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Abstract— Answering complex medical questions requires 

both reliable information retrieval and the ability to generate 

responses that are medically accurate and contextually 

appropriate. In this paper, we present HemaRAG, a Retrieval-

Augmented Generation (RAG) system designed specifically for 

hematologic malignancies. Our system combines a dense 

retriever enhanced with biomedical ontologies and a fine-tuned 

large language model (Gemma 3), trained locally on domain-

specific literature and question–answer pairs. To build a robust 

retrieval base, we enriched PubMed abstracts and curated 

datasets such as BioASQ and PubMedQA using synonym 

mappings from MeSH, NCIT, DOID, and UMLS. We used a 

local vector database to support high-speed semantic search 

without sharing data externally. Evaluation across both BioASQ 

and long-form PubMedQA benchmarks showed high semantic 

accuracy (BERTScore: 87–89%), strong lexical overlap (F1: 49–

52%), and high retrieval performance (Recall@10: 94–96%), 

despite the challenges posed by free-form medical questions. 

The system was developed and deployed entirely locally making 

it suitable for clinical contexts where patient data privacy is 

essential. In future work, we plan to integrate HemaRAG into 

an empathetic conversational agent designed to support patients 

and clinicians in the field of hematologic oncology. 
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I. INTRODUCTION  

Large language models (LLMs) have made major progress 
in understanding and generating natural language. LLMs 
show promising results on general tasks like summarization, 
dialogue, and open-domain question answering (QA) in 
general and medical domain [1][2][3][4][5]. Although recent 
studies highlighted the performance of LLMs, they often 
generate factually incorrect responses which is called 
hallucinations [6]. Moreover, in specialized areas like 
medicine and especially in hematologic malignancies LLMs 
often struggle. Important factor for poor results in specialized 
domains is the lack of focused and high quality data. Most 
LLMs are trained on general and public text sources. These 
lack the detailed, technical, and often subtle language used in 
medical research and clinical care. As a result, even advanced 
LLMs can struggle to understand medical terminology or 
make accurate inferences when answering questions about 
blood cancers like leukemia or lymphoma. To address these 

problems, Retrieval-Augmented Generation (RAG) has 
emerged as a promising solution. By retrieving relevant 
documents from reliable and up-to-date sources and 
presenting them to the LLM during generation, RAG can help 
mitigate hallucinations and avoid outdated information [7][8]. 

Hematologic malignancies such as leukemia, lymphoma, 
and multiple myeloma affect hundreds of thousands of 
patients globally and often require ongoing care, particularly 
in advanced stages [9].  Since hematologic malignancies are 
chronic and often life-limiting with psychological and 
physical burden, palliative care is an important factor in 
improving the patients’ quality of life. In palliative settings, 
patients and caregivers seek reliable information in order to 
manage symptoms, understand treatment options and make 
informed decisions. In these sensitive contexts, even minor 
misunderstandings can lead to distress or poor outcomes. This 
makes the need for accurate, domain-specific language 
understanding and documents retrieval crucial.   

While RAG systems offer a promising way to address this 
gap by retrieving relevant texts before generating an answer, 
they also face challenges. Many RAG pipelines rely on simple 
keyword matching or generic embeddings, which show low 
performance with the complex, synonym-rich language of 
medicine. For example, a question mentioning “AML” might 
not match an article that only uses “acute myeloid leukemia,” 
leading to poor retrieval and wrong answers.  

Our work builds on prior efforts in medical QA [10], 
domain-specific LLMs [11], and RAG in clinical settings 
[12][13], while focusing on a specific cancer domain and 
including biomedical enrichment to improve retrieval quality. 
The goal of our research is to address this gap by 
implementing HemaRAG, a domain-specific RAG system 
designed to support medical QA in hematologic malignancies. 
Our system combines a PubMed collection of articles focused 
on blood cancers, enrichment using biomedical ontologies like 
MeSH, NCIT, and DOID to add synonyms and concept 
definitions and evaluation using the BioASQ and PubMedQA 
datasets. 

This enriched retrieval process allows the system to bridge 
lexical gaps and improve semantic coverage by helping the 
model retrieve and reason over the most relevant information. 
Our system uses a finetuned Gemma 3 27 billion parameters 



model [14] with data focused on hematologic malignancies 
and the retrieved passages are given directly into its input, 
improving its performance in a transparent and efficient way.  

Our results show that this method improves answer quality 
and supports more accurate medical reasoning. By combining 
enriched biomedical retrieval with a domain finetuned 
generative model, HemaRAG demonstrates how domain-
specific RAG systems can be adapted to support real-world 
medical tasks 

II. RELATED WORK 

RAG is a promising method for grounding LLMs in 
external domain-specific knowledge, particularly in the 
healthcare domain. As LLMs like GPT-3.5 and GPT-4 gain 
popularity, researchers have explored how RAG can be used 
to improve factual accuracy, mitigate hallucinations, and 
support clinical reasoning. Despite encouraging results, many 
existing systems rely on closed, API-based models [15], 
raising concerns about transparency, reproducibility and data 
privacy. Moreover, most health-related RAG systems have 
been developed for general clinical contexts, with few 
focusing on narrow medical specialties.  

Recent work has introduced increasingly sophisticated 
retrieval mechanisms to address the limitations of naive RAG 
pipelines. Iterative RAG systems such as iMedRAG [16] 
refine their retrieval using follow-up queries and demonstrate 
the potential of iterative querying in healthcare applications. 
Other researches have expanded RAG into multimodal and 
structured data domains. MMed-RAG [17] incorporates both 
medical images and text which enhance the system’s ability to 
answer visual medical questions with grounded evidence. 
Similarly, RGAR [18] retrieves a combination of factual and 
conceptual knowledge from clinical text and electronic health 
records, enabling models to outperform even larger LLMs like 
GPT3.5 in fact-sensitive medical QA. Dialogue-based 
systems such as MRD-RAG [19] have also been proposed, 
using multi-turn conversational setups to better simulate 
diagnostic reasoning through follow-up exchanges. Another 
research focuses on fact injection by retrieving medical data 
from a disease database and incorporates them into the 
model’s prompt [20]. To our knowledge, the only work that 
applies a RAG‑style chatbot specifically to hematologic 
malignancies is focused on multiple myeloma and even 
though it shows the feasibility of RAG in this area, its scope 
is limited and cannot be generalized across other hematologic 
cancers [21]. 

Most systems described above are using external models 
and services which can transit sensitive clinical information 
and queries to external databases and servers. Patient privacy 
and data protection of sensitive clinical data is an important 
part of medical tools. A recent review noted that while 
retrieval-based methods are increasingly used in healthcare, 
few implementations explicitly address ethical concerns or 
regulatory constraints, despite using data sources such as 
PubMed, clinical guidelines, or even EHRs [22]. 

Our system, HemaRAG, is designed to be deployed 
entirely on local infrastructure. All model inference and 
document retrieval are performed without any external API 
calls, making the system suitable for privacy-sensitive 
environments such as hospital research networks or palliative 
care settings. Moreover, HemaRAG focuses on hematologic 
malignancies. These diseases often involve terminology that 
varies significantly across articles, clinicians, and countries 

making semantic retrieval especially challenging. To address 
this, our pipeline includes enrichment with biomedical 
ontologies such as MeSH, NCIT, and DOID and UMLS. This 
enrichment is applied both to the retrieved corpus and to user 
questions, improving semantic overlap and retrieval 
performance. To our knowledge, HemaRAG is the first 
retrieval-augmented system built specifically for hematologic 
cancer QA. Its combination of local execution, ontology-
driven enrichment, and domain-specific focus addresses a real 
gap in the medical RAG research domain. 

III. METHODS 

This section presents the architecture and implementation 
of HemaRAG, a RAG system designed for medical QA in the 
domain of hematologic malignancies. The pipeline operates 
entirely on local infrastructure, and consists of five key 
components: (1) domain-specific document collection, (2) 
biomedical enrichment, (3) embedding and indexing with 
Chroma DB [23], (4) LLM-based generation, and (5) 
evaluation using external benchmarks. In the architecture of 
the system is shown Fig. 1. 

 

Fig. 1: RAG Architecture 

A. Corpus Collection from Biomedical Databases 

A domain-specific corpus was constructed by querying 
both PubMed and Europe PMC using their respective public 
APIs. In order to collect wide range of relevant literature of 
hematologic malignancies, a comprehensive query was 
created that included disease names (e.g., “acute 
lymphoblastic leukemia,” “Waldenström 
macroglobulinemia”), treatments (e.g., “CAR-T,” 
“venetoclax,” “daratumumab”), and clinical concepts (e.g., 
“minimal residual disease,” “bone marrow transplant”).  
Filtering based on relevance (based on keyword matches in 
titles and abstracts) was applied and the results from both 
sources were merged. The pipeline also handled full-text 
extraction where available via the Europe PMC XML 
interface. Articles without sufficient domain relevance were 
excluded. 

Finally, two additional biomedical QA datasets were 
included in our corpus: BioASQ [24] and the long-form 
version of PubMedQA [25]. BioASQ is a benchmark dataset 
designed to support open-domain biomedical QA, providing 
manually curated question–answer pairs along with 



supporting documents. It includes factoid, list, and summary-
style answers written by biomedical experts, making it a 
strong foundation for fine-tuning generative models in the 
medical domain. The long-form version of PubMedQA was 
also included, which contains clinical research questions 
paired with full-sentence answers. Unlike the standard version 
that provides yes, no and maybe labels, the long-form variant 
provides full-sentence answers that are based on actual 
PubMed abstracts. This format aligned with our system, which 
aims to generate semantically faithful, evidence-grounded 
responses rather than binary labels. 

B. Ontology-Based Biomedical Enrichment 

Biomedical terminology is highly variable, with diseases 
and treatments often referenced by multiple names or 
abbreviations. To bridge this lexical gap during both indexing 
and retrieval, we enriched all documents using biomedical 
ontologies. Specifically, we queried BioPortal [26] to extract 
synonyms and preferred terms from MeSH, NCIT, and DOID 
[27][28] ontologies. Terms like “CLL,” “chronic lymphocytic 
leukemia,” and “B-cell malignancy” were normalized and 
mapped to shared concept labels.  

To enhance semantic grounding, we also parsed the 
UMLS Metathesaurus [29] locally, allowing term-to-
Concept-level linking (CUIs) mapping and synonym 
expansion beyond BioPortal coverage. This expansion was 
used during preprocessing and retrieval to improve matching 
between question phrasing and literature content. We applied 
synonym enrichment conservatively to avoid introducing 
errors. Only exact or high-confidence matches (e.g., 
acronyms, preferred terms) were used, and we manually 
reviewed samples of these to ensure correctness. This review 
was performed iteratively in order to ensure alignment 
between enriched queries and retrieved content. This 
enrichment strategy was applied to both the question inputs 
and the documents, helping to improve the alignment between 
the two during retrieval. In fig. 2 the ontology enrichment 
pipeline is shown. 

 

Fig. 2: Biomedical Enrichment Pipeline 

C. Embedding and Indexing with ChromaDB 

To manage our data storage and retrieval Chroma DB was 
used which is a lightweight and local vector database. Each 
document in was split into smaller text chunks of 1,000 

characters and 20% overlap, in order to make indexing and 
retrieval more efficient. Metadata was added to each chunk, 
including the original question (when available), PubMed ID, 
and, for BioASQ and PubMedQA the correct answer. This 
extra layer helped us later, especially when debugging 
retrieval results or doing error analysis.  

Based on the research of Xiong et al. benchmark which 
showed that dense retrievers outperform traditional keyword-
based retrieval methods in medical QA tasks, we used a dense 
embedding model for all retrieval operations [13] [30]. 
Embeddings were stored and queried using Chroma DB, 
enabling semantic retrieval from PubMed, BioASQ, and 
PubMedQA documents. Embeddings were generated using 
GPU acceleration and normalized for cosine similarity. The 
test sets of BioASQ and PubMedQA were excluded from 
storing in the vector database. 

D. Large Language Model Fine-Tuning 

For response generation, we used the Gemma 3 27B 
model, hosted and fine-tuned entirely on local infrastructure. 
The model was trained on domain-specific abstracts from 
PubMed, PubMedQA long form and question–answer pairs 
from the BioASQ dataset. To preserve evaluation fairness, all 
BioASQ and PubMedQA test items were excluded from 
training and retrieval.  

For the evaluation, we filtered 500 hematologic cancer-
related questions from PubMedQA and randomly selected 
30% (150 questions) for testing. Similarly, from the 378 
questions collected from BioASQ after disease-specific 
filtering, we used 113 (30%) for evaluation. The remaining 
samples were used for the finetuning. 

Fine-tuning followed a two-stage strategy. First, the model 
was trained to the domain-specific biomedical corpus 
(comprising 12573 retrieved abstracts and full texts) using a 
masked token prediction objective, allowing it to adapt to 
medical terminology and phrasing. Moreover, 11573 samples 
were used for the training and 1000 for validation. In the 
second stage, the model was fine-tuned on 90% of the 
question–answer pairs from the filtered BioASQ and 
PubMedQA sets, using instruction-style formatting. The 
remaining 10% was reserved for validation. This stage aimed 
to improve factual accuracy, answer structure, and domain-
specific reasoning. 

We selected Gemma 3 27 billion parameters because it 
combines strong instruction-following ability with the 
flexibility needed for local deployment. The model is open-
source, which made it easier to integrate into our pipeline and 
fine-tune on domain-specific data without relying on external 
services. It also supports efficient training through 4-bit 
quantization and gradient checkpointing, allowing us to work 
with large models on limited hardware. Moreover, its 
performance in LLMs benchmarks suggests that it could be a 
valuable tool in health and medical tasks.  

Training was performed using 4-bit quantization with 
gradient checkpointing and mixed precision to minimize 
memory footprint. We used a batch size of 2, gradient 
accumulation steps of 4, and the AdamW optimizer with a 
learning rate of 1e-4. Training on PubMed was conducted for 
200 steps, while BioASQ fine-tuning lasted 300 steps. These 
values were selected based on dataset size and the stabilization 
of loss and perplexity curves during training. Although 
BioASQ is smaller, it required more steps due to its 



complexity and structure. Finetuning was conducted with an 
NVIDIA A40 GPU (48 GB) and completed in around 9 hours. 
To monitor training quality, we computed perplexity on held-
out validation splits from both BioASQ and PubMed. The 
model achieved a final perplexity of 19.28 on BioASQ and 
14.42 on PubMed, indicating improved domain adaptation. 

E. Retrieval-Augmented Generation 

User questions are enriched using ontology mappings, 
embedded using the same embeddings model and passed to 
Chroma DB for top-k retrieval. Retrieved passages are then 
formatted alongside the query in a structured prompt and fed 
to the fine-tuned Gemma model. We evaluated HemaRAG 
using two gold-standard benchmarks: BioASQ and 
PubMedQA. For both benchmarks, we used a held-out test set 
extracted prior to fine-tuning. The system-generated answers 
were evaluated against reference answers using: 

For both BioASQ and PubMedQA evaluations, we used a 
two-stage pipeline. In the retrieval phase, we computed 
Recall@K metrics (K=5, 10) to assess whether the top-k 
documents included relevant evidence. Our retriever 
combined dense embeddings and cross-encoder reranking, 
followed by a diversity-aware final ranking. 

In the generation phase, we evaluated system answers 
against gold references using standard metrics including Exact 
Match, F1-score, ROUGE-L[31], BERTScore [32], and 
Named Entity Recognition (NER) overlap. ROUGE-L 
measures the longest common subsequence between 
generated and reference texts, capturing fluency and overlap. 
BERTScore computes similarity based on contextual 
embeddings from a pretrained biomedical language model, 
allowing for a more accurate reflection of semantic alignment 
between model outputs and reference answers. 

IV. RESULTS 

We evaluated our system on a subset of BioASQ and 
PubMedQA datasets, filtered to include questions specifically 
related to hematologic malignancies. The subsets were not 
included in finetuning or vector database. The evaluation 
combined both retrieval quality and answer generation 
performance, using standard metrics commonly applied in 
biomedical QA. 

As expected for a generative system operating in the 
biomedical domain, the Exact Match scores was relatively 
low, since answers are often paraphrased or expressed with 
domain-specific variations. This was confirmed by the EM, 
which remained unchanged, suggesting that differences 
stemmed from phrasing rather than factual errors or 
omissions.  

Despite the low EM, the model demonstrated strong 
performance across more forgiving metrics:  

• The F1 score was 52.1% on BioASQ and 49.2% on 
PubMedQA showing consistent overlap in 
terminology and key concepts between predicted and 
reference answers.  

• ROUGE-L scores were 44.7% (BioASQ) and 43.2% 
(PubMedQA) showing that generated answers retained 
similar structure and content flow.  

• The BERTScore F1 values were especially strong: 
89.7% and 87.2%, respectively. These high scores 
indicate a high degree of semantic similarity.  

• Named Entity Recognition (NER) Overlap was 49.6% 
for BioASQ and 45.8% for PubMedQA. This indicates 
that nearly half of the biomedical entities in the 
reference answers were correctly preserved or 
substituted with appropriate synonyms or 
abbreviations.  

To evaluate retrieval effectiveness, we report Recall@K, 
measuring whether a relevant document appeared among the 
top-k retrieved passages:  

• BioASQ Recall@5: 91.2% 

• BioASQ Recall@10: 95.7%  

• PubMedQA Recall@5: 90.8% 

• PubMedQA Recall@10: 94.5% 

These high scores confirm that the retriever consistently 
returned relevant texts for answer generation. The results are 
shown in Table I. 

TABLE I.  EVALUATION RESULTS 

Metrics 
Datasets 

BioASQ PubMedQA 

EM 6.7% 7.8% 

NER 49.6% 45.8% 

F1-Score 52.1% 49.2% 

ROUGE-L 44.7% 43.2% 

Recall@5 91.2% 90.8% 

Recall@10 95.7% 94.5% 

BERTScore 89.7% 87.2% 

These results suggest that although exact matching is not 
achieved, an expected outcome in generative medical QA, the 
model performs reliably in capturing and articulating correct 
medical knowledge. The combination of high semantic 
similarity, strong lexical overlap and robust retrieval recall 
indicates that HemaRAG is capable of producing medically 
valid and relevant answers, even in a complex and 
terminology-heavy domain like hematologic malignancies. 
An example output is shown in Table II.  

TABLE II.   QUESTION EXAMPLE 

Question What treatment is commonly used for chronic 

lymphocytic leukemia (CLL)? 

Reference 

Answer 

Chemotherapy or targeted therapies such as ibrutinib or 

venetoclax are commonly used to treat CLL. 

HemaRAG 
Answer 

Chronic lymphocytic leukemia (CLL) is typically treated 
with targeted agents like ibrutinib or venetoclax, and in 

some cases with chemotherapy, depending on disease 

stage and patient condition. 

To assess the contribution of ontology-based enrichment, 
we compared HemaRAG with and without ontology 
enrichment applied during indexing and query reformulation. 
Across both PubMedQA and BioASQ evaluations, 
enrichment consistently improved key metrics such as F1 
score, ROUGE-L, and NER overlap. Although the 
performance gain was modest, it remained consistent across 



datasets, reinforcing the value of biomedical concept 
normalization for handling synonym and abbreviation 
variation. 

Moreover, we tested a baseline configuration using the 
same retriever and prompting strategy, but with the base 
Gemma-3 model (without domain-specific fine-tuning). The 

baseline model achieved substantially lower scores for both 
PubMedQA and BioASQ compared to our final system's 
performance. Despite comparable retrieval recalls, the 
baseline tended to generate overly long, generic responses 
lacking domain specificity with average length 171.5 words. 
These results highlight the benefit of domain adaptation on 
answer generation quality. The results are shown in Table III. 

TABLE III.  EVALUATION RESULTS BASELINE/ENRICHMENT/NO ENRICHMENT 

Model Variant Dataset F1 ROUGE-L EM 
NER 

Overlap 
BERTScore Recall@5 Recall@10 

HemaRAG (no enrich) PubMedQA 36% 29% 7.2% 42% 85.1% 90.1% 93.2% 

HemaRAG (no enrich) BioASQ 42.4% 34% 5.7% 47.8% 88.5% 90.9% 95.1% 

Base Gemma-3 (no enrich) PubMedQA 27.6% 22.1% 1.5% 35.8% 77.8% 87.9% 90.1% 

Base Gemma-3 (no enrich) BioASQ 26.3% 19.5% 1.8% 36.9% 84.4% 89.8% 90.2% 

HemaRAG  PubMedQA 49.2% 43.2% 7.8% 45.8% 87.2% 90.8% 94.5% 

HemaRAG  BioASQ 52.1% 44.7% 6.7% 49.6% 89.7% 91.2% 95.7% 

V. DISCUSSION AND FUTURE WORK 

The evaluation of HemaRAG on hematologic cancer-
related questions from BioASQ and PubMedQA showed 
promising results, especially in terms of semantic accuracy 
and retrieval quality. EM score remained low which is this 
expected given the generative nature of the system and the 
variability in phrasing across correct medical answers.  EM 
penalizes even minor lexical differences between the 
generated and gold answers. However, complementary 
metrics such as BERTScore and NER Overlap revealed high 
semantic and factual alignment, indicating that the model 
produced clinically meaningful outputs despite limited exact 
surface overlap. Specifically, the high BERTScore (89.7%), 
F1 score (52.1%), and strong recall metrics indicate that the 
system is able to identify and generate contextually 
appropriate and medically sound responses. These findings 
suggest that our approach, combining dense retrieval, 
biomedical enrichment, and domain-specific fine-tuning, 
could support high-quality QA in specialized medical 
domains. 

While HemaRAG is tailored to hematologic malignancies, 
the system uses English-language content and allows 
comparison with baseline models. In this study, we compared 
our fine-tuned model to the base Gemma-3 model using the 
same retrieval pipeline, showing consistent gains across 
semantic and lexical metrics. Future work will explore 
comparisons with publicly available biomedical RAG 
systems, such as BioGPT [33], to further assess relative 
performance. 

Moreover, our system is designed to be deployed locally. 
All retrieval and generation operations are performed on 
secure, private infrastructure, avoiding the need to transmit 
sensitive queries or patient information to external servers. 
This makes the system suitable for privacy-sensitive clinical 
tools in palliative care. The ontology-driven enrichment also 
proved effective in covering terminology gaps, a persistent 
challenge in medical NLP, especially in oncology where 

synonyms and abbreviations are frequently used 
interchangeably. Future work could also explore the 
individual impact of each ontology on retrieval and generation 
performance. 

Although this study focused on hematologic malignancies, 
the HemaRAG framework is not limited to this domain. The 
same architecture, based on ontology-enriched retrieval and a 
locally fine-tuned language model, can be adapted to other 
medical specialties by replacing the underlying corpus and 
ontologies with domain-relevant resources. Future work may 
explore its application in oncology subdomains or chronic 
disease management, where terminology variation is also a 
key challenge. 

While this study relied solely on automatic evaluation 
metrics, which are widely used in biomedical QA literature, 
we acknowledge the lack of human expert assessment as a 
limitation. Although semantic similarity scores offer useful 
insight, they do not fully capture clinical usefulness, clarity or 
safety.   Future work will incorporate domain expert validation 
to assess clinical usefulness, clarity, and factual correctness of 
generated answers. We also aim to explore hallucination 
analysis to better understand when and why the system 
produces unsupported or incorrect information. Finally, the 
test sets used in this study consisted of 150 PubMedQA and 
113 BioASQ hematologic QA samples. Although these 
sample sizes support robust metric reporting, we did not 
perform formal statistical significance testing.  

To illustrate system limitations, a case where the model 
generated a vague or incomplete answer despite relevant 
context is shown. For the question " Is alemtuzumab effective 
for remission induction in patients diagnosed with T-cell 
prolymphocytic leukemia?", the system answered " 
Alemtuzumab is used in leukemia treatment." While 
semantically related, this phrasing lacks specificity and does 
not confirm effectiveness, as stated in the gold reference. Such 
responses may show incomplete answers or mild 



hallucination, which will be further addressed through expert 
validation in future work. 

Moreover, our future work will integrate HemaRAG into 
a conversational agent that is focused on hematologic 
malignancies. By incorporating HemaRAG, the agent will be 
able to answer medical questions more accurately and 
contextually, drawing on biomedical literature while 
maintaining a human-centered dialogue. Future evaluation 
will include human evaluation involving clinicians and 
medical researchers to assess the usefulness, safety and clarity 
of the generated answer. Finally, our research will explore the 
inclusion of multilingual data, with a focus in Greek language. 

VI. CONCLUSION 

In this study, we introduced HemaRAG, a RAG system 
that was developed specifically for answering questions in the 
field of hematologic malignancies. By combining domain-
specific document retrieval with ontology-based enrichment 
and fine-tuning a large open-source language model locally, 
our goal was to create a system that is accurate but also 
semantically rich and well-grounded in biomedical evidence. 
Unlike many RAG implementations the system runs locally in 
order to ensure patient data privacy. This approach creates a 
system that is more suitable for real-world use where data 
privacy is crucial. The evaluation of HemaRAG showed high 
retrieval recall and semantic similarity scores which confirms 
that the system retrieved and generated context effectively.   
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