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ABSTRACT

This paper studies algorithmic decision-making under human’s strategic behavior,
where a decision-maker uses an algorithm to make decisions about human agents,
and the latter with information about the algorithm may exert effort strategically
and improve to receive favorable decisions. Unlike prior works that assume agents
benefit from their efforts immediately, we consider realistic scenarios where the
impacts of these efforts are persistent and agents benefit from efforts by making
improvements gradually. We first develop a dynamic model to characterize persis-
tent improvements and based on this construct a Stackelberg game to model the
interplay between agents and the decision-maker. We analytically characterize the
equilibrium strategies and identify conditions under which agents have incentives to
improve. With the dynamics, we then study how the decision-maker can design an
optimal policy to incentivize the largest improvements inside the agent population.
We also extend the model to settings where (1) agents may be dishonest and game
the algorithm into making favorable but erroneous decisions; (2) honest efforts
are forgettable and not sufficient to guarantee persistent improvements. With the
extended models, we further examine conditions under which agents prefer honest
efforts over dishonest behavior and the impacts of forgettable efforts.

1 INTRODUCTION

In applications such as lending, college admission, hiring, etc., machine learning (ML) algorithms
have been increasingly used to evaluate and make decisions about human agents. Given information
about an algorithm, agents subject to ML decisions may behave strategically to receive favorable
decisions. How to characterize the strategic interplay between algorithmic decisions and agents, and
analyze the impacts they each have on the other, are of great importance but challenging.

This paper studies algorithmic decision-making under strategic agent behavior. Specifically, we
consider a decision-maker who assesses a group of agents and aims to accept those that are qualified
for certain tasks based on assessment outcomes. With knowledge of the acceptance rule, agents may
behave strategically to increase their chances of getting accepted. For example, agents may invest to
genuinely improve their qualifications (i.e., honest effort), or they may manipulate the observable
assessment outcomes to game the algorithm (i.e., dishonest effort). Both types of behaviors have been
studied. In particular, Hardt et al. (2016a); Dong et al. (2018); Braverman & Garg (2020); Jagadeesan
et al. (2021); Sundaram et al. (2021); Zhang et al. (2022); Eilat et al. (2022) focus on learning under
strategic manipulation, where they proposed various analytical frameworks (e.g., Stackelberg games)
to model manipulative behavior, and analyzed analytical models or developed learning algorithms
that are robust against manipulation.

Another line of research (Zhang et al., 2020; Harris et al., 2021; Bechavod et al., 2022; Kleinberg
& Raghavan, 2020; Chen et al., 2020; Barsotti et al., 2022; Jin et al., 2022) considers a different
setting where agent qualifications (labels) change in accordance with the improvement actions. The
goal of the decision-maker is to design a mechanism such that agents are incentivized to behave
toward directions that improve the underlying qualifications. The mixture of both improvement and
manipulation behavior is also studied (Miller et al., 2020; Chen et al., 2020; Barsotti et al., 2022;
Horowitz & Rosenfeld, 2023). However, these existing works regarded improvement as a similar
action to manipulation where the only difference is it will incur a label change. Another related topic
is performative prediction (Perdomo et al., 2020; Izzo et al., 2021; Hardt et al., 2022), an abstraction
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that captures agent actions via model-induced distribution shifts. Details and more related works are
presented in Appendix C.

This paper primarily focuses on honest agents with improvement, while settings with both improve-
ment and manipulation are also studied. We first propose a novel two-stage Stackelberg game to
model the strategic interactions between decision-maker and agents, i.e., the decision-maker commits
to its policy, following which agents best respond. A crucial difference between this study and the
prior works is that the existing models all assume that the results of agents’ improvement actions are
immediate, i.e., once agents decide to improve, they experience sudden changes in qualifications and
receive the return at once. However, we observe that in many real-world applications, the impacts of
improvement action are indeed persistent and delayed. For example, humans improve their abilities
by acquiring new knowledge, but they make progress gradually and benefit from such behavior
throughout their lifetime; loan applicants improve their credit behaviors by repaying all the debt in
time, but there is a time lag between such behaviors and the increase in their credit scores. Therefore,
it is critical to capture these delayed outcomes in the Stackelberg game formulation.

To this end, we propose a qualification dynamic model to characterize how agent qualifications would
gradually improve upon exerting honest efforts. Such dynamics further indicate the time it takes for
agents to reach the targeted qualifications that are just enough for them to be accepted. The impacts of
such time lag on agents are then captured by a discounted utility model, i.e., reward an agent receives
from the acceptance diminishes as time lag increases. Under this discounted utility model, agents
best respond by determining how much effort to exert that maximizes their discounted utilities.

This paper aims to analytically and empirically study the proposed model. With the understanding
of the strategic interactions between the decision-maker and agents, we further study how the
decision-maker can design an optimal policy to incentivize the largest improvements inside the agent
population, and empirically verify the benefits of the optimal policy.

Additionally, we extend the model to more complex settings where (i) agents have an additional option
of strategic manipulation and can exert dishonest effort to game the algorithm; (ii) honest efforts
exerted by agents are forgettable and may not be sufficient to guarantee persistent improvements,
instead the qualifications may deteriorate back to the initial states. We will propose a model with both
manipulation & improvement and a forgetting mechanism to study these settings, respectively. We aim
to examine how agents would behave when they have both options of manipulation and improvement,
under what conditions they prefer improvement over manipulation, and how the forgetting mechanism
affects an agent’s behavior and long-term qualifications.

Our contributions can be summarized as follows:

1. We formulate a new Stackelberg game to model the interactions between decision-maker and
strategic agents. To the best of our knowledge, this is the first work capturing the delayed and
persistent impacts of agents’ improvement behavior (Sec. 2).

2. We study the impacts of acceptance policy and the external environment on agents, and identify
conditions under which agents have incentives to exert honest efforts. This provides guidance on
designing incentive mechanisms to encourage agents to improve (Sec. 3).

3. We characterize the optimal policy for the decision-maker that incentivizes the agents to improve
(Sec. 4).

4. We consider the possibility of dishonest behavior and propose a model with both improvement and
manipulation; we identify conditions when agents prefer one behavior over the other (Sec. 5).

5. We propose a forgetting mechanism to examine what happens when honest efforts are not sufficient
to guarantee persistent improvement (Sec. 6).

6. We conduct experiments on real-world data to evaluate the analytical model and results (Sec. 7).

2 PROBLEM FORMULATION

Consider an agent population with m skill sets. Each agent has a qualification profile at time t,
denoted as a unit m-dimensional vector qt P r0, 1sm with ||qt||2 “ 1, A decision-maker at each
time makes decisions Dt P t0, 1u ("0" being reject and "1" accept) about the agents based on their
qualification profiles. Let fixed vector d P r0, 1sm be the ideal qualification profile that the decision
maker desires.
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Decision-maker’s policy. For an agent with qualification profile qt, the decision-maker assesses
whether the agent’s profile lines up with the desired qualifications d, and makes decision Dt based on
their similarity xt :“ qTt d using a fixed threshold policy πpxtq “ 1pxt ě θq, i.e., only agents that are
sufficiently fit can get accepted. How to choose threshold θ is discussed in Sec. 4. We assume only
agents with initial similarity x0 ě 0 are interested in positions and only focus on these candidates.

Although the decision policy introduced above focuses on the similarity between qt and d where
qualifications qt are normalized with the same magnitude for all agents, it can be easily extended to
settings where the magnitude/strength of skills also matters and may differ across agents. Specifically,
we propose a pre-normalization procedure to account for the strength of skills. The idea is to
first add an additional dimension to initial qualification profile q0, which represents the agent’s
unobservable "irrelevant attribute" (all other skills an agent has that are not important for the decision).
Meanwhile, we add this dimension to ideal qualification profile d with 0 as its value. We can make a
natural assumption that after adding the dimension of “irrelevant attribute", the norm of pm ` 1q-
dimensional complete profile is the same for all agents. This is reasonable and supported by the
literature (Liu et al., 2022; Holmstrom & Milgrom, 1991), which suggests that when qualification
profiles are multi-dimensional, the competency in relevant/measurable attributes implies the weakness
in irrelevant/unmeasurable attributes. The detailed pre-normalization procedure is formally presented
in Algorithm 1 (App. A).

Agent qualification dynamics. We assume agents have information about the ideal profile d (e.g.,
from application guides, mock interviews). In the beginning, agents with q0 can choose to improve
their profiles by investing a one-time effort k P r0, 1s to acquire the relevant knowledge, but the effort
will have delayed and persistent effects. The specific value of k depends on the agent’s utility and
will be introduced at the end of this section. Upon making investment k, the agent’s qualifications qt
gradually improve over time based on the following1:

rqt`1 “ qt ` k ¨ qTt d ¨ d ; qt`1 “
rqt`1

}rqt`1}2
. (1)

equation 1 suggests that agents at each time improve toward the ideal profile d. How much they
can improve depend on their current profile qt and the effort k. The similarity qTt d in the dynamics
captures the reinforcing effects: agents that are more qualified could have more resources and are
more capable of leveraging the acquired knowledge to improve their skills. Note that the maximum
improvement an agent attains at each round is bounded, i.e., the normalized vector qt`1 after
improvement is always between current qualifications qt and the ideal profile d. Fig. 1 illustrates the
improvement dynamics of qualification qt in a two-dimensional space.

Figure 1: Qualifica-
tion dynamics

Dynamics in equation 1 model the delayed and persistent impacts of im-
provement action (i.e., effort k). In many real applications, humans acquire
knowledge and benefit from repeated practices. They make progress toward
the goal gradually, and it takes time to receive the desired outcome from
the investment. Indeed, equation 1 is inspired by the dynamics in Dean &
Morgenstern (2022), which was used to model the preference shifts of con-
sumers in recommendation systems (details are in App. C.3). We consider
a different problem and use the dynamics to model the evolution of agent’s
(pre-normalized) qualifications. Based on Dean & Morgenstern (2022), we
know that qt converges under dynamics, as formally stated in Lemma 2.1 below.
Lemma 2.1 (Convergence of qualification). Consider an agent with initial similarity x0 :“ qT0 d ą 0.
If he/she makes an effort k and improves qualification profile qt based on dynamics in equation 1,
then qt converges to the desired profile d. The evolution of the similarity xt :“ qTt d is given by:

x´2
t ´ 1 “

px0q´2 ´ 1

pk ` 1q2t
(2)

Lemma 2.1 suggests that any agent eventually becomes an ideal candidate with a perfectly aligned
profile (i.e., xt “ qTt d “ 1), as long as he/she is interested in the position (x0 ě 0) and willing to
make an effort (k ą 0). The only difference among agents is the speed of convergence: it takes less
time for agents who are more qualified at the beginning (i.e., larger x0) and/or make more effort (i.e.,
larger k) to become ideal and get accepted.

1Though k never changes in equation 1, we relax the design in App. B with convergence results.
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Agent’s utility & action. Because it takes time for agents to receive rewards (i.e., get accepted) for
their efforts, they may not have incentives to invest if there is a long delay. In practice, people may
be more attracted to investments with immediate rewards than delayed rewards, or they may simply
not have enough time to wait. For example, students only have limited time to prepare for college
applications; credit card applicants may not have incentives to improve their credit scores and wait to
get approval for a specific credit card when there are many instant-approval cards on the market.

To characterize the delayed rewards, we use a discount model and assume the reward each agent
receives from the effort k decreases over time. Specifically, let T be the minimum time it takes for an
agent to get accepted from the effort k ą 0. We define agent’s utility as:

U “
1

p1 ` rqT
´ k. (3)

That is, the utility is the exponentially discounted reward an agent receives from the acceptance minus
the effort. r ą 0 is the discounting factor. Note that the discounted utility model 2 has been widely
used in literature such as reinforcement learning (Kaelbling et al., 1996), finance (Meier & Sprenger,
2013), and economics (Krahn & Gafni, 1993; Samuelson, 1937).

Since threshold policy πpxtq “ 1pxt ě θq is used to make decisions, an agent gets accepted whenever
the qualification profile is sufficiently aligned with the ideal profile, i.e., xt “ qTt d ě θ. Based on
equation 2, we can derive T as a function of threshold θ, agent’s initial similarity x0, and effort k, i.e.,

T “ min
t

txt ě θu “ min
t

"

px0q´2 ´ 1

pk ` 1q2t
ď

1

θ2
´ 1

*

“

´ ln
´

b

pθq´2´1
px0q´2´1

¯

lnpk ` 1q
(4)

Plug in equation 3, agent’s utility becomes:

U :“ Upk, θ, r, x0q “ p1 ` rq

ln

˜d

pθq´2´1

px0q´2´1

¸

lnpk`1q ´ k. (5)

Therefore, strategic agents will choose to improve their qualifications only if utility Upk, θ, r, x0q ą 0,
and they will choose the investment k that maximizes the utility.

Stackelberg game. We model the strategic interplay between the decision-maker and agents as a
Stackelberg game, which consists of two stages: (i) the decision-maker first publishes the optimal
acceptance threshold θ (details are in Sec. 4); (ii) agents after observing the threshold take actions to
maximize their utilities as given in equation 5.

Manipulation & forgetting. The model formulated above has two implicit assumptions: (i) agents
are honest and they improve their qualifications by making actual efforts; (ii) once agents make
a one-time effort k to acquire the knowledge, they never forget and can repeatedly leverage this
knowledge to improve their profiles based on equation 1. However, these assumptions may not
hold. In practice, agents may fool the decision-maker by directly manipulating xt to get accepted
without improving actual qt, e.g., people cheat on exams or interviews to get accepted. Moreover, the
knowledge agents acquired at the beginning may not be sufficient to ensure repeated improvements.

Therefore, we further extend the above model to two settings:

1. Manipulation: Besides improving the actual profile qt by making an effort k, agents may choose
to manipulate xt directly to fool the decision-maker. The detailed model and analysis are in Sec. 5.

2. Forgetting: One-time investment k may not guarantee the improvements all the time, i.e., qualifi-
cations qt do not always move toward the direction of ideal profile d, instead it may devolve and
possibly go back to starting state q0. The detailed model and analysis are in Sec. 6.

Objective. In this paper, we study the above interactions between decision-maker and agents. We
aim to understand (i) under what conditions agents have incentives to improve their qualifications; (ii)
how to design the optimal policy to incentivize the largest improvements inside the agent population;
(iii) how the agents would behave when they have both options of manipulation and improvement,
and under what conditions agents prefer improvement over manipulation; (iv) how the forgetting
mechanism affects agent’s behavior and long-term qualifications.

2Under exponential discounting function, the agent’s reward diminishes at a constant rate (Grüne-Yanoff,
2015). Our model can also adopt other discounting functions (e.g., hyperbolic discounting) for settings when the
agent’s reward decreases inconsistently. The qualitative results of this paper still remain the same.
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3 IMPROVEMENT & OPTIMAL EFFORT

In this section, we examine the impact of decision threshold θ and the environment (i.e., discounting
factor r) on agent behavior. Specifically, we focus on agents with discounted utility (equation 5) and
identify conditions under which the agents have incentives to improve their qualifications. Note that
we do not consider issues of manipulation and forgetting in this section. Based on equation 5, an
agent with x0 :“ qT0 d chooses to improve only if its utility Upk, θ, r, x0q ą 0. To characterize the
impact of an agent’s one-time investment k on Upk, θ, r, x0q, we first define a function Cpθ, r, x0q

that summarizes the impacts of all the other factors (i.e., threshold θ, discounting factor r, and initial
profile similarity x0) on agent utility, as defined below.
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Figure 2: Impact of effort k on
agent utility U under different C :“
Cpθ, r, x0q: there exists m ą 0 such
that agents have incentives to invest
efforts if C ă m.

Cpθ, r, x0q “ ´ ln

˜

d

pθq´2 ´ 1

px0q´2 ´ 1

¸

¨ lnp1 ` rq (6)

Based on Cpθ, r, x0q, we can derive conditions under which
agents have incentives to improve (Thm. 3.1).

Theorem 3.1 (Improvement & optimal effort). There exists
a threshold m ą 0 such that for any θ, r, x0 that satisfies
Cpθ, r, x0q ă m, the agent has the incentive to improve the
qualifications, i.e., agent utility is positive for some efforts
k ą 0. Moreover, there exists a unique optimal effort k˚ P

p0, 1q that maximizes the agent utility.

Thm. 3.1 identifies a condition under which agents have incentives to exert positive effort k ą 0. This
condition depends on factors θ, r, x0 and can be fully characterized by the function C :“ Cpθ, r, x0q.

Although the analytical solution of the threshold m is difficult to find, we can numerically solve
m « 0.3164 as shown in App. H.1. In Fig. 2, we illustrate agent utilities U as functions of effort
under different C. The results show that only when C ă m (red curve), an agent can attain positive
utility with effort k ą 0; when C ě m (green/yellow/blue curve), agents will not invest because the
maximum utility is attained at k “ 0. Moreover, when C ă m (red curve), there is a unique optimal
effort k that maximizes the utility. These results are consistent with Thm. 3.1.

Table 1: Domain of initial similarity x0 (or threshold θ) under
which agents invest positive efforts, given other factors fixed.

Domain of x0 (given θ, r) x0 ą

´

1 ` pθ´2 ´ 1q ¨ exp
´

2m
lnp1`rq

¯¯´1{2

Domain of θ (given x0, r) θ ď

´

1 ` px´2
0 ´ 1q ¨ exp

´

´ 2m
lnp1`rq

¯¯´1{2

The condition in Thm. 3.1 further in-
dicates the impacts of policy θ, dis-
counting factor r, and initial state x0

on agent behavior. Specifically, agents
only invest if Cpθ, x0, rq ă m holds.
By fixing any two of θ, x0, r, we can
identify the domain of the third factor
under which agents invest to improve. These results are summarized in Table 1 and verified in
App. D. It shows that for any threshold θ and discounting factor r, agents only improve if their initial
qualification profile is sufficiently similar to the ideal profile; the domain of θ also implies the best
profile an agent with initial state x0 can reach after exerting effort: if acceptance threshold θ is larger
than the upper bound of θ given in Table 1, then agents will not have incentives to improve.

The above results further suggest effective strategies that encourage agents to improve their qualifica-
tions, i.e., more agents are incentivized to improve if (i) the decision-maker’s acceptance threshold θ
is lower; or (ii) the time it takes for agents to succeed after investments is shorter (smaller discounting
factor r). Examples of both strategies in real applications are discussed in App. D.

4 DECISION-MAKER’S POLICY TO INCENTIVIZE IMPROVEMENT

Sec. 3 studied the impact of threshold θ on agent behavior and provided guidance on incentivizing
agents to improve. In practice, although it is more difficult to adjust the discounting factor r, the
decision-maker can adjust the threshold policy θ to incentivize the largest possible amount of total
improvement, thereby improving the social welfare. In this section, we study the optimal policy when
the decision-maker is aware of the agent’s best response and hopes to incentivize agents to improve.
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Suppose the decision-maker has full information about agents and can anticipate their behaviors,
i.e., for any decision threshold θ, it knows that agents whose initial similarity x0 ą x˚pθq :“
´

1 ` pθ´2 ´ 1q ¨ exp
´

2m
lnp1`rq

¯¯´ 1
2

will invest and improve their profiles (by Table 1). Also, we
define x˚p0q “ 0 to let x˚pθq be continuous in r0, 1s and denote f as the probability density function
of the agent similarity x0 which is also continuous in r0, 1s. Then, we can define Udpθq as the utility
of the decision-maker under the threshold as the total amount of agents’ improvements as follows.

Udpθq “

ż θ

x˚pθq

pθ ´ x0q ¨ fpx0qdx0 (7)

The above equation 7 demonstrates that the decision-maker aims to maximize the total improvement
among the agent population, and its utility is a function of θ. Since fpxq, x˚pθq are both continuous
in r0, 1s, utility Udpθq is also continuous. The following Thm. 4.1 further shows the existence of the
optimal thresholds θ˚ P p0, 1q.
Theorem 4.1 (Existence of optimal threshold). For any decision-maker with utility function Ud, there
exists at least one θ˚ P p0, 1q that is optimal under which Udpθq ą 0. Moreover, θ˚ is the unique
optimal point of Ud if BUd

Bθ has one root within p0, 1q.

To verify Thm. 4.1, we demonstrate the values of Ud under situations where the agent population
has different density functions f and different discounting factors r. Specifically, we consider the
uniform distribution and Beta distributions with different parameters. Fig. 3 shows Udpθq under
different density functions f and discounting factors r. The results illustrate that under these settings,
Ud is single-peaked and there is a unique θ˚ P p0, 1q that is optimal and results in positive utility,
which is consistent with Thm. 4.1. The figure also indicates the impact of r on the optimal threshold:
as r increases, θ˚ increases and the corresponding maximum utility decreases. As formally stated
below in Corollary 4.2. We prove Thm. 4.1 and Corollary 4.2 in App. H.2.
Corollary 4.2. For Udpθq that has a unique maximizer θ˚, optimal θ˚ decreases as r increases.
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Figure 3: Optimal thresholds θ˚ under different density functions f and discounting factors r.

Importantly, the results of Thm. 4.1 show that the decision-maker can always find an optimal decision
threshold θ˚ (either numerically or using gradient methods depending on the density function f )
to incentivize the largest improvement and promote social welfare in practice. While the above
results all assume the decision-maker knows r when determining θ, we can relax this and provide a
procedure to estimate r; this is included in App. G.

5 IMPACT OF MANIPULATIVE BEHAVIOR

Our analysis and results so far rely on an implicit assumption that agents are honest and they improve
qualifications qt by making actual efforts. However, as mentioned in Sec. 2, agents in practice may
fool the decision-maker by strategically manipulating xt “ qTt d to get accepted without improving
qt. Next, we extend our model in Sec. 2 by considering the possibility of such manipulative behavior.

Model with both manipulation & improvement. We extend the model in Sec. 2 where agents after
observing θ have an additional option to manipulate x0 directly. If they choose to improve, they make
a one-time effort k P r0, 1s to acquire relevant knowledge and gradually improve their qualifications
qt over time based on equation 1. If they choose to manipulate, they only increase xt at every round
to fool the decision-maker without changing the actual profile qt. Similar to the literature on strategic
classification (Hardt et al., 2016a), the manipulation comes at the cost and the risk of being caught.
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Specifically, let cpx1, xq ě 0 be the manipulation cost it takes for an agent to increase its similarity
from x to x1, and P P r0, 1s be the detection probability of manipulation during an agent’s entire
application process. Agents, once getting caught manipulating xt, will never be accepted.

Degree of manipulation. If agents choose to manipulate, they will increase xt at every round to fool
the decision-maker, and they manipulate in a way that minimizes the manipulation cost and the risk
of being detected. We make the following natural assumptions on c and P :
1. Let xt be the best outcome agents can attain from xt´1 at round t by improvement behavior (with

largest effort k “ 1). If xt ą xt for some t, then P “ 1 because the decision-maker can be certain
that xt is the result of manipulation; otherwise, P P r0, 1q if xt ď xt.

2. The total manipulation cost it takes for an agent with initial similarity x0 to be accepted is cpθ, x0q.
Note that xt above indicates the maximum degree of manipulation of agents: to avoid being detected,
an agent should not manipulate xt more than xt. We can compute xt directly from Lemma 2.1 (by

setting k “ 1), i.e., xt “

ˆ

x´2
t´1´1

4 ` 1

˙´ 1
2

. For agents who manipulate, if the total manipulation

cost needed to get accepted is cpθ, x0q and detection probability P “ 1 whenever xt ą xt, then
agents will always manipulate toward xt to maximize its utility. As a result, agents who manipulate
can be regarded as they mimic the improvement behavior with the largest effort k “ 1.

Let rU be agent’s utility under manipulation, which is the benefit an agent obtains from acceptance
(when not being detected) minus the manipulation cost, i.e.,

rU “ p1 ´ P q ¨ p1 ` rq

´ ln

˜d

pθq´2´1

px0q´2´1

¸

ln 2 ´ cpθ, x0q, (8)
where the benefit is derived based on equation 5 (with k “ 1).

Agent’s best response. Suppose agents have full information about detection probability P and
discounting factor r, after observing the acceptance threshold θ, they best respond by choosing the
action (i.e., improvement/manipulation/do nothing) that maximizes their utilities, i.e., if rU ą maxk U ,
they choose to manipulate; otherwise, they improve by exerting optimal effort k˚ “ argmaxk U .

Next, we examine under what conditions agents prefer improvement over manipulation.
Theorem 5.1. Suppose manipulation cost cpx1, xq “ px1 ´ xq` and threshold θ ě θ̄ for some
θ̄ P p0, 1q. For any discounting factor r, there exists pP P p0, 1q such that the followings hold:

1. If P “ 0, then Dpx P p0, 1q such that agents manipulate only when initial similarity x0 P ppx, θq.

2. If P P p0, pP s, then Dxx1,xx2 such that agents manipulate only when initial x0 P pxx1,xx2q.

3. If P ą pP , then agents never choose to manipulate.

Thm. 5.1 considers scenarios when the threshold is sufficiently high, and identifies conditions under
which manipulation is preferred by agents in these settings. It shows agent behavior highly depends
on the risk of manipulation (i.e., detection probability P ). The specific values of pP , px, xx1, xx2 in
Thm. 5.1 depend on θ, r. In particular, pP increases as r increases. Indeed, we can empirically find pP ,
px, xx1, xx2 and verify the theorem. These are illustrated in App. E and Sec. 7.

6 FORGETTING MECHANISM

The analysis in previous sections relies on the assumption that once agents make a one-time effort k
to acquire the knowledge, they never forget and can repeatedly leverage this knowledge to improve
their profiles based on equation 1. This may not hold in practice when the knowledge agents acquired
at the beginning are not sufficient to guarantee repeated improvements. In this section, we extend
the qualification dynamics (equation 1) by incorporating the forgetting mechanism, i.e., qualification
profile qt does not always move toward the direction of ideal profile d, instead, it may devolve and
possibly go back to the initial q0. Note that we only consider honest agents who do not manipulate.
By modifying equation 1, we define the new qualification dynamics with forgetting as follows.

rqt`1 “ qt ` pk ¨ d ` p1 ´ kq ¨ q0q ¨ qTt d; qt`1 “
rqt`1

}rqt`1}2
(9)
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Let rd :“ k ¨d` p1´kq ¨ q0, then new dynamics in equation 9 implies that at each round, qualification
profile qt is pushed toward the direction of rd, i.e., a convex combination of ideal profile d and initial
qualifications q0. Whether qt improves towards d or deteriorates back to q0 depends on the investment
k: with more effort k, the degree of forgetting is less; there is no forgetting if all the knowledge is
acquired (k “ 1). Under the new dynamics, we can derive the convergence of the qualification profile
as follows.

Theorem 6.1 (Convergence of qualification under forgetting). Consider an agent with initial similar-
ity x0 “ qT0 d ą 0 whose qualifications qt follow dynamics in equation 9. Suppose the agent makes
investment k ą 0, then qt converges to profile d˚ and the similarity xt “ qTt d satisfies:

px˚
t q´2 ´ 1 ă

px˚
0 q´2 ´ 1

pku ` 1q2t
(10)

where d˚ “
rd

} rd}
, x˚

t “ qTt d
˚, and ku “ } rd} ¨ x0.

Thm. 6.1 implies that convergence still holds when qualifications evolve with forgetting. Unlike
the scenarios without forgetting where qt eventually converges to the ideal profile d regardless of k
(Lemma 2.1), qt now converges to d˚, i.e., a profile between initial qualifications q0 and ideal profile
d, which is closer to q0 with smaller investment k. It shows that if agents do not exert enough effort
and the acquired knowledge is not sufficient, then they will not make satisfactory improvements.

Agent’s utility and improvement action. Denote agent utility under the forgetting mechanism as
pUpk, θ, r, x0q. Unlike settings without forgetting where we can derive the exact time T it takes for
agents to be accepted and find utility U (equation 5), the analytical form of pUpk, θ, r, x0q is not easy
to derive. Nonetheless, we can still show that there exist scenarios under which agents have incentives
to improve, even though the best attainable profile is a profile d˚ between initial q0 and the ideal d.

Theorem 6.2. For any threshold θ (resp. discounting factor r), there exists a discounting factor r
(resp. threshold θ) such that agent’s utility pUpk̄, θ, r, x0q ą 0 for some k̄ P p0,pkq, i.e., agents have
the incentive to make a positive effort. The upper bound of the optimal effort is pk given by

pk “ min

˜

px2
0

2px2
0 ` 2px3

0

,
x0 ¨ px2

0 ` x0 ´
a

x4
0 ´ x2

0 ` 1q

2x2
0 ` 2x3

0 ´ 1

¸

(11)

where px0 is the root of 2x2
0 ` 2x3

0 ´ 1 “ 0 within p0, 1q.

0.2 0.4 0.6 0.8 1.0
x0

0.10
0.15
0.20
0.25
0.30
0.35

̂
k

Figure 4: Upper bound pk
of the optimal effort as a
function of x0.

Thm. 6.2 implies that there exists pθ, rq such that agents best respond by
improving their qualifications, and the optimal effort is upper bounded
by pk. Indeed, we can numerically find the upper bound pk as a function
x0 (shown in Fig. 4). Because pk ă 0.35 for all x0, the improvement an
agent can make under the forgetting mechanism is limited.
Remark 6.3. Under the forgetting mechanism, the actual effort invested
by any agent is less than 0.35, and the qualifications qt converge to a
profile d˚ that is between q0 and 0.35 ¨ d ` 0.65 ¨ q0.

7 EXPERIMENTS

We validate theoretical results by conducting experiments on Exam score (Kimmons, 2012) and FICO
score (Reserve, 2007) dataset. For both datasets, scores serve as the agent’s initial similarity x0, and
we assume agents interact with a decision maker based on the Stackelberg game in Sec. 2. We first fit
these scores with beta distributions, i.e., x0 „ Betapv, wq, and then use them to derive the followings:

1. The optimal decision threshold θ˚ for the decision-maker to incentivize the largest amount of
improvement and promote social welfare, and the total improvement induced by θ˚.

2. The percentage of agents who choose to manipulate under the decision-maker’s optimal policy.

Exam Score Data. It is a synthetic dataset containing 1000 students’ exam scores on 3 subjects
including math, reading, and writing (Kimmons, 2012). We first average over 3 subjects and normalize

8



Under review as a conference paper at ICLR 2024

0.1 0.2 0.3
r

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d 
(o

r I
m

pr
ov

em
en

t)
*

total improvement

0.1 0.2 0.3
r

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d 
(o

r i
m

pr
ov

em
en

t)

*

total improvement

0.1 0.2 0.3
r

0

20

40

60

80

Pe
rc

en
ta

ge
(%

)

p = 0.10
p = 0.30
p = 0.40
p = 0.60

0.1 0.2 0.3
r

0

20

40

60

80

Pe
rc

en
ta

ge
(%

)

p = 0.10
p = 0.30
p = 0.40
p = 0.60

Figure 5: From the left to the right are: optimal thresholds to incentivize improvement for
males/females; manipulation probability under the thresholds for males/females for Exam data.
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Figure 6: From the left to the right are: optimal thresholds to incentivize improvement for Caucasians
and African Americans; manipulation probability under the thresholds for Caucasians and African
Americans for FICO data.

the averaged score to r0, 1s. Then, we fit two beta distributions to the normalized scores of males and
females and obtain x0 „ Betap4.86, 2.37q,Betap4.15, 1.79q (see Fig. 9 in App. F).

With these distributions, we can compute the optimal decision thresholds and the corresponding
total improvement under different discounting factors r. As shown in Fig. 5, for both males and
females, the experimental results are similar. When r increases, θ˚ always decreases and the total
amount of improvement becomes lower. This illustrates how larger discounting factors harm agents’
improvement. Additionally, we consider settings with both manipulation and improvement. Fig. 5
also shows the percentages of agents who prefer to manipulate under θ˚. It shows that agents are less
likely to manipulate as detection probability P increases.

FICO Score Data. We adopt the data pre-processed by Hardt et al. (2016b), which contains CDF
of credit scores of four racial groups (Caucasian, African American, Hispanic, Asian). For each
group, we fit a Beta distribution and obtain four distributions: Betap1.11, 0.97q for Caucasian,
Betap0.91, 3.84q for African American, Betap0.99, 1.58q for Hispanic, Betap1.35, 1.13q for Asian
(see Fig. 10 in App. F). We only present the results for Caucasians and African Americans, while the
results for Asian and Hispanic are shown in App. F.

For each group, we compute the optimal decision threshold and corresponding total improvement
under different r. As shown in Fig. 6 (left two plots), for both groups, their corresponding optimal
threshold θ˚ and the total amount of improvement always decrease as r increases. For settings with
both manipulation and improvement (right two plots in Fig. 6), agents are more likely to manipulate
under smaller detection probability. When detection probability P is sufficiently large, agents do not
have incentives to manipulate.

8 SOCIETAL IMPACTS & LIMITATIONS

This paper studies the strategic interactions between agents and a decision-maker when agent action
has delayed and persistent effects. Our theoretical results depend on the assumption that both
agents and the decision-maker have perfect information about each other so that they always best
respond. Extension to cases when each party only has partial/imperfect information is important.
Moreover, these theorems are based on the qualification dynamics equation 1. Although a scenario
when it does not hold is studied in Sec. 6, future works should also consider other variants tailored
to specific applications to prevent negative outcomes. Finally, though we provide a procedure to
estimate the discounting factor, performing controlled experiments is not always accessible. Moreover,
manipulation cost and detection probability are unknown and hard to estimate. Collecting real data
and estimating these parameters remain promising research directions.
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