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Abstract

Restless Multi-Armed Bandits (MABs) are a general framework designed to handle
real-world decision-making problems where the expected rewards evolve over
time, such as in recommender systems and dynamic pricing. In this work, we
investigate from a theoretical standpoint two well-known structured subclasses
of restless MABs: the rising and the rising concave settings, where the expected
reward of each arm evolves over time following an unknown non-decreasing and a
non-decreasing concave function, respectively. By providing a novel methodology
of independent interest for general restless bandits, we establish new lower bounds
on the expected cumulative regret for both settings. In the rising case, we prove a
lower bound of order ΩpT 2{3q, matching known upper bounds for restless bandits;
whereas, in the rising concave case, we derive a lower bound of order ΩpT 3{5q,
proving for the first time that this setting is provably more challenging than sta-
tionary MABs. Then, we introduce Rising Concave Budgeted Exploration
(RC-BEpαq), a new regret minimization algorithm designed for the rising concave
MABs. By devising a novel proof technique, we show that the expected cumulative
regret of RC-BEpαq is in the order of rOpT 7{11q. These results collectively make a
step towards closing the gap in rising concave MABs, positioning them between
stationary and general restless bandit settings in terms of statistical complexity.

1 Introduction

Multi-Armed Bandits (MABs, Lattimore and Szepesvári, 2020) are a well-known framework to model
decision-making problems, where, for each round, an agent chooses (pulls) an action (arm) among a
set of available actions and observes a reward, i.e., numerical feedback which represents the goodness
of the choice. In this setting, the goal of the learner is to minimize the expected cumulative regret
accumulated during the interaction, i.e., the sum over time of the difference between the expected
reward of the optimal arm and that of the chosen one. The standard MAB setting considers stationary
reward distributions. However, in many real-world decision-making problems, the expected rewards
of available actions can vary over time due to changes in the surrounding environment, such as
shifting in consumer preferences for online marketplaces (Wu et al., 2018) or evolving health status
of patients in treatment selection during clinical trials (Aziz et al., 2021). To address such dynamics,
the restless MABs framework (Tekin and Liu, 2012) has been introduced. This model generalizes the
classical MAB setting by explicitly incorporating the non-stationarity of the arms.1

1With a slight abuse of terminology, we will use the words non-stationary and restless interchangeably.
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Metelli et al. 2022 (Thm. 5.3) ✗ ✗ ✓ rOpT 2{3q

This work (Thm. 4.4) ✗ ✗ ✓ OpT 2{3q Ñ rOpT 7{11q

Table 1: Existing and new bounds for the restless, restless rising and restless rising concave settings.
The arrow Ñ points from the previous best result to the improved one presented in this paper.

Non-stationarity in bandit problems has been addressed through a variety of models and methods,
such as restless bandits with abrupt changes in the reward distribution (e.g., Garivier and Moulines,
2011), smoothly evolving expected rewards (e.g., Trovò et al., 2020), and settings where the total
variation of expected rewards is bounded over time (e.g., Besbes et al., 2014). These frameworks
allow the expected rewards to fluctuate in complex ways, such as increasing and then decreasing,
without constraints on their direction of change. In contrast, there are important classes of bandit
models that enforce monotonicity on the expected rewards. These include rising bandits (Heidari et al.,
2016; Metelli et al., 2022), where expected rewards are non-decreasing, and rotting bandits (Levine
et al., 2017; Seznec et al., 2019, 2020), where they are non-increasing. Such models are well-suited
for capturing structured real-world dynamics, including online model selection (Metelli et al., 2022),
hyperparameter optimization (Mussi et al., 2024), and recommendation systems (Levine et al., 2017).

Motivation. In this work, we focus on the restless rising bandits and restless rising concave bandits
and we aim to characterize them from a theoretical standpoint since several fundamental questions
remain unresolved. In the general restless bandit setting, where the expected rewards may vary over
time with bounded variation over T rounds, the minimax regret is known to be lower bounded by
ΩpT 2{3q (Besbes et al., 2014).2 However, no regret lower bound has been derived for the specific
class of non-decreasing (rising) or non-decreasing concave (rising concave) restless bandits yet,
making the classical lower bound for stationary bandits, ΩpT 1{2q (Lattimore and Szepesvári, 2020,
Thm. 15.2), the best available reference, and leaving the following question open.

Question 1: Is it possible to conceive regret lower bounds for restless rising and restless rising
concave bandits that are strictly larger than the ΩpT 1{2q bound for stationary bandits?

The currently available algorithms for restless rising bandits are those designed for general restless
bandits with bounded variation, which achieve a regret upper bound of order OpT 2{3q (Besbes et al.,
2014). When incorporating concavity, more specific algorithms have been proposed (Metelli et al.,
2022), but unfortunately, they fail to improve the regret order. This generates the following question.

Question 2: Is it possible to devise algorithms for restless rising and rising concave bandits whose
regret upper bounds are strictly smaller than the OpT 2{3q bound for general restless bandits?

Original Contribution. In this paper, we aim to provide an answer to the research questions
presented above, making a step towards the complete statistical characterization of restless rising and
restless rising concave bandits. The contribution is summarized as follows:
• In Section 3, we provide a general recipe for deriving regret lower bounds for restless bandits,

which generalizes the construction of Besbes et al. (2014) and is of potential independent interest
(Lemma 3.1). We then specialize this construction to the cases of rising and rising concave bandits.
First, we derive a lower bound of order ΩpT 2{3q for rising bandits, showing that this setting shares
the same statistical complexity as general restless bandits (Theorem 3.2) and answering negatively

2We use Ωp¨q and Op¨q to highlight the dependence on T in the lower and upper bounds, respectively,
omitting constant factors. For upper bounds, we also use rOp¨q to suppress logarithmic dependencies on T too.
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to Question 2 for rising bandits. Second, for restless rising concave bandits, we show that the
regret is at least of order ΩpT 3{5q, showing that this setting is more challenging than stationary
MABs (Theorem 3.3). These results provide a positive answer to Question 1 for both settings.

• In Section 4, we present Rising Concave Budgeted Exploration (RC-BEpαq), a novel
regret minimization algorithm for restless rising concave MABs, which extends Budgeted
Exploration (Jia et al., 2023). By devising a novel analysis, we provide an upper bound
on its regret of order rOpT 7{11q (Theorem 4.4) with no requested knowledge of the learning
horizon or of the total variation. This result improves upon the current best upper bound of order
OpT 2{3q and provides a positive answer to Question 2 for rising concave bandits.

Numerical simulations are provided in Section 5. Related works are discussed in Appendix A.
Omitted proofs are provided in Appendices B and C for lower and upper bounds, respectively. A
summary of known and new results presented in this paper is provided in Table 1.

2 Setting

A restlessK-armed MAB (Tekin and Liu, 2012; Lattimore and Szepesvári, 2020) is defined as a vector
of probability distributions ν “ pνiqiPJKK, where νi : Ně1 Ñ ∆pRq.3 Let T P Ně1 be the learning
horizon, at each round t P JT K, the agent selects an arm It P JKK and observes a reward Rt “ XIt,t

where Xi,t „ νiptq for all i P JKK, t P Ně1. We denote the random table with all possible rewards
as X “ pXi,tqiPJKK,tPNě1

. For every arm i P JKK, we define its expected reward µi : Ně1 Ñ R as
the expectation of the reward obtained by pulling such arm, i.e., µiptq “ EX„νiptqrXs and denote
the vector of expected reward functions as µ “ pµiqiPJKK. We assume that the expected rewards are
bounded in r0, 1s, and that the realizations are σ-subgaussian.4

Rising Bandits. We revise the rising bandits notion, i.e., MABs with non-decreasing expected
rewards (Heidari et al., 2016). Such a property is captured by the following assumption.
Assumption 2.1 (Non-Decreasing expected reward). Let ν be a restless MAB. For every arm i P JKK
and round t P Ně1, the function µiptq is non-decreasing in t. In particular, defining the increments:

γiptq :“ µipt` 1q ´ µiptq ě 0.

We introduce a further assumption on the concavity of the expected rewards (Heidari et al., 2016).
Assumption 2.2 (Concave expected reward). Let ν be a restless MAB. For every arm i P JKK and
round t P Ně1, the function µiptq is concave in t, i.e.:

γipt` 1q ´ γiptq ď 0.

Formally, we call restless rising a restless MAB in which Assumption 2.1 holds, and restless rising
concave a restless MAB in which both Assumptions 2.1 and 2.2 hold. From now on, we omit the
adjective restless for the sake of conciseness.

Learning Problem. Let t P Ně1 be a round, we denote with Ht “ pIl, Rlq
t
l“1 the history of

observations up to t. A (non-stationary deterministic) policy is a function π : Ht´1 ÞÑ It mapping a
history to an arm, that is abbreviated as πptq :“ πpHt´1q. We define the performance of a policy π
in a restless MAB ν as the expected cumulative reward collected over the T rounds, formally:

Jνpπ, T q :“ E
X„ν

„ T
ÿ

t“1

µItptq

ȷ

.

A policy π˚
ν is optimal if it maximizes the expected cumulative reward: π˚

ν P argmaxπtJνpπ, T qu.
In restless MABs, the optimal policy does not explicitly depend on T and consists of pulling in each
round the arm with the highest expected reward: π˚

ν ptq P argmaxiPJKK µiptq for every t P Ně1.
Denoting with J˚

ν pT q :“ Jνpπ˚
ν , T q the expected cumulative reward of an optimal policy, the

suboptimal policies π are evaluated via the expected cumulative regret:

Rνpπ, T q :“ J˚
ν pT q ´ Jνpπ, T q. (1)

3Let a, b P Ně1, b ě a, we denote with Ja, bK :“ ta . . . , bu, with JaK :“ J1, aK, and with ∆pX q the set of
probability measures over the measurable set X .

4A random variable X is σ-subgaussian if EreλpX´ErXsq
s ď e

σ2λ2

2 , for every λ P R.
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Instances Characterization. To characterize an instance ν, we introduce the following quantity,
namely the cumulative increment, defined for every t1, t2 P Ně1 with t1 ď t2 as:

Υνpt1, t2q :“
t2´1
ÿ

l“t1

max
iPJKK

γiplq.

The cumulative increment extends to an arbitrary interval with t1 and t2 as extremes the analogous
notion ΥµpT, qq employed in (Metelli et al., 2022), restricting to q “ 1. It is immediate to show
that Υνpt1, t2q P r0,Ks since Υνpt1, t2q ď

řt2´1
l“t1

ř

iPJKK γiplq ď
ř

iPJKK 1 “ K. Analogously to
what is done in (Besbes et al., 2014), we consider the class of instances whose cumulative increment
over the learning horizon T is bounded by a variation budget VT P p0,Ks, which we assume known,
formally Υνp1, T q ď VT . Then, we call, respectively, Eσ

r pT, VT q and Eσ
c pT, VT q the set of rising

MABs and rising concave MABs instances, with σ-subgaussian rewards, whose Υνp1, T q satisfies
the previous inequality.

3 Lower Bounds

In this section, we analyze the statistical complexity of the learning problem in both the rising and
rising concave settings. To this end, we provide a regret lower bound suffered by any deterministic
policy π on a class of instances which are rising and rising concave, respectively.5 In particular, we
show that rising MABs are not easier than restless MABs with bounded variation (Besbes et al., 2014,
Thm. 1) and that rising concave MABs are harder than stationary MABs (Lattimore and Szepesvári,
2020, Thm. 15.2). The analysis is carried out as follows. We develop a general recipe for regret lower
bound construction on a richer class of restless MABs, described in Section 3.1. Then we specialize
it to both the settings of interest (Sections 3.2 and 3.3).

3.1 General Recipe for the Lower Bound

We consider a class of restless MABs with the following structure. The set of rounds Ně1 is split into
windows. Let p∆wqwPNě1

where ∆w P Ně1 be a sequence of window widths. A window consists
of a set of rounds Jsw, ewK Ă Ně1 where sw :“

řw´1
l“1 ∆l ` 1 and ew :“

řw
l“1 ∆l, for w P Ně1.

For each window index w P Ně1, we define two functions µw, rµw : J∆wK Ñ r0, 1s, which we call
base and modified trend respectively, that describe how the expected rewards of the arms evolve in
Jsw, ewK. In particular, in each window, at most one arm among the K has expected reward that
follows the modified trend, while all the others have expected rewards that follow the base trend. The
arm whose expected reward follows the modified trend can change between windows. We further
enforce µwptq ď rµwptq for all w P Ně1, t P J∆wK,6 so that the arm whose expected reward follows
the modified trend is the optimal one. More formally, let wptq :“ mintw P Ně1 s.t. ew ě tu be the
index of the window which contains the round t P Ně1. For each sequence o “ powqwPNě1

with
ow P J0,KK in each window of index w and for each subgaussian parameter σ ě 1, we define an
instance νσ

o “ pνσo,iqiPJKK as follows:

νσo,iptq :“

#

ψpµwptqpt´ swptq ` 1q, σq if i ‰ owptq

ψprµwptqpt´ swptq ` 1q, σq if i “ owptq

, (2)

whereψpµ, σq is a probability distribution with parameters µ P r0, 1s, σ ě 1 such that ifX „ ψpµ, σq,
then:

X “

#

3
2σ w.p. 1

4 `
µ
2σ

´ 1
2σ w.p. 3

4 ´
µ
2σ

.

First of all observe that µ P r0, 1s, σ ě 1 imply µ{p2σq P r0, 1{2s, so that the distribution is well-
defined. Furthermore, ifX „ ψpµ, σq, then, in virtue of Hoeffding’s lemma,X is σ-subgaussian, and,
by direct calculation, it has expected value equal to µ. Notice that, if ow “ 0, all the arms follow the

5Since we are considering stochastic bandits, our lower bounds can be generalized to stochastic policies,
yielding analogous results, at the cost of additional notational complexity.

6We consider µwptq and rµwptq both in the domain t P J∆wK instead of in the domain Jsw, ewK, for the sake
of simplicity in the notation, as every window is defined independently from the others.
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base trend, otherwise, ow corresponds to the only arm following the modified trend. We denote with
µ “ pµwqwPNě1 and rµ “ prµwqwPNě1 the sequences of base and modified trends respectively, and
with Eσ

µ,rµ “ tνσ
o s.t. o P J0,KKNě1u the class of instances that they induce by varying the sequence

o of optimal arms in each window. The following result, whose proof is deferred to Appendix B,
holds.
Lemma 3.1 (General Lower Bound). Under the assumption that µwptq ď rµwptq for all w P Ně1,
t P J∆wK, for any deterministic policy π, subgaussian parameter σ ě 1, and learning horizon
T P Ně1, it holds that:

sup
νPEσ

µ, rµ

Rνpπ, T q ě

wpT q
ÿ

w“1

¨

˝1 ´
1

K
´

d

lnp2qDµ,rµ,T,σ
w

2K

˛

‚Aµ,rµ,T
w , (3)

where:

Dµ,rµ,T,σ
w :“

mintew,T u
ÿ

t“sw

DKLpψpµwpt´ sw ` 1q, σq}ψprµwpt´ sw ` 1q, σqq,

Aµ,rµ,T
w :“

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq,

for all w P JwpT qK, with DKLp¨}¨q being the Kullback-Leibler divergence of the two distributions
(formally defined in Appendix B).

This result highlights the trade-off in designing a “challenging” restless instance. On the one hand,
we do not want to make the base and modified trends too far apart, otherwise it would be easy for the
agent to discern one from the other. This is reflected in Equation (3), as the term Dµ,rµ,T,σ

w increases
when the two trends diverge and contributes to reducing the regret lower bound since Aµ,rµ,T

w is
non-negative by construction. On the other hand, we want to maximize the area Aµ,rµ,T

w between the
two trends. In this way, under the assumption that Dµ,rµ,T,σ

w is small enough so that the factor that
multiplies Aµ,rµ,T

w is non-negative, we increase the regret lower bound.

3.2 Specializing the Lower Bound for the Rising Setting

In this part, we apply Lemma 3.1 to provide a regret lower bound for the class Eσ
r pT, VT q, holding for

any deterministic policy π. To this end, we construct sequences of window widths p∆r,wqwPNě1
and

of base and modified trends µr, rµr such that Eσ
µr,rµr

Ď Eσ
r pT, VT q. A representation of the structure

of the instances is depicted in Figure 1. We choose windows of the same width. In each window, the
base and modified trend are both constant, the latter is greater than the former by a quantity εr ą 0
and the value of the modified trend in a window corresponds to the value of the base trend in the
next window. In this way, we guarantee that the instances are rising no matter which arm follows the
modified trend. In Appendix B, we formalize the instances and we prove that the following holds.
Theorem 3.2 (Lower Bound for the Rising Setting). For any deterministic policy π, subgaussian
parameter σ ě 1, and learning horizon T P Ně1, T ě σ2Kmint1, VT u´2, it holds that:

sup
νPEσ

r pT,VT q

Rνpπ, T q ě
1

64
σ

2
3T

2
3K

1
3 mint1, VT u

1
3 .

The orders of growth for T , K, and VT in this result match the upper bound for the general restless
case with bounded variation (Besbes et al., 2014, Thm. 2) when VT ď 1.7 This implies that rising
MABs are not easier than general restless MABs with bounded variation despite the additional
assumption. Thus, the characterization of the statistical complexity of this setting is completed.

3.3 Specializing the Lower Bound for the Rising Concave Setting

In this part, we provide a regret lower bound for the class Eσ
c pT, VT q holding for any deterministic

policy π. In analogy to Section 3.2 for the rising setting, we construct sequences of window widths
7We believe this is an artifact of the analysis since, in our the lower bound construction, we have Υp1, T q ď 1.
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µr,w

rµr,w

1

∆r

w ´ 1 w w ` 1

..

..

t

εr

Figure 1: Base (dashed) and modified (solid)
trends of the lower bound instances for the rising
setting.

1

∆c

..

..

w ´ 1 w w ` 1 t

m2w´1

m2w´2

m2w

µc,w

rµc,w

Figure 2: Base (dashed) and modified (solid)
trends of the lower bound instances for the rising
concave setting.

p∆c,wqwPNě1
and of base and modified trends µc, rµc such that Eσ

µc,rµc
Ď Eσ

c pT, VT q. A representation
of the instances is depicted in Figure 2. We choose again windows of the same width. In each window,
the base and modified trends share the same starting and ending values. Furthermore, the end value
of expected rewards in a window matches the start value of expected rewards in the next window.
The end value is greater than the start value to guarantee that the instances are rising. The base trend
joins the two endpoints of the expected rewards of each window with a single segment, while the
modified trend uses two segments. At the beginning, it rises with a slope greater than that of the base
trend until half the window. At this point, the distance between the base and the modified trend in the
window is maximum. Then, the modified trend keeps rising, but with a slope that is smaller than that
of the base trend, until the two trends meet at the end of the window. The pattern repeats and the
slopes are chosen in such a way that the slope of the second part of the modified trend in a window
(which is the smallest slope in a window) corresponds to the slope of the first part of the modified
trend in the next window (which is the greatest slope of an expected reward in a window). In this way,
we guarantee that the instances are rising and concave, no matter the choice of which arm follows the
modified trend. In Appendix B, we formally present the instances and we prove the following result.

Theorem 3.3 (Lower Bound for the Rising Concave Setting). For any deterministic policy π,
subgaussian parameter σ ě 1, and learning horizon T P Ně1, T ě 210σ2Kmint1, VT u´2, it holds
that:

sup
νPEσ

c pT,VT q

Rνpπ, T q ě 2´14σ4{5T
3
5K

2
5 mint1, VT u

1
5 .

This result proves that regret minimization in rising concave MABs represents a harder learning
problem w.r.t. stationary MABs which are characterized by the usual ΩpT 1{2q lower bound.

4 Upper Bound for the Rising Concave Setting

In this section, we present a novel regret minimization algorithm, Rising Concave Budgeted
Exploration (RC-BEpαq), designed for rising concave MABs (Algorithm 1), and analyze its perfor-
mance by providing an upper bound of the expected cumulative regret suffered on a generic instance
ν P Eσ

c pT, VT q. We show that this upper bound attains a strictly smaller rate w.r.t. the lower bound
on the expected cumulative regret on a generic restless MAB with bounded variation (Besbes et al.,
2014), and thus that rising concave MABs are indeed an easier setting w.r.t. them.

Algorithm. RC-BEpαq is an improvement of the Budgeted Exploration (BE) algorithm (Jia et al.,
2023), originally designed for 2-armed general restless bandits.8 The original BE algorithm works
as follows. The learning horizon T is split in windows of ∆ P Ně1 rounds each. In each window,
the algorithm restarts. At the beginning of each window, the agent carries out an exploration phase
which consists of several round-robin cycles. In particular, the agent keeps track of the arms alive in

8The extension of BE toK-armed bandits is proposed in the unpublished preprint (Jia et al., 2024) for the case
of smooth MABs. However, we have found soundness issues in the analysis proposed there (see Appendix F).
For this reason, we will develop an independent analysis which overcomes these issues.
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Algorithm 1 RC-BEpαq.
1: Input: α ě 1, K P Ně2

2: Initialize w Ð 1, d Ð 1, A Ð JKK, B Ð A, Ŝi Ð 0, @i P JKK
3: for t P JT K do
4: if d “ ∆

pαq
w ` 1 then

5: Increment w Ð w ` 1
6: Reset d Ð 1, A Ð JKK, B Ð A, Ŝi Ð 0, @i P JKK
7: end if
8: Pull It P B
9: Remove B Ð B ztItu

10: Observe Rt “ XIt,t

11: Update ŜIt Ð ŜIt `Rt

12: if B “ tu then
13: Compute Ŝ˚

Ð maxiPA Ŝi

14: for i P JKK do
15: if i P A and Ŝi `B

pαq
w ă Ŝ˚ then

16: Remove A Ð Aztiu
17: end if
18: end for
19: Reset B Ð A
20: end if
21: Increment d Ð d` 1
22: end for

the current window in a set A Ď JKK, initialized to JKK at the beginning of each window, and, in
each round-robin cycle, pulls each of these arms once. The agent cumulates the observed rewards for
each arm in the variables Ŝi with i P JKK. At the end of each round-robin cycle, the agent compares
the cumulative reward of each alive arm with the maximum cumulative reward among alive arms
Ŝ˚ :“ maxiPA Ŝi. If for i P A we have Ŝi `B ă Ŝ˚, where B ą 0 is a parameter of the algorithm,
we say that arm i has run out of budget and the agent removes it from the set of alive arms. It can
happen that, after several round-robin cycles, the set of alive arms becomes a singleton: A “ t̂i˚u. In
this case, no more eliminations can happen and the agent will commit to the remaining arm î˚.

RC-BEpαq extends the original algorithm as follows. It exploits the concavity of the instance
through increasing window widths ∆

pαq
w :“ rwαs and corresponding budgets Bpαq

w :“ 2p1 `

2σp∆
pαq
w lnp2K∆

pαq
w qq1{2q. The rationale is the following. The algorithm suffers a high regret

in windows during which the optimal arm changes. Indeed, in windows where no change happens,
the algorithm is likely to commit to the best arm, suffering no regret after the initial exploration
phase. Conversely, in windows where the optimal arm changes, the algorithm could commit to
an arm that then becomes suboptimal, or it could fail in estimating the optimal arm. In this case,
the regret increases with the distance of the expected rewards of î˚ and the actual optimal arm in
round t: i˚t P argmaxiPJKK µiptq. Thanks to the concavity, the maximum increment maxiPJKK γiptq
decreases as t increases. Thus, as time passes, if the optimal arm changes, it takes longer for the
expected rewards of î˚ and i˚t to diverge significantly. Hence, we can restart the algorithm with a
lower frequency, which is equivalent to having windows with increasing width.

Regret Analysis. RC-BEpαq partitions the set of rounds Ně1 in windows Jspαq
w , e

pαq
w K with spαq

w :“
řw´1

l“1 ∆
pαq

l ` 1 and epαq
w :“

řw
l“1 ∆

pαq

l , for w P Ně1. Let wpαqptq “ mintw P Ně1 s.t. epαq
w ě tu

be the index of the window that contains the round t P Ně1. Thus, the learning horizon T is split in
wpαqpT q windows. In what follows, we bound the regret suffered by RC-BEpαq on the set of windows
W which enjoy certain properties that we introduce later. To this end, we denote the regret suffered
by a policy π on a set of windows W Ă Ně1, |W| ă 8 as:

Rνpπ,Wq :“
ÿ

wPW

epαq
w
ÿ

t“s
pαq
w

E
X„ν

”

µi˚
t

ptq ´ µItptq
ı

.
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Now, we present the properties which induce the classes of windows of interest for the analysis. In
particular, we need to formally characterize the fact that, in a window, the optimal arm can change.
To this end, we introduce the following definitions, in analogy to what is done in (Jia et al., 2024).
Definition 4.1 (Overtaking). An arm i P JKK overtakes an arm j P JKK at time t P Ně2 if
µipt´ 1q ď µjpt´ 1q and µiptq ě µjptq. Formally, we write i Òt j (note that i Òt i).

Definition 4.2 (Crossing). Two arms i, j P JKK cross at time t P Ně2, if i Òt j or j Òt i. Formally,
we write iˆt j (note that iˆt i).

We introduce a binary relation for arms that cross in the w-th window. For w P Ně1, i, j P JKK:

iwˆj iff iˆt j for some t P Jspαq
w ` 1, epαq

w K.

Let wˆ` be the transitive closure of wˆ. wˆ` is an equivalence relation since wˆ is reflexive and
symmetric. For an arm i P JKK, we denote with ris

wˆ` its equivalence class w.r.t. wˆ`. Let:

I˚
w :“

␣

i P JKK s.t. there exists t P Jspαq
w , e

pαq
w K with i P argmaxjPJKK µjptq

(

,

be the set of optimal arms in window w. Furthermore, we define Iˆ
w :“ ri˚ws

wˆ` for some i˚w P I˚
w.

Observe that the definition is well posed since, in virtue of Lemma C.2, it does not depend on the
choice of i˚w. For w P Ně1, i P JKK, we define the diameter of its equivalence class w.r.t. wˆ` as

dwpiq :“ max
j,kPris

wˆ` , tPJspαq
w ,e

pαq
w K

|µjptq ´ µkptq| .

We use the shorthand d˚
w for dwpi˚wq where i˚w P I˚

w. The following lemma decomposes the regret
suffered by RC-BEpαq during the w-th window as the sum of the regret due to the exploration phase
plus the regret due to the commitment phase.
Lemma 4.1. For all restless rising concave MABs ν, α ě 1, w P Ně1 we have that:

RνpRC-BEpαq, twuq ď 3KBpαq
w

looomooon

Exploration

` ∆pαq
w d˚

w
loomoon

Commitment

.

Thus, the regret due to exploration is proportional to the budget Bpαq
w , while the regret suffered during

the commitment phase depends on the width of the window ∆
pαq
w and on the diameter d˚

w of Iˆ
w . In

windows where the optimal arm does not change, Iˆ
w is a singleton and, thus, its diameter is 0. This

reflects the fact that, in such windows, the algorithm suffers only the regret due to the exploration.

We now provide an upper bound for dwpiq with w P Ně1, i P JKK which exploits concavity.
Lemma 4.2. For all restless rising concave MABs ν, α ě 1, w P Ně1, i P JKK, we have that:

dwpiq ď 8p1 ` αq
`
ˇ

ˇris
wˆ`

ˇ

ˇ ´ 1
˘

w´1Υνp1, epαq
w q ď 16αKw´1Υνp1, epαq

w q.

Recall that Υνp1, e
pαq
w q is upper bounded by K. Thus, as expected, eventually the upper bound of the

diameter decreases as w increases. This reflects what we informally stated before. As time goes, due
to the concavity, it takes more time for the expected rewards of arms which have crossed to diverge
significantly. Thus, it makes sense to increase the width of the windows over time.

We now discriminate between two kinds of windows: those in which the expected rewards of arms
which cross (and thus of the arms which belong to Iˆ

w ) do not diverge significantly and those in
which, instead, the converse happens. More formally, let d P p0,Ks:

WďdpT q :“
␣

w P JwpαqpT qK s.t. dwpiq ď d for all i P JKK
(

,

WądpT q :“
␣

w P JwpαqpT qK s.t. dwpiq ą d for some i P JKK
(

.

In the second class of windows, we have no upper bound to the diameter d˚
w other than that of

Lemma 4.2, which considers a worst-case scenario in which the divergence of the expected rewards
of the arms which cross is the maximum possible. We now show that this scenario, in the rising
concave setting, can happen only a limited number of times. In particular, this is translated into an
upper bound to the number of windows in WądpT q, which is captured by the following lemma.
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Lemma 4.3. For all restless rising concave MABs ν, α ě 1, T P Ně1, d P p0,Ks, we have that:

|WądpT q| ď 9 ln
´

3e
pαq

wpαqpT q
K{d

¯

K
5
2 d´ 1

2 .

Informally, this lemma states that, in the rising concave setting, it cannot happen in too many windows
that the expected rewards of arms which cross diverge significantly (i.e., more than d).

We use this fact to conclude the analysis. In particular, observe that we can always upper bound
the regret suffered on a set of windows W as Rνpπ,Wq ď |W|maxwPW Rνpπ, twuq. We use
this to upper bound the regret suffered on both WďdpT q and WądpT q. In the first case, we ob-
serve that |WďdpT q| ď wpαqpT q and use the definition of WďdpT q together with Lemma 4.1 to
bound maxwPWďdpT q RνpRC-BEpαq, twuq. In the second case, we use Lemma 4.3 to upper bound
|WądpT q| and Lemma 4.1 together with Lemma 4.2 to deal with maxwPWądpT q RνpRC-BEpαq, twuq.
These observations lead to the following result which is formally proven in Appendix C.
Theorem 4.4 (Upper Bound for the Rising Concave Setting). For all restless rising concave MABs
ν, α ě 1, T P Ně24, we have that:

RνpRC-BEpαq, T q ď 215α3
`

ln
`

αKT 3
˘˘

3
2

ˆ

p1 ` σqK3T
3{4α
1`α `K3T

5{4α´1
1`α Υνp1, T q

` p1 ` σqKT
1`α{2
1`α

˙

.

In particular, for α1 “ 8{3, we get:

RνpRC-BEpα1q, T q “ rO
´

σK3T
6
11 `K3T

7
11Υνp1, T q ` σKT

7
11

¯

.

Furthermore, for

α2 “

8 ´ 4 logT

´

K2VT

1`σ

¯

3 ` 4 logT

´

K2VT

1`σ

¯ ,

under the additional assumptions ν P Eσ
c pT, VT q,

T ě max

#

p1 ` σq4{3K´8{3V
´4{3
T ` 1

p1 ` σq´8{5K16{5V
8{5
T

,

we get:
RνpRC-BEpα2q, T q “ rO

´

σ
14
11K

27
11T

6
11V

´ 3
11

T ` σ
9
11K

15
11T

7
11V

2
11

T

¯

.

By looking at the algorithm and at Theorem 4.4, we observe how by selecting α “ 8{3, we achieve
a regret of order rOpT 7{11q without the knowledge of either the total variation VT or the learning
horizon T , making it an anytime algorithm, at the price of a worse dependence on K and VT . This
result shows that the regret minimization problem in rising concave MABs is indeed easier w.r.t.
general restless MABs with bounded variation (Besbes et al., 2014) and rising MABs. Indeed, the
regret rOpT 7{11q in our upper bound is smaller than that of the lower bound for restless MABs with
bounded variation (Besbes et al., 2014, Theorem 1) and rising MABs (Theorem 3.2), i.e., ΩpT 2{3q.

5 Numerical Simulations

In this section, we present the results of numerical simulation of RC-BEpαq compared to state-of-the-
art algorithms for restless, restless rising concave, and stationary MABs.9

Baselines. We consider the baseline algorithms: Rexp3 (Besbes et al., 2014), an algorithm for
restless MABs based on a variation budget; R-less-UCB (Metelli et al., 2022), an algorithm for
restless rising concave MABs; and UCB1 (Auer et al., 2002a; Bubeck, 2010), one of the most effective

9Additional simulations are reported in Appendix E. The code to reproduce the results is available at
https://github.com/m1gwings/rcbealpha-experiments.
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Figure 3: Instance and results of the experimental validation.

algorithms for stationary MABs. The choices of the parameters of the algorithms are reported in
Appendix E.

Setting. The algorithms are evaluated for T “ 5 ¨ 106 rounds on synthetic instances with K “ 5
arms. The stochasticity is realized by adding Gaussian noise with standard deviation σ “ 0.1. The
curves of the expected rewards have the functional form fptq “ cp1 ´ expp´sat{T qq for t P JT K
where a, c P p0, 1s, s “ 50, and are reported in Figure 3a. We compare the algorithms in terms of
empirical cumulative regret pRνpπ, tq which is the empirical counterpart of the expected cumulative
regret Rνpπ, tq at round t averaged over multiple independent runs. In each simulation, the parameter
α of RC-BEpαq is set to α “ 8{3, as suggested by Theorem 4.4.

Results. The empirical cumulative regret suffered by the algorithms is shown in Figure 3b. We
observe that RC-BEpαq is the algorithm that achieves the lowest regret at the horizon. UCB1 has
the lowest regret in the first rounds, afterwards its regret starts increasing when the optimal arm
changes. This is consistent with the fact that we are violating the stationarity assumption on which the
algorithm relies. Rexp3 is an algorithm which restarts at a fixed frequency. In particular, the number
of restarts has order T 1{3. Thus, in this simulation, there are « 102 restarts, and, by looking at the
figure, it is not possible to appreciate the behavior of the algorithm between one restart and the next.
For this reason, Rexp3 shows a cumulative regret which increases linearly. This is consistent with
the fact that the algorithm is not anytime. R-less-UCB, consistently with its theoretical guarantees,
shows a sublinear growth of the cumulative regret. Its estimator relies on a rested model of the
evolution of the expected rewards of the arms, penalizing the empirical performance.

6 Discussion and Conclusions

In this paper, we studied the restless rising and rising concave MABs, where the expected rewards of
the arms are non-decreasing and non-decreasing concave in the number of played rounds, respectively.
We derived lower bounds to the expected cumulative regret in both settings. The lower bound in the
rising setting has order ΩpT 2{3q and implies that the non-decreasing expected reward assumption
does not simplify the learning problem w.r.t. the general restless setting with bounded variation, and
so that all the algorithms which are optimal for the general setting are optimal also in this special
subclass, closing in this way the gap present in the literature. Thus, for the rising setting, we provided
a positive answer to our Question 1 and a negative answer to our Question 2. The lower bound
in the rising concave setting has order ΩpT 3{5q and implies that rising concave MABs represent a
statistically harder problem w.r.t. stationary MABs. After having presented two statistical barriers
for these settings, we developed a learning algorithm with the goal of exploiting the more structured
model of rising concave MABs. To this end, we designed RC-BEpαq, and we derived an upper bound
to its expected regret of order rOpT 7{11q. This result implies that the non-decreasing expected reward
assumption, together with the concave expected reward assumption, simplifies the learning problem
w.r.t. the same setting without concavity. Thus, for the rising concave setting, we provided a positive
answer for both Question 1 and Question 2. The natural future research direction includes closing
the gap in rising concave MABs which is now only 7{11 ´ 3{5 “ 2{55 in the exponent of T .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: —
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limits of the paper and the future research directions in order
to address them.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the statements are provided with proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The compared algorithms and the structure of all the simulated instances are
listed in Section 5 and Appendix E. Additional details needed to reproduce the results, like
all the seeds of pseudo-random generators used in the simulations, can be found in the code
which is made available in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is made available in the supplemental material. All the simulations
are on synthetic instances, thus no external data is needed.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The parameters of all the compared algorithms are explicitly listed in Ap-
pendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 95% confidence intervals on the cumulative regret curves used to
compare the algorithms.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information is provided in Section E.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is coherent with NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works

Restless Bandits. In the original restless MAB setting, introduced by Tekin and Liu (2012), the
evolution of the expected reward of each arm was described by a Markov chain. Several algorithms
have been proposed to deal with this new framework, e.g., Restless-UCB (Wang et al., 2020), which
relies on the optimistic estimation of the transition kernel of the underlying chain. Over time, the
term restless acquired a broader meaning, encompassing all bandits in which the expected reward
changes as time passes. Such arbitrary evolution can be described by a function that maps each round
to the expected reward of a given arm. This is the type of restless bandit we target in this work. There
are two families of methods to tackle restless MABs: passive (e.g., Garivier and Moulines, 2011;
Besbes et al., 2014; Auer et al., 2019; Trovò et al., 2020) and active (e.g., Liu et al., 2018; Besson
et al., 2022; Cao et al., 2019). Passive methods base their estimates on the recent feedback, forgetting
obsolete observations. Active methods try to detect the changes in arms’ expected rewards and use
only the observations gathered after the last change. Among the most common passive approaches we
find methods based on discounted rewards, e.g., D-UCB (Garivier and Moulines, 2011), or adaptive
sliding window, e.g., SW-UCB (Garivier and Moulines, 2011). Both algorithms suffer a rOpT 1{2q

regret in the setting in which expected rewards change abruptly a fixed number of times over the time
horizon, and such number is known. Auer et al. (2019) obtained a similar result in the same setting,
without knowing the number of changes, by resorting on the doubling trick (Besson and Kaufmann,
2018). Another common setting is the one that allows the expected rewards to evolve arbitrarily, with
the only constraint that the maximum absolute difference between the expected rewards of an arm
in one round and the next, summed over the time horizon, is smaller than or equal to a variation
budget VT (Besbes et al., 2014). The Rexp3 algorithm (Besbes et al., 2014), a modification of the
Exp3 (Auer et al., 2002b) policy, originally designed for adversarial MABs, shows a regret bound
of OpT 2{3q under the knowledge of the variation budget VT . The need for the knowledge of such
quantity has been removed by Chen et al. (2019) by means of the doubling trick. In (Trovò et al.,
2020), an approach which combines a Thompson-Sampling-like algorithm with a sliding window,
shows theoretical guarantees in both the abruptly and smoothly changing settings.

Rising Bandits. Rising concave MABs have been introduced in the deterministic setting by Heidari
et al. (2016) and Li et al. (2020), where the rewards observed by the agent in each round are not
affected by noise. In their formulation of the problem, the rewards of an arm are non-decreasing
in the number of times such an arm has been pulled and satisfy the decreasing marginal return
assumption, i.e., the increment in the reward observed between one pull and the next of the same arm
is non-increasing in the number of pulls. The online algorithm designed by Heidari et al. (2016) to
minimize the regret relies on an optimistic estimate of the cumulative reward that can be obtained
by pulling a given arm. Indeed, in this setting, Heidari et al. (2016) show that the optimal policy
consists of repeatedly pulling the arm with the highest cumulative reward over the horizon. Li et al.
(2020) use the rising concave MAB framework to model the problem of parameter optimization
in machine learning and design an algorithm based on iterative elimination of unpromising arms
that has good empirical performance. Cella et al. (2021) consider a setting in which the reward is
increasing in expectation and the observations are affected by noise. However, in their framework,
the expected rewards are constrained to follow a specific parametric form known to the agent. The
authors analyze the setting under both the regret minimization and best arm identification frameworks.
Anyway, the given parametric form makes this setting not applicable to an arbitrary expected reward
evolution that satisfies the non-decreasing assumption. Recently, a surge of approaches has been
designed for addressing other learning problems in stochastic rising concave MABs, including regret
minimization (e.g., Metelli et al., 2022) and best arm identification (e.g., Takemori et al., 2024; Mussi
et al., 2024). Finally, Genalti et al. (2024a,b) proposes a novel framework that interpolates between
rested and restless MABs, still assuming the rising concave condition.

B Lower Bounds

In this appendix, we provide the proofs of the results presented in Section 3 in the main paper.

B.1 General Recipe for the Lower Bound

The goal of this section is to prove Lemma 3.1. Remember that we work with rewards which follow
the distribution ψpµ, σq defined in Section 3.1. The result is obtained through techniques from the
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adversarial literature in which the instance is also affected by randomness. Thus, we define two
probability distributions over J0,KKNě1 , which induce probability distributions over the instances in
Eσ
µ,rµ. In particular, let ξ, rξ P ∆pJ0,KKq defined as:

ξptouq :“

"

0 if o P JKK,
1 if o “ 0

rξptouq :“

# 1

K
if o P JKK,

0 if o “ 0

for o P J0,KK. We can extend ξ and rξ to probability distributions over J0,KKNě1 via infinite product
(see Example 1.63 of Klenke 2020):

τw :“
´

b
w´1
l“1

rξ
¯

b
`

b
`8
l“wξ

˘

for all w P Ně1,

rτ :“ bwPNě1
rξ.

rτ models a random instance in which, in each window, we choose independently and uniformly one
arm whose expected reward follows the modified trend, while the expected rewards of all the other
arms follow the base trend. τw instead models a random instance which behaves like rτ up to window
w P Ně1 (excluded); from window w onward all arms follow the base trend. For technical reasons
which will be clear in what follows, we need to build a probability space in which the randomness
over the instance and the randomness over the rewards are unlinked. Observe that with the current
construction this is not the case. Indeed, X is sampled from νσ

o , but o is also a random element. To
this end, let s “ psi,tqiPJKK,tPNě1

„ λ :“ biPJKK,tPNě1
Unifp0, 1q where Unifp0, 1q is the uniform

distribution with support r0, 1s. Then, we can redefine:

Xi,tpo, sq “ 2σ ¨ 1

„

si,t ď
1

4
`
µo,iptq

2σ

ȷ

´
1

2
σ,

where µo,iptq is defined in analogy to Equation (2). In this way, we moved the dependency from o
inside the definition of the random variables, preserving their distributions. Indeed, once o is fixed,
we have Xi,t „ ψpµo,iptq, σq. For consistency with the notation, we introduce the random variables
O “ pOwqwPNě1 where Owpoq “ ow. The probability distributions that we just defined, induce
probability density functions over finite reward sequences taking into account the randomness both in
the instance and in the rewards. In particular, let

pwpr1, . . . , rT q :“ P
o„τw
s„λ

rR1 “ r1, . . . , RT “ rT s,

rpw,ipr1, . . . , rT q :“ P
o„rτ
s„λ

rR1 “ r1, . . . , RT “ rT | Ow “ is,

for w P Ně1, i P JKK, r1, . . . , rT P t´1{2σ, 3{2σu. We use pw and rpw,i to denote also all
the conditional and marginal distributions; disambiguation happens through the arguments, e.g.,
pwprsw | r1, . . . , rsw´1q.

To obtain the result, we use the following tools from information theory (Cover and Thomas, 2006).
Definition B.1 (L1 Distance of Two Discrete Probability Density Functions). Let p, q be two discrete
probability density functions defined over the finite set X , we define their L1 distance as:

}p´ q}1 :“
ÿ

xPX
|ppxq ´ qpxq|.

Definition B.2 (Kullback-Leibler Divergence of Two Discrete Probability Density Functions). Let
p, q be two discrete probability density functions defined over the finite set X , we define their
Kullback-Leibler divergence as:

DKLpp}qq :“
ÿ

xPX
ppxq log2

ˆ

ppxq

qpxq

˙

.

By extension, we define:
DKLpν}ξq :“ DKLppν}pξq

where ν, ξ are probability distributions with discrete support and pν , pξ are their corresponding
discrete probability density functions.
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We now state and prove a generalization of Lemma A.1 in (Auer et al., 2002b) which we then use to
derive Lemma 3.1.
Lemma B.1. Let w P JwpT qK, i P JKK, f : t´1{2σ, 3{2σumintew,T u Ñ r0,M s with M ě 0. Then:

E
o„rτ
s„λ

rfpR1, . . . , Rmintew,T uq | Ow “ is ´ E
o„τw
s„λ

rfpR1, . . . , Rmintew,T uqs

ď
M
?
2

g

f

f

elnp2q

mintew,T u
ÿ

t“sw

DKLpψpµwpt´ sw ` 1q, σq}ψprµwpt´ sw ` 1q, σqq P
o„τw
s„λ

rIt “ is. (4)

Proof. To simplify the notation, let t1 :“ sw, t2 :“ mintew, T u. The lhs of Equation (4) can be
written as:

ÿ

r1,...,rt2Pt´1{2σ,3{2σu

fpr1, . . . , rt2q prpw,ipr1, . . . , rt2q ´ pwpr1, . . . , rt2qq

ď M
ÿ

r1,...,rt2Pt´1{2σ,3{2σu

s.t. rpw,ipr1,...,rt2 qěpwpr1,...,rt2 q

prpw,ipr1, . . . , rt2q ´ pwpr1, . . . , rt2qq

“
M

2
}pwpr1, . . . , rt2q ´ rpw,ipr1, . . . , rt2q}1, (5)

where line (5) can be found in (Chapter 11, Cover and Thomas, 2006). Again, from (Lemma 11.6.1
Cover and Thomas, 2006), we have that:

}pwpr1, . . . , rt2q ´ rpw,ipr1, . . . , rt2q}21 ď 2 lnp2qDKLppwpr1, . . . , rt2q}rpw,ipr1, . . . , rt2qq.

From the chain rule of entropy:

DKLppwpr1, . . . , rt2q}rpw,ipr1, . . . , rt2qq “

t2
ÿ

t“t1

DKLppwprt | r1, . . . , rt´1q}rpw,iprt | r1, . . . , rt´1qq

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

(a)

` DKLppwpr1, . . . , rt1´1q}rpw,ipr1, . . . , rt1´1qq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

(b)

.

Because of how τw and rτ are defined, we have that:

rpw,ipr1, . . . , rt1´1q “ pwpr1, . . . , rt1´1q for all r1, . . . , rt1´1 P t´1{2σ, 3{2σu

and thus term (b) is 0 because of the properties of DKLp¨}¨q. To deal with term (a) we need to
work on the expressions of rpw,iprt | r1, . . . , rt´1q and pwprt | r1, . . . , rt´1q for t P Jt1, t2K. First
of all observe that the arm that the agent pulls at round t is fully determined by the past sequence
of observed rewards r1, . . . , rt´1 since the policy π is deterministic. As remarked in Section 2, we
denote it through πptq, omitting the dependence on r1, . . . , rt´1. Now:10

rpw,ipr1, . . . , rtq “ P
o„rτ
s„λ

rR1 “ r1, . . . , Rt “ rt | Ow “ is

“ P
o„rτ
s„λ

rXπp1q,1 “ r1, . . . , Xπptq,t “ rt | Ow “ is

“ P
o„rτ
s„λ

rXπp1q,1 “ r1, . . . , Xπpt´1q,t´1 “ rt´1 | Ow “ is

¨ p1rπptq “ isψprt | rµwpt´ sw ` 1q, σq

` 1rπptq ‰ isψprt | µwpt´ sw ` 1q, σqq (6)
“ rpw,ipr1, . . . , rt´1qp1rπptq “ isψprt | rµwpt´ sw ` 1q, σq

` 1rπptq ‰ isψprt | µwpt´ sw ` 1q, σqq,

10With slight abuse of notation, we will use the symbol ψpx | µ, σq to denote the p.d.f. associated to the
distribution ψpµ, σq.
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where line (6) follows from the fact that, under the event Ow “ i, Xπptq,t is independent from
Xπp1q,1, . . . , Xπpt´1q,t´1 and follows distribution ψprµwpt´ sw ` 1q, σq if πptq “ i, ψpµwpt´ sw `

1q, σq otherwise. Thus, we conclude:

rpw,iprt | r1, . . . , rt´1q “ 1rπptq “ isψprt | rµwpt´sw`1q, σq`1rπptq ‰ isψprt | µwpt´sw`1q, σq.

From analogous calculations, it is possible to derive:

pwprt | r1, . . . , rt´1q “ ψprt | µwpt´ sw ` 1q, σq.

Thanks to the last results and the definition of DKLp¨}¨q:

DKLppwpr1, . . . , rt2q}rpw,ipr1, . . . , rt2qq “

t2
ÿ

t“t1

ÿ

r1,...,rtPt´1{2σ,3{2σu

pwpr1, . . . , rtq

¨ log2

ˆ

ψprt | µwpt´ sw ` 1q, σq

1rπptq “ isψprt | rµwpt´ sw ` 1q, σq ` 1rπptq ‰ isψprt | µwpt´ sw ` 1q, σq

˙

“

t2
ÿ

t“t1

ÿ

r1,...,rt´1Pt´1{2σ,3{2σu

pwpr1, . . . , rt´1q1rπptq “ is
ÿ

rtPt´1{2σ,3{2σu

ψprt | µwpt´ sw ` 1q, σq

¨ log2

ˆ

ψprt | µwpt´ sw ` 1q, σq

ψprt | rµwpt´ sw ` 1q, σq

˙

“

t2
ÿ

t“t1

DKLpψpµwpt´ sw ` 1q, σq}ψprµwpt´ sw ` 1q, σqq

¨
ÿ

r1,...,rt´1Pt´1{2σ,3{2σu

pwpr1, . . . , rt´1q1rπptq “ is

“

mintew,T u
ÿ

t“sw

DKLpψpµwpt´ sw ` 1q, σq}ψprµwpt´ sw ` 1q, σqq P
o„τw
s„λ

rIt “ is.

The lemma follows by chaining the results.

We are ready to prove Lemma 3.1.

Lemma 3.1 (General Lower Bound). Under the assumption that µwptq ď rµwptq for all w P Ně1,
t P J∆wK, for any deterministic policy π, subgaussian parameter σ ě 1, and learning horizon
T P Ně1, it holds that:

sup
νPEσ

µ, rµ

Rνpπ, T q ě

wpT q
ÿ

w“1

¨

˝1 ´
1

K
´

d

lnp2qDµ,rµ,T,σ
w

2K

˛

‚Aµ,rµ,T
w , (3)

where:

Dµ,rµ,T,σ
w :“

mintew,T u
ÿ

t“sw

DKLpψpµwpt´ sw ` 1q, σq}ψprµwpt´ sw ` 1q, σqq,

Aµ,rµ,T
w :“

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq,

for all w P JwpT qK, with DKLp¨}¨q being the Kullback-Leibler divergence of the two distributions
(formally defined in Appendix B).

Proof. For o P J0,KKNě1 , t P JT K, let i˚o,t P argmaxiPJKK µo,iptq. Then:

sup
νPEσ

µ, rµ

Rνpπ, T q “ sup
oPJ0,KKNě1

E
s„λ

«

T
ÿ

t“1

´

µo,i˚
o,t

ptq ´ µo,Itptq
¯

ff
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ě E
o„rτ
s„λ

«

T
ÿ

t“1

´

µo,i˚
o,t

ptq ´ µo,Itptq
¯

ff

.

Under the assumption rµwptq ě µwptq for all w P Ně1, t P J∆wK, we have:

µo,i˚
o,t

ptq ´ µo,Itptq “ 1rOwptq ‰ 0, Owptq ‰ Itsprµwptqpt´ swptq ` 1q ´ µwptqpt´ swptq ` 1qq.

Then, observing that Ow “ 0 has probability 0 under rτ :

sup
νPEσ

µ, rµ

Rνpπ, T q ě

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq E
o„rτ
s„λ

r1rOw ‰ Itss

“

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq
ÿ

iPJKK

E
o„rτ
s„λ

r1rIt ‰ i, Ow “ iss

“

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq
ÿ

iPJKK

P
o„rτ
s„λ

rOw “ is
Eo„rτ
s„λ

r1rIt ‰ i, Ow “ iss

Po„rτ
s„λ

rOw “ is

“

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq
1

K

ÿ

iPJKK

E
o„rτ
s„λ

r1rIt ‰ i s| Ow “ is

“

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq
1

K

ÿ

iPJKK

˜

1 ´ E
o„rτ
s„λ

r1rIt “ i s| Ow “ is

¸

ě

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq
1

K

ÿ

iPJKK

¨

˝1 ´ E
o„τw
s„λ

r1rIt “ iss

´
1

?
2

g

f

f

elnp2q

mintew,T u
ÿ

t1“sw

DKLpψpµwpt1 ´ sw ` 1q, σq}ψprµwpt1 ´ sw ` 1q, σqq P
o„τw
s„λ

rIt1 “ is

˛

‚

(7)

ě

wpT q
ÿ

w“1

mintew,T u
ÿ

t“sw

prµwpt´ sw ` 1q ´ µwpt´ sw ` 1qq

¨

˝1 ´
1

K

´
1

K
¨

?
K

?
2

g

f

f

elnp2q

mintew,T u
ÿ

t1“sw

DKLpψpµwpt1 ´ sw ` 1q, σq}ψprµwpt1 ´ sw ` 1q, σqq

˛

‚, (8)

where line (7) follows from Lemma B.1 with f corresponding to the function from the observed
rewards to the arm It pulled in round t, which is well defined for deterministic policies, and line (8)
follows from Cauchy-Schwarz inequality applied to a vector of K ones and the vector of the terms
under square root. The result follows from the definitions of Dµ,rµ,T,σ

w and Aµ,rµ,T
w .

B.2 Specializing the Lower Bound for the Rising Setting

The goal of this section is to prove Theorem 3.2.

Theorem 3.2 (Lower Bound for the Rising Setting). For any deterministic policy π, subgaussian
parameter σ ě 1, and learning horizon T P Ně1, T ě σ2Kmint1, VT u´2, it holds that:

sup
νPEσ

r pT,VT q

Rνpπ, T q ě
1

64
σ

2
3T

2
3K

1
3 mint1, VT u

1
3 .
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Proof. First of all, we need to formally define the sequences of window widths, base, and modified
trends. Let ∆r,w “ ∆r :“

X

σ2{3T 2{3K1{3 mint1, VT u´2{3
\

and:

µr,wptq :“

"

εrpw ´ 1q if w ď wpT q

εrwpT q if w ą wpT q
,

rµr,wptq :“

"

εrw if w ď wpT q

εrwpT q if w ą wpT q
,

for all w P Ně1 where εr :“ 1
4 mint1, VT u{wpT q ą 0. Observe that rµr,wp∆rq ď µr,w`1p1q for all

w P Ně1, hence, for any choice of o P J0,KKNě1 , νσ
r,o satisfies Assumption 2.1. Furthermore, for all

o P J0,KKNě1 , the expected rewards of the arms change at most between one window and the next,
i.e., wpT q ´ 1 times in the learning horizon, and the magnitude of the increment is at most 2εr, thus:

Υνσ
r,o

p1, T q ď 2pwpT q ´ 1qεr ď VT .

Hence Eσ
µr,rµr

Ď Eσ
r pT, VT q indeed holds. Finally, it is easy to verify that 0 ď µr,wptq ď rµr,wptq ď 1

for all w P Ně1, t P J∆rK, so that the assumptions of Lemma 3.1 are satisfied. From Lemma D.1, we
have that:

Dµr,rµr,T,σ
w ď

2ε2r
lnp2qσ2

∆r.

The choice of ∆r,w “ ∆r implies εr ď 1
4σ

2{3T´1{3K1{3 mint1, VT u1{3 once we observe that
wpT q “ rT {∆rs. Then:

Dµr,rµr,T,σ
w ď

1

8

K

lnp2q
for all w P JwpT qK.

Thus, observing that K ě 2, we have

1 ´
1

K
´

d

lnp2qD
µr,rµr,T,σ
w

2K
ě

1

4
.

SinceAµr,rµr,T
w “ εrpmintew, T u´sw`1q, by plugging the previous results in Lemma 3.1, assuming

that T ě σ2Kmint1, VT u´2 which guarantees T ě ∆r, we have:

sup
νPEσ

r pT,VT q

Rνpπ, T q ě
1

4
εrT ě

1

64
σ

2
3T

2
3K

1
3 mint1, VT u

1
3 ,

where the last step follows from the definition of εr and the fact that txu ě x{2 and rxs ď 2x for
x ě 1.

B.3 Specializing the Lower Bound for the Rising Concave Setting

The goal of this section is to prove Theorem 3.3.

Theorem 3.3 (Lower Bound for the Rising Concave Setting). For any deterministic policy π,
subgaussian parameter σ ě 1, and learning horizon T P Ně1, T ě 210σ2Kmint1, VT u´2, it holds
that:

sup
νPEσ

c pT,VT q

Rνpπ, T q ě 2´14σ4{5T
3
5K

2
5 mint1, VT u

1
5 .

Proof. First of all, we need to formally define the sequences of window widths, base, and modified
trends. Let Nc :“

P

σ´2{5T 1{5K´1{5 mint1, VT u2{5
T

, ∆c,w “ ∆c :“ rT {Ncs for all w P Ně1.
Observe that ∆c is defined in such a way that wpT q “ rT {∆cs ď rT {pT {Ncqs “ Nc. Furthermore,
being σ,K ě 1, we have:

Nc ď

Q

T
1
5

U

ď rT s “ T,

so that T {Nc ě 1 and ∆c ď 2T {Nc since rxs ď 2x for x ě 1. Let m0 :“ 1
4 mint1, VT u{T P p0, 1q,

mw :“ p2Nc ´ wqm0{p2Ncq for w P J2NcK. pmwq
2Nc
w“0 are the slopes of the segments which
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constitute the trends. Observe that m0 ą m1 ą ¨ ¨ ¨ ą m2Nc´1 ą m2Nc “ 0. We are ready to define
the trends:

µc,wptq :“

$

’

’

’

’

&

’

’

’

’

%

∆c

w´1
ÿ

l“1

m2l´1 ` tm2w´1 if w ď wpT q

∆c

wpT q
ÿ

l“1

m2l´1 if w ą wpT q

,

rµc,wptq :“

$

’

’

’

’

&

’

’

’

’

%

∆c

w´1
ÿ

l“1

m2l´1 ` tm2w´2 `

ˆ

t´
∆c

2

˙`

pm2w ´m2w´2q if w ď wpT q

∆c

wpT q
ÿ

l“1

m2l´1 if w ą wpT q

,

for all w P Ně1. In what follows, with a slight abuse of notation, we will regard µc,w and rµc,w

as defined on r0,∆cs. Observe that, as we informally stated before, µc,wp0q “ rµc,wp0q, and
µc,wp∆cq “ rµc,wp∆cq “ µc,w`1p0q for all w P Ně1. Furthermore, it is easy to check that the slope
of the second segment of the modified trend in a window is equal to the slope of the first segment
of the modified trend in the next window. Thus, because of what we remarked when we informally
introduced the construction, for any choice of o P J0,KKNě1 , νσ

c,o satisfies Assumptions 2.1 and
2.2. Furthermore, in each window with index w P JwpT qK, the maximum increment of the expected
reward of an arm, corresponds to the slope of the first half of the modified trend m2w´2. Thus:

Υνσ
c,o

p1, T q ď ∆c

wpT q
ÿ

w“1

m2w´2 ď ∆c

Nc
ÿ

w“1

m2w´2 “
∆cm0

2
pNc ` 1q

ď ∆cm0Nc ď 2
T

Nc
¨
1

4

mint1, VT u

T
¨Nc “

1

2
mint1, VT u ď VT .

Hence Eσ
µc,rµc

Ď Eσ
c pT, VT q indeed holds. Finally, by calculations analogous to what we did above to

bound the cumulative increment, one can verify that:

∆c

wpT q
ÿ

w“1

m2w´1 ď
1

4
mint1, VT u ď 1,

which, together with the previous remarks, implies 0 ď µc,wptq ď rµc,wptq ď 1 for all w P Ně1,
t P J∆cK, so that the assumptions of Lemma 3.1 are satisfied. The maximum distance between the
two trends in a window is attained for t “ ∆c

2 and has value:

εc :“ rµc,w

ˆ

∆c

2

˙

´ µc,w

ˆ

∆c

2

˙

“
∆cm0

4Nc
ď

1

8

mint1, VT u

N2
c

.

Hence, in virtue of Lemma D.1, we have:

Dµc,rµc,T,σ
w ď

2ε2c
lnp2qσ2

∆c “
1

16

mint1, VT u2T

lnp2qσ2N5
c

ď
1

16

K

lnp2q

for all w P JwpT qK. Thus, remembering that K ě 2, we get:

1 ´
1

K
´

d

lnp2qD
µc,rµc,T,σ
w

2K
ě

1

4
.

Now, let’s lower bound the expression of Aµc,rµc,T
w for w P JwpT q ´ 1K:

Aµc,rµc,T
w “

t∆c
2 u
ÿ

t“1

pm2w´2 ´m2w´1qt`

∆c
ÿ

t“t∆c
2 u`1

„

pm2w ´m2w´1qt´
∆c

2
pm2w ´m2w´2q

ȷ

“
m0

2Nc

˜

X

∆c

2

\ `X

∆c

2

\

` 1
˘

2
`

`

∆c ´
X

∆c

2

\

´ 1
˘ `

∆c ´
X

∆c

2

\˘

2

¸
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ě
m0

4Nc

ˆ

5

16
∆2

c ´
∆c

4

˙

ě
m0

4Nc

ˆ

5

16
∆2

c ´
4

16
∆2

c

˙

“
m0∆

2
c

64Nc
(9)

ě
m0T

2

64N3
c

“
mint1, VT uT

256N3
c

,

where line (9) follows from the fact that txu ě x{2 for x ě 1 together with ∆c{2 ě 1 being T ą Nc

when T ě 4 (which is guaranteed by the constraint on T ), and that x ď x2 for x ě 1. Finally,
T ě 210σ2Kmint1, VT u´2 guarantees wpT q ´ 1 ě Nc{4, and thus, by Lemma 3.1 in conjunction
with the results we just proved, we have:

sup
νPEσ

c pT,VT q

Rνpπ, T q ě
1

4

wpT q
ÿ

w“1

Aµc,rµc,T
w ě

1

4
pwpT q ´ 1q

mint1, VT uT

256N3
c

ě
mint1, VT uT

212N2
c

ě 2´14σ4{5T
3
5K

2
5 mint1, VT u

1
5 , (10)

where line (10) follows from our choice of Nc and from the fact that rxs ď 2x for x ě 1.

C Upper Bound for the Rising Concave Setting

In this appendix, we provide the proofs of the results presented in Section 4 in the main paper.

C.1 Additional notation

We begin by introducing the additional notation required for the analysis. Let:

Ŝi,w,d :“

spαq
w `d´1
ÿ

t“s
pαq
w

1rIt “ isRt, rSi,w,d :“

spαq
w `d´1
ÿ

t“s
pαq
w

1rIt “ isµiptq,

be respectively the cumulative reward and cumulative expected reward by RC-BEpαq for arm i P JKK
in the first d P J0,∆pαq

w K rounds of window w P Ně1. Let Nw be the number of round-robin cycles
of window w P Ně1, where we also count the degenerate cycles in which we pull the only remaining
alive arm î˚. Let tw,l be the round in which the l-th round-robin cycle (with l P JNwK) is started
during window w P Ně1. Analogously, let Ni,w be the number of times arm i P JKK is pulled in
the w-th window (with w P Ně1) and ti,w,l the round in which arm i is pulled for the l-th time (with
l P JNi,wK) during window w. For simplicity in the notation, we define dw,l “ tw,l ´ s

pαq
w ` 1 and

di,w,l “ ti,w,l ´ s
pαq
w ` 1. Finally, we define the good events:

Gi,w,d,δ :“

#

ˇ

ˇ

ˇ
Ŝi,w,d ´ rSi,w,d

ˇ

ˇ

ˇ
ď σ

d

2∆
pαq
w

ˆ

ln
´

2K∆
pαq
w

¯

` ln

ˆ

1

δ

˙˙

+

,

for i P JKK, w P Ně1, d P J∆pαq
w K, δ P p0, 1s, and

Gw,δ “
č

iPJKK
dPJ∆pαq

w K

Gi,w,d,δ

for i P JKK, δ P p0, 1s.

C.2 Concentration

We start the analysis with a concentration result for Ŝi,w,d.

Lemma C.1 (Concentration). For every w P Ně1, δ P p0, 1s, we have that:

P
X„ν

“

Gw,δ

‰

ď δ.
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Proof. For i P JKK, d P J0,∆pαq
w K, λ P R, let:

Mi,w,dpλq :“ exp
´

λ
´

Ŝi,w,d ´ rSi,w,d

¯¯

,

Fw,d :“ σ
´

X1,1, . . . , XK,1, . . . , X1,s
pαq
w `d´1

, . . . , X
K,s

pαq
w `d´1

¯

.

Let t1 :“ s
pαq
w ` d´ 1 to ease the notation. Observe that It1 is Fw,d´1-measurable and that Xi,t1 is

independent from Fw,d´1. Furthermore, we can rewrite Ŝi,w,d as

Ŝi,w,d “

t1
ÿ

t“s
pαq
w

1rIt “ isXi,t.

Then:

E
X„ν

rMi,w,dpλq | Fw,d´1s “ Mi,w,d´1pλq E
X„ν

“

1rIt1 “ is exp
`

λ
`

Xi,t1 ´ µipt
1q
˘˘

` 1 ´ 1rIt1 “ is | Fw,d´1s

ď Mi,w,d´1pλq exp

ˆ

1rIt1 “ is
λ2σ2

2

˙

ď Mi,w,d´1pλq exp

ˆ

λ2σ2

2

˙

,

where in the last line we use the properties of conditional expectation (Klenke, 2020) and the
sub-gaussianity of Xi,t1 . Thus, by induction:

E
X„ν

rMi,w,dpλqs ď exp

ˆ

d
λ2σ2

2

˙

ď exp

ˆ

∆pαq
w

λ2σ2

2

˙

.

Then, thanks to Markov inequality, for every ε P R:

P
X„ν

”

Ŝi,w,d ´ rSi,w,d ą ε
ı

“ P
X„ν

rMi,w,dpλq ą exppλεqs

ď E
X„ν

rMi,w,dpλqs expp´λεq

ď exp

˜

λ2
∆

pαq
w σ2

2
´ λε

¸

.

By choosing ε “ σ

c

2∆
pαq
w

´

ln
´

2K∆
pαq
w

¯

` ln
`

1
δ

˘

¯

, λ “ ε

∆
pαq
w σ2

, we get:

P
X„ν

”

Ŝi,w,d ´ rSi,w,d ą ε
ı

ď
δ

2K∆
pαq
w

.

An analogous bound holds for
P

X„ν

”

rSi,w,d ´ Ŝi,w,d ą ε
ı

.

Then, thanks to a union bound,

P
X„ν

“

Gi,w,d,δ

‰

ď
δ

K∆
pαq
w

.

Finally:
P

X„ν

“

Gw,δ

‰

ď
ÿ

iPJKK

ÿ

dPJ∆pαq
w K

P
X„ν

“

Gi,w,d,δ

‰

ď δ.

C.3 Proof of Lemma 4.1

The goal of this section is to prove Lemma 4.1. To this end, we need several intermediate results. We
start by proving that Iˆ

w is indeed well-defined.
Lemma C.2. Let i˚w, j

˚
w P I˚

w, then i˚w wˆj˚
w.
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Proof. If µi˚
w

pt1q “ µj˚
w

pt1q for some t1 P Jspαq
w , e

pαq
w K, then it must be i˚w wˆj˚

w. Thus, assume

µi˚
w

pt1q ă µj˚
w

pt1q for some t1 P Jspαq
w , e

pαq
w K. If i˚w and j˚

w do not cross, then

µi˚
w

ptq ă µj˚
w

ptq for all t P Jspαq
w , epαq

w K

which is a contradiction with the fact that i˚w P I˚
w.

We now prove a very useful property of wˆ`.

Lemma C.3. Let i, j, k P JKK. If iwˆ`j and there exists t1 P Jspαq
w , e

pαq
w K such that µipt

1q ď

µkpt1q ď µjpt1q, then k P ris
wˆ` .

Proof. If µkpt1q “ µipt
1q or µkpt1q “ µjpt1q then the statement is trivial. Consider µipt

1q ă

µkpt1q ă µjpt1q. We proceed by contradiction. Assume that it is not true that k wˆ`i. Let
I1 “

␣

l P ris
wˆ` s.t. µlpt

1q ă µkpt1q
(

and I2 “
␣

l P ris
wˆ` s.t. µlpt

1q ą µkpt1q
(

. Since I1 YI2 Ď

ris
wˆ` , I1 X I2 “ tu, I1, I2 ‰ tu there must be i1 P I1, i2 P I2 such that i1 wˆi2. But, since it is

not true that k wˆ`i, it cannot be k wˆi1 nor k wˆi2. Thus it must be

µi1ptq ă µkptq ă µi2ptq for all t P Jspαq
w , epαq

w K.

But this is absurd since i1 wˆi2, concluding the proof.

This leads to the following corollary.

Corollary C.4. Let i P Iˆ
w , j R Iˆ

w , then:

µjptq ă µiptq for all t P Jspαq
w , epαq

w K.

Proof. By contrapositive, if µjpt1q ě µipt
1q for some t1 P Jspαq

w , e
pαq
w K, then there exists k P

argmaxlPJKK µlpt
1q such that µipt

1q ď µjpt1q ď µkpt1q and thus j P Iˆ
w by Lemma C.3.

We are ready to prove Lemma 4.1.

Lemma 4.1. For all restless rising concave MABs ν, α ě 1, w P Ně1 we have that:

RνpRC-BEpαq, twuq ď 3KBpαq
w

looomooon

Exploration

` ∆pαq
w d˚

w
loomoon

Commitment

.

Proof. We start by proving that, under event G
w,p2K∆

pαq
w q´1 , at least one arm in Iˆ

w is always alive
in each round-robin cycle. We need to consider all the eliminations which happen at the end of
a round-robin cycle, except for the last, in which eliminations are irrelevant (remember that the
window ends at the end of the last round-robin cycle and the algorithm is restarted). To this end, let
n P JNw ´ 1K. For an arm i P JKK, to eliminate an arm j P JKK at the end of the n-th round-robin
cycle, it must be:

Ŝi,w,dw,n`1´1 ą Ŝj,w,dw,n`1´1 `Bpαq
w

which, under event G
w,p2K∆

pαq
w q´1 , implies

rSi,w,dw,n`1´1 ` 4σ

c

∆
pαq
w ln

´

2K∆
pαq
w

¯

ą rSj,w,dw,n`1´1 `Bpαq
w

if and only if
n
ÿ

l“1

rµiptw,lq ` µipti,w,lq ´ µiptw,lqs ` 4σ

c

∆
pαq
w ln

´

2K∆
pαq
w

¯

ą

n
ÿ

l“1

rµjptw,lq ` µjptj,w,lq ´ µjptw,lqs `Bpαq
w
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which implies, being the instance rising:
n
ÿ

l“1

µiptw,lq ` 1 ` 4σ

c

∆
pαq
w ln

´

2K∆
pαq
w

¯

ą

n
ÿ

l“1

µjptw,lq `Bpαq
w

and thus, because of the choice of Bpαq
w , it must be:
n
ÿ

l“1

µiptw,lq ą

n
ÿ

l“1

µjptw,lq.

Thus, in virtue of Corollary C.4, it cannot be i R Iˆ
w , j P Iˆ

w . But, to eliminate all alive arms in Iˆ
w ,

we would need at least one cycle in which an elimination of the kind above happens. Hence there
will always be at least an arm in Iˆ

w alive. Let iˆw,n be such arm during the n-th round-robin cycle.
Let’s bound the regret of a generic arm j P JKK during the w-th window, under event G

w,p2K∆
pαq
w q´1 .

Nj,w
ÿ

l“1

„

µi˚
tj,w,l

ptj,w,lq ´ µjptj,w,lq

ȷ

ď

Nj,w´1
ÿ

l“1

„

µi˚
tj,w,l

ptj,w,lq ´ µjptj,w,lq

ȷ

` 1

ď

Nj,w´1
ÿ

l“1

„

µiˆ
w,Nj,w

ptj,w,lq ´ µjptj,w,lq

ȷ

`Nj,wd
˚
w ` 1

“

Nj,w´1
ÿ

l“1

„

µiˆ
w,Nj,w

ptiˆ
w,Nj,w

,w,lq ´ µjptj,w,lq

ȷ

`

Nj,w´1
ÿ

l“1

„

µiˆ
w,Nj,w

ptj,w,lq ´ µiˆ
w,Nj,w

ptiˆ
w,Nj,w

,w,lq

ȷ

`Nj,wd
˚
w ` 1

ď rSiˆ
w,Nj,w

,w,dw,Nj,w
´1 ´ rSj,w,dw,Nj,w

´1 ` 1 `Nj,wd
˚
w ` 1

ď 2 ` 4σ

c

∆
pαq
w ln

´

2K∆
pαq
w

¯

` Ŝiˆ
w,Nj,w

,w,dw,Nj,w
´1

´ Ŝj,w,dw,Nj,w
´1 `Nj,wd

˚
w

“ Bpαq
w ` Ŝiˆ

w,Nj,w
,w,dw,Nj,w

´1 ´ Ŝj,w,dw,Nj,w
´1 `Nj,wd

˚
w

ď 2Bpαq
w `Nj,wd

˚
w

where the last line follows from the fact that we have not eliminated arm j at the end of the pNj,w ´1q-
th round robin cycle. Thus, the regret during the w-th window, under event G

w,p2K∆
pαq
w q´1 , is upper

bounded as:

epαq
w
ÿ

t“s
pαq
w

”

µi˚
t

ptq ´ µItptq
ı

“
ÿ

jPJKK

Nj,w
ÿ

l“1

„

µi˚
tj,w,l

ptj,w,lq ´ µjptj,w,lq

ȷ

ď 2KBpαq
w ` ∆pαq

w d˚
w.

Finally, in virtue of Lemma C.1:

RνpRC-BEpαq, twuq ď 2KBpαq
w ` ∆pαq

w d˚
w ` ∆pαq

w P
X„ν

”

G
w,p2K∆

pαq
w q´1

ı

ď 2KBpαq
w ` ∆pαq

w d˚
w `

1

2K
ď 3KBpαq

w ` ∆pαq
w d˚

w.

C.4 Proof of Lemma 4.2

The goal of this section is to prove Lemma 4.2. To this end, we need several intermediate results. We
start with a lower bound to epαq

w .
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Lemma C.5. For any α ě 1, w P Ně1 it holds that

epαq
w ě

w1`α

2p1 ` αq
.

Proof. If w “ 1, we trivially have

e
pαq

1 “ 1 ą
1

2p1 ` αq
.

Now, suppose w ě 2, then

epαq
w “

w
ÿ

l“1

∆
pαq

l ě

w
ÿ

l“1

lα ě

ż w

1

xαdx “

ˆ

w1`α

1 ` α
´

1

1 ` α

˙

ě
w1`α

2p1 ` αq
.

Now we introduce the results through which we exploit the concavity of the instance.
Lemma C.6. For any restless rising concave MAB ν, t1, t2 P Ně1, t2 ě t1 ě 2, we have:

Υνpt1, t2q ď
t2 ´ t1

t2 ´ t1 ` 1
Υνpt1 ´ 1, t2q.

Proof.

Υνpt1, t2q “

t2´1
ÿ

l“t1

max
iPJKK

γiplq

ď

t2´1
ÿ

l“t1

max
iPJKK

γiplq `
t2 ´ t1

t2 ´ t1 ` 1

˜

max
iPJKK

γipt1 ´ 1q ´
1

t2 ´ t1

t2´1
ÿ

l“t1

max
iPJKK

γiplq

¸

“
t2 ´ t1

t2 ´ t1 ` 1

t2´1
ÿ

l“t1´1

max
iPJKK

γiplq “
t2 ´ t1

t2 ´ t1 ` 1
Υνpt1 ´ 1, t2q.

Before proving Lemma 4.2, we need an intermediate upper bound to dwpiq.
Lemma C.7. For all restless rising concave MABs ν, α ě 1, w P Ně1, i P JKK, we have that:

dwpiq ď p|ris
wˆ` | ´ 1q max

j,kPris
wˆ` s.t.j wˆk

tPJspαq
w ,epαq

w K

|µjptq ´ µkptq|.

Proof. If j wˆ`k, there must exist distinct i1, . . . , in different from j and k (n P J0, |ris
wˆ` | ´ 2K)

such that j wˆi1, i1 wˆi2, . . . , in´1 wˆin, in wˆk. Then, for t P Jspαq
w , e

pαq
w K, we have:

|µjptq ´ µkptq| ď |µjptq ´ µi1ptq| ` |µi1ptq ´ µi2ptq| ` . . . |µinptq ´ µkptq|

ď pn` 1q max
j1,k1

Pris
wˆ` s.t.j1

wˆk1

t1
PJspαq

w ,epαq
w K

|µj1 pt1q ´ µk1 pt1q|

ď
`

|ris
wˆ` | ´ 1

˘

max
j1,k1

Pris
wˆ` s.t.j1

wˆk1

t1
PJspαq

w ,epαq
w K

|µj1 pt1q ´ µk1 pt1q|.

We are ready to prove Lemma 4.2.
Lemma 4.2. For all restless rising concave MABs ν, α ě 1, w P Ně1, i P JKK, we have that:

dwpiq ď 8p1 ` αq
`
ˇ

ˇris
wˆ`

ˇ

ˇ ´ 1
˘

w´1Υνp1, epαq
w q ď 16αKw´1Υνp1, epαq

w q.
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Proof. Let j Òt1 k for some j, k P ris
wˆ` , t1 P Jspαq

w ` 1, e
pαq
w K. Let t ě t1, t P Jspαq

w , e
pαq
w K, then

µjptq ´ µkptq ď µjptq ´ µkpt1 ´ 1q ď µjptq ´ µjpt1 ´ 1q ď Υν

´

spαq
w , epαq

w

¯

,

µkptq ´ µjptq ď µkptq ´ µjpt1q ď µkptq ´ µkpt1q ď Υν

´

spαq
w , epαq

w

¯

.

Analogously, if t ă t1, we have

µjptq ´ µkptq ď µjpt1 ´ 1q ´ µkptq ď µkpt1 ´ 1q ´ µkptq ď Υν

´

spαq
w , epαq

w

¯

,

µkptq ´ µjptq ď µkpt1q ´ µjptq ď µjpt1q ´ µjptq ď Υν

´

spαq
w , epαq

w

¯

.

We conclude that, if j wˆk, then |µjptq ´ µkptq| ď Υν

´

s
pαq
w , e

pαq
w

¯

for all t P Jspαq
w , e

pαq
w K. Thus, in

virtue of Lemma C.7, if j wˆ`k, then:

|µjptq ´ µkptq| ď
`

|ris
wˆ` | ´ 1

˘

Υν

´

spαq
w , epαq

w

¯

.

For w ě 2, by applying iteratively Lemma C.6, we have

Υν

´

spαq
w , epαq

w

¯

ď
e

pαq
w ´ s

pαq
w

e
pαq
w ´ 1

Υν

´

1, epαq
w

¯

ď 2
∆

pαq
w

e
pαq
w

Υν

´

1, epαq
w

¯

ď 8p1 ` αq
wα

w1`α
Υν

´

1, epαq
w

¯

“ 8p1 ` αqw´1Υν

´

1, epαq
w

¯

where in the last line we used Lemma C.5, the fact that rxs ď 2x for x ě 1, and the definition of
∆

pαq
w . The same upper bound holds trivially for w “ 1 since spαq

1 “ e
pαq

1 “ 1.

C.5 Proof of Lemma 4.3

The goal of this section is to prove Lemma 4.3. To get the result, we start by providing an upper
bound to the number of times an arm i overtakes arm j and the expected rewards diverge by a quantity
greater than G ą 0. To this end, we need to prove two auxiliary results.

Lemma C.8. Let tÒ, t̂, tÓ P Ně1, tÓ ą t̂ ě tÒ, G P p0, 1s, i, j P JKK such that

i ÒtÒ j, µipt̂q ě µjpt̂q `G, j ÒtÓ i.

Then:

γipt
Ò ´ 1q ą γjpt̂q ě γipt

Óq, (11)

t̂´ ptÒ ´ 1q ě G
1

γiptÒ ´ 1q ´ γjpt̂q
, (12)

µipt̂q ´ µipt
Ò ´ 1q ě G

γjpt̂q

γiptÒ ´ 1q ´ γjpt̂q
. (13)

Proof. We start by proving Equation (11). Suppose γjpt̂q ě γipt
Ò ´ 1q. Then:

µjpt̂q ě µjptÒ ´ 1q ` pt̂´ ptÒ ´ 1qqγjpt̂q

ě µipt
Ò ´ 1q ` pt̂´ ptÒ ´ 1qqγipt

Ò ´ 1q

ě µipt̂q

which is a contradiction with the definition of t̂. Thus it must be γjpt̂q ă γipt
Ò ´ 1q. Analogously,

suppose γjpt̂q ă γipt
Óq. Then:

µjptÓq ď µjpt̂q ` ptÓ ´ t̂qγjpt̂q

ă µipt̂q ´G` ptÓ ´ t̂qγipt
Óq

ď µipt
Óq ´G
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which is a contradiction with the definition of tÓ. Thus it must be γjpt̂q ě γipt
Óq. We now prove

Equation (12):

G ď µipt̂q ´ µjpt̂q ď µipt
Ò ´ 1q ` pt̂´ ptÒ ´ 1qqγipt

Ò ´ 1q

´ µjptÒ ´ 1q ´ pt̂´ ptÒ ´ 1qqγjpt̂q

ď pt̂´ ptÒ ´ 1qqpγipt
Ò ´ 1q ´ γjpt̂qq

and thus
t̂´ ptÒ ´ 1q ě G

1

γiptÒ ´ 1q ´ γjpt̂q
.

Finally, we prove Equation (13):

µipt̂q ´ µipt
Ò ´ 1q ě µjpt̂q ´ µjptÒ ´ 1q ě pt̂´ ptÒ ´ 1qqγjpt̂q

ě G
γjpt̂q

γiptÒ ´ 1q ´ γjpt̂q
.

Lemma C.9. Let M P Ně1, M ě 2, m1 ą m2 ą ¨ ¨ ¨ ą mM ą mM`1 ą 0, then:

M
ÿ

i“1

1

mi ´mi`1
ě

M2

m1 ´mM`1
, (14)

M
ÿ

i“1

mi`1

mi ´mi`1
ě

M
´

m1

mM`1

¯
1
M

´ 1

. (15)

Proof. We regard m1 ą mM`1 ą 0 as fixed constants and study the functions

fpm2, . . . ,mM q “

M
ÿ

i“1

1

mi ´mi`1
,

gpm2, . . . ,mM q “

M
ÿ

i“1

mi`1

mi ´mi`1

defined for m1 ą m2 ą ¨ ¨ ¨ ą mM ą mM`1. Observe that the functions are defined on an open
set and their values tend to infinity when the input tends to the border of the domain. We show that
they have only one stationary point, which then must be a minimum point. We start by proving
Equation (14). Let k P J2,MK:

df

dmk
pm2, . . . ,mM q “

1

pmk´1 ´mkq2
´

1

pmk ´mk`1q2
“ 0

if and only if
mk`1 “ 2mk ´mk´1.

The linear system above is equivalent to:

mi “ pi´ 1qm2 ´ pi´ 2qm1 for i P J3,M ` 1K. (16)

Thus mM`1 “ Mm2 ´ pM ´ 1qm1, and then

m2 “
pM ´ 1qm1 `mM`1

M
.

By plugging this result into Equation (16), we get the coordinates of the minimum point:

m˚
i :“

pM ` 1 ´ iqm1 ` pi´ 1qmM`1

M
for i P J2,MK.

Thus:

fpm1, . . . ,mM q ě fpm˚
1 , . . . ,m

˚
M q “

M2

m1 ´mM`1
.
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We now prove Equation (15) analogously:

dg

dmk
pm2, . . . ,mM q “

mk´1

pmk´1 ´mkq2
´

mk`1

pmk ´mk`1q2
“ 0

if and only if

mk`1 “
m2

k

mk´1

if and only if
lnmk`1 “ 2 lnmk ´ lnmk´1.

Observe that we get the same linear system of the previous case, with the difference that the variables
are now lnmi. Thus, the solution is:

lnmi “
pM ` 1 ´ iq lnm1 ` pi´ 1q lnmM`1

M

and then
m˚

i :“ m
M`1´i

M
1 m

i´1
M

M`1 for i P J2,MK.
Finally:

gpm2, . . . ,mM q ě gpm˚
2 , . . . ,m

˚
M q “

M
´

m1

mM`1

¯
1
M

´ 1

.

Lemma C.10. Let G P p0, 1s, T 1 P Ně1, M P Ně1, i, j P JKK such that there exist rounds

2 ď tÒ1 ď t̂1 ă tÓ1 ď tÒ2 ď t̂2 ă tÓ2 ď ¨ ¨ ¨ ď tÒM ď t̂M ď T 1

which satisfy
i ÒtÒ

l
j, µipt̂lq ě µjpt̂lq `G for all l P JMK,

j ÒtÓ

l
i for all l P JM ´ 1K.

Then:
M ď 4 lnp3T 1{GqG´ 1

2 .

Proof. Observe that, since

µipt̂M q ě µjpt̂M q `G ě µjptÒM ´ 1q `G

ě µipt
Ò

M ´ 1q `G,

we have

T 1γipt
Ò

M ´ 1q ě pt̂M ´ ptÒM ´ 1qqγipt
Ò

M ´ 1q ě µipt̂M q ´ µipt
Ò

M ´ 1q ě G

and thus
γipt

Ò

M ´ 1q ě
G

T 1
.

Now, assume M ě 3. Then:

1 ě µipT
1q ´ µip1q ě

M´1
ÿ

l“1

pµipt̂lq ´ µipt
Ò

l ´ 1qq

ě G
M´1
ÿ

l“1

γjpt̂lq

γipt
Ò

l ´ 1q ´ γjpt̂lq
(17)

ě G
M´1
ÿ

l“1

γipt
Ò

l`1 ´ 1q

γipt
Ò

l ´ 1q ´ γipt
Ò

l`1 ´ 1q
(18)

ě G
M ´ 1

´

γiptÒ
1´1q

γiptÒ
M´1q

¯

1
M´1

´ 1

(19)
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ě G
M ´ 1

`

T 1

G

˘

1
M´1 ´ 1

“ G
M ´ 1

exp
´

lnpT 1{Gq

M´1

¯

´ 1
(20)

where line (17) follows from Lemma C.8, line (18) follows from the fact that x
a´x is non-decreasing

for a ě 0 and the concavity, line (19) follows from Lemma C.9, and line (20) follows from the fact
that γipt

Ò
1 ´ 1q ď 1 and γipt

Ò

M ´ 1q ě G
T 1 . Now, if M ě 1 ` lnpT 1{Gq, by Lemma D.2, we have

exp
´

lnpT 1
{Gq

M´1

¯

´ 1 ď 3 lnpT 1
{Gq

M´1 , and thus, by the chain of inequalities above:

1 ě G
pM ´ 1q2

3 lnpT 1{Gq
iff M ď 1 `

a

3 lnpT 1{GqG´1.

Thus, by considering all possible cases, we have:

M ď maxt2, lnpT 1{Gq, 1 `
a

3 lnpT 1{GqG´1u ď 4 lnp3T 1{GqG´ 1
2 .

We are now ready to prove Lemma 4.3.

Lemma 4.3. For all restless rising concave MABs ν, α ě 1, T P Ně1, d P p0,Ks, we have that:

|WądpT q| ď 9 ln
´

3e
pαq

wpαqpT q
K{d

¯

K
5
2 d´ 1

2 .

Proof. Let w P WądpT q. Then there exists i P JKK such that dwpiq ą d. But, in virtue of
Lemma C.7, we have:

p|ris
wˆ` | ´ 1q max

j,kPris
wˆ` s.t.j wˆk

tPJspαq
w ,epαq

w K

|µjptq ´ µkptq| ě dwpiq ą d.

Thus, there must be j, k P ris
wˆ` and t P Jspαq

w , e
pαq
w K such that j wˆk and

|µjptq ´ µkptq| ą
d

|ris
wˆ` | ´ 1

ą
d

K
.

Observe that it must be either iˆt1 j for t1 ď t or iˆt1 j for t1 ą t, with t1 P Jspαq
w ` 1, e

pαq
w K. W.l.o.g.

we assume that i overtakes j. In the first case, window w must contain one of the rounds in which i
overtakes j and then their expected rewards diverge by at least d{K. In the second case, window w
must contain either the first round in which i overtakes j and which is right after one of the rounds in
which i overtakes j and their expected rewards diverge by at least d{K or the first time in which i
overtakes j. In virtue of Lemma C.10 with G “ d

K and T 1 “ e
pαq

wpαqpT q
, the rounds described in the

first case are in number no more than 4 ln
´

3e
pαq

wpαqpT q
K{d

¯

pd{Kq´1{2, while the rounds described in

the second case are in number no more than 4 ln
´

3e
pαq

wpαqpT q
K{d

¯

pd{Kq´1{2 ` 1 for a fixed choice

of i, j P JKK. Since we have at most K2 such choices, it must be:

|WądpT q| ď K2
´

8 ln
´

3e
pαq

wpαqpT q
K{d

¯

pd{Kq´ 1
2 ` 1

¯

ď 9 ln
´

3e
pαq

wpαqpT q
K{d

¯

K
5
2 d´ 1

2 .

C.6 Proof of Theorem 4.4

The goal of this section is to prove Theorem 4.4. We start with an upper bound to wpαqpT q, epαq

wpαqpT q
,

and Υν

´

1, e
pαq

wpαqpT q

¯

.
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Lemma C.11. For all restless rising concave MABs ν, α ě 1, T P Ně2, we have:

wpαqpT q ď p2p1 ` αqT q1{p1`αq ď 4αT 1{p1`αq, (21)

e
pαq

wpαqpT q
ď 4p1 ` αqT ď 8αT, (22)

Υν

´

1, e
pαq

wpαqpT q

¯

ď 8p1 ` αqΥνp1, T q ď 16αΥνp1, T q. (23)

Proof. We start by proving Equation (21). Ifw P Ně1,w ě p2p1`αqT q1{p1`αq, then, by Lemma C.5,
we have:

epαq
w ě

w1`α

2p1 ` αq
ě T.

Thus it must be wpαqpT q ď p2p1 ` αqT q1{p1`αq. We now use Equation (21) to prove Equation (22).

e
pαq

wpαqpT q
ď wpαqpT q∆

pαq

wpαqpT q

ď 2p2p1 ` αqT q
1

1`α p2p1 ` αqT q
α

1`α “ 4p1 ` αqT, (24)

where in line (24) we use the definition of ∆pαq
w , Equation (21), and the fact that rxs ď 2x for x ě 1.

Finally, we prove Equation (23).

Υν

´

1, e
pαq

wpαqpT q

¯

ď
e

pαq

wpαqpT q
´ 1

T ´ 1
Υνp1, T q (25)

ď 2
e

pαq

wpαqpT q

T
Υνp1, T q ď 8p1 ` αqΥνp1, T q, (26)

where line (25) follows by applying iteratively Lemma C.6 and line (26) follows from the fact that
T ě 2 and by Equation (22).

We are ready to prove Theorem 4.4.

Theorem 4.4 (Upper Bound for the Rising Concave Setting). For all restless rising concave MABs
ν, α ě 1, T P Ně24, we have that:

RνpRC-BEpαq, T q ď 215α3
`

ln
`

αKT 3
˘˘

3
2

ˆ

p1 ` σqK3T
3{4α
1`α `K3T

5{4α´1
1`α Υνp1, T q

` p1 ` σqKT
1`α{2
1`α

˙

.

In particular, for α1 “ 8{3, we get:

RνpRC-BEpα1q, T q “ rO
´

σK3T
6
11 `K3T

7
11Υνp1, T q ` σKT

7
11

¯

.

Furthermore, for

α2 “

8 ´ 4 logT

´

K2VT

1`σ

¯

3 ` 4 logT

´

K2VT

1`σ

¯ ,

under the additional assumptions ν P Eσ
c pT, VT q,

T ě max

#

p1 ` σq4{3K´8{3V
´4{3
T ` 1

p1 ` σq´8{5K16{5V
8{5
T

,

we get:

RνpRC-BEpα2q, T q “ rO
´

σ
14
11K

27
11T

6
11V

´ 3
11

T ` σ
9
11K

15
11T

7
11V

2
11

T

¯

.
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Proof. Let d1 :“ KT´pα{2q{p1`αq P p0,Ks. Then:

RνpRC-BEpαq,Wąd1 pT qq ď |Wąd1 pT q| max
wPWąd1 pT q

t3KBpαq
w ` ∆pαq

w d˚
wu (27)

ď 9 ln
´

3e
pαq

wpαqpT q
T

α{2
1`α

¯

K2T
α{4
1`α (28)

¨ max
wPWąd1 pT q

t3KBpαq
w ` 16αK∆pαq

w w´1Υνp1, epαq
w qu

ď 9 lnp24αT 2qK2T
α{4
1`α (29)

¨ max
wPWąd1 pT q

"

6K

ˆ

1 ` 2σ

b

∆
pαq
w lnp2K∆

pαq
w q

˙

` 32αKwα´1Υνp1, epαq
w q

*

ď 9 lnp24αT 2qK2T
α{4
1`α (30)

¨

˜

6K

ˆ

1 ` 2σ

b

8αT
α

1`α lnp16αKT q

˙

` 211α3KT
α´1
1`αΥνp1, T q

¸

ď 24 lnpαKT 3qK2T
α{4
1`α (31)

¨ 211α3plnpαKT 3qq
1
2K

´

p1 ` σqT
α{2
1`α ` T

α´1
1`αΥνp1, T q

¯

“ 215α3plnpαKT 3qq
3
2K3

´

p1 ` σqT
3{4α
1`α ` T

5{4α´1
1`α Υνp1, T q

¯

where line (27) follows from Lemma 4.1, line (28) follows from Lemma 4.3 and Lemma 4.2, line (29)
follows from Lemma C.11, the definition of ∆

pαq
w , the fact that rxs ď 2x for x ě 1, and the

definition of Bpαq
w , line (30) follows from the fact that the expression inside max is increasing in w,

Lemma C.11, and the fact that rxs ď 2x for x ě 1, and line (31) follows from T ě 24. Furthermore:

RνpRC-BEpαq,Wďd1 pT qq ď |Wďd1 pT q| max
wPWďd1 pT q

t3KBpαq
w ` ∆pαq

w d˚
wu (32)

ď wpαqpT q

ˆ

6K

ˆ

1 ` 2σ
b

∆
pαq

wpαqpT q
lnp2K∆

pαq

wpαqpT q
q

˙

` ∆
pαq

wpαqpT q
d1

˙

(33)

ď 4αT
1

1`α p1 ` σqplnpαKT 3qq
1
2 p12K

a

8αT
α

1`α (34)

` 8αKT
α

1`αT´
α{2
1`α q

ď 29α2p1 ` σqplnpαKT 3qq
3
2KT

1`α{2
1`α

ď 215α3p1 ` σqplnpαKT 3qq
3
2KT

1`α{2
1`α

where line (32) follows from Lemma 4.1, line (33) follows from the definitions ofBpαq
w and Wďd1 pT q,

and line (34) follows from Lemma C.11, T ě 24, rxs ď 2x for x ě 1, and the definition of d1. By
summing the previous results:

RνpRC-BEpαq, T q ď RνpRC-BEpαq,Wąd1 pT qq `RνpRC-BEpαq,Wďd1 pT qq

ď 215α3plnpαKT 3qq
3
2

ˆ

p1 ` σqK3T
3{4α
1`α `K3T

5{4α´1
1`α Υνp1, T q

` p1 ` σqKT
1`α{2
1`α

˙

.

Finally, observe that, under the additional assumption ν P Eσ
c pT, VT q, we have Υνp1, T q ď VT , and

the additional constraint on T guarantees α2 ě 1.
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D Technical Lemmas

Lemma D.1. Let µ1, µ2 P r0, 1s with µ1 ď µ2 and σ ě 1. Then:

DKLpψpµ1, σq}ψpµ2, σqq ď
2pµ2 ´ µ1q2

lnp2qσ2

where DKLp¨}¨q is the Kullback-Leibler divergence defined in Appendix B, and ψpµ, σq is the distri-
bution defined in Section 3.1.

Proof. Let ppµ, σq :“ 1
4 `

µ
2σ . Consider the function:

fpxq :“ DKLpψpµ1, σq}ψpµ1 ` x, σqq

“ ppµ1, σq log2

ˆ

ppµ1, σq

ppµ1 ` x, σq

˙

` p1 ´ ppµ1, σqq log2

ˆ

1 ´ ppµ1, σq

1 ´ ppµ1 ` x, σq

˙

for x P r0, µ2 ´ µ1s. Then:

f 1pxq “
1

lnp2q

Bp

Bµ
pµ` x, σq

ˆ

1 ´ ppµ1, σq

1 ´ ppµ1 ` x, σq
´

ppµ1, σq

ppµ1 ` x, σq

˙

,

f2pxq “
1

lnp2q

ˆ

Bp

Bµ
pµ` x, σq

˙2ˆ
1 ´ ppµ1, σq

p1 ´ ppµ1 ` x, σqq2
`

ppµ1, σq

p2pµ1 ` x, σq

˙

.

By direct evaluation, we have fp0q “ f 1p0q “ 0. Furthermore, since µ P r0, 1s, σ ě 1, imply
ppµ, σq P r1{4, 3{4s, then:

f2pxq ď
1

lnp2q

ˆ

Bp

Bµ
pµ` x, σq

˙2ˆ
1 ´ ppµ1, σq

p1{4q2
`
ppµ1, σq

p1{4q2

˙

“
16

lnp2q

ˆ

Bp

Bµ
pµ` x, σq

˙2

“
4

lnp2qσ2
.

Finally:

fpxq “ fp0q `

ż x

0

ˆ

f 1p0q `

ż x1

0

f2px2qdx2

˙

dx1 ď
2x2

lnp2qσ2
.

The result follows from the fact that DKLpψpµ1, σq}ψpµ2, σqq “ fpµ2 ´ µ1q.

Lemma D.2.
ex ´ 1 ď 3x for x P r0, 1s.

Proof. Let fpxq “ ex ´ 1. Then: f 1pxq “ ex “ f2pxq. Thus, by Taylor’s theorem, if x P r0, 1s,
there exists ξ P p0, 1q such that

fpxq “ fp0q ` f 1p0qx`
f2pξq

2
x2 “ x

ˆ

1 `
eξ

2
x

˙

ď x
´

1 `
e

2

¯

ď 3x.

E Numerical Simulations

In this appendix, we present additional numerical simulations which compare RC-BEpαq with the
baseline algorithms reported in Section 5. Furthermore, we provide information regarding the
compute resources used to run the simulations.

Baselines. We consider the following baseline algorithms:

• Rexp3 (Besbes et al., 2014), an algorithm for restless MABs based on a variation budget for the
expected rewards of the arms over the learning horizon.

• R-less-UCB (Metelli et al., 2022), an algorithm for restless rising concave MABs which relies
on the optimism principle and exploits the structure of the setting through a specifically crafted
estimator.
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(b) Cumulative regret (10 runs, mean ˘ 95% C.I.).

Figure 4: Piecewise linear instance.

• UCB1 (Auer et al., 2002a; Bubeck, 2010), one of the most effective algorithms for stationary MABs.

The choices of the parameters of the algorithms that we compared are the following:

• Rexp3: VT “ K since, as remarked in Section 2, in the rising setting the cumulative
increment is always smaller than or equal to K; ∆T “ rpK lnpKqq1{3pT {VT q2{3s; γ “

min
!

1,
a

K lnpKq{p∆T pe´ 1qq

)

as recommended in (Besbes et al., 2014).
• R-less-UCB: hi,t “ tϵNi,t´1u where Ni,t´1 is the number of times arm i has been pulled by the

agent in the first t´ 1 rounds, with ϵ P p0, 1{2q; α ą 2 as prescribed in (Metelli et al., 2022). In
particular, we choose ϵ “ 0.25; α “ 2.1.

• UCB1: the upper confidence bound interval for arm i at round t is σ
a

4 lnptq{Ni,t´1.

E.1 Additional Instances

Piecewise Linear Instance. The piecewise linear curves that describe the evolution of the expected
rewards in the simulation have the following functional form:

fptq “

#

T´t
T´1µi ` t´1

T´1µe if t ď tflat
T´tflat
T´1 µi ` tflat´1

T´1 µe if t ą tflat
,

for t P JT K where µi, µe P r0, 1s, µi ď µe. After the flattening time tflat P JT K, the expected rewards
of the arms stop increasing. The expected reward curves of the simulated instance are reported in
Figure 4a. The algorithms are evaluated on T “ 5 ¨ 106 rounds. The standard deviation of the noise is
σ “ 0.1. The empirical cumulative regret suffered by the algorithms is shown in Figure 4b. We can
observe that RC-BEpαq is the algorithm that achieves the lowest regret at the horizon. The behavior
of all other algorithms is explained by the same observations stated for the exponential instance in
Section 5. Conversely to what happens in the exponential instance, in this case, UCB1 shows a better
performance than R-less-UCB. This is due to the fact that the change of the optimal arm happens
later in time and the distance between the expected rewards of the first and last optimal arms is less
w.r.t. the exponential instance presented in Section 5.

Constant Instance. In this simulation, the expected rewards of the arms do not change with time (i.e.,
stationary MABs). The expected reward curves of the simulated instance are reported in Figure 5a.
The algorithms are evaluated on T “ 106 rounds. The standard deviation of the noise is σ “ 0.01.
The empirical cumulative regret suffered by the algorithms is shown in Figure 5b. UCB1 is the
algorithm that achieves the lowest regret. This is consistent with the fact that the instance is stationary.
RC-BEpαq has the second-best performance. The reduction of the standard deviation of the noise
leads to smaller confidence bounds and, thus, a better performance, for R-less-UCB. Conversely,
Rexp3 is not able to exploit this fact, being based on the Exp3 algorithm which is designed for the
adversarial setting.
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Figure 5: Constant instance.

E.2 Compute Resources

The simulations were run on a single CPU core with a clock frequency of 2.60GHz. The system has
a 8.0GiB RAM. For each algorithm, we report the approximate time required to simulate a single
run on the exponential instance with 5 ¨ 106 rounds:

• Rexp3: 5min 50s;
• R-less-UCB: 8min;
• UCB1: 3min 30s;
• RC-BEpαq: 1min 50s.

F Flaw in the Original Analysis of K-armed Budgeted Exploration
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Figure 6: Example instance.

In this appendix, we highlight a flaw in the original analysis of the extension of Budgeted
Exploration in the K-armed setting, which is presented in the unpublished preprint (Jia et al.,
2024). For notation and definitions, refer to the original paper. The analysis relies on the following
proposition, stated in Lemma I.7: "First, we observe that on the clean event C, any arm in A˚ can
never be eliminated for "losing" to an arm in pA˚qc". It is possible to construct a counterexample
which satisfies the hypotheses of the lemma and violates the previous proposition. We now show
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how. We work with 3 arms. We describe the evolution of the expected reward of the arms only in a
certain window. This is sufficient for the construction of the counterexample since the lemma regards
the behavior of the algorithm in a single window. The window is composed of 17W rounds, with
W P Ně2 to be chosen later. The expected rewards of the arms are defined as follows:

raptq “ fa

ˆ

t

17W

˙

for t P J17W K

where fa : r0, 1s Ñ r´1, 1s is a 2-Hölder function with Lipschitz constant L ą 0 for a P J3K. Such
functions and their derivatives are depicted in Figure 6a and Figure 6b, respectively. More specifically,
we choose:

• The function in which the expected rewards of the first arm are embedded as:

f1pxq “
1

2
´

ż x

0

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if t P

”

0, 3
17 ` 2

b

d
L

ı

L
´

t´ 3
17 ´ 2

b

d
L

¯

if t P

´

3
17 ` 2

b

d
L ,

3
17 ` 3

b

d
L

ı

?
dL´ L

´

t´ 3
17 ´ 3

b

d
L

¯

if t P

´

3
17 ` 3

b

d
L ,

3
17 ` 4

b

d
L

ı

0 if t P

´

3
17 ` 4

b

d
L , 1

ı

dt.

• The function in which the expected rewards of the second arm are embedded as:

f2pxq “
1

2
´ ε.

• The function in which the expected rewards of the third arm are embedded as:

f3pxq “
1

2
´ d`

ż x

0

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if t P
“

0, 3
17

‰

L
`

t´ 3
17

˘

if t P

´

3
17 ,

3
17 `

b

d
L

ı

?
dL´ L

´

t´ 3
17 ´

b

d
L

¯

if t P

´

3
17 `

b

d
L ,

3
17 ` 2

b

d
L

ı

0 if t P

´

3
17 ` 2

b

d
L , 1

ı

dt.

The definitions rely on the constants d, ε ą 0, ε ă d ď 1{2, which we choose later. To guarantee that
the functions are well-defined, we impose:

4

c

d

L
ď

2

17
iff L ě 342d. (35)

We work with deterministic rewards, which can be regarded as a special realization under the clean
event C. Let Z total,t

a be the cumulative reward of arm a P JKK observed up to round t P J17W K,
included. Assuming there is no elimination before round 3W (we choose d and ε in such a way that
this is true), we have that:

Z total,3W
1 “

1

2
W, Z total,3W

2 “

ˆ

1

2
´ ε

˙

W, Z total,3W
3 “

ˆ

1

2
´ d

˙

W.

Then:
Z total,3W
1 ´ Z total,3W

2 “ εW, Z total,3W
1 ´ Z total,3W

3 “ dW.

Let:
d :“

B

W ´ 1
, ε :“

B

2W
where B is the budget of the algorithm. These choices are such that we eliminate arm 3 at the end
of round 3W (and not before), losing to arm 1. Arm 2, instead, stays alive. To satisfy d ď 1{2, it
is sufficient to require W ě 3B. After round 3W , the algorithm pulls only arms 1 and 2. When
r1ptq ě r2ptq, their difference is at most ε. Thus:

Z total,5W
1 ´ Z total,5W

2 ď 2εW “ B.

Hence, arm 2 is not eliminated before round 5W (included). By the choice of the instance, in virtue
of Equation (35), after round 5W , we have r1ptq “ 1{2 ´ d. Thus, after each round robin cycle,
which takes 2 rounds, Z total,t

2 ´ Z total,t
1 increases by d´ ε. Then:

Z total,17W
2 ´ Z total,17W

1 “ 6pd´ εqW ´ pZ total,5W
1 ´ Z total,5W

2 q ě 3B ´B “ 2B.
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This means that, at some point after round 5W , arm 1 will be eliminated, losing to arm 2. But it
is evident that 1 P A˚ and 2 P pA˚qc. However, it is important to notice that 2 P Iˆ

w , consistent
with our analysis. It remains to show that there are choices of B, W , T , and L which satisfy the
hypotheses of the lemma and the additional requirements we imposed. In particular, they need to
satisfy:

$

’

’

’

&

’

’

’

%

b

17W lnp3q lnpT q

3 ď B ď W
3

342 B
W´1 ď L

17W ď T

2 ď W

.

It is clear that such an assignment exists. Furthermore, we can find such an assignment even when we
restrict the budget to the natural choice which has order W 1{2.
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