
Under review as a conference paper at ICLR 2024

TOWARDS EFFICIENT DEEP SPIKING NEURAL NET-
WORKS CONSTRUCTION WITH SPIKING ACTIVITY
BASED PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs) drawing inspiration from the biological nervous
system possess the distinctive advantage of being biologically interpretable and
energy-efficient. In recent years, there has been a rise in deep and large-scale SNNs
structures that exhibit high performance across various complex datasets. However,
within these structures, a significant number of redundant structural units are often
present, compelling the need to compress the network models of SNNs to more
effectively harness their low-power advantage. Currently, most model compression
techniques for SNNs are based on unstructured pruning of individual connections,
which requires specific hardware support. Receptive field cells in the biological
visual system have influenced a crucial concept in deep learning: convolutional
kernels. Hence, we propose a structured pruning approach based on the activity
levels of convolutional kernels named Spiking Channel Activity-based (SCA)
network pruning framework. Inspired by synaptic plasticity mechanisms, our
method dynamically adjusts the network’s structure by pruning and regenerating
convolutional kernels during training, enhancing the model’s adaptation to the
current target task. While maintaining model performance, this approach refines
the network architecture, ultimately reducing computational load and accelerating
the inference process. We conducted experiments on static datasets including
CIFAR10, CIFAR100 and DVS-CIFAR10. Experimental results demonstrate that
this method incurs only about 2% accuracy loss while retaining 20% of the channels.
This indicates that structured dynamic sparse learning methods can better facilitate
the application of deep SNNs in low-power and high-efficiency scenarios.

1 INTRODUCTION

Spiking Neural Networks (SNNs), known as the third generation of artificial neural networks (Maass,
1997), are renowned for their advantages in biological interpretability and low power consumption.
Inspired by biological information processing mechanisms, unlike traditional artificial neural net-
works (ANNs), SNNs utilize spike sequences for feature encoding, transmission, and processing.
Deployed on neuromorphic chips, SNNs capitalize on event-driven and asynchronous computation to
significantly reduce computational complexity and minimize unnecessary overhead (Davies et al.,
2018). It’s noteworthy that the human brain operates on just 20 watts of power (Mink et al., 1981).
The synaptic connection count undergoes a rapid increase and a gradual decrease throughout the
lifecycle (Cizeron et al., 2020). In the process of cognition, the brain network’s structure exhibits
plasticity, meaning synaptic connections can strengthen, weaken, establish, or eliminate under the
influence of learning and experience (Trachtenberg et al., 2002) (Stettler et al., 2006) (Holtmaat &
Svoboda, 2009) (Barnes & Finnerty, 2010). However, many SNNs adopt fixed network structures
from conventional deep learning (Wu et al., 2018) (Fang et al., 2021a), which may contain illogical
or redundant components. Therefore, to better leverage the energy-efficient advantages of SNNs,
drawing inspiration from the mechanisms of synaptic plasticity in biology, it is highly essential to
adaptively learn appropriate and sparse network structures during training according to the objectives
of the task.

In recent years, much research has focused on the adaptive sparse structural learning of SNNs, training
a lightweight network from scratch. Kappel et al. (2015) proposed a framework of synaptic sampling

1



Under review as a conference paper at ICLR 2024

for Bayesian inference to optimize both the structure and parameters of the network. Inspired by
the mechanisms of brain rewiring, Bellec et al. (2017) introduced the Deep R method for ANNs.
This method trains deep networks under strict connectivity constraints. They extended the Deep
R approach to RSNN and LSNN (Bellec et al., 2018) while also implementing it on the prototype
chip of the 2nd generation SpiNNaker system (Liu et al., 2018). The Spike-Thrift method employs
attention mechanisms for pruning and growing connections during training (Kundu et al., 2021).
Chen et al. (2021) introduced the Grad R method, defining the size and density of dendritic spines as
the absolute values of weights and the pruning and growth occur through adaptive competition. They
further defined dynamic pruning methods for excitatory and inhibitory transformation of dendrites
(Chen et al., 2022). However, most of the aforementioned approaches for SNNs structural learning
focus on sparsification at the level of individual connections. This approach is non-structured and
exhibits irregular and unstable characteristics, making it less suitable for hardware deployment
and optimization. On the other hand, structured sparse methods are more amenable to achieving
lightweight networks, reducing the complexity of memory access, and displaying superior hardware
adaptability.

This paper introduces an adaptive and structured sparse learning framework for SNNs, inspired by
the mechanisms of synaptic plasticity in biological neural networks. As shown in Figure 1(a), the
proposed SCA framework achieves network lightweight at the granularity of convolutional kernels,
akin to the sparse responses of receptive cells in the biological visual system (Houweling & Brecht,
2008) (Hu et al., 2014). During training, the SCA framework jointly learns both the network’s
parameters and its structure. It accomplishes this through a self-discovery process of pruning and
regrowing, guided by the structure learning rule, leading to the identification of a lightweight yet
high-performance network model. The structure learning rule determines the importance of channels
based on the spiking activity level, to identify the guidance for dynamic topology updates. Coarse-
grained sparsification facilitates the learning of regularized structures, effectively reducing storage
and computational costs, while also enhancing hardware compatibility. The following are the main
contributions of this paper:

• The proposed SNNs sparsification framework adapts the structure and parameters of a
joint learning network by using convolutional kernels as the fundamental units. Structured
pruning aligns better with the characteristics of sparsified responses in the biological visual
neural system, making it easier to achieve more compressed and lightweight network models.

• The structural learning rule of this framework adheres to the mechanisms of synaptic
plasticity, allowing for the removal of redundancies and regeneration of certain convolu-
tional kernels based on spiking activity level. An adaptive structural learning approach is
advantageous for acquiring a network structure that is more appropriate for the target task.

• This framework is a general-purpose framework that can be applied to most directly trained
deep convolutional SNNs. Experimental results demonstrate that our approach performs
well on CIFAR10, CIFAR100 and DVS-CIFAR10, maintaining network performance while
reducing the parameter count.

2 RELATED WORK

Training Method. The development of SNNs training methods has undergone a progression from
shallow to deep architectures. The earliest SNN algorithms are primarily based on unsupervised
learning principles of synaptic plasticity. These methods often utilize fully connected single-layer
network structures such as STDP (Song et al., 2000), Oja (Oja, 1982), and BCM (Bienenstock et al.,
1982), or shallow convolutional architectures like SDNN (Kheradpisheh et al., 2018), SpiCNN (Lee
et al., 2018), and ReStoCNet (Srinivasan & Roy, 2019). Typically, these approaches exhibit limited
performance and are applied to less complex datasets. In recent years, numerous supervised training
methods for deep SNNs have emerged, drawing inspiration from the concepts of backpropagation.
These methods significantly enhance the performance of SNNs on intricate datasets. The STBP
method employs a gradient surrogate approach to implement error backpropagation across both
temporal and spatial dimensions (Wu et al., 2018). This technique can be applied to sophisticated
network architectures like VGG and ResNet. Building upon this, Zheng et al. (2021) have intro-
duced the tdBN method, which offers improved feature normalization in both temporal and spatial
dimensions. Fang et al. (2021b) introduced the PLIF model that enables the updating of membrane

2



Under review as a conference paper at ICLR 2024

time constants during the training process. Deng et al. (2022) proposed the TET method to address
momentum loss during the surrogate gradient descent process. SEW-Resnet (Fang et al., 2021a)
and MS-ResNet (Hu et al., 2021) adjust the structure of residual networks to achieve better identity
mapping of residual blocks. These addresses challenges related to gradient explosion or vanishing
and enables the successful training of SNN models with over a hundred layers. These techniques
hold promise for the creation of intricate, large-scale deep SNNs with impressive performance.

Structural Learning Method. These deep SNNs often come with a large number of parameters
and significant computational costs, making the pruning of redundant connections essential. Pruning
methods can generally be categorized as non-structured and structured. Non-structured pruning
typically involves removing individual connections to reduce the parameter count. Deng et al. (2021)
combined STBP with the ADMM (Alternating Direction Method of Multipliers) optimization tool to
achieve a sparse network structure through alternating optimization. Yin et al. (2021) devised binary
”gates” to control the presence of connections, optimizing binary Bernoulli gate values through a
smoothed objective function. Drawing inspiration from the dynamic changes in brain connectivity,
Chen et al. (2021) proposed the Grad R method, where pruning is accompanied by the growth of
certain connections in an adaptive competitive process. Chen et al. (2022) further defined a process of
transformation between filamentous pseudopodia and mature dendritic spines, allowing connections
to be adaptively pruned or reactivated. The ESL-SNNs method initializes a sparse network structure
using the Erdos-Renyi random graph approach and progressively adapts the network structure from
scratch (Shen et al., 2023). However, Non-structured pruning, being a fine-grained method, often
requires specific hardware support. On the other hand, structured pruning typically operates at the
channel or layer level, yielding more compact network structures. Chowdhury et al. (2021) employed
principal component analysis to compute inter-channel correlations, identifying redundant channels
within SNNs. This method is primarily inspired by techniques from the field of ANNs and applies to
SNNs.

3 PRELIMINARY

Spiking Neuron Model. The spiking neuron model is the fundamental unit of a spiking neural
network, simulating the behavior of biological neurons in transmitting information through spikes.
The mechanism underlying the generation of action potentials in biological neurons involves processes
of depolarization, overshoot, and repolarization. The spiking neuron model simulates the mechanism
of biological action potentials and thus establishes a simplified mathematical model, which consists
of three equations: charging, discharging, and resetting. As shown in the following Eq. (1), the
spiking neuron accumulates the input stimuli Xt from presynaptic neurons, integrating all the currents
received from these neurons. If the membrane potential Ht of the spiking neuron exceeds a certain
threshold Vth, it will fire a spike and reset to the resting potential Vreset .

Ht = f(Vt − 1, Xt)

St = g (Ht − Vth) = Θ (Ht − Vth)

Vt = Ht · (1− St) + Vreset · St

(1)

Where Θ(·) denotes the Heaviside step function, thus st is 1 if a spike is fired, and 0 otherwise. The
function f(·) is the equation describing the dynamics of spiking neurons. In this paper, the spiking
neuron models we use are the Integrate-and-Fire (IF) neuron model and the Leaky Integrate-and-Fire
(LIF) neuron model as presented in Eq. (2) of Spikingjelly (Fang et al., 2020).

Vt = f(Vt−1, Xt) = Vt−1 +Xt

Vt = f(Vt−1, Xt) = Vt−1 +
1

τm
(− (Vt−1 − Vreset) +Xt)

(2)

Where τm represents the time constant of membrane potential.

Surrogate Gradient. Differing from conventional neural networks, the spiking neurons in SNNs
transmit feature information through a sequence of discrete spikes. As depicted in Eq. (3), the
backpropagation in SNNs leverages the chain rule to compute gradients across spatial and temporal
dimensions, akin to the Backpropagation Through Time (BPTT) algorithm in Recurrent Neural
Networks (RNNs).

∂L

∂W
=

T∑
t=1

∂L

∂Ht

∂Ht

∂W
=

T∑
t=1

∂L

∂St

∂St

∂Ht

∂Ht

∂Xt

∂Xt

∂W
(3)

3



Under review as a conference paper at ICLR 2024

Due to the binary nature of spikes (St ∈ {0, 1}), ∂St

∂Ht
is non-differentiable. Hence, to enable the

utilization of backpropagation for the direct training of SNNs, the gradient surrogate method employs
differentiable functions g(x) to substitute for the non-differentiable spikes Θ(x). The gradient
surrogate function utilized here is the sigmoid function g(x) = Sigmoid(αx) = 1

1+e−αx , where α is
used to control the smoothness of the function.

k-th channel

Training Training TrainingTraining TrainingTraining

Structure LearningStructure Learning Structure LearningStructure Learning Structure LearningStructure Learning

pruned channel

Filter Pruning Selective Growth

k-th 

channel

 importance score

prune

k-th 

channel

BN gamma gradient

0.00012

0.00008

0.00086

0.00016

0.00079

regrow

spikes

pruned 
channel

(a) The SCA structure learning framework.

BN1

SN1

Conv1

BN2

SN2

Conv2

Conv1

BN1

SN1

Conv2

BN2

SN2

Post-activation Pre-activation

++

BN1

SN1

Conv1

BN2

SN2

Conv2

Conv1

BN1

SN1

Conv2

BN2

SN2

Post-activation Pre-activation

+

(b) Network structures.

Figure 1: The schematic illustration of the SCA structure learning framework. (a) The proposed
framework follows structure learning rules to adaptively learn lightweight network models during
training. (b) The proposed framework is applicable to various network structures like pre-activation,
post-activation, etc.

4 METHODOLOGY

This section introduces the dynamic structural pruning framework proposed in this paper, SCA
network pruning method. This method determines the importance of channels based on their spiking
activity and dynamically optimizes the network structure during the training process. It is applicable
to various convolutional network architectures, including VGG, ResNet, and others.

4.1 THE SCA STRUCTURE LEARNING FRAMEWORK

As depicted in Algorithm 1, the SCA structure learning method simultaneously performs joint
learning of both the network’s weight parameters and its topological structure during the training
process. Its inspiration originates from the plasticity of the biological neural system, resembling
how biological neural networks optimize information transmission through processes of synaptic
synaptic modulation, establishment and elimination. In the structural learning phase, the significance
of each channel is determined by assessing the spiking activity level. This method identifies redundant
channels with lower spiking activity and removes them while generating a subset of channels in each
or several iterations. The network’s structural changes are recorded using a mask. During the weight
learning phase, the network’s weights are updated using gradient surrogate method. Then, repeat the
two aforementioned processes until the model converges. During the training process, we added L1
regularization to better identify redundant structures. Finally, a new model is obtained by completely
removing redundant channels according to the mask, ensuring a meticulously optimized lightweight
network without compromising its performance.

4.2 CHANNEL IMPORTANCE SCORE

In SNNs, features were encoded and transmitted in the form of spike sequences. We obtain importance
assessment scores by calculating the spiking neuron activity of each channel in the overall network
model’s feature map. In biological neural cells, the resting membrane potential is around -65mV.
When excited stimuli are received, the membrane potential increases, leading to a decrease in
polarization level; this process is termed depolarization. On the other hand, inhibitory stimuli result

4



Under review as a conference paper at ICLR 2024

Algorithm 1 The Overall Training Framework of SCA Structure Learning Framework.
Input: Input data X . Labels Y .
Output: Pruning channels ratio p%. Mask update ratio q%. The weight W . The weight mask M .

1: Initialize the weight W ;
2: for i in [1, epoch] do
3: Learn weight parameters based on surrogate gradient under L1 regularization;
4: Learn weight connection based on structure learning rule:
5: (1) Prune q% channels, resulting in the removal of (p+ q)% channels;
6: (2) Regrow q% channels, maintaining a pruning ratio of p%;
7: for each layer of the model do
8: W = M ⊙W ;
9: end for

10: end for
11: Completely remove the channels corresponding to zero positions in the mask to obtain the

compressed network model.
12: return: The lightweight SNN.

in a decrease in membrane potential, causing an increase in polarization level; this process is referred
to as hyperpolarization (Gerstner et al., 2014). Drawing inspiration from this biological mechanism,
neurons with lower polarization levels can be considered less important, and their removal has a
relatively minor impact on the network’s accuracy. We use rlk to denote the k-th channel of the l-th
layer in the network. In each iteration, the average membrane potential of this channel on the training
set is computed, as shown in Eq. (4).

rlk =
1

N

1

T

(
N∑

n=1

T∑
t=1

∥∥H l
k(t)

∥∥) (4)

Where N represents the number of samples in the training set, and T is the time step of the SNN.∥∥H l
k(t)

∥∥ denotes the L1 norm of the membrane potential of that channel’s feature map. In the feature

map, the membrane potential of a specific neuron at time t is denoted as Hij
t (
∥∥H l

k(t)
∥∥ =

[
Hij

t

]
h×w

).

If Hij
t is positive, it is referred to as an excitatory postsynaptic potential (EPSP); otherwise, it is an

inhibitory postsynaptic potential (IPSP). In other words, the degree to which Hijt deviates from 0 is
used to determine the activity level of the spiking neuron, i.e. Spiking Channel Activity, similar to
the polarization level of biological cells (Gerstner et al., 2014).

4.3 STRUCTURE LEARNING RULE

Filter Pruning. In order to eliminate redundant portions in the network that contribute minimally to
the target task or cause interference, a certain proportion of convolutional kernels are pruned based
on channel importance scores. Initially, the sparsity ratio is set to p%. We first calculate importance
scores for all channels in the network and sort these scores, considering channels with lower scores as
redundant components. This approach enables a more balanced reduction of redundancy across the
entire network, leading to greater compression benefits while maintaining performance. We employ a
mask to record the network’s structure, where 0 denotes pruned channels and 1 represents retained
ones. To better explore optimal network structures, during each iteration, a further q% of pruning
convolutional kernels are introduced. Simultaneously, q% of the pruned convolutional kernels are
reselected for regeneration, maintaining a consistent network sparsity ratio p%.

Selective Growth. During the phase of selective growth, we determine the channels to be reactivated
based on the gradient magnitudes of the Gamma parameters γ within the Batch Normalization (BN)
layer. The Gamma parameters in the BN layers, acting as scaling factors, influence the range of
features in the output. When pruned channels exhibit significant gradients in their Gamma parameters,
it suggests the potential for these channels to regain their activity. Consequently, we can selectively
regrow the network’s channels with higher Gamma parameter gradients, aiming to optimize the
network structure. After structural adjustments, the network is iteratively trained for one or several
epochs, with the channels masked with 0 participating in the training. Through the process of pruning
and regrowth, this framework mitigates the issue of potentially irreversible losses caused by pruning.
Moreover, it facilitates the correction of accuracy losses resulting from erroneous pruning by allowing
reactivation through regrowth.

5



Under review as a conference paper at ICLR 2024

4.4 VARIOUS NETWORK ARCHITECTURES

This framework can be applied to various convolutional spiking neural network architectures. As
shown in Figure 1(b), the SN denotes the spiking neuron layer. For post-activation network structures
like VGG and ResNet, we employ the process of pruning and regeneration using the BN layer and
spiking neuron layer immediately following the conv layer. For pre-activation network structures
like PreResNet, in the architecture on the right side, the BN1 and SN1 of the current block are used
to determine filter pruning for the convolutional layer Conv2 of the previous block, while BN2 and
SN2 are used to decide that of Conv1 for the current block. We will elaborate on the structural details
employed in the experimental section.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS.

Our experiments are conducted using the SpikeJelly framework (Fang et al., 2020), an SNN framework
implemented based on PyTorch. We perform experiments on both static datasets and neuromorphic
datasets. CIFAR-10 and CIFAR-100 are commonly used static image classification datasets, con-
taining 10 and 100 classes, respectively. The images in these datasets are 32x32 RGB images. To
input images into SNNs, encoding is required, and we use a time step of 4. The DVS-CIFAR10
dataset is a neuromorphic dataset, and we divide it into training and testing sets with 9000 and 1000
samples, respectively. Event data needs to be integrated into frame data, and we use 20 time steps
for this purpose. The network structures used in the experiments are based on VGG and Pre-ResNet
architectures. For the DVS-CIFAR10 experiments, the network structure is 64C3-AP2-128C3-AP2-
128C3-AP2-256C3-AP2-256C3-AP2-10FC. The number of iterations for all experiments is set to
300 epochs.

9 1 . 1 4
9 0 . 8 2

9 1 . 2 7
9 1 . 4 6

9 0 . 9 2

9 1 . 6 7

9 1 . 0 9

9 0 . 5 2
9 0 . 2 6

8 8 . 7 0

1 5 . 2 5 1 5 . 2 5

1 1 . 7 3

8 . 5 2

6 . 3 7

4 . 3 3
2 . 9 7

2 . 0 0 1 . 4 2 0 . 9 3

1 4 4 . 1 9

1 0 1 . 0 6 9 7 . 5 3 9 9 . 0 9 9 9 . 9 7 9 7 . 7 3 9 5 . 4 2 9 1 . 9 4 9 0 . 8 2
8 4 . 2 1

0 0  ( L 1 ) 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
8 8 . 0

8 8 . 5

8 9 . 0

8 9 . 5

9 0 . 0

9 0 . 5

9 1 . 0

9 1 . 5

9 2 . 0

Pa
ram

ete
rs 

an
d S

yn
op

s

S N N  V G G 1 6  o n  C I F A R 1 0  d a t a s e t

Te
st 

Ac
cu

rac
y

 T e s t  A c c u r a c y  ( % )
 B a s e l i n e
 P a r a m e t e r s  ( M )
 S y n o p s  ( K )

P r u n e d  C h a n n e l s  R a t i o

0
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6

5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5
1 0 0
1 0 5
1 1 0
1 1 5
1 2 0
1 2 5
1 3 0
1 3 5
1 4 0
1 4 5
1 5 0

(a) SNNVGG16 on dataset CIFAR10.

9 2 . 9 0

9 2 . 5 9 9 2 . 6 1
9 2 . 3 7

9 2 . 4 8
9 2 . 2 7

9 1 . 9 4
9 1 . 7 5

9 1 . 0 1

1 1 . 1 7 1 1 . 1 7

8 . 1 1

5 . 6 4
4 . 5 4

3 . 1 0
2 . 6 3

1 . 5 9
1 . 1 2

1 6 1 . 1 2

1 4 5 . 2 6 1 4 4 . 8 8 1 4 4 . 4 7
1 4 1 . 7 1

1 3 5 . 3 9 1 3 5 . 8 1 1 3 4 . 3 5
1 2 8 . 6 7

0 0  ( L 1 ) 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
9 0 . 0

9 0 . 5

9 1 . 0

9 1 . 5

9 2 . 0

9 2 . 5

9 3 . 0

Pa
ram

ete
rs 

an
d S

yn
op

s

S N N  P r e R e s N e t 1 8  o n  C I F A R 1 0  d a t a s e t

Te
st 

Ac
cu

rac
y

 T e s t  A c c u r a c y  ( % )
 B a s e l i n e
 P a r a m e t e r s  ( M )
 S y n o p s  ( K )

P r u n e d  C h a n n e l s  R a t i o

0
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2

1 0 0
1 0 5
1 1 0
1 1 5
1 2 0
1 2 5
1 3 0
1 3 5
1 4 0
1 4 5
1 5 0
1 5 5
1 6 0
1 6 5

(b) Pre-Resnet18 on dataset CIFAR10.

6 4 . 8 9

6 6 . 3 6

6 7 . 1 1 6 7 . 0 9 6 6 . 8 8
6 6 . 4 0

6 5 . 5 3

6 4 . 6 4

1 5 . 3 0 1 5 . 3 0

1 1 . 7 9

8 . 8 4

6 . 5 0

4 . 7 5
3 . 6 0

2 . 3 7

1 4 9 . 1 9

1 2 5 . 0 1 1 2 3 . 6 2 1 2 3 . 5 6 1 2 3 . 2 3

1 1 8 . 8 5
1 1 6 . 1 8

1 1 1 . 0 1
0 0  ( L 1 ) 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

6 0

6 1

6 2

6 3

6 4

6 5

6 6

6 7

6 8

Pa
ram

ete
rs 

an
d S

yn
op

s

S N N V G G 1 6  o n  C I F A R 1 0 0  d a t a s e t

Te
st 

Ac
cu

rac
y

 T e s t  A c c u r a c y  ( % )
 B a s e l i n e
 P a r a m e t e r s  ( M )
 S y n o p s  ( K )

P r u n e d  C h a n n e l s  R a t i o

0
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6

1 1 0

1 1 5

1 2 0

1 2 5

1 3 0

1 3 5

1 4 0

1 4 5

1 5 0

1 5 5

(c) SNNVGG16 on dataset CIFAR100.

7 2 . 8 0
7 3 . 1 0 7 3 . 0 0

7 2 . 5 0 7 2 . 5 0

7 2 . 0 0

7 3 . 7 0

7 1 . 9 0

1 . 1 5 1 . 1 5

0 . 9 8

0 . 8 1

0 . 6 1

0 . 4 3

0 . 2 5

0 . 0 8

1 . 0 9

0 . 5 6

0 . 8 0

0 . 5 4
0 . 5 7

0 . 7 6

0 . 6 2

0 . 4 3

0 0  ( L 1 ) 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6
7 0 . 0

7 0 . 5

7 1 . 0

7 1 . 5

7 2 . 0

7 2 . 5

7 3 . 0

7 3 . 5

7 4 . 0

Pa
ram

ete
rs 

an
d S

yn
op

s

5 C o n v + 1 F C  o n  D V S - C I F A R 1 0  d a t a s e t

Te
st 

Ac
cu

rac
y

 T e s t  A c c u r a c y  ( % )
 B a s e l i n e
 P a r a m e t e r s  ( M )
 S y n o p s  ( M )

P r u n e d  C h a n n e l s  R a t i o

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2

0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0

(d) 5Conv+1FC on dataset DVS-CIFAR10.

Figure 2: The performance of the SCA structure learning framework.

6



Under review as a conference paper at ICLR 2024

(a) Network structures under various pruning ratios. (b) The evolution of network
structure during the training
process.

Figure 3: Analysis of structural changes in the SCA framework.

5.2 EVALUATION ON DIFFERENT DATASETS.

As shown in Figure 2, we present the experimental results of our framework on various datasets.
We set different channel pruning ratios and maintain a fixed level of sparsity during the training
process. After training is completed, we completely remove redundant channels and construct a new
lightweight model for evaluation. The computational energy consumption of the network is evaluated
using the number of parameters and synaptic operations.

Performance analysis. The bar chart in Figure 2 represents the model’s accuracy on the test set under
different channel pruning ratios. The green and red lines indicate the final model’s parameters and
synaptic operations, measured in units of M (106) and K (103). It can be observed that as the channel
pruning ratio increases, the model’s test accuracy experiences only a minor loss, while the number
of parameters decreases significantly, and in some cases, even at lower pruning ratios, the accuracy
slightly improves. This indicates that our framework can compress the network’s parameter count to
obtain a lightweight model while maintaining close-to-original high performance. For CIFAR-10,
in the case of the VGG16 model shown in Figure 2(a), when the parameter count is compressed to
approximately 10% of the original size (i.e., 1.42 million parameters), the accuracy drops by less
than 1%. When the parameter count is compressed to around 5% (i.e., 0.93 million parameters), the
accuracy decreases by about 2%. When the parameter count is reduced by approximately 30%, the
model’s accuracy reaches 91.67%, showing an increase of 0.53%. For the ResNet model depicted
in Figure 2(b), when the parameter count is compressed to approximately 20%, the accuracy loss
is less than 1%. For CIFAR-100 in Figure 2(c), when the model’s parameter count is compressed
to 20% of the original (i.e., 3.60 million parameters), the accuracy still increases by +0.64%. In
the case of DVS-CIFAR10, as shown in Figure 2(d), even when the parameter count is reduced to
only 6.95% of the original (i.e., 0.08 million parameters), the accuracy decreases by less than 1%.
Furthermore, when the parameter count is compressed to approximately 20% of the original (i.e.,
0.25 million parameters), the accuracy improves by nearly 1%.

Energy Consumption Analysis. The synaptic operations (SynOps) of SNNs can represent the
network’s complexity and computational cost. As seen from the red line in Figure 2, with an increase
in the network’s channel pruning ratio, the synaptic operations gradually decrease. As shown in the
Figure 2(a), for SNNVGG16 on the CIFAR-10 dataset, when the redundant channel removal ratio
reaches 0.8, nearly half of the synaptic operations can be reduced. For DVS-CIFAR10 in Figure 2(d),
when the number of synaptic operations (0.43M) is less than half of the original, the performance only
decreases by less than 1%. This indicates that our method can reduce computational costs, improve
resource utilization, and enhance network performance, which is highly beneficial for deploying
SNNs in resource-constrained environments or achieving more efficient neural computations.

5.3 ANALYSIS OF NETWORK STRUCTURE LEARNING.

Structure Analysis. In order to better analyze the learning process of the network structure, we
visualized the changes in the number of channels for each layer of the network, as shown in Figure 3.
In Figure 3(a), different lines represent the number of channels in each layer of the final network
structure under different pruning ratios, using SNNVGG16 on the CFAR10 dataset as an example.

7



Under review as a conference paper at ICLR 2024

0 1 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
S N N V G G 1 6  o n  C I F A R 1 0  d a t a s e t

Re
lat

ive
 Fr

eq
ue

nc
y

C h a n n e l  I m p o r t a n c e  S c o r e

 P r u n e  0 . 8  c h a n n e l s
 P r u n e  0 . 6  c h a n n e l s
 P r u n e  0 . 4  c h a n n e l s
 P r u n e  0 . 2  c h a n n e l s
 B a s e l i n e  +  L 1  
 B a s e l i n e

(a) Channel importance score distri-
bution.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5 1 5 . 2 5

1 1 . 7 3

8 . 5 2

6 . 3 7

4 . 3 3

2 . 9 7
2 . 0 0

1 . 4 2
0 . 9 3

S N N V G G 1 6  o n  C I F A R 1 0  d a t a s e t

Te
st 

Ac
cu

rac
y

P r u n e d  C h a n n e l s  R a t i o

 P r u n e  a n d  R e g r o w  ( M )
 O n l y  P r u n e  ( M )
 R a n d o m  P r u n e  ( M )
 B a s e l i n e  ( M )

(b) The accuracy of ablation experi-
ments.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1
9 2

9 0 . 8 2
9 1 . 2 7 9 1 . 4 6

9 0 . 9 2
9 1 . 6 7

9 1 . 0 9
9 0 . 5 2 9 0 . 2 6

8 8 . 7 0

S N N V G G 1 6  o n  C I F A R 1 0  d a t a s e t

Te
st 

Ac
cu

rac
y

P r u n e d  C h a n n e l s  R a t i o

 P r u n e  a n d  R e g r o w  ( % )
 O n l y  P r u n e  ( % )
 R a n d o m  P r u n e  ( % )
 B a s e l i n e  ( % )

(c) The parameters of ablation exper-
iments.

Figure 4: Analysis of the effectiveness of the SCA structure learning framework.

It can be observed that there is a certain pattern in the change of channel numbers under different
pruning ratios. The removal of more channels in the deeper layers suggests their lower importance,
while channels in the shallower layers appear to be relatively more important. In deep network
structures, deeper layers extract more abstract and advanced features, but as the layers get deeper,
they become harder to train, leading to the presence of many redundant connections. In Figure 3(b),
the changes in the number of channels for convolutional layers 8-13 of the SNNVGG16 model under
a pruning ratio of 0.5 during the training process are visualized. It can be seen that as the network
converges, the model’s structure stabilizes to some extent. This indicates that the structural learning
framework, as the network structure evolves, autonomously adapts to an appropriate structure.

Channel Importance Score Distribution. As shown in Figure 4(a), we visualized the distribution
of channel importance scores for the entire network at different pruning ratios. The points where
the importance score is 0 represent the removed channels that are no longer firing. It can be seen
that the original network’s importance score distribution has a higher mean and is more scattered,
indicating that the channels have higher spiking activity levels and larger variance. As the pruning
ratio increases, the overall network activity decreases and tends towards zero, indicating that removing
redundant channels reduces the overall energy consumption of the network.

5.4 ANALYSIS OF ABLATION EXPERIMENTS.

To further demonstrate the effectiveness of the structural learning method in this framework, we
conducted ablation experiments, as shown in Figure 4(b) Figure 4(c). The yellow curve represents
the testing accuracy and parameter count of the SNNVGG16 method on the CIFAR10 dataset. The
green and red curves represent the results of pruning only without regrowth and random pruning at
initialization, respectively. It can be observed that the testing accuracy follows the order ’Prune and
Regrow’ > ’Only Prune’ > ’Random Prune’, and the parameter count for the latter two is higher
than that of ’Prune and Regrow.’ When the pruning ratio is 0.8, our framework achieves only about a
2% decrease in accuracy, while the accuracy of only pruning and random pruning drops significantly.
When only pruning is performed, after an initial mask update at the beginning of training, the mask
hardly gets updated during subsequent training, indicating that the regrowth process can reactivate
mistakenly pruned channels. Random pruning, which prunes with the same probability for each layer,
cannot accurately identify redundant structural units. Therefore, the SCA framework’s mechanism
for identifying redundant channels and reactivating pruned channels autonomously searches for an
appropriate network structure.

5.5 COMPARISON WITH OTHER METHODS.

As shown in Table 1, we compared our method with existing SNNs pruning methods, presenting the
loss in test accuracy for different pruning ratios and the percentage of remaining parameters. On the
CIFAR-10 dataset, at approximately 9.31% of the original parameter count, our method achieved a
less than 1% decrease in accuracy. This performance is similar to the PCA-based channel pruning
method (Chowdhury et al., 2021). However, the PCA-based method use a time step of 25, much larger
than our method’s 4. Compared to the SD-SNN method (Han et al., 2022), our method also exhibited

8



Under review as a conference paper at ICLR 2024

advantages in parameter compression and performance loss. The SCA-based method achieved a
0.53% improvement in accuracy at only 28.39% of the original parameter count, outperforming the
ADMM-based (Deng et al., 2021) and ESL-SNNs (Shen et al., 2023) methods. The SCA-based
method may not excel in parameter compression compared to Attention-based (Kundu et al., 2021),
Grad R (Chen et al., 2021), and Dendritic-based (Chen et al., 2022) methods. However, our approach
employs structured pruning specifically targeting convolutional layers and efficiently retrains from
scratch in a more energy-efficient manner. Ultimately, it allows for the complete removal of redundant
structural units, resulting in a new model with improved hardware-friendliness. On the CIFAR100
dataset, the accuracy loss is 0.25% when the parameters are 16.47% of the original, which is better
than the the PCA-based method (Chowdhury et al., 2021). The attention-based method (Kundu et al.,
2021) requires a process involving ANN-SNN conversion, while our method is comparatively more
energy-efficient. On the DVS-CIFAR10 dataset, there was a slight improvement in accuracy when
compressing fewer parameters. Additionally, the network structure used was simpler compared to
ESL-SNNs (Shen et al., 2023). Therefore, the experimental results indicate that our SCA structured
pruning method can efficiently identify redundant structural units and adapt the lightweight network
autonomously for the target task through training from scratch. This method results in a thoroughly
lightweight model with a more regular structure, making it easier to deploy on hardware chips
compared to unstructured pruning.

Table 1: Comparison of Experimental Performance with Other Methods.

Dataset Method Network
Architecture

Granu-
larity

ACC.
(%)

ACC.
Loss (%)

Connect-
ivity(%)

CIFAR10

Attention-based (Kundu et al., 2021) VGG16 Weight 91.13 -0.39
-0.98

5.00
2.99

ADMM-based (Deng et al., 2021) 7Conv+2FC Weight 89.53 -2.16
-3.85

25.00
10.00

Grad R (Chen et al., 2021) 6Conv+2FC Weight 92.84
-0.30
-0.34
-0.81

28.41
12.04
5.08

Dendritic-based (Chen et al., 2022) 6Conv+2FC Weight 92.84 -0.35
-2.63

2.23
0.75

ESL-SNNs (Shen et al., 2023) Resnet19 Weight 91.09 -1.70 50.00
SD-SNN (Han et al., 2022) 6Conv+2FC Channel 94.74 -0.64 62.56

PAC-based (Chowdhury et al., 2021) VGG9 Channel 90.10 -1.06 7.00

SCA-based VGG16 Channel 91.14
+0.32
+0.53
-0.88

55.86
28.39
9.31

CIFAR100 Attention-based (Kundu et al., 2021) VGG16 Weight 64.69 -0.03 10.00
PAC-based (Chowdhury et al., 2021) VGG11 Channel 68.10 -1.70 10.70

SCA-based VGG16 Channel 64.89 +0.64
-0.25

23.52
16.47

DVS-
CIFAR10

ESL-SNNs (Shen et al., 2023) VGG8 Weight 78.30 -0.28 10.00

SCA-based 5Conv+1FC Channel 72.80 +0.90
-0.90

21.73
6.95

6 CONCLUSION

Lightweight and high-performance SNNs can better leverage their advantages of low power consump-
tion. The use of structured pruning methods can result in regular, sparse SNN models, making them
more hardware-friendly. The approach proposed in this paper starts from the perspective of biological
plasticity, combining pruning and regrowth in an adaptive manner during training to explore suitable
lightweight network structures. This approach allows for the compression of network parameters and
inference computations while maintaining network high performance. This is of significant value for
deploying high-performance, low-memory SNNs on neuromorphic chips.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Samuel J Barnes and Gerald T Finnerty. Sensory experience and cortical rewiring. The Neuroscientist,
16(2):186–198, 2010.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Elie L Bienenstock, Leon N Cooper, and Paul W Munro. Theory for the development of neuron selec-
tivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2
(1):32–48, 1982.

Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
neural networks through gradient rewiring. arXiv preprint arXiv:2105.04916, 2021.

Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State tran-
sition of dendritic spines improves learning of sparse spiking neural networks. In International
Conference on Machine Learning, pp. 3701–3715. PMLR, 2022.

Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantization
for low-latency spiking neural networks. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–9. IEEE, 2021.

Mélissa Cizeron, Zhen Qiu, Babis Koniaris, Ragini Gokhale, Noboru H Komiyama, Erik Fransén,
and Seth GN Grant. A brainwide atlas of synapses across the mouse life span. Science, 369(6501):
270–275, 2020.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan
Xie. Comprehensive snn compression using admm optimization and activity regularization. IEEE
transactions on neural networks and learning systems, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Wei Fang, Yanqi Chen, Jianhao Ding, Ding Chen, Zhaofei Yu, Huihui Zhou, Yonghong Tian, and other
contributors. Spikingjelly. https://github.com/fangwei123456/spikingjelly,
2020. Accessed: 2021-12-30.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Bing Han, Feifei Zhao, Yi Zeng, and Wenxuan Pan. Adaptive sparse structure development with
pruning and regeneration for spiking neural networks. arXiv preprint arXiv:2211.12219, 2022.

Anthony Holtmaat and Karel Svoboda. Experience-dependent structural synaptic plasticity in the
mammalian brain. Nature Reviews Neuroscience, 10(9):647–658, 2009.

10

https://github.com/fangwei123456/spikingjelly


Under review as a conference paper at ICLR 2024

Arthur R Houweling and Michael Brecht. Behavioural report of single neuron stimulation in
somatosensory cortex. Nature, 451(7174):65–68, 2008.

Xiaolin Hu, Jianwei Zhang, Jianmin Li, and Bo Zhang. Sparsity-regularized hmax for visual
recognition. PloS one, 9(1):e81813, 2014.

Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
spiking neural networks. arXiv e-prints, pp. arXiv–2112, 2021.

David Kappel, Stefan Habenschuss, Robert Legenstein, and Wolfgang Maass. Network plasticity as
bayesian inference. PLoS computational biology, 11(11):e1004485, 2015.

Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and Timothée Masquelier.
Stdp-based spiking deep convolutional neural networks for object recognition. Neural Networks,
99:56–67, 2018.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
efficient deep spiking neural networks by limiting spiking activity via attention-guided compression.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3953–
3962, 2021.

Chankyu Lee, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Deep spiking
convolutional neural network trained with unsupervised spike-timing-dependent plasticity. IEEE
Transactions on Cognitive and Developmental Systems, 11(3):384–394, 2018.

Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes Partzsch, Felix Neumärker,
Sebastian Höppner, Wolfgang Maass, Steve B Furber, Robert Legenstein, et al. Memory-efficient
deep learning on a spinnaker 2 prototype. Frontiers in neuroscience, 12:840, 2018.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Jonathan W Mink, Robert J Blumenschine, and David B Adams. Ratio of central nervous system
to body metabolism in vertebrates: its constancy and functional basis. American Journal of
Physiology-Regulatory, Integrative and Comparative Physiology, 241(3):R203–R212, 1981.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15:267–273, 1982.

Jiangrong Shen, Qi Xu, Jian K Liu, Yueming Wang, Gang Pan, and Huajin Tang. Esl-snns: An evolu-
tionary structure learning strategy for spiking neural networks. arXiv preprint arXiv:2306.03693,
2023.

Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nature neuroscience, 3(9):919–926, 2000.

Gopalakrishnan Srinivasan and Kaushik Roy. Restocnet: Residual stochastic binary convolutional
spiking neural network for memory-efficient neuromorphic computing. Frontiers in neuroscience,
13:189, 2019.

Dan D Stettler, Homare Yamahachi, Wu Li, Winfried Denk, and Charles D Gilbert. Axons and
synaptic boutons are highly dynamic in adult visual cortex. Neuron, 49(6):877–887, 2006.

Joshua T Trachtenberg, Brian E Chen, Graham W Knott, Guoping Feng, Joshua R Sanes, Egbert
Welker, and Karel Svoboda. Long-term in vivo imaging of experience-dependent synaptic plasticity
in adult cortex. Nature, 420(6917):788–794, 2002.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, and Sihong Xie. Energy-efficient
models for high-dimensional spike train classification using sparse spiking neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2017–2025, 2021.

11



Under review as a conference paper at ICLR 2024

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

12


	Introduction
	Related Work
	Preliminary
	Methodology
	The SCA Structure Learning Framework
	Channel Importance Score
	Structure Learning Rule
	Various Network Architectures

	Experiments
	Experiment Settings.
	Evaluation on different datasets.
	Analysis of Network Structure Learning.
	Analysis of Ablation Experiments.
	Comparison with Other Methods.

	Conclusion

