aG -, 12
TS T 42
wi(t) — it =1) = G % () . (13)

Yi(th —1) —;(t)

Proof. We start by proving Equation (11). Suppose 7;(f) = 7;(t" — 1). Then:

pi(8) = (" = 1) + (= (T = 1)) (D)
> (" = 1) + (= (" = D)n(t’ - 1)
> (1)
which is a contradiction with the definition of . Thus it must be 7;(#) < 7;(t" — 1). Analogously,
suppose ; (t) < 7i(t). Then:



which is a contradiction with the definition of #*. Thus it must be 7, () > 7;(t*). We now prove

Equation (12):
G < pilt) = pi(h) < (" = 1) + (= (¢ = D)y’ = 1)
— (" = 1) = (= (" = 1)y;(D)
< (=" =) (t" = 1) —;(d)
and thus

Finally, we prove Equation (13):

palf) = pi(t" = 1) = (8 — s (tT = 1) = (= (T = 1))7;(0)

75 (t)

= N

7T =1) = ;1)

L]
Lemma C9. Let M e Ny, M =2, m; > mg > -+ > mp > mpr41 > 0, then:
M 2
1 M
> > , (14)
=1 — Mg myp —Mmp+1
M
mMiy1 M
> > S (15)
=1 e — Mt mg ﬁ—l
MM +1
Proof. We regard m1 > mp;+1 > 0 as fixed constants and study the functions
A 1
f(mg, e ,m]w) = Z —_—,
=1 M — M1
M m
i+1
g(ma,...,my) = Z U —
=1 M — Mg
defined for my > mg > --- > mps > mys41. Observe that the functions are defined on an open

set and their values tend to infinity when the input tends to the border of the domain. We show that
they have only one stationary point, which then must be a minimum point. We start by proving

Equation (14). Let k € [2, M]:

df ( ) 1 1 0
—((ma,...,m = - =
2 M (mkﬂ - mk)2 (mk - mk+1)2

dmk

if and only if
Mpt1 = 2Mp — Mp—1.

The linear system above is equivalent to:
m; = (i —1)mg — (i —2)my for ie[3, M +1].
Thus mpr41 = Mmgy — (M — 1)my, and then

(M — 1)my + mpr+1
i )

mo =

By plugging this result into Equation (16), we get the coordinates of the minimum point:

M+1—3 — 1
my :=( ki Dma + (0 = Dmas for i€ [2, M].

Thus:

(16)



We now prove Equation (15) analogously:

ﬂ(m2 mag) = M1 B Mp41 —0
dmy, 7 (mp—1 —mg)?  (mk — Mp41)?
if and only if
mi
Mkg+1 =
mg—1
if and only if

Inmgy =2Inmyg — Inmyg_g.

Observe that we get the same linear system of the previous case, with the difference that the variables

are now In m;. Thus, the solution is:

(M4+1—=49lnmy + (i —1)Inmprq

Inm,; =
nm i
and then o
M+41—i  i—1
mi=my; ™ myf, for ie[2,M].
Finally:
* * M
g(m27"’7mM) Zg(m27"'7mM) =

Lemma C.10. Let G € (0,1], T" € N5y, M € Ny, 4, j € [K] such that there exist rounds
2t <h <ti<t)<bh<ty< - <th, <iy<T

which satisfy
i1y Jymi(t) = pi(h) + G forall L € [M],

J 1y iforallle M —1].
1
Then: .
M <4In(3T'/G)G™ 2.

Proof. Observe that, since

pitar) = pi(tar) + G = pi(th, — 1) + G
> ui(th, —1) + G,
we have
T'i(thy — 1) = (b — (thy = D)vlthy — 1) = wilby) — mi(th, — 1) = G
and thus
Yi(th, —1) = %

Now, assume M > 3. Then:

-
& ovlt] — 1) — ()

& %(tlTH - 1)
Aoyt 1) =yt - 1)
M—1
>G T
(2U=)7T
’Yz‘(tjwfl)
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M—-1 e M—-1 20)

(%)ﬁ _1 exp <1H(T’/G)) 1

where line (17) follows from Lemma C.8, line (18) follows from the fact that —*— is non-decreasing
for a > 0 and the concavity, line (19) follows from Lemma C.9, and line (20) follows from the fact
that v;(t] —1) < 1 and 'yi(t}vf —1) > £. Now, if M > 1+ In(T"/G), by Lemma D.2, we have

exp (%) —-1< 3%, and thus, by the chain of inequalities above:

(M —1)? |
>G-—————iff M <1++/3WIn(T"/G)G~1.
3I(T7/G) | V3(T/G)
Thus, by considering all possible cases, we have:

<max{2,In(T"/G),1 ++/3In(T"/G)G~1} < 4In(3T"/G)G~

We are now ready to prove Lemma 4.3.

Lemma 4.3. For all restless rising concave MABs v, « > 1, T € N3, d € (0, K, we have that:

IW=a(T)| < 91n(3e<°?a) K/d) K3d%,

Proof. Let w € W~ 4(T). Then there exists ¢ € [K] such that d,,(i) > d. But, in virtue of
Lemma C.7, we have:

(], <+ = 1) max - |p;(t) = pe(t)] > du(i) > d.

ToRE[d] st st X
te[[s(“) (a)]]

Thus, there must be j, k € [i] .+ andt € [s4), e{] such that j , xk and

d d
15 () — p ()] > W &

w

Observe that it must be either ¢ X j for t’ < tori x4 j fort’ > ¢, with ¢’ € [[37(1) +1, el ﬂ W.lo.g.
we assume that ¢ overtakes j. In the first case, window w must contain one of the rounds in which 7
overtakes j and then their expected rewards diverge by at least d/K. In the second case, window w
must contain either the first round in which ¢ overtakes j and which is right after one of the rounds in
which ¢ overtakes j and their expected rewards diverge by at least d/K or the first time in which ¢

overtakes j. In virtue of Lemma C.10 with G = % and TV = eq(f‘(zx) (1) the rounds described in the
first case are in number no more than 4 In (36(0&) K/ d) (d/K)~%2, while the rounds described in
the second case are in number no more than 4 In (36( () (T)K/d) (d/K)~Y2 + 1 for a fixed choice
of i, j € [K]. Since we have at most K such choices, it must be:

W= a(T)| < K2 (8 In (3e< e K/d) (d/K)"% + )

5 .1
<9In (3e§§1> (T)K/d) K3d 3.

C.6 Proof of Theorem 4.4

(@)

The goal of this section is to prove Theorem 4.4. We start with an upper bound to w(®) (T'), e w0(®) (T)*

()
and T, (1, ewaw)(T)).
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Lemma C.11. For all restless rising concave MABs v, o = 1, T € Nxo, we have:

w(T) < (2(1 + a)T)V O+ < 4o/ (1F), 1)
el ) <401+ )T < 8aT, 22)
T, (1,6;0;1)(T)) <8(1+a)T,(1,T) < 16aT,(1,T). (23)

Proof. We start by proving Equation (21). If w € N1, w > (2(14+a)T)Y 1+ then, by Lemma C.5,

we have:

1+a

@ s W S
w 2(1 T Oé)

Thus it must be w(®) (T") < (2(1 + a)T)Y(1+) We now use Equation (21) to prove Equation (22).

(@) o (@)
6wa(0<)(T) < w' )(T)Awon(T)

<2(2(1 4 a)T) ™= (2(1 + a)T) 7% = 4(1 + )T, (24)

where in line (24) we use the definition of Ag,? ), Equation (21), and the fact that [z] < 2z for z > 1.
Finally, we prove Equation (23).

e
(@) w(® (T)
T, (1,ew(a)(T)) < 20T, (1T) (25)
efﬁl)(T)
<2220, (1,T) <81+ @) (1,T), (26)

where line (25) follows by applying iteratively Lemma C.6 and line (26) follows from the fact that
T > 2 and by Equation (22). O

We are ready to prove Theorem 4.4.

Theorem 4.4 (Upper Bound for the Rising Concave Setting). For all restless rising concave MABs
v, a > 1, T € Nyoy, we have that:

(N

5/4a—1
Iha Tu(la T)

R, (RC-BE(ar),T) < 2"°a® (In (aKT?)) ((1 + a)K3T?/% + K3T

+(1+ a)KTlfff)_
In particular, for o/ = 8/3, we get:
RSB 1) - (T + KOTRT (1) k)

Furthermore, for

KV,
B 4logr (£

3+ 4logy (Iﬁ_‘f)’

under the additional assumptions v € £ (T, Vr),

- (1+ o) 3K-8B8y 43 11
# Imax (1+ 0.)—8/5K16/5V8/5 ’
T
we get:
R, (RC-BE(a”),T) = O (J%K%T%VT_% + U%K%T%VT%) :
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Proof. Letd' = KT~(2/2)/(+) ¢ (0, K]. Then:

R, (RC-BE(a), W= (T)) < [Wea (T)| EgaX(T){Z&KBff) + AlDgry (27)
w >d’
(a) /2 9/t
< 9n (3els), ) TH5 ) K27 (28)

max {3KB® + 16aKA®w™1T,(1,e{)}

) w

w€W>d/ (T)
a/4
< 9In(24aT?) KT+ (29)
. max {6[( (1 T 20\/A£?) 1n(2KA5§‘)))
weW_ 4 (T)

+ 32aKw* 17, (1, egﬂa))}

< 91n(24aT?) KT (30)

- <6K (1 + 20\/ 8T Ta 1n(16aKT)>
+ 211a3KT?+iT,(1,T)>

< 2 In(aKT3) K2T T (31)
23 (In(aKT?) K ((1 o) T 4 T?T‘ir,,(LT))

= 25503 (In(aKT?))? K? ((1 i T,,(LT))

where line (27) follows from Lemma 4.1, line (28) follows from Lemma 4.3 and Lemma 4.2, line (29)
follows from Lemma C.11, the definition of A§5‘ ), the fact that [z] < 2z for z > 1, and the

definition of Bq(ua), line (30) follows from the fact that the expression inside max is increasing in w,
Lemma C.11, and the fact that [z] < 2z for > 1, and line (31) follows from T > 24. Furthermore:

Ry (RC-BE(a), Wea (1) < Wea ()| max  (3KBY + AR d) (32)
wWEW g1

< w(T) <6K (1 + 20\/A§§L)(T) n(2KA), m)) +Al) md’)

(33)

< 4aT 74 (1 + 0)(In(aKT?))? (12K V8aT 5= (34)

+ 8aKT T =T 1)
< 2°0%(1 + 0)(In(aKT?) KT 754

14+a/2

< 2%03(1 + 0)(In(aKT?))2 KT T+e

where line (32) follows from Lemma 4.1, line (33) follows from the definitions of Bl(ua) and Wey (T),
and line (34) follows from Lemma C.11, T' > 24, [z] < 2z for z > 1, and the definition of d’. By
summing the previous results:

R, (RC-BE(ax),T) < R, (RC-BE(a), W~¢(T)) + R, (RC-BE(at), W (T))

< 203 (In(aKT?))? <(1 + o) K3T s 4+ KT 1, (1,T)

1+a/2
+(1+0)KT %= >

Finally, observe that, under the additional assumption v € £ (T, V), we have T,,(1,T) < Vr, and
the additional constraint on 7" guarantees o’ > 1. O
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D Technical Lemmas

Lemma D.1. Let jiq, 1o € [0, 1] with py < po and o = 1. Then:

i (61 ). 0)) < 242 )

where Dk, (+|-) is the Kullback-Leibler divergence defined in Appendix B, and (i, o) is the distri-
bution defined in Section 3.1.

Proof. Let p(u,0) := + + £ Consider the function:
f(z) = Dxr (Y (1, 0)[¢ (11 + 2, 0))

= p(p1,0)logy (p(m,o))) + (1 = p(p1,0))log, (W)

plp + 1,0 p(p +x,0)
for x € [0, pio — p1]. Then:

o) = Py (L pmeo)  ple,o)
f(x) )aﬂ(u—i_ )<1P(H1+I,U) p(u1+x’g))’

won_ L (0p o ? 1 —p(p1,0) pp1,0)
@) = <>(au(“+ )) ((1—p<m+x,o—>>2+p2<m+x,o>)'

By direct evaluation, we have f(0) = f’(0) = 0. Furthermore, since y € [0,1], o > 1, imply
p(p, o) € [1/4,3/4], then:

f,,(x)<1<8p(ﬂ+x )>2<1—p(u1,0)+p(u1,0))

(2) \ o (1/4)? (1/4)?
16 op v o 2 _ 4
~ In(2) <6u (u+, )> In(2)02"
Finally:
1@ =10+ [ (1o [ o) an < 2

The result follows from the fact that Dy, (v (11, 0)|[¢ (g2, 0))
Lemma D.2.

Jp2 — ,u1) O

e —1<3x for ze][0,1].

Proof. Let f(x) = e — 1. Then: f'(z) = e* = f”(x). Thus, by Taylor’s theorem, if = € [0, 1],
there exists £ € (0, 1) such that

1) = 10+ 70+ L0 = (14 Sa) <o (145) <30

E Numerical Simulations

In this appendix, we present additional numerical simulations which compare RC-BE(«v) with the
baseline algorithms reported in Section 5. Furthermore, we provide information regarding the
compute resources used to run the simulations.

Baselines. We consider the following baseline algorithms:

* Rexp3 (Besbes et al., 2014), an algorithm for restless MABs based on a variation budget for the
expected rewards of the arms over the learning horizon.

* R-1less-UCB (Metelli et al., 2022), an algorithm for restless rising concave MABs which relies
on the optimism principle and exploits the structure of the setting through a specifically crafted
estimator.
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Figure 4: Piecewise linear instance.

* UCB1 (Auer et al., 2002a; Bubeck, 2010), one of the most effective algorithms for stationary MABs.

The choices of the parameters of the algorithms that we compared are the following:

* Rexp3: Vr = K since, as remarked in Section 2, in the rising setting the cumulative
increment is always smaller than or equal to K; A = [(KIn(K))Y3(T/Vp)?3); v =
min {1, VEKI(K)/(Ar(e — 1))} as recommended in (Besbes et al., 2014).

* R-less-UCB: h;; = |eN, ;1| where N; ;_ is the number of times arm ¢ has been pulled by the
agent in the first ¢ — 1 rounds, with € € (0,1/2); o > 2 as prescribed in (Metelli et al., 2022). In
particular, we choose € = 0.25; o = 2.1.

* UCB1: the upper confidence bound interval for arm ¢ at round ¢ is o4/4 In(t)/N; 1—1.

E.1 Additional Instances

Piecewise Linear Instance. The piecewise linear curves that describe the evolution of the expected
rewards in the simulation have the following functional form:

IORRE = il S
%‘T‘Mz’"’%ue if t > tga

for t € [T] where pu;, pie € [0, 1], ps < pie. After the flattening time tgy € [T7], the expected rewards
of the arms stop increasing. The expected reward curves of the simulated instance are reported in
Figure 4a. The algorithms are evaluated on 7' = 5 - 10° rounds. The standard deviation of the noise is
o = 0.1. The empirical cumulative regret suffered by the algorithms is shown in Figure 4b. We can
observe that RC-BE(«) is the algorithm that achieves the lowest regret at the horizon. The behavior
of all other algorithms is explained by the same observations stated for the exponential instance in
Section 5. Conversely to what happens in the exponential instance, in this case, UCB1 shows a better
performance than R-1ess-UCB. This is due to the fact that the change of the optimal arm happens
later in time and the distance between the expected rewards of the first and last optimal arms is less
w.r.t. the exponential instance presented in Section 5.

Constant Instance. In this simulation, the expected rewards of the arms do not change with time (i.e.,
stationary MABs). The expected reward curves of the simulated instance are reported in Figure Sa.
The algorithms are evaluated on 7' = 10° rounds. The standard deviation of the noise is o = 0.01.
The empirical cumulative regret suffered by the algorithms is shown in Figure 5b. UCB1 is the
algorithm that achieves the lowest regret. This is consistent with the fact that the instance is stationary.
RC-BE(«) has the second-best performance. The reduction of the standard deviation of the noise
leads to smaller confidence bounds and, thus, a better performance, for R-1ess-UCB. Conversely,
Rexp3 is not able to exploit this fact, being based on the Exp3 algorithm which is designed for the
adversarial setting.
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Figure 5: Constant instance.

E.2 Compute Resources

The simulations were run on a single CPU core with a clock frequency of 2.60 GHz. The system has
a 8.0 GiB RAM. For each algorithm, we report the approximate time required to simulate a single
run on the exponential instance with 5 - 10% rounds:

* Rexp3: 5min 50s;

¢ R-less-UCB: 8 min;
e UCB1: 3min 30s;

* RC-BE(«): 1 min 50s.

F Flaw in the Original Analysis of K-armed Budgeted Exploration
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(a) Reward functions. (b) Derivatives of the reward functions.

Figure 6: Example instance.

In this appendix, we highlight a flaw in the original analysis of the extension of Budgeted
Exploration in the K-armed setting, which is presented in the unpublished preprint (Jia et al.,
2024). For notation and definitions, refer to the original paper. The analysis relies on the following
proposition, stated in Lemma 1.7: "First, we observe that on the clean event C, any arm in A* can
never be eliminated for "losing" to an arm in (A*)°". Tt is possible to construct a counterexample
which satisfies the hypotheses of the lemma and violates the previous proposition. We now show
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how. We work with 3 arms. We describe the evolution of the expected reward of the arms only in a
certain window. This is sufficient for the construction of the counterexample since the lemma regards
the behavior of the algorithm in a single window. The window is composed of 17W rounds, with
W e N>, to be chosen later. The expected rewards of the arms are defined as follows:

ra(t) = fa (17tW) for t € [17W]

where f, : [0,1] — [—1, 1] is a 2-Hélder function with Lipschitz constant L > 0 for a € [3]. Such
functions and their derivatives are depicted in Figure 6a and Figure 6b, respectively. More specifically,
we choose:

* The function in which the expected rewards of the first arm are embedded as:

0 ifte 0,4 +2¢/%]
i -] r L(t—%—Q %) ifte(l%+2 4343 %]d
1) == — t.
2 o |VAL-1(t- & -3\/4) itte (& +3y/E &+ 4]

0 ifte (& +4y/4.1]

* The function in which the expected rewards of the second arm are embedded as:
1
fa(z) = 5 €
* The function in which the expected rewards of the third arm are embedded as:
0 iftefo0, 2]

1 e | L(t=17) ifte (&4 +4/4]
f3(x):§—d+fo M—L(t—%—\/%> ifte(f’—?Jr %)%4_2\/*]&.

: d
0 ifte (& +2y/41]

e

The definitions rely on the constants d,e > 0, e < d < 1/2, which we choose later. To guarantee that
the functions are well-defined, we impose:

d_2 . )
- <= > 34%d.
4\5 =it L>34% (35)

We work with deterministic rewards, which can be regarded as a special realization under the clean
event C. Let Z4: be the cumulative reward of arm a € [K] observed up to round ¢ € [17TW],
included. Assuming there is no elimination before round 3WW (we choose d and ¢ in such a way that
this is true), we have that:

al.: 1 al.: 1 1
Z;oldl,sW _ *V[/; Z;otal,dW Y VVa Z;otal,BW =(Z—qa)\W
2 2 2
Then:
Ziota],SW _ Z;otal,SW _ €I/V, Z;olal,BW _ Z:t)’otal,fiW = dWw.
Let:
d . B . B
Tw-or T aw

where B is the budget of the algorithm. These choices are such that we eliminate arm 3 at the end
of round 3W (and not before), losing to arm 1. Arm 2, instead, stays alive. To satisfy d < 1/2, it
is sufficient to require W > 3B. After round 3W, the algorithm pulls only arms 1 and 2. When
r1(t) = ra(t), their difference is at most €. Thus:

-
Z;olal,SW _ Z;otal,oW < 2¢W = B.

Hence, arm 2 is not eliminated before round 5W (included). By the choice of the instance, in virtue
of Equation (35), after round 5W, we have r;(¢t) = 1/2 — d. Thus, after each round robin cycle,

. otalt  total,t ;
which takes 2 rounds, Zy " — Z;"*"" increases by d — e. Then:

Z;otal,17W . Z;otal,l?W _ G(d . €)W o (Ziotal,5W o Z;otalﬁW) > 3B — B = 2B.
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This means that, at some point after round 5W, arm 1 will be eliminated, losing to arm 2. But it
is evident that 1 € A* and 2 € (A*)°. However, it is important to notice that 2 € Z, consistent
with our analysis. It remains to show that there are choices of B, W, T, and L which satisfy the
hypotheses of the lemma and the additional requirements we imposed. In particular, they need to
satisfy:

<B<¥

17W In(3) In(T)
3 3

2 B

My <L

1TW T

2<W
It is clear that such an assignment exists. Furthermore, we can find such an assignment even when we
restrict the budget to the natural choice which has order W'/2.
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