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Abstract— Answering complex medical questions requires
both reliable information retrieval and the ability to generate
responses that are medically accurate and contextually
appropriate. In this paper, we present HemaRAG, a Retrieval-
Augmented Generation (RAG) system designed specifically for
hematologic malignancies. Our system combines a dense
retriever enhanced with biomedical ontologies and a fine-tuned
large language model (Gemma 3), trained locally on domain-
specific literature and question—answer pairs. To build a robust
retrieval base, we enriched PubMed abstracts and curated
datasets such as BioASQ and PubMedQA using synonym
mappings from MeSH, NCIT, DOID, and UMLS. We used a
local vector database to support high-speed semantic search
without sharing data externally. Evaluation across both BioASQ
and long-form PubMedQA benchmarks showed high semantic
accuracy (BERTScore: 87-89%), strong lexical overlap (F1: 49—
52%), and high retrieval performance (Recall@10: 94-96%),
despite the challenges posed by free-form medical questions.
The system was developed and deployed entirely locally making
it suitable for clinical contexts where patient data privacy is
essential. In future work, we plan to integrate HemaRAG into
an empathetic conversational agent designed to support patients
and clinicians in the field of hematologic oncology.
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1. INTRODUCTION

Large language models (LLMs) have made major progress
in understanding and generating natural language. LLMs
show promising results on general tasks like summarization,
dialogue, and open-domain question answering (QA) in
general and medical domain [1][2][3][4][5]. Although recent
studies highlighted the performance of LLMs, they often
generate factually incorrect responses which is called
hallucinations [6]. Moreover, in specialized areas like
medicine and especially in hematologic malignancies LLMs
often struggle. Important factor for poor results in specialized
domains is the lack of focused and high quality data. Most
LLMs are trained on general and public text sources. These
lack the detailed, technical, and often subtle language used in
medical research and clinical care. As a result, even advanced
LLMs can struggle to understand medical terminology or
make accurate inferences when answering questions about
blood cancers like leukemia or lymphoma. To address these
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problems, Retrieval-Augmented Generation (RAG) has

emerged as a promising solution. By retrieving relevant
documents from reliable and up-to-date sources and
presenting them to the LLM during generation, RAG can help
mitigate hallucinations and avoid outdated information [7][8].

Hematologic malignancies such as leukemia, lymphoma,
and multiple myeloma affect hundreds of thousands of
patients globally and often require ongoing care, particularly
in advanced stages [9]. Since hematologic malignancies are
chronic and often life-limiting with psychological and
physical burden, palliative care is an important factor in
improving the patients’ quality of life. In palliative settings,
patients and caregivers seek reliable information in order to
manage symptoms, understand treatment options and make
informed decisions. In these sensitive contexts, even minor
misunderstandings can lead to distress or poor outcomes. This
makes the need for accurate, domain-specific language
understanding and documents retrieval crucial.

While RAG systems offer a promising way to address this
gap by retrieving relevant texts before generating an answer,
they also face challenges. Many RAG pipelines rely on simple
keyword matching or generic embeddings, which show low
performance with the complex, synonym-rich language of
medicine. For example, a question mentioning “AML” might
not match an article that only uses “acute myeloid leukemia,”
leading to poor retrieval and wrong answers.

Our work builds on prior efforts in medical QA [10],
domain-specific LLMs [11], and RAG in clinical settings
[12][13], while focusing on a specific cancer domain and
including biomedical enrichment to improve retrieval quality.
The goal of our research is to address this gap by
implementing HemaRAG, a domain-specific RAG system
designed to support medical QA in hematologic malignancies.
Our system combines a PubMed collection of articles focused
on blood cancers, enrichment using biomedical ontologies like
MeSH, NCIT, and DOID to add synonyms and concept
definitions and evaluation using the BioASQ and PubMedQA
datasets.

This enriched retrieval process allows the system to bridge
lexical gaps and improve semantic coverage by helping the
model retrieve and reason over the most relevant information.
Our system uses a finetuned Gemma 3 27 billion parameters



model [14] with data focused on hematologic malignancies
and the retrieved passages are given directly into its input,
improving its performance in a transparent and efficient way.

Our results show that this method improves answer quality
and supports more accurate medical reasoning. By combining
enriched biomedical retrieval with a domain finetuned
generative model, HemaRAG demonstrates how domain-
specific RAG systems can be adapted to support real-world
medical tasks

II. RELATED WORK

RAG is a promising method for grounding LLMs in
external domain-specific knowledge, particularly in the
healthcare domain. As LLMs like GPT-3.5 and GPT-4 gain
popularity, researchers have explored how RAG can be used
to improve factual accuracy, mitigate hallucinations, and
support clinical reasoning. Despite encouraging results, many
existing systems rely on closed, API-based models [15],
raising concerns about transparency, reproducibility and data
privacy. Moreover, most health-related RAG systems have
been developed for general clinical contexts, with few
focusing on narrow medical specialties.

Recent work has introduced increasingly sophisticated
retrieval mechanisms to address the limitations of naive RAG
pipelines. Iterative RAG systems such as iMedRAG [16]
refine their retrieval using follow-up queries and demonstrate
the potential of iterative querying in healthcare applications.
Other researches have expanded RAG into multimodal and
structured data domains. MMed-RAG [17] incorporates both
medical images and text which enhance the system’s ability to
answer visual medical questions with grounded evidence.
Similarly, RGAR [18] retrieves a combination of factual and
conceptual knowledge from clinical text and electronic health
records, enabling models to outperform even larger LLMs like
GPT3.5 in fact-sensitive medical QA. Dialogue-based
systems such as MRD-RAG [19] have also been proposed,
using multi-turn conversational setups to better simulate
diagnostic reasoning through follow-up exchanges. Another
research focuses on fact injection by retrieving medical data
from a disecase database and incorporates them into the
model’s prompt [20]. To our knowledge, the only work that
applies a RAG-style chatbot specifically to hematologic
malignancies is focused on multiple myeloma and even
though it shows the feasibility of RAG in this area, its scope
is limited and cannot be generalized across other hematologic
cancers [21].

Most systems described above are using external models
and services which can transit sensitive clinical information
and queries to external databases and servers. Patient privacy
and data protection of sensitive clinical data is an important
part of medical tools. A recent review noted that while
retrieval-based methods are increasingly used in healthcare,
few implementations explicitly address ethical concerns or
regulatory constraints, despite using data sources such as
PubMed, clinical guidelines, or even EHRs [22].

Our system, HemaRAG, is designed to be deployed
entirely on local infrastructure. All model inference and
document retrieval are performed without any external API
calls, making the system suitable for privacy-sensitive
environments such as hospital research networks or palliative
care settings. Moreover, HemaRAG focuses on hematologic
malignancies. These diseases often involve terminology that
varies significantly across articles, clinicians, and countries

making semantic retrieval especially challenging. To address
this, our pipeline includes enrichment with biomedical
ontologies such as MeSH, NCIT, and DOID and UMLS. This
enrichment is applied both to the retrieved corpus and to user
questions, improving semantic overlap and retrieval
performance. To our knowledge, HemaRAG is the first
retrieval-augmented system built specifically for hematologic
cancer QA. Its combination of local execution, ontology-
driven enrichment, and domain-specific focus addresses a real
gap in the medical RAG research domain.

III. METHODS

This section presents the architecture and implementation
of HemaRAG, a RAG system designed for medical QA in the
domain of hematologic malignancies. The pipeline operates
entirely on local infrastructure, and consists of five key
components: (1) domain-specific document collection, (2)
biomedical enrichment, (3) embedding and indexing with
Chroma DB [23], (4) LLM-based generation, and (5)
evaluation using external benchmarks. In the architecture of
the system is shown Fig. 1.
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Fig. 1: RAG Architecture

A. Corpus Collection from Biomedical Databases

A domain-specific corpus was constructed by querying
both PubMed and Europe PMC using their respective public
APIs. In order to collect wide range of relevant literature of
hematologic malignancies, a comprehensive query was

created that included disease names (e.g., ‘“acute
lymphoblastic leukemia,” “Waldenstrom
macroglobulinemia”), treatments (e.g., “CAR-T,”

“venetoclax,” “daratumumab”), and clinical concepts (e.g.,
“minimal residual disease,” “bone marrow transplant”).
Filtering based on relevance (based on keyword matches in
titles and abstracts) was applied and the results from both
sources were merged. The pipeline also handled full-text
extraction where available via the Europe PMC XML
interface. Articles without sufficient domain relevance were
excluded.

Finally, two additional biomedical QA datasets were
included in our corpus: BioASQ [24] and the long-form
version of PubMedQA [25]. BioASQ is a benchmark dataset
designed to support open-domain biomedical QA, providing
manually curated question—answer pairs along with



supporting documents. It includes factoid, list, and summary-
style answers written by biomedical experts, making it a
strong foundation for fine-tuning generative models in the
medical domain. The long-form version of PubMedQA was
also included, which contains clinical research questions
paired with full-sentence answers. Unlike the standard version
that provides yes, no and maybe labels, the long-form variant
provides full-sentence answers that are based on actual
PubMed abstracts. This format aligned with our system, which
aims to generate semantically faithful, evidence-grounded
responses rather than binary labels.

B. Ontology-Based Biomedical Enrichment

Biomedical terminology is highly variable, with diseases
and treatments often referenced by multiple names or
abbreviations. To bridge this lexical gap during both indexing
and retrieval, we enriched all documents using biomedical
ontologies. Specifically, we queried BioPortal [26] to extract
synonyms and preferred terms from MeSH, NCIT, and DOID
[27][28] ontologies. Terms like “CLL,” “chronic lymphocytic
leukemia,” and “B-cell malignancy” were normalized and
mapped to shared concept labels.

To enhance semantic grounding, we also parsed the
UMLS Metathesaurus [29] locally, allowing term-to-
Concept-level linking (CUIs) mapping and synonym
expansion beyond BioPortal coverage. This expansion was
used during preprocessing and retrieval to improve matching
between question phrasing and literature content. We applied
synonym enrichment conservatively to avoid introducing
errors. Only exact or high-confidence matches (e.g.,
acronyms, preferred terms) were used, and we manually
reviewed samples of these to ensure correctness. This review
was performed iteratively in order to ensure alignment
between enriched queries and retrieved content. This
enrichment strategy was applied to both the question inputs
and the documents, helping to improve the alignment between
the two during retrieval. In fig. 2 the ontology enrichment
pipeline is shown.
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Fig. 2: Biomedical Enrichment Pipeline

C. Embedding and Indexing with ChromaDB

To manage our data storage and retrieval Chroma DB was
used which is a lightweight and local vector database. Each
document in was split into smaller text chunks of 1,000

characters and 20% overlap, in order to make indexing and
retrieval more efficient. Metadata was added to each chunk,
including the original question (when available), PubMed ID,
and, for BioASQ and PubMedQA the correct answer. This
extra layer helped us later, especially when debugging
retrieval results or doing error analysis.

Based on the research of Xiong et al. benchmark which
showed that dense retrievers outperform traditional keyword-
based retrieval methods in medical QA tasks, we used a dense
embedding model for all retrieval operations [13] [30].
Embeddings were stored and queried using Chroma DB,
enabling semantic retrieval from PubMed, BioASQ, and
PubMedQA documents. Embeddings were generated using
GPU acceleration and normalized for cosine similarity. The
test sets of BioASQ and PubMedQA were excluded from
storing in the vector database.

D. Large Language Model Fine-Tuning

For response generation, we used the Gemma 3 27B
model, hosted and fine-tuned entirely on local infrastructure.
The model was trained on domain-specific abstracts from
PubMed, PubMedQA long form and question—answer pairs
from the BioASQ dataset. To preserve evaluation fairness, all
BioASQ and PubMedQA test items were excluded from
training and retrieval.

For the evaluation, we filtered 500 hematologic cancer-
related questions from PubMedQA and randomly selected
30% (150 questions) for testing. Similarly, from the 378
questions collected from BioASQ after disease-specific
filtering, we used 113 (30%) for evaluation. The remaining
samples were used for the finetuning.

Fine-tuning followed a two-stage strategy. First, the model
was trained to the domain-specific biomedical corpus
(comprising 12573 retrieved abstracts and full texts) using a
masked token prediction objective, allowing it to adapt to
medical terminology and phrasing. Moreover, 11573 samples
were used for the training and 1000 for validation. In the
second stage, the model was fine-tuned on 90% of the
question—answer pairs from the filtered BioASQ and
PubMedQA sets, using instruction-style formatting. The
remaining 10% was reserved for validation. This stage aimed
to improve factual accuracy, answer structure, and domain-
specific reasoning.

We selected Gemma 3 27 billion parameters because it
combines strong instruction-following ability with the
flexibility needed for local deployment. The model is open-
source, which made it easier to integrate into our pipeline and
fine-tune on domain-specific data without relying on external
services. It also supports efficient training through 4-bit
quantization and gradient checkpointing, allowing us to work
with large models on limited hardware. Moreover, its
performance in LLMs benchmarks suggests that it could be a
valuable tool in health and medical tasks.

Training was performed using 4-bit quantization with
gradient checkpointing and mixed precision to minimize
memory footprint. We used a batch size of 2, gradient
accumulation steps of 4, and the AdamW optimizer with a
learning rate of 1e-4. Training on PubMed was conducted for
200 steps, while BioASQ fine-tuning lasted 300 steps. These
values were selected based on dataset size and the stabilization
of loss and perplexity curves during training. Although
BioASQ is smaller, it required more steps due to its



complexity and structure. Finetuning was conducted with an
NVIDIA A40 GPU (48 GB) and completed in around 9 hours.
To monitor training quality, we computed perplexity on held-
out validation splits from both BioASQ and PubMed. The
model achieved a final perplexity of 19.28 on BioASQ and
14.42 on PubMed, indicating improved domain adaptation.

E. Retrieval-Augmented Generation

User questions are enriched using ontology mappings,
embedded using the same embeddings model and passed to
Chroma DB for top-k retrieval. Retrieved passages are then
formatted alongside the query in a structured prompt and fed
to the fine-tuned Gemma model. We evaluated HemaRAG
using two gold-standard benchmarks: BioASQ and
PubMedQA. For both benchmarks, we used a held-out test set
extracted prior to fine-tuning. The system-generated answers
were evaluated against reference answers using:

For both BioASQ and PubMedQA evaluations, we used a
two-stage pipeline. In the retrieval phase, we computed
Recall@K metrics (K=5, 10) to assess whether the top-k
documents included relevant evidence. Our retriever
combined dense embeddings and cross-encoder reranking,
followed by a diversity-aware final ranking.

In the generation phase, we evaluated system answers
against gold references using standard metrics including Exact
Match, Fl-score, ROUGE-L[31], BERTScore [32], and
Named Entity Recognition (NER) overlap. ROUGE-L
measures the longest common subsequence between
generated and reference texts, capturing fluency and overlap.
BERTScore computes similarity based on contextual
embeddings from a pretrained biomedical language model,
allowing for a more accurate reflection of semantic alignment
between model outputs and reference answers.

IV. RESULTS

We evaluated our system on a subset of BioASQ and
PubMedQA datasets, filtered to include questions specifically
related to hematologic malignancies. The subsets were not
included in finetuning or vector database. The evaluation
combined both retrieval quality and answer generation
performance, using standard metrics commonly applied in
biomedical QA.

As expected for a generative system operating in the
biomedical domain, the Exact Match scores was relatively
low, since answers are often paraphrased or expressed with
domain-specific variations. This was confirmed by the EM,
which remained unchanged, suggesting that differences
stemmed from phrasing rather than factual errors or
omissions.

Despite the low EM, the model demonstrated strong
performance across more forgiving metrics:

e The F1 score was 52.1% on BioASQ and 49.2% on
PubMedQA  showing consistent overlap in
terminology and key concepts between predicted and
reference answers.

* ROUGE-L scores were 44.7% (BioASQ) and 43.2%
(PubMedQA) showing that generated answers retained
similar structure and content flow.

« The BERTScore F1 values were especially strong:
89.7% and 87.2%, respectively. These high scores
indicate a high degree of semantic similarity.

* Named Entity Recognition (NER) Overlap was 49.6%
for BioASQ and 45.8% for PubMedQA. This indicates
that nearly half of the biomedical entities in the
reference answers were correctly preserved or
substituted ~ with  appropriate ~ synonyms  or
abbreviations.

To evaluate retrieval effectiveness, we report Recall@K,
measuring whether a relevant document appeared among the
top-k retrieved passages:

*  BioASQ Recall@5: 91.2%

* BioASQ Recall@10: 95.7%

*  PubMedQA Recall@5: 90.8%
*  PubMedQA Recall@10: 94.5%

These high scores confirm that the retriever consistently
returned relevant texts for answer generation. The results are
shown in Table 1.

TABLE L EVALUATION RESULTS
Datasets
Metrics
BioASQ | PubMedQA

EM 6.7% 7.8%

NER 49.6% 45.8%
F1-Score 52.1% 49.2%
ROUGE-L 44.7% 43.2%
Recall@5 91.2% 90.8%
Recall@10 95.7% 94.5%
BERTScore 89.7% 87.2%

These results suggest that although exact matching is not
achieved, an expected outcome in generative medical QA, the
model performs reliably in capturing and articulating correct
medical knowledge. The combination of high semantic
similarity, strong lexical overlap and robust retrieval recall
indicates that HemaRAG is capable of producing medically
valid and relevant answers, even in a complex and
terminology-heavy domain like hematologic malignancies.
An example output is shown in Table II.

TABLE IL QUESTION EXAMPLE

Question What treatment is commonly used for chronic
lymphocytic leukemia (CLL)?

Reference | Chemotherapy or targeted therapies such as ibrutinib or

Answer venetoclax are commonly used to treat CLL.

HemaRAG | Chronic lymphocytic leukemia (CLL) is typically treated

Answer with targeted agents like ibrutinib or venetoclax, and in
some cases with chemotherapy, depending on disease
stage and patient condition.

To assess the contribution of ontology-based enrichment,
we compared HemaRAG with and without ontology
enrichment applied during indexing and query reformulation.
Across both PubMedQA and BioASQ evaluations,
enrichment consistently improved key metrics such as F1
score, ROUGE-L, and NER overlap. Although the
performance gain was modest, it remained consistent across



datasets, reinforcing the value of biomedical concept
normalization for handling synonym and abbreviation
variation.

Moreover, we tested a baseline configuration using the
same retriever and prompting strategy, but with the base
Gemma-3 model (without domain-specific fine-tuning). The

baseline model achieved substantially lower scores for both
PubMedQA and BioASQ compared to our final system's
performance. Despite comparable retrieval recalls, the
baseline tended to generate overly long, generic responses
lacking domain specificity with average length 171.5 words.
These results highlight the benefit of domain adaptation on
answer generation quality. The results are shown in Table II1.

TABLE IIL EVALUATION RESULTS BASELINE/ENRICHMENT/NO ENRICHMENT
Model Variant Dataset F1 ROUGE-L EM Olje]?‘ﬁp BERTScore Recall@5 Recall@10
HemaRAG (no enrich) PubMedQA 36% 29% 7.2% 42% 85.1% 90.1% 93.2%
HemaRAG (no enrich) BioASQ 42.4% 34% 5.7% 47.8% 88.5% 90.9% 95.1%
Base Gemma-3 (no enrich) PubMedQA 27.6% 22.1% 1.5% 35.8% 77.8% 87.9% 90.1%
Base Gemma-3 (no enrich) BioASQ 26.3% 19.5% 1.8% 36.9% 84.4% 89.8% 90.2%
HemaRAG PubMedQA 49.2% 43.2% 7.8% 45.8% 87.2% 90.8% 94.5%
HemaRAG BioASQ 52.1% 44.7% 6.7% 49.6% 89.7% 91.2% 95.7%
V. DISCUSSION AND FUTURE WORK synonyms and abbreviations are frequently used

The evaluation of HemaRAG on hematologic cancer-
related questions from BioASQ and PubMedQA showed
promising results, especially in terms of semantic accuracy
and retrieval quality. EM score remained low which is this
expected given the generative nature of the system and the
variability in phrasing across correct medical answers. EM
penalizes even minor lexical differences between the
generated and gold answers. However, complementary
metrics such as BERTScore and NER Overlap revealed high
semantic and factual alignment, indicating that the model
produced clinically meaningful outputs despite limited exact
surface overlap. Specifically, the high BERTScore (89.7%),
F1 score (52.1%), and strong recall metrics indicate that the
system is able to identify and generate contextually
appropriate and medically sound responses. These findings
suggest that our approach, combining dense retrieval,
biomedical enrichment, and domain-specific fine-tuning,
could support high-quality QA in specialized medical
domains.

While HemaRAG is tailored to hematologic malignancies,
the system uses English-language content and allows
comparison with baseline models. In this study, we compared
our fine-tuned model to the base Gemma-3 model using the
same retrieval pipeline, showing consistent gains across
semantic and lexical metrics. Future work will explore
comparisons with publicly available biomedical RAG
systems, such as BioGPT [33], to further assess relative
performance.

Moreover, our system is designed to be deployed locally.
All retrieval and generation operations are performed on
secure, private infrastructure, avoiding the need to transmit
sensitive queries or patient information to external servers.
This makes the system suitable for privacy-sensitive clinical
tools in palliative care. The ontology-driven enrichment also
proved effective in covering terminology gaps, a persistent
challenge in medical NLP, especially in oncology where

interchangeably. Future work could also explore the
individual impact of each ontology on retrieval and generation
performance.

Although this study focused on hematologic malignancies,
the HemaRAG framework is not limited to this domain. The
same architecture, based on ontology-enriched retrieval and a
locally fine-tuned language model, can be adapted to other
medical specialties by replacing the underlying corpus and
ontologies with domain-relevant resources. Future work may
explore its application in oncology subdomains or chronic
disease management, where terminology variation is also a
key challenge.

While this study relied solely on automatic evaluation
metrics, which are widely used in biomedical QA literature,
we acknowledge the lack of human expert assessment as a
limitation. Although semantic similarity scores offer useful
insight, they do not fully capture clinical usefulness, clarity or
safety. Future work will incorporate domain expert validation
to assess clinical usefulness, clarity, and factual correctness of
generated answers. We also aim to explore hallucination
analysis to better understand when and why the system
produces unsupported or incorrect information. Finally, the
test sets used in this study consisted of 150 PubMedQA and
113 BioASQ hematologic QA samples. Although these
sample sizes support robust metric reporting, we did not
perform formal statistical significance testing.

To illustrate system limitations, a case where the model
generated a vague or incomplete answer despite relevant
context is shown. For the question " Is alemtuzumab effective
for remission induction in patients diagnosed with T-cell
prolymphocytic leukemia?", the system answered "
Alemtuzumab is used in leukemia treatment." While
semantically related, this phrasing lacks specificity and does
not confirm effectiveness, as stated in the gold reference. Such
responses may show incomplete answers or mild



hallucination, which will be further addressed through expert
validation in future work.

Moreover, our future work will integrate HemaRAG into
a conversational agent that is focused on hematologic
malignancies. By incorporating HemaRAG, the agent will be
able to answer medical questions more accurately and
contextually, drawing on biomedical literature while
maintaining a human-centered dialogue. Future evaluation
will include human evaluation involving clinicians and
medical researchers to assess the usefulness, safety and clarity
of the generated answer. Finally, our research will explore the
inclusion of multilingual data, with a focus in Greek language.

VI. CONCLUSION

In this study, we introduced HemaRAG, a RAG system
that was developed specifically for answering questions in the
field of hematologic malignancies. By combining domain-
specific document retrieval with ontology-based enrichment
and fine-tuning a large open-source language model locally,
our goal was to create a system that is accurate but also
semantically rich and well-grounded in biomedical evidence.
Unlike many RAG implementations the system runs locally in
order to ensure patient data privacy. This approach creates a
system that is more suitable for real-world use where data
privacy is crucial. The evaluation of HemaRAG showed high
retrieval recall and semantic similarity scores which confirms
that the system retrieved and generated context effectively.
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