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Abstract
Prediction of patient-level drug response is critical
for precision oncology but remains limited by the
scarcity of labeled clinical data. While machine
learning models trained on cancer cell lines offer
a scalable alternative, biological differences intro-
duce domain shifts that hinder direct translation
to patient tumors. We present THERAPI (Tumor
Heterogeneity-aware Embedding for Response
Adaptation and Patient Inference), a deep learning
framework designed to bridge this gap. THER-
API aligns patient and cell line transcriptomes via
an attention-based aggregation of cell lines guided
by tissue context, enabling tumor heterogeneity-
aware modeling. For drug response prediction,
it further transfers gene-level knowledge from
foundation models based on drug-induced per-
turbations and rank-based representations. Our
approach outperforms nine baselines in predicting
patient drug responses and generalizes to exter-
nal cohorts, while providing interpretable insights
into tumor heterogeneity and clinical outcomes.
These results highlight the promise of biological
context-aware domain adaptation and gene-level
knowledge integration for robust, interpretable
drug response prediction in precision medicine.

1. Introduction
Predicting personalized drug response is essential for pre-
cision medicine, as it enables tailored treatment strategies
based on individual patient profiles (Feng et al., 2021). How-
ever, the limited availability of large-scale clinical dataset
like The Cancer Genome Atlas (TCGA, Weinstein et al.
(2013)) forces many studies to rely on preclinical dataset
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such as the Genomics of Drug Sensitivity in Cancer (GDSC,
Iorio et al. (2016)) to predict cancer cell line responses (Liu
et al., 2020; Bang et al., 2024). Yet, fundamental differences
between cancer cell lines and patient tumors, arising from
variations in the tumor microenvironment and heterogeneity,
hinder direct knowledge transfer, often resulting in models
that fail to generalize to real-world patient samples (Lee
et al., 2018; Shen et al., 2023). These discrepancies lead
to one of the fundamental challenges in machine learning,
known as domain shift, which limits the direct applicabil-
ity of models trained on preclinical data to diverse patient
populations. Thus, the main challenge in this task is translat-
ing knowledge from GDSC to TCGA—specifically, how to
transfer transcriptomic information from GDSC cell lines to
the transcriptomic profiles of patients in TCGA. To address
this challenge, domain adaptation (DA)-based techniques
have been explored to match the distributions across differ-
ent datasets (He et al., 2022; Kim et al., 2024).

Despite advances in DA-based techniques, two major limi-
tations remain during transfer. First, current methods over-
look tumor heterogeneity. Unlike cell lines, patient tumors
exhibit distinct heterogeneity and microenvironment differ-
ences (Mourragui et al., 2019). However, most DA-based
approaches align cell line data and patient data without ac-
counting for this heterogeneity in cancer composition along
with tissue-specific context. Second, existing methods fail
to model and consider gene interactions, an essential el-
ement of drug response mechanism, as they operate at a
low-dimensional representation level (He et al., 2022; Kim
et al., 2024). Previous studies on transcriptomic model-
ing have shown that examining interrelationships between
gene expression levels (Theodoris et al., 2023) or gene in-
teractions from drug-induced gene expression perturbation
(Bang et al., 2024) is critical for drug response prediction
tasks. However, existing DA-based methods overlook this
aspect and rely on simple MLP encoders for drug response
prediction in a low-dimensional representation space.

To address these challenges, we propose THERAPI, Tumor
Heterogeneity-aware Embedding for Response Adaptation
and Patient Inference, bridging the gap between cell line
transcriptomic data and patient tumor profiles. Unlike ex-
isting methods that treat patient tumors as analogous to
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(a) Step 1: Tumor heterogeneity-aware alignment
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(b) Step 2: Perturbation modeling and response prediction
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Figure 1: Overview of the THERAPI. (a) Alignment of preclinical (GDSC) and clinical (TCGA) transcriptomes into a shared
embedding space. Patient samples are represented as attention-weighted sums of cell lines. (b) Drug response prediction using two
modules: a drug-induced perturbation module and a rank-based expression module. The aligned patient representation is passed to both
modules to generate the final prediction.

individual cell lines, THERAPI models tumor heterogene-
ity by representing each patient tumor as a linear combi-
nation of multiple preclinical cancer models, further en-
riched with tissue-type annotations. Furthermore, to en-
hance drug response prediction, THERAPI integrates both
drug-induced perturbations and rank-based representations
derived from foundation models, enabling more comprehen-
sive modeling of gene expression without the constraints
of low-dimensional latent spaces. By integrating tumor het-
erogeneity and gene expression modeling, THERAPI out-
performs both DA-free and DA-based models in translating
preclinical drug response data from GDSC to predict TCGA
patient drug response. In addition, performance evaluation
on an external dataset demonstrated the generalizability of
our framework, highlighting its potential for applications in
precision medicine.

2. THERAPI
Our objective is to predict patient drug response by model-
ing the biological characteristics of tumors and gene-gene
interactions. As shown in Fig. 1, our model THERAPI con-
sists of two steps: Step 1 performs alignment between pre-
clinical and clinical transcriptomes via attention-based ag-
gregation, bringing them into a shared representation space
(Section 2.1); Step 2 predicts drug response by integrating
perturbation- and rank-based modules for modeling gene-
level knowledge (Section 2.2). For a detailed description of
the THERAPI architecture, refer to Appendix A.

2.1. Alignment step

We represent the target domain (XT ) consisting of patient
tumors by modeling tumor heterogeneity using the source
domain (XS) consisting of cell lines. During the alignment,
THERAPI utilizes unlabeled data from both the source and

target domains to train an autoencoder that minimizes data
reconstruction error. As shown in Fig. 1(a), THERAPI
uses two unique features: Attention-based cell line aggre-
gation and Tissue label classifiers. The aggregation module
learns to align preclinical and clinical transcriptomes while
minimizing reconstruction error within a shared representa-
tion space. Tissue label classifiers further inject the tissue
information via tissue label classification and an additional
loss term.

Attention-based cell line aggregation The core idea of
the aggregation module is to model tumor heterogeneity
by leveraging cell line data. We use domain-specific en-
coders, ES and ET , to transform cell line and patient tumor
expression profiles into latent representations zs and zt, re-
spectively. An attention mechanism then computes weights

wi
(t,s) =

exp
(
⟨Qzt, Kzis⟩

)∑Ns

j=1 exp
(
⟨Qzt, Kzjs⟩

) ,
using learnable projection matrices Q and K and dot prod-
uct ⟨·, ·⟩, to aggregate source representations as z′t =∑Ns

i=1 w
i
(t,s)z

i
s. This aggregated representation is decoded

with DT to reconstruct the tumor sample xt, while each
cell line is reconstructed via DS . The reconstruction loss is
defined as

Lrec = Exs∼XS

[
∥x̂s − xs∥2

]
+ Ext∼XT

[
∥x̂t − xt∥2

]
where x̂ = D(z), ensuring that both domains retain essential
gene expression features.

Tissue label classifiers To take tissue labels into the learn-
ing process during domain adaptation, we apply MLP-based
classifiers in both the latent and reconstructed spaces. In
the source domain, classifiers f

(L)
S and f

(R)
S operate on

zs and its reconstruction x̂s, respectively; similarly, for the
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Table 1: Performance comparison with baseline models on GDSC-TCGA dataset. Models are grouped into cell line-trained (i.e., DA-free)
and DA-based categories based on whether domain adaptation was applied. Mean and standard deviation of 10-fold CV are provided.
Best performance and its comparable results are marked in bold, and second-best are underlined.

Model AUROC AUPRC Accuracy Precision F1

Cell line-trained
(DA-free)

Random Forest 0.506 (0.011) 0.486 (0.006) 0.490 (0.013) 0.486 (0.006) 0.649 (0.004)
SVM 0.662 (0.015) 0.589 (0.012) 0.660 (0.015) 0.632 (0.016) 0.669 (0.020)
AdaBoost 0.535 (0.036) 0.504 (0.022) 0.534 (0.041) 0.535 (0.059) 0.528 (0.090)
XGBoost 0.520 (0.034) 0.494 (0.018) 0.509 (0.037) 0.498 (0.026) 0.621 (0.027)
DeepCDR (Liu et al., 2020) 0.669 (0.074) 0.608 (0.058) 0.575 (0.056) 0.542 (0.044) 0.656 (0.046)
DEERS (Koras et al., 2021) 0.511 (0.116) 0.543 (0.077) 0.537 (0.045) 0.517 (0.194) 0.388 (0.261)
CSG2A (Bang et al., 2024) 0.668 (0.053) 0.643 (0.057) 0.561 (0.060) 0.532 (0.042) 0.655 (0.032)

DA-based

CODE-AE (He et al., 2022) 0.668 (0.089) 0.623 (0.067) 0.628 (0.082) 0.643 (0.092) 0.551 (0.144)
PANCDR (Kim et al., 2024) 0.714 (0.029) 0.687 (0.025) 0.638 (0.049) 0.609 (0.052) 0.663 (0.032)
THERAPI (ours) 0.775 (0.034) 0.710 (0.024) 0.716 (0.039) 0.713 (0.051) 0.703 (0.051)

target domain, tissue classification is applied to the attention-
weighted aggregated representation z′t and

∑
wi

(t,s)x
i
s, re-

spectively. Thus, the overall tissue classifier loss is given
by Lclass = L(L) + L(R), where each term is computed
via cross-entropy loss. Additionally, we used the center
loss (Wen et al., 2016) Lcenter to construct a compact space
according to the tissue labels in the latent embedding space.

The overall loss in the alignment step is formulated as:

Lalign = αLrec + β Lclass + γ Lcenter,

with hyperparameters α, β, and γ balancing each term.

2.2. Drug response prediction step

In the drug response prediction step, THERAPI is first
trained using drug-perturbed and rank-based representations
derived from pre-trained models in the source domain (Fig.
1(b)-Train). Then, this model is applied to the target domain
to predict drug response in patient samples (Fig. 1(b)-Test).

During training of the drug response predictor on the source
domain, the input representation is constructed using two
foundational models: CSG2A generates post-treatment and
drug embeddings that reflect drug-gene interaction (Bang
et al., 2024), while Geneformer generates pre-treatment
embedding that capture gene-gene interaction (Theodoris
et al., 2023). These embeddings are concatenated to form
the final input to a MLP, which is trained with binary cross-
entropy loss to predict drug response.

After training in the source domain, the drug response pre-
dictor is applied to the target domain for patient drug re-
sponse prediction. A key aspect of the inference step is that
the patient input xt is first mapped into a shared embedding
space as x′

t =
∑Ns

i=1 w
i
(t,s)x

i
s using the attention-based ag-

gregation module trained during the alignment step. The
transformed patient embedding x′

t is then fed into the trained
drug response predictor to estimate patient-specific response.
We note that the drug response-labeled patient data are not
used in the alignment step to prevent data leakage.

2.3. Experimental Setting

We used GDSC as the source domain and TCGA as the
target domain for patient drug response prediction. The
GDSC dataset includes 673 cell lines and 174 drugs, totaling
112,533 cell line–drug pairs. TCGA contains 8,400 patient
samples, with 383 drug-treated pairs spanning 21 drugs.
Model performance was evaluated using AUROC, AUPRC,
accuracy, precision, and F1-score, averaged over 10-fold
cross-validation. Details are provided in Appendix B.

3. Results
3.1. Benchmark Dataset Performances

We evaluated THERAPI on the task of translating drug
response predictions from GDSC to TCGA data. Our bench-
mark included seven DA-free models (DeepCDR (Liu et al.,
2020), DEERS (Koras et al., 2021), CSG2A (Bang et al.,
2024), and classical ML models) and two DA-based mod-
els (CODE-AE (He et al., 2022) and PANCDR (Kim et al.,
2024)). As shown in Table 1, THERAPI achieved the best
performance across all evaluation metrics. Consistent with
previous findings, DA-based models outperformed DA-free
ones, underscoring the importance of DA.

Among DA-based approaches, THERAPI showed the high-
est accuracy, which we attribute to its use of tissue labels
and tumor heterogeneity information for biologically in-
formed alignment. As illustrated in Fig. 2, THERAPI
preserved tissue structure in the shared embedding space,
unlike PANCDR or raw expression embeddings. This bio-
logical consistency may explain its superior performance in
cross-domain generalization.

Ablation studies To investigate the contribution of each
component in THERAPI, we performed an ablation study
by removing the alignment module, the rank-based repre-
sentation, and the perturbation-based representation. The
full model achieved the best overall performance across all
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Figure 2: Embedding space of data sources and tissue types. t-SNE plots of GDSC and TCGA data, colored by (a) data source and (b)
tissue type. In each panel, from left to right: raw expression data, PANCDR, and THERAPI-aligned embeddings.
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responders (R) and non-responders (NR) to paclitaxel (p = 0.0029).

ablation settings (Appendix C). We observed that adding the
alignment module improved F1 scores, suggesting effective
reduced domain discrepancy. Among the two representa-
tion modules, the perturbation-based module contributed the
most to AUROC, highlighting the importance of modeling
drug-induced gene perturbations. These results support the
complementary roles of each module in THERAPI.

3.2. External Dataset Performances

To assess the generalizability of THERAPI, we evaluated
its performance on the external I-SPY 2 dataset (Wolf et al.,
2022). I-SPY 2 includes 988 transcriptome profiles from
breast cancer patients, 178 of whom received paclitaxel. We
aligned 810 untreated patients with the GDSC dataset and
applied the GDSC-trained drug response model to I-SPY
2. As a result, the alignment step successfully integrated
the I-SPY 2 and GDSC samples into a shared space (Fig.
3(a)), and THERAPI significantly distinguished respon-
ders and non-responders to paclitaxel treatment (p = 0.0029,

(b) Kaplan-Meier survival analysis based on overall survival
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Figure 4: Entropy-based interpretation of tumor heterogeneity.
(a) Tumors represented as attention-weighted mixtures of cell
lines; entropy captures heterogeneity. (b) Kaplan–Meier curves
are presented for kidney and liver cancers.

Fig. 3(b)). We further evaluated THERAPI on a colorectal
cancer dataset (Marisa et al., 2013), with results highlight-
ing its robustness and potential for drug recommendation
(Appendix D).

3.3. Entropy-Based Interpretation of THERAPI

In the alignment step, THERAPI models each patient tumor
as a linear combination of cancer cell lines, a strategy sup-
ported by prior studies in translational research (Salvadores
et al., 2020; Hsu et al., 2024). We interpret this formula-
tion as an indicator of tumor heterogeneity, where greater
diversity in cell line contributions indicates higher hetero-
geneity (Fig. 4(a)). To quantify heterogeneity, we computed
the Shannon entropy of cell line weights and stratified pa-
tients into high- and low-entropy groups. As shown in Fig.
4(b), Kaplan–Meier analysis based on overall survival (OS)
showed significantly worse prognosis for high-heterogeneity
patients, notably in kidney (p = 2.8e-4) and liver (p = 2.3e-
3) cancers. Results across all four clinical endpoints and
sixteen tissue types are provided in Appendix E.
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4. Conclusion
In this study, we introduced THERAPI, a tumor
heterogeneity-aware domain adaptation framework for trans-
lating preclinical cell line data to patient tumors in person-
alized drug response prediction. Unlike existing methods,
THERAPI models tumor heterogeneity by representing
each patient tumor as a weighted combination of multi-
ple preclinical cell lines, incorporating tissue-type anno-
tations for greater biological relevance. Additionally, its
pre-trained gene expression modeling framework integrates
drug-induced perturbations and rank-based representations
to enhance prediction accuracy. THERAPI outperformed
both DA-free and DA-based models across multiple eval-
uation metrics and showed generalizability on an external
dataset. These results highlight its potential for real-world
clinical applications, advancing precision oncology through
biologically informed domain adaptation.

References
Bang, D., Koo, B., and Kim, S. Transfer learning of

condition-specific perturbation in gene interactions im-
proves drug response prediction. Bioinformatics, 40
(Supplement 1):i130–i139, 2024.

Feng, F., Shen, B., Mou, X., Li, Y., and Li, H. Large-scale
pharmacogenomic studies and drug response prediction
for personalized cancer medicine. Journal of Genetics
and Genomics, 48(7):540–551, 2021.

Goldman, M. J., Craft, B., Hastie, M., Repečka, K., Mc-
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A. Details in Methodology
A.1. Alignment step

Attention-based cell line aggregation by autoencoder framework A central objective of our approach is to model tumor
heterogeneity by allowing each patient tumor sample to draw information from multiple cell lines. Let XS ∈ RNs×d and
XT ∈ RNt×d denote the source (cell line) and target (tumor) expression datasets, respectively, with Ns and Nt samples and
d genes per sample. Each expression profile x has an associated tissue label τ .

We employ two domain-specific encoders, ES and ET , mapping input vectors into latent representations:

zis = ES(xi
s), zt = ET (xt),

where xi
s denotes the expression vector of the i-th sample from the source domain, xt denotes the expression vector from

the target domain, and zis, zt ∈ Rdz . The attention module uses these latent representations to compute source weights:

wi
(t,s) =

exp
(
⟨Qzt, Kzis⟩

)∑Ns

j=1 exp
(
⟨Qzt, Kzjs⟩

) ,
where Q and K are learnable projection matrices of size dz × dk, and ⟨·, ·⟩ denotes the dot product. These weights indicate
how relevant each cell line is for reconstructing a given tumor sample. The aggregated target representation is then

z′t =

Ns∑
i=1

wi
(t,s)z

i
s,

capturing tumor heterogeneity through a combination of different cell lines. Next, DS and DT reconstruct the original
samples:

x̂s = DS(z
i
s), x̂t = DT (z

′
t).

We define the reconstruction loss Lrec as the mean squared error between the original and reconstructed samples, ensuring
that both source and target encoders and decoders learn shared latent representations:

Lrec = Exs∼XS

[
∥x̂s − xs∥2

]
+ Ext∼XT

[
∥x̂t − xt∥2

]
.

By learning appropriate attention weights and minimizing Lrec, the model aligns cell line features with patient tumor profiles
in a way that accounts for tumor heterogeneity.

Tissue label classifiers To further incorporate tissue information in the attention-based autoencoder framework, we
introduce tissue classification at two representation levels: the latent space {z} and the reconstructed expression space {x′}.
A MLP-based tissue classifier fS is trained in both domains. In the source domain, we train f

(L)
S (zis) and f

(R)
S (x̂s), where

f
(L)
S is a tissue classifier in the latent space, f (R)

S is a tissue classifier in the reconstruction space, and x̂s = DS(z
i
s). For the

target domain, the aggregated latent representation
∑

i w
i
(t,s)z

i
s and its reconstruction

∑
i w

i
(t,s)x

i
s are used:

f
(L)
S

(∑
i

wi
(t,s)z

i
s

)
and f

(R)
S

(∑
i

wi
(t,s)x

i
s

)
.

We define the overall classification loss as the sum of latent and reconstruction classification losses:

Lclass = L(L) + L(R),

where each term can be a standard cross-entropy loss.

To tightly cluster tumor representations of same tissue type within the latent space, we incorporate a center loss Lcenter,
which pulls samples of the same tissue type closer together:

Lcenter =

K∑
k=1

∑
z∈Ck

∥z − ck∥2,

7



Transferring Cell-level Drug Response to Patient via Tumor Heterogeneity-Aware Alignment and Gene-level Foundational Models

where K is the number of tissue types, Ck is the set of latent vectors with tissue label k, and ck is the learnable center for
tissue k.

Finally, we combine these objectives into the total alignment loss:

Lalign = αLrec + βLclass + γLcenter,

where α, β, and γ are hyperparameters. Balancing these terms ensures the model captures relevant gene expression patterns,
tissue-specific distinctions, and tumor heterogeneity while bridging the gap between cell line and patient tumor domains.

A.2. Drug response prediction step

Training in the cell line data During training, the drug response predictor is constructed using two foundational models,
each capturing a distinct aspect of drug–gene or gene–gene interactions. First, we use CSG2A (Bang et al., 2024) to
generate drug-perturbation and drug representations. Given a gene expression-drug SMILES pair as input, it outputs two
components: a perturbed gene expression embedding zpert and a drug embedding zdrug, computed as [zpert, zdrug] = fpert(xs, d)
, where xs is the pre-treatment gene expression of a source domain sample and d is the molecular structure of the drug.
Next we use Geneformer (Theodoris et al., 2023) to generate rank-based gene interaction representations from gene
expression: zrank = frank(xs). The final input for drug response prediction is formed by concatenating the three components:
z = [zpert; zdrug; zrank] , which is then passed into a MLP predictor fMLP . The predicted drug sensitivity probability is
given by ŷ = fMLP(z), where ŷ represents the predicted probability of drug sensitivity. As the task is formulated as binary
classification, the model is optimized using the binary cross-entropy (BCE) loss:

LBCE = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] ,

where yi is the ground truth drug response label for sample i, and N is the number of training samples.

Inference in the patient data After training on the source domain, the drug response predictor is applied to the target
domain to infer patient-specific drug responses. An important aspect of the inference step lies in how the inputs to the
representation models are handled. For the rank-based representation, the patient’s gene expression profile xt is directly
input into frank, following the same procedure as during training, thereby generating an embedding that reflects pre-treatment
profile. For the perturbation-based representation, the patient’s gene expression is first transformed into an aligned expression
profile x′

t using attention-derived weights from the alignment step. Specifically, the aligned expression is computed as

x′
t =

Ns∑
i=1

wi
(t,s)x

i
s,

where xi
s is the expression profile of the i-th cell line in the source domain and wi

(t,s) is the corresponding attention weight
for patient t. This aligned expression x′

t is then used as input to fpert, which generates a perturbation-informed embedding
reflecting the post-treatment profile. The resulting embeddings from all three modules are concatenated and evaluated using
the drug response predictor fMLP trained on source domain data, yielding the final prediction ŷt.
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B. Experimental Setting
B.1. Datasets

For patient drug response prediction, we mainly utilized the GDSC-TCGA dataset, built using GDSC (Iorio et al., 2016) as
the source domain and TCGA (Weinstein et al., 2013) as the target domain. Both datasets contain gene expression profiles
utilized to 978 LINCS (Subramanian et al., 2017) landmark genes and include tissue-type annotations for 23 distinct tissue
types. All gene expression data are metricized by the standard transcripts per million bases for each gene, followed by log
transformation.

B.1.1. GENOMICS OF DRUG SENSITIVITY IN CANCER(GDSC)

The GDSC dataset consists of 673 cancer cell lines and 174 unique drugs, forming a total of 112,533 cell line-drug pairs.
The drug response values in GDSC are represented using IC50 (half-maximal inhibitory concentration) values and we used
these values in a binary form. To obtain binary drug response labels in GDSC dataset, we converted the original scalar
pIC50 values (the negative base 10 logarithm of IC50) into binary labels based on whether each value was above or below
the average pIC50 for each drug across all cell lines. Samples with pIC50 values above the mean were labeled as responsive
(1), while those below the mean were labeled as non-responsive (0). The GDSC dataset is publicly available at the GDSC
portal (https://www.cancerrxgene.org/).

B.1.2. THE CANCER GENOME ATLAS (TCGA)

The TCGA dataset consists of 8,400 patient samples, including 8,042 unlabeled and 358 labeled patients. The unlabeled
patients were used exclusively during the alignment step to adapt the source and target domains. The 358 labeled patients
were treated with 21 unique drugs, resulting in a total of 383 patient-drug pairs, and were used only in the drug response
prediction step. Additionally, for survival analysis, we evaluated four clinical endpoints: overall survival (OS), progression-
free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS) in the TCGA patients. The TCGA dataset
is publicly available through the UCSC Xena Cancer Genome Browser (https://xena.ucsc.edu/) (Goldman et al., 2020).

B.1.3. EXTERNAL DATASETS: I-SPY2 AND GSE39582

The I-SPY2 dataset consists of expression profiling by array data derived from fresh-frozen pre-treatment breast cancer
tumor samples of 988 patients (Wolf et al., 2022). Among these, 178 patients received Paclitaxel, with drug response labeled
based on pathological complete response (pCR) status: a value of 1 indicating complete response, and 0 indicating failure to
achieve complete response. The remaining 810 untreated patients were used in the alignment step alongside the GDSC
dataset, while the 178 drug-treated patients were used in the drug response prediction step. The I-SPY2 data was obtained
from the GEO database under accession number GSE194040.

The GSE39582 dataset consists of mRNA expression profiles from 519 colorectal cancer patients, including 75 with
microsatellite instability (MSI) and 444 with microsatellite stability (MSS) (Marisa et al., 2013). Patient status was
determined based on five microsatellite markers: if two or more markers showed instability, the sample was classified
as MSI; if one or none showed instability, it was classified as MSS. Since GSE39582 does not include drug response
information, we randomly partitioned the dataset into alignment and prediction subsets. Using train test split from
sklearn with a fixed seed of 42, the dataset was split in a 7:3 ratio. As a result, 311 samples (259 MSS, 52 MSI) were
used for the alignment step, and the remaining 156 samples (133 MSS, 23 MSI) were used for the drug response prediction
step. The GSE39582 dataset was downloaded from the GEO database.

B.2. Evaluation metrics

To evaluate the performance of drug response prediction, we employed the following metrics commonly used for binary
classification tasks:

Area Under the Receiver Operating Characteristic Curve (AUROC): Measures the model’s ability to distinguish
between positive and negative classes across all classification thresholds. Higher values indicate better separability.

Area Under the Precision-Recall Curve (AUPRC): Evaluates the trade-off between precision and recall, especially
useful in imbalanced classification settings.
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Accuracy: The proportion of correctly predicted samples among all samples,

Accuracy =
TP + TN

TP + TN + FP + FN

Precision: The proportion of correctly predicted positive samples among all samples predicted as positive,

Precision =
TP

TP + FP

F1-score: The harmonic mean of precision and recall, balancing both metrics,

F1 =
2 · Precision · Recall
Precision + Recall

, where Recall =
TP

TP + FN

Here, TP , TN , FP , and FN denote true positives, true negatives, false positives, and false negatives, respectively.

B.3. Hyperparameters and experimental settings of THERAPI

These tables summarize the model hyperparameters used in the alignment step (top) and the drug response prediction step
(bottom) of THERAPI. In both steps, we fixed the random seed to 42 and used torch.optim.Adam as the optimizer.

Hyperparameters for Alignment

Component Hyperparameter

Autoencoder for GDSC 978 → 256 → 128 → 256 → 978
Autoencoder for TCGA 978 → 128 → 256 → 978
Latent Tissue Classifier 128 → 128 → 32 → 23
Expression Tissue Classifier 978 → 512 → 128 → 32 → 23
Batch Size 128
Learning Rate 1× 10−3

Loss Weights α = 0.2, β = 0.8, γ = 0.4
Epochs 199

Hyperparameters for Drug Response Prediction

Component Architecture/Hyperparameter

Perturbation Embedding 978 → 256
Rank-Based Embedding 978 → 256
Molecular Embedding 978 → 256
Concatenation & Prediction 768 → 128 → 1
Dropout Rate 0.1
Batch Size 512
Learning Rate 1× 10−3

Training Strategy Early stopping with patience 10 steps
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C. Ablation study
This table reports the contributions of THERAPI’s three core components: the attention-based alignment module, the
rank-based gene interaction representation, and the drug-induced perturbation representation. Results are reported as mean
and standard deviation from 10-fold cross-validation, with the best performances highlighted in bold.

Model AUROC AUPRC Accuracy Precision F1

THERAPI 0.775 (0.034) 0.710 (0.024) 0.716 (0.039) 0.713 (0.051) 0.703 (0.051)

w/o Alignment 0.621 (0.073) 0.579 (0.061) 0.580 (0.067) 0.579 (0.085) 0.529 (0.101)
w/o Rank rep. 0.615 (0.162) 0.606 (0.111) 0.596 (0.133) 0.603 (0.171) 0.590 (0.148)
w/o Perturbed rep. 0.480 (0.037) 0.574 (0.026) 0.561 (0.023) 0.587 (0.011) 0.692 (0.029)

D. External Dataset on Colorectal cancer
The GSE39582 dataset includes 519 colorectal cancer samples labeled as either microsatellite stable (MSS) or unstable
(MSI). As it lacks drug response data, we split the dataset (7:3 ratio, seed = 42) into alignment (311 samples) and prediction
(156 samples) subsets using train test split from sklearn.

(a) Embedding space of GSE39582
Before alignment After alignment

GDSC

GSE39582 
before alignment

UMAP1

U
M

AP
2 GSE39582

after alignment

GDSC

UMAP1

U
M

AP
2

(b) Drug response of GSE39582

GDSC GSE39582 bef. align. GSE39582 aft. align.

Irinotecan Oxaliplatin

MSS cancer MSI cancer

MSI-target drugs

THERAPI

Drug 
response 
prediction

Irinotecan 
P-value: 0.0065

MSS MSI

Oxaliplatin 
P-value: 0.0104

MSS MSI

Figure 5: External validation on the colorectal cancer dataset. (a) UMAP plots before (left) and after (right) alignment, showing
improved domain integration. (b) Drug response prediction for MSI-targeting drugs Irinotecan and Oxaliplatin in MSS and MSI colorectal
cancer patients from the GSE39582 dataset. THERAPI successfully separated the two groups with p-values of 0.0065 (left) and 0.0104
(right), respectively.
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E. Survival analysis results of THERAPI
This table reports the survival analysis results of TCGA patients across 16 tissue types using heterogeneity scores derived
from THERAPI’s alignment weights, evaluated across four clinical endpoints: overall survival (OS), progression-free
interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS). Combinations with p-values less than 0.05 are
marked with an asterisk (*), and cases where the high heterogeneity group shows worse survival than the low heterogeneity
group are highlighed in bold.

Clinical endpoint Tissue label p-value

OS Prostate 0.11983
OS Kidney 0.00028 *
OS Ovarian 0.50917
OS Esophageal 0.85378
OS Cervical 0.08865
OS Breast 0.02713 *
OS Pancreatic 0.97616
OS Head 0.19384
OS Thyroid 0.14876
OS Lung 0.00390 *
OS Skin 0.82554
OS Bladder 0.00328 *
OS Leukemia 0.37799
OS Liver 0.00226 *
OS Colon 0.64275
OS Uterine 0.31731

DSS Prostate 0.04437 *
DSS Kidney 0.00006 *
DSS Ovarian 0.53130
DSS Esophageal 0.21953
DSS Cervical 0.08087
DSS Breast 0.10834
DSS Pancreatic 0.72395
DSS Head 0.14643
DSS Thyroid 0.01508 *
DSS Lung 0.00643 *
DSS Skin 0.55142
DSS Bladder 0.00099 *
DSS Leukemia 1.00000
DSS Liver 0.00085 *
DSS Colon 0.94083
DSS Uterine 0.31731

Clinical endpoint Tissue label p-value

DFI Prostate 0.76160
DFI Kidney 0.41007
DFI Ovarian 0.61714
DFI Esophageal 0.00885 *
DFI Cervical 0.73464
DFI Breast 0.90478
DFI Pancreatic 0.60727
DFI Head 0.44692
DFI Thyroid 0.22566
DFI Lung 0.49217
DFI Skin 1.00000
DFI Bladder 0.85834
DFI Leukemia 1.00000
DFI Liver 0.01803 *
DFI Colon 0.07087
DFI Uterine 0.31731
PFI Prostate 0.14422
PFI Kidney 0.02077 *
PFI Ovarian 0.33629
PFI Esophageal 0.09761
PFI Cervical 0.05734
PFI Breast 0.62507
PFI Pancreatic 0.99714
PFI Head 0.10686
PFI Thyroid 0.31057
PFI Lung 0.55263
PFI Skin 0.19494
PFI Bladder 0.03877 *
PFI Leukemia 1.00000
PFI Liver 0.00108 *
PFI Colon 0.98653
PFI Uterine 0.69489
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