© © N o o~ W N =

Enhancing Zeroth-Order Fine-Tuning for LLMs via
Gradient-Guided Subspace Selection

Anonymous Author(s)
Affiliation
Address
email

Abstract

As a promising memory-efficient technique, zeroth-order (ZO) optimization en-
ables large language models (LLMs) to bypass costly backpropagation during
fine-tuning by estimating gradients through function evaluations. However, to
minimize approximate variance in high-dimensional parameter spaces, existing ZO
methods focus on exploring the estimate of gradients within random subspaces,
neglecting the benefits of searching for more accurate subspaces of LLMs on
gradient estimates. Due to inaccurate gradient estimates obtained from random
spaces, fine-tuning performance is inevitably degraded, thus compromising the
performance of downstream tasks. To address the limitation of existing ZO meth-
ods, this paper proposes a novel ZO subspace fine-tuning method named SVD-0.
Based on singular value decomposition (SVD), SVD-0 can effectively obtain more
accurate subspace projection matrices, which can be used to improve the accuracy
of gradient estimates. Experimental results on various complex language modeling
tasks show that SVD-0 achieves better fine-tuning performance than state-of-the-art
Z0 methods.

1 Introduction

Due to the powerful capabilities of language understanding and reasoning, large language models
(LLMs) have demonstrated significant performance on a wide range of tasks, such as mathematical
reasoning[15]], creative writing [36]. Currently, fine-tuning (FT) the pre-trained foundation model to
adapt to downstream tasks has become the mainstream paradigm for Al application development.
However, because of the extremely large number of model parameters, traditional first-order (FO)
optimization-based fine-tuning methods face the serious challenge of excessive memory consumption.
Typically, since the backpropagation process in FO needs to store the activations and optimizer states,
the memory requirements of FT are significantly larger than those of reasoning, which seriously
limits the development of LLLM-based applications.

To achieve memory-efficient FT, existing methods can be classified into two categories, i.e., parameter-
efficient fine-tuning (PEFT) methods [25}116] and zeroth-order (ZO) optimization methods [29]]. PEFT
methods attempt to reduce the number of trainable parameters to alleviate memory requirements.
However, since PEFT methods are still based on FO optimization, they have to consume a lot
of memory to store intermediate training results, which severely limits the choice of trainable
parameters. ZO optimization methods [29]] emerge as a promising alternative by estimating gradients
through forward-pass perturbations, eliminating backpropagation’s memory overhead. However,
conventional ZO methods face a critical challenge: the high variance of gradient approximations in
billion-parameter spaces severely degrades optimization efficiency and model performance.

Recent advances in ZO optimization for LLMs, such as SubZero [43] and LOZO [5], attempt to
mitigate this issue by constraining perturbations to random low-dimensional subspaces. These

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43

44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59
60
61
62

63
64
65

66
67
68

69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89

methods are based on the finding that gradient matrices become low-rank during LLM training and
fine-tuning [47]. While these subspace methods reduce approximation variance, they fundamentally
rely on arbitrary projection matrices that fail to match the low-rank structure implied by the gradient.
This limitation stems from a fundamental disconnect - the subspace construction process ignores
critical gradient information that could guide more effective parameter updates. Therefore, how to
determine the optimal low-dimensional subspaces without relying on first-order optimizers poses a
fundamental challenge.

The similarity between the gradient estimated by ZO optimizers and the true gradient has been
experimentally demonstrated [29]. Consequently, we consider it viable to derive the low-rank
structure of the true gradient from the estimated gradient. Based on this idea, we performed a
prestudy. The experimental findings indicate that there is considerable similarity between the
estimated gradient and the true gradient when comparing their singular value vectors. Therefore, we
conclude that applying the SVD decomposition to the gradient estimated by the ZO optimizer enables
us to obtain a low-rank structure that closely resembles the true gradient’s low-rank structure.

Based on the above motivation, we propose SVD-0, a novel gradient-guided subspace optimization
framework that synergizes zeroth-order efficiency with principled subspace discovery. Our key
insight is that, while exact first-order gradients remain inaccessible due to memory constraints, ZO
gradient estimates contain sufficient directional information to reconstruct high-fidelity subspaces.
Specifically, SVD-0 periodically performs singular value decomposition (SVD) on ZO gradient
estimates to derive layer-wise projection matrices that capture dominant optimization directions. By
preserving the intrinsic structure of the subspace, our method effectively enhances the performance
of subspace-based ZO methods. The contributions of this work are summarized as follows:

* We propose a novel method for exploring more accurate subspace projection matrices
and conducting layerwise perturbations on low-rank matrices. With periodic updates of
the projection matrices, our method continuously captures the subspaces of the varying
parameters.

* To overcome the paradox that obtaining subspace projection matrices requires FO gradients,
we develop a novel gradient-guided ZO method to approximate these two projection matrices,
ensuring low memory usage throughout the entire fine-tuning process.

* We conduct comprehensive experiments on various model scales and language modeling
tasks. The corresponding results show the superiority of our method compared to various
Z0 optimization methods tailored for LLM fine-tuning.

2 Related Work

Memory efficient fine-tuning for LL.Ms. Recent work has concentrated on exploring memory-
efficient fine-tuning methods to enable LLM fine-tuning on memory-intensive hardware. A critical
line of research centers on Parameter-Efficient Fine-Tuning (PEFT) methods [25| [16] by freezing
the backbone of LLMs while only tuning a small group of parameters. For instance, LoRA [18]
only updates parameters based on low-rank structures while being competitive with full-parameter
fine-tuning. LISA [31]] distinguishes trainable layers based on their contribution to task-specific
performance and freezes other layers to reduce the memory footprint. Further, parameter quanti-
zation [24, [12] has played a pivotal role in enhancing memory efficiency. By discretizing model
parameters (e.g., from 32-bit to 8-bit or lower precision), quantization methods such as QLoRA [10]
and LLM.int8() [9] reduce storage requirements without significant degradation in task performance.
Complementary to PEFT and the quantization method, subspace projection techniques have emerged
as a powerful strategy to reduce the dimensionality of the optimization space. Galora [47] and
FLORA [17] both leverage the low-rank property of gradients to constrain updates on a compact sub-
space of the full parameter space [19]. By discovering the projection matrices of low-rank subspaces,
the memory costs for storing gradients and optimizer states (e.g., the first and second order states in
Adam optimizer [21]) are greatly reduced.

Zero-order optimization. ZO approaches enable backpropagation-free optimization by approx-
imating exact gradients through finite differences. This flexibility has driven interest in ZO for
solving a range of machine learning problems, including on-chip learning, black-box adversarial
strategies and memory-efficient LLMs fine-tuning [29, |46]]. Despite these strengths, the practical

90
91
92
93
94
95
96
97
98
99
100

101

102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

123

124
125
126

use of ZO is mainly confined to smaller-scale tasks and models. A critical limitation stems from the
high error in its gradient approximations [32], which becomes more pronounced as problems grow
larger and more complex, making scaling challenging. To address this issue, approaches such as
MeZO-SVRG [13] and DiZO [39] utilize variance-reduction methodologies [28] to mitigate gradient
divergence. Furthermore, methods including SparseMezo [27]], TeZO [38]], and AdaZeta [42] have
been proposed to diminish approximation errors by reducing dependence on the parameter dimension
through parameter sparsification and tenorization. Subspace methods [30], including SubZero [43]]
and LOZO [5], are explored to leverage low-rank structures for decreasing the error. Although
they effectively alleviate the variance of gradient approximation, the randomly generated projection
matrices cannot precisely reflect the transformation between the subspace and full space, leading to
model performance degradation.

3 Prestudy

In exploring the alignment between estimated ZO and true FO gradients in the parameter spaces
of large language models, we perform a targeted analysis using the OPT-1.3B model [45] on the
RTE task [7} [1, 14} [2]. For every 50 training steps, we determine the exact FO gradients through
backpropagation with a batch size of 16 and ZO gradient estimates via MeZO’s simultaneous
perturbation method [29]. Subsequently, we apply singular value decomposition (SVD) to both
gradient matrices. We then assess the cosine similarity between the singular value vectors.

Figure [3|shows that the singular vectors have a high co- 0.60,
sine similarity, indicating that the ZO gradients maintain
key optimization directions and show a similar low-rank
structure. This observation supports our main hypoth-
esis. ZO gradient estimates possess enough spectral
information to reconstruct FO-guided low-rank sub-
spaces. The preserved directional accuracy suggests

S
'S
)

S
1%
S

—— After SVD
—— Origin

that limiting ZO perturbations to the primary gradient 0 5000 10000 15000 2000

S
n

S
2
S

Cosine Similarity

subspaces could reduce approximation variance while Steps

still maintaining effective updates. These concepts lay Figure 1: Cosine similarity of estimated
the groundwork for our SVD-0 optimization framework, ZO gradients compared to true gradients
which systematically uses the inherent structure in the (Original and After SVD).

Z0 gradient estimates to achieve FO-guided efficiency without the computational burden of back-
propagation.

4 Methodology

4.1 Overview of Our Method

La 1 . T .
Matrix Update Parameter Perturbation

Subspace Projection Matrix Subspace Projection

Layer [Input

Figure 2: Framework and workflow of our SVD-0 method.

Gradient Calculation

Figure[2]illustrates our approach, centering on two primary components, i.e., the matrix update module
and the parameter perturbation module. The matrix update module deals with the computations
and adjustments of projection matrices, denoted by U € R™*" and V' € R™*". These matrices, in

127
128

129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146

147
148

149
150

151

152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167

168

169
170
171
172
173
174

conjunction with a low-dimensional random matrix Z € R"*", are utilized to produce a low-rank
perturbation Z.

Within the first module (i.e., the matrix update " ; -
module), we introduce an innovative and prpiacise Algorithm 1 GenerateProjMatrix (G,)
approach to acquire the matrices U and V, as .I.nput: i) G, estimated gradient of parameter matrix;
detailed in Algorithm|[T} Traditional approaches i) 7 rank. o .

often utilized random low-rank perturbation ma- OUtPut: U, V', projection matrices.

trices [3, 43]]. This randomness contributed to ~ 1: (P, S, Q) = SVD(G)

uncertainty in the gradient update process dur- 2 U < P [rr: 7]

ing training. In contrast, our approach computes i Xt;nQI[} :‘;]

the U and V matrices based on the gradient in-) ’

formation derived using the MeZO method [29]] before each update.

The second module serves to perturb the param- "
eters, as described in Algorithm 2] Common en- Algorithm 2 PerturbParams(W, U, V, 1 €, 5)
hancements, like SubZero [43]] and the SVD-0 Input: i) W, model parameter set; ii) i/ and V,
approach suggested here, reformulate the update projection matrix sets; iii) r, rank; iv) ¢, perturba-
mechanism by adopting a low-rank perturbation tion scale; v) s, seed.
method. As illustrated in Figure[2] the low-rank Output: Model parameter set after perturbation.
perturbation Z € R™*" is determined in the 1: ResetGenerator(s)
following manner: 2: fori=1,2,...,ldo

. 3: Z; < GeneratePerturbMatrix(r)

Z=UzVv7", 4

5

W+ W,;+eU,Z, V]
where Z € R"*" is a random perturbation ma- >* end for
trix sampled from N(0,1). Consequently, the 6 return w

parameter ; € R™*" during the ¢'" iteration is determined by Gti =0+ Z=0+UZV?" Thus,
the gradient is approximated using two forward evaluations as expressed below:

L(6);8) — L(6;;B)
2€

VL) = uzvT.)

4.2 Gradient-Guided Subspace Projection Matrix Acquisition

Existing approaches to projection matrix construction consist of a spectrum of techniques, ranging
from randomized sampling methods [5,43]] to computationally intensive deterministic algorithms [48]].
Although the former is computationally efficient, it has the defect of insufficient approximation
accuracy due to randomness. The latter introduces significant computational overhead while not
significantly improving the approximation accuracy. To address this limitation, we propose a
balancing strategy based on adaptive subspace decomposition, as shown in lines 4-7 of Algorithm 3]

To retain the advantage of memory efficiency of zero-order optimizations, we calculate the gradient
using the MeZO [29] method, as shown in lines 5-6 of Algorithm 3] Before calculating the projection
matrix each time, the gradient calculation is required. Then, as shown in the algorithm [T} the U
and V matrices are updated according to the gradient obtained this time. We use the SVD method
to calculate the projection matrix. Through this method, the original gradient is projected onto a
compact space R € R™*": R = U’ GV After that, we can generate a low-rank perturbation Z in
this space, as shown in lines 3-4 of the Algorithm[2] and then use the previously calculated U and V/
matrices to restore this low-rank perturbation to the original high-rank space. In this way, we can
successfully apply gradient-based low-rank perturbations to the parameters, and this process will not
introduce additional overhead compared to the traditional ZO method (i.e., MeZO).

4.3 Periodical Subspace Update

As mentioned above, we obtain the gradient using the MeZO [29] method and obtain the projection
matrices U and V by SVD. These two projection matrices jointly determine the gradient approxi-
mation and the parameter update of the t** step. However, this iterative update method presents a
critical trade-off between computational efficiency and subspace adaptability. High-frequency updates
restrict the complete evolution of the gradient subspace while incurring substantial computational
costs, particularly due to the need for gradient recomputation prior to each projection matrix update.

175
176

177
178
179
180
181
182

183
184
185

187
188
189
190
191
192
193
194

Algorithm 3 SVD-0
Input: i) W,; € R™*™ 4 = 1,...,l, parameter matrix in the i-th layer; ii) £, loss; iii) 7', step
budget; iv) ¢, perturbation scale; v) {n'}, learning rate schedule; vi) F, subspace update frequency;
vii) 7, rank.
1: fort =1,...,T in parallel do
2: B! < SampleMinbatch (s*) {Sample a minbatch B! C D and a random seed s'}
fori=1,2,...,ldo
if ¢ mod F = 0 then
G, + EstimateGradient(W/, €) {Estimate the gradient of W/ using the same way of
MeZO}
U.,V! < GenerateProjMatrix(G;,)
else
U+ UL Vievi!
end if
end for
{Wt = {Wﬁ}ﬁ':put = {Ug}é:p V= {Vﬁ}i‘:ﬂ
11: W' « PerturbParams (W', U, V!, 7, ¢, s')
122 04« L(W' B
13: W' « PerturbParams (W', U, V!, r, —2¢, st)
14: 0t « L(WBY)
15: W' « PerturbParams (W*, U, V!, 7, ¢, s')
16: pt (£f — 1) /(2e)
17: ResetGenerator(s) {Reset random number generator with seed s }
18: fori=1,2,...,ldo

DA

YR IAD

Ju—

19: Z! « GeneratePerturbMatrix(r) { Regenerate the perturbation matrix Z% € R"*" whose
entries are sampled from A/(0,1)}

0. Wi ewl oy (Ulzivih)

21: end for

22: end for

In contrast, low-frequency updates risk not capturing the dynamic variations in the gradient subspace
throughout the training process.

Therefore, we propose a periodic subspace update strategy. As presented in lines 4-10 in Algorithm [3]
we use the MeZO method to calculate the gradient once at the start step and every F' steps thereafter.
Then the obtained gradient is used to update the projection matrices U and V, and keep them
unchanged in the subsequent steps. We have experimentally proved the effectiveness and necessity of
this strategy. As shown in Table[3] the appropriate update frequency can not only ensure efficiency
but also bring significant improvements to model performance.

Despite reducing computational complexity, this strategy
will only cause minimal extra memory usage, as presented
in Table[I] We adopt a layer-wise parameter update strat-

Table 1: Memory cost of methods in fine-
tuning RoBERTa-large.

egy by updating only the parameters of a certain layer of Method | Total GPU Memory
the model at the same time. This means that during the en- MeZO [29] 2.042GB
tire training process, we only need to store two additional LOZO [5] 2.042GB
small matrices at the same time, including the projection SVD-0 2.562GB

matrices U € R™*" and V' € R™*", where r is much
smaller than the dimension of the parameter matrix # € R™*™. Therefore, the memory usage
introduced by the two matrices remains at the same low level as that introduced in [43]. This strategy
makes our method almost consistent with the memory required by the MeZO [29] method without
any performance loss, and maintains the memory-saving advantage of the ZO method.

195

196
197

198
199

200
201

202
203
204

205
206

207
208
209

210
211

212

213

214
215

216

217

218
219

220

221

222

223

224
225

5 Convergence Analysis

In this section, we theoretically analyze the convergence of our proposed SVD-0. Following the
derivations in [4330]] and [47]], we first introduce our proposition and the corresponding lemma.

Lemma 1 (Low-rank subspace of weight matrices [47]). Gradient matrices become low-rank
during fine-tuning. The weight matrix update can be formed as
T—1
Or =00 +nY VIO, VIO =U(Uf6)V)V,", 3)
t=0
where 1 is the learning rate, Uy € R™*" and V; € R™ " are projection matrices and can be
approximated by the spectrum of V f(0); through (U, V) = SVD(V f(0),).

Lemma|T|shows that subspace projection matrices can be approximated by adopting SVD on gradients.
Given that the SPSA is an unbiased approximation of the exact gradient V f(0), we can use the SPSA
gradient to compute the two projection matrices.

Proposition 1 (Block-diagonal matrix based on SVD). The singular matrices U and V' are column-
orthogonal. Therefore, we can similarly define the following notations based on Equation|I}

P =bdiag(Vi @ U,,...,V,U)),

z= [vec(Zl)T, e ,vec(Zl)T}T , 2= {vec(zl)—r, . ,vec(Zl)T}T

Proposition [I] shows that the projection matrices in our method have the same properties as the
column-orthogonal matrices used in [43]]. Therefore, the subsequent theoretical analysis can proceed
in the same way as that proved in [43].

Lemma 2 (Bounded gradient estimation error [43]). For the gradient estimation in Equation|2| the
following two properties hold.

(1) By using gradient estimation in Equation the estimated gradient v £(8) is equivalent to

@f(@) _ f(@+ePz) —f(B—EPz)PZ

2e ’
where z ~ N(0,1,), ¢ > 0, P € R¥ satisfies P' P = I, with d = Zé:l min; and q = Ir?.

“

(2)Let z ~ N(0,1,), and | € C’if (R%). Based on Equationwhose properties have been analyzed
in [30], our method has the same bounded gradient estimation error as that in [43]:

Note that f € C}*(S) denotes the class of s-th smooth and p-th L-smooth functions over the set S.

E, [W(a)] — PPTVf(e)H2 < %Lz(q +4)2. (5)

Theorem 1 (Convergence of SVD-0). Consider the optimization problem x* = argmin f(x), in

xER?
which | € Ci’ll (RY) and f exhibits non-convex behavior. Define the stochastic sequence &), =
(20, 21, - - ., k), where each zy, follows the normal distribution N'(0, 1 ;). Set the step-size parameter

1
asn = — . Let{x denote the iterates produced via Algorithm 3. For SVD-0, we
7 TeERNIA {zr}e>0 p g

establish its convergence rate as:
1= 2
= > Ee, [[VH@)|] <.
k=0

1

d
under the scaling T = () () fore <O <3/2
€ @#rRd/2LY

tions.

), aligning with prior theoretical deriva-

Combining Proposition [I|and Lemma 2] within the framework proposed in [43]], Theorem I| proves
our SVD-0 achieves a convergence rate of O(%) which matches the rate derived in [43]].

226

227
228
229
230

231

232
233

234
235

236

244

254

274

6 Experiments

To evaluate the effectiveness of our approach, we implemented SVD-0 on top of the PyTorch
framework (version 20.10). All experiments were carried out on a Linux workstation running CentOS,
featuring two NVIDIA A100-40GB GPUs, dual Intel 6240R CPUs, and 384GB of RAM. We designed
our experiments to explore the following research questions (RQs).

RQ1 (Superiority of SVD-0): To what extent does SVD-0 outperform SOTA methods in accuracy?

RQ2 (Impact of Hyperparameters): What are the impacts of critical hyperparameters (e.g., learning
rate, subspace rank, subspace update frequency) on SVD-0-based fine-tuning?

RQ3 (Applicability of SVD-0): How does SVD-0 perform when fine-tuning models of varying sizes
or architectures (e.g., masked or causal language models)?

6.1 Experimental Settings

70 Baselines. Our SVD-0 method was evaluated against six latest ZO optimization algorithms, i.e.,
MeZO [29]], ZO-AdaMU [20], S-MeZO [27]], SubZero [43], LOZO [3l], and HiZOO [48]]. Meanwhile,
we examined three memory-efficient inference-only approaches, i.e., zero-shot evaluation, in-context
learning (ICL) [4]], and linear probing (LP) [22].

Model Settings. In our experiments, we took into account both large-scale autoregressive language
models (i.e., OPT-1.3B and OPT-13B [435]]) and a masked language model (i.e., RoBERTa-large [26]).
In the experiments, all ZO methods used a batch size of 16, except where specified, since larger
batches help minimize the gradient approximation variance. We chose MeZO as the main baseline
because it is the first widely-adopted ZO optimizer for LLMs, and included the first-order SGD
as a reference for optimization. In line with previous research [29} 46|, our experiments utilized
standardized prompt templates, which are crucial in influencing the performance of ZO methods.
Moreover, to ensure a fair comparison, we considered multiple values for each key hyperparameter.
For example, we investigated the following hyperparameter configurations for OPT-13B: a learning
rate in {le—7,2e—7,5e—7,1le—6}, e = le — 3, a batch size of 16 (except for MultiRC and DROP
which have a batch size of 8), a rank in {24, 32,48, 64, 128}, and a subspace update frequency in
{500, 1000, 2000}. Please refer to Appendix [A]for detailed configurations of other models. Similarly
to the work in [43], we conducted an exhaustive grid search over hyperparameters for each pairing of
Z0 methods and LLMs, and used the best results for an equitable comparison.

Dataset Settings. For OPT models, we experimented with the SuperGLUE benchmark [40],
which consists of various types of tasks, including classification tasks (e.g., SST-2 [37], RTE [1}
2l (7, [14], CB [8]], BoolQ [6], WSC [23]], and WIC [33]), multiple choice tasks (e.g., COPA [33]
and ReCoRD [44])), and generation tasks (e.g., SQuAD [34] and DROP [11]]). Here, for each task,
we randomly selected 1000 samples for training, 500 samples for validation, and 1000 samples for
testing. For the RoBERTa-large model, in addition to the task SST-2, we investigated three more tasks,
i.e., SST-5 [37]], SNLI [3]], and MNLI [41]]. In this case, we fixed the parameter k at 512 throughout
the training and validation phases, indicating that 512 samples are allocated for each category. For
the testing phase, we randomly chose a total of 1000 samples.

6.2 Comparison with State-of-the-Arts (R1)

We compared our proposed SVD-0 method with the SOTA ZO optimizers. The experiments were
conducted on the SuperGLUE benchmark employing both the OPT-13B and OPT-1.3B language
models of different sizes. Note that in each experiment, we applied the adopted stochastic gradient
descent (SGD) or ZO method to all model parameters.

Table 2] compares the fine-tuning performance on SuperGLUE benchmark tasks using the OPT-13B
model. Here, we considered three types of fine-tuning methods: i) the traditional fine-tuning method
(i-e., SGD) with backpropogation; ii) inference-only methods (i.e., Zero-shot, ICL and LP) without
fine-tuning; and iii) memory-efficient ZO-based methods. To enable a fair comparison between ZO-
based methods, we used the MeZO method here as a reference. We evaluated the overall performance
across each classification task category and denoted the improvement in performance compared to
the baseline (i.e., MeZO) in the sub-column labeled “Total”. For example, the total performance
on multiple choice tasks with MeZO and SVD-0 is 169.0 and 171.2, respectively. In this case,

277
278
279
280
281
282

283

284

286

287
288
289
290
291
292
293
294

296
297
298
299
300

302
303
304
305
306
307
308
309
310

Table 2: Comparison of OPT-13B fine-tuning performance (%) on SuperGLUE, where the best results
are presented in bold and the second-best results are highlighted with underlines.

Method | Classification Task | Multiple Choice Task | Generation Task | All Task
|SST-2 RTE CB BoolQ WSC WIC MultiRC| Total | COPA ReCoRD | Total |[SQuAD DROP| Total | Total
SGD | 949 823 857 784 653 658 742 | - | 900 824 | - | 80 355 - |
Zero-shot 58.8 59.6 464 59.0 385 550 469 - 80.0 812 - 46.2 14.6
ICL [4] 87.0 62.1 57.1 669 394 505 53.1 - 87.0 82.5 - 759 29.6
LP [22] 934 68.6 679 593 63.5 602 635 - 55.0 27.1 - 3.7 11.1
MeZO [29] 92.1 71.5 714 744 615 600 60.1 0% | 87.0 82.0 0% 842 312 | 0% 0%

ZO-AdaMU [20]| 92.1 729 67.9 730 61.5 607 63.0 |0.02%| 89.0 83.0 [178%| 824 32.0 |-0.87%| 0.27%
S-MeZO [27] | 92.3 769 750 765 61.1 582 633 |251%| 870 712 |-639%| 779 319 |-4.85%| -0.53%
HiZOO [48] | 913 69.3 694 67.3 635 594 555 |-3.12%| 880 814 |024%| 81.9 313 |-191%| -2.21%
LOZO[3] | 917 704 69.6 719 63.5 60.8 63.0 |-0.02%| 89.0 813 [0.77%| 849 307 |0.17% | 0.18%
SubZero [43] | 92.1 740 732 753 654 608 610 |220%| 880 823 |0.77%| 845 320 [095%| 1.70%

SVD-0 936 755 714 752 635 654 606 |2.89%| 89.0 822 |130%| 851 309 |0.52%| 2.19%

SVD-0 improves inference performance by 1.30% compared to MeZO. From the results provided in
the “Total” sub-columns, we can find that SVD-0 can always achieve top-2 inference performance.
Furthermore, we used the final column to show the relative performance improvement for all tasks.
From this column, we can find that SVD-0 achieves the best overall performance. Interestingly, while
S-MeZO matches SVD-0 in the number of tasks where it excels, its overall performance, shown in
the final column, is noticeably inferior to SVD-0 and even falls short of the reference (i.e., MeZO).

6.3 Impacts of Hyperparameters (R2)

Hyperparameters play an important role in fine-tuning. In this experiment, we investigate three key
hyperparameters (i.e., subspace update frequency, rank, and learning rate) to evaluate their impacts
on fine-tuning performance.

Table 3: Impact of subspace update frequency, where the best results are highlighted in bold.

Frequency |SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

50 90.5 57.0 643 650 635 556 575 72.0 724 742 230
500 89.5 55.6 69.6 64.1 63.5 539 58.1 73.0 72.2 743 229
1000 90.6 58.5 71.4 652 63.5 564 58.2 73.0 72.1 73.7 240
2000 89.2 56.7 73.2 645 625 574 581 73.0 71.7 726 238
20000 89.8 563 714 653 625 575 58.2 72.0 72.1 72.6 226

For the subspace update frequency F', our aim is to assess the impact of altering the subspace update
frequency on model performance in various tasks. We conducted experiments based on SVD-0
and the OPT-1.3B model with a fixed rank of » = 24 and a learning rate of 1 x 10~7. In this
analysis, we evaluated five frequencies at varying magnitudes, specifically selected from the set
{50, 500, 1000, 2000, 20000}. Table [3| provides the experimental results. From this table, we can
find that when the frequency is set to 1000 (i.e., the subspace is updated in every 1000 steps), SVD-0
achieves the best performance in six of the eleven tasks. Note that SVD-0-based fine-tuning is not
sensitive to the hyperparameter [. Therefore, we suggest setting I to 1000 by default for fine-tuning.

We also investigated the rank of hyperspace (i.e., r)

and the learning rate together. Table [4] presents the Table 4: Impacts of rank and learning rate.

fine-tuning performance under various combinations Rank \ LR | le—7 5e—7 le—6
of these two hyperparameters, where the rank is se-

lected from {2, 24, 48, 64, 128} and the learning rate 2 87.7 912 867
is selected from {le — 7,5e — 7,1e — 6}. All the ig Zgg gf% gg?
experimental results are collected based on the SST-2 64 899 904 916
task using the OPT-1.3B model, with a fixed subspace 128 90,0 913 906

update frequency of 1000. From this table, we can
find that the fine-tuning performance is weak when the rank is low (i.e., » = 2). While elevating the
rank can enhance fine-tuning performance, once the rank surpasses 24, the extent of this enhancement
becomes negligible. Note that at low ranks, the performance can vary significantly with different
learning rates. In contrast, increasing rank tends to reduce this variability in performance. Moreover,
we can observe a similar trend for the learning rate hyperparameter, where setting the learning rate to
5e — 7 can achieve the best performance for most rank settings. However, when learning rates are
increased, the inference performance may worsen.

311

312
313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331

332

333
334
335
336

337
338
339
340
341
342

343

344
345
346
347
348
349
350
351
352

6.4 Impact of Model Sizes and Architectures (R3)

In Table [2} we have evaluated the adaptability of SVD-O0 to large-scale LLMs. To further validate
the generalizability of our approach, we extended our evaluation to the OPT-1.3B model based on
representative tasks of different types, where SST-2 and WIC are classification tasks, ReCoRD is a
multiple choice task, and SQuAD is a generation task. Table 5] presents the results of the comparison
between four ZO-based fine-tuning methods, where the last column shows the average fine-tuning
performance of the four tasks. From this table, we can find that SVD-0 is also well-suited for fine-
tuning on small-scale LLMs. Although LOZO delivers the highest performance in this experiment,
the difference in the average fine-tuning performance between SVD-0 and LOZO is minimal (i.e.,
merely 0.2%). Note that SVD-0 achieves better performance than MeZO, the reference method,
while SubZero fails to beat MeZO. Moreover, SVD-0 can always achieve better performance than its
counterpart (i.e., SubZero) with an average improvement of 0.7%. All these observations substantiate
the efficiency of our method in enhancing subspaces for optimizing LLMs.

Table 5: Fine-tuning performance (%) comparison Table 6: Fine-tuning performance (%) comparison for
for OPT-1.3B, where the top-2 results are marked in RoOBERTa-large, where the top-2 results are marked in

bold and with underlines, respectively. bold and with underlines, respectively.

Method | SST-2 WIC ReCoRD SQuAD AVG. Method | SST-2 SST-5 SNLI MNLI
MeZO [29] | 91.7 611 722 774 756 Zero-shot 79.0 355 50.2 48.8
LOZO [3] 932 624 71.9 78.1 76.4 MeZO [29] | 93.7(04) 53.9(1.9) 84.8(1.1) 76.6(0.8)

SubZero [43] | 91.9 607 72.0 71.6 755 LOZO[3] | 94.1(0.7) 53.0(04) 85.4(0.8) 80.4(L0)
SVD-0 (Ours) | 930 6L1 73.0 7.6 162 SVD-0 (Ours) | 94.4(0.7) 54.4(0.7) 854(1.3) 80.4(L5)

We investigated the fine-tuning performance of different optimization methods on RoBERTa-large,
where we considered four downstream tasks, including two sentiment classification tasks (i.e., SST-2
and SST-5) and two natural language inference tasks (i.e., SNLI and MNLI). For a fair comparison,
like the work in [3]], we performed fine-tuning on each task five times using different random seeds.
Table [6] presents the experimental results, reflecting both the average inference performance and
its standard deviation (indicated in parentheses) for each combination of fine-tuning methods and
tasks. From this table, we can find that SVD-0 has the best performance compared with SOTA ZO
optimization methods, showing the adaptability of our approach to different model architectures.

6.5 Discussion

Limitations. While the SVD-0 technique improves the ZO subspace fine-tuning approach, the
accuracy of the subspace projection matrices is significantly influenced by the precision of the ZO
gradients. In smaller models like the OPT-1.3B, the ZO gradients may have a greater approximation
error, which can result in decreased precision in obtaining the projection matrices.

Border Impact. In this paper, we introduced a new approach to derive more precise projection
matrices, which can be used to improve the effectiveness of ZO subspace fine-tuning techniques for
LLMs. Our method utilizes SVD on ZO gradients to extract projection matrices, eliminating the need
for the memory-demanding FO gradients. Our theoretical convergence analysis in conjunction with
the experimental findings demonstrates that our research contributes positively to the advancement of
memory-efficient fine-tuning methods for LLMs.

7 Conclusion

Although various zeroth-order (ZO) optimization methods have been proposed to enable memory-
efficient fine-tuning for large language models (LLMs), due to the use of random subspaces, most
of them suffer from inaccurate gradient estimation, resulting in inferior training performance. To
address this problem, this paper presents a novel ZO subspace fine-tuning method named SVD-0. By
precisely capturing fine-tuning subspaces, SVD-0 enables the construction of projection matrices with
higher accuracy to achieve more accurate gradient estimation, thus improving the LLM fine-tuning
performance. Extensive experimental findings demonstrate the efficacy of SVD-0 in dealing with
complex language modeling tasks. In the future, we plan to combine our SVD-0 method with various
parameter quantization methods to further reduce the memory required by LLM fine-tuning.

353

354
355
356

357
358
359

360
361
362

363
364
365
366

367
368
369

370
371
372
373

374
375
376
377

378
379
380

381
382
383

385
386

387
388
389
390
391

392
393

394
395
396

398
399

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second PASCAL recognising textual entailment challenge. In Proceedings
of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth PASCAL recog-
nizing textual entailment challenge. In Proceedings of the Second Text Analysis Conference,
20009.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 632-642, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Proceedings of the Advances on Neural Information Processing Systems
(NeurIPS), 33:1877-1901, 2020.

Yiming Chen, yuan zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order
fine-tuning for language models with low-rank structures. In Proceedings of International
Conference on Learning Representations (ICLR), 2025.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In
Proceedings of the Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL), 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual en-
tailment challenge. In Proceedings of the International Conference on Machine Learning
Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing
Textual Entailment, 2005.

Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank:
Investigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung
23,2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 () 8-bit matrix
multiplication for transformers at scale. In Proceedings of the Advances on Neural Information
Processing Systems (NeurlPS), pages 30318-30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 36:10088—-10115, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. In Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL), pages 2368-2378,
2019.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), pages 15180-15208, 2024.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL

recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing, 2007.

10

400
401
402

404
405

406
407
408

409
410
411

412
413
414

415
416
417
418

419
420

421
422
423

424
425
426

427
428
429
430

431
432
433
434

435
436
437

439
440

441
442
443

444
445
446
447

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-
tuning for large models: A comprehensive survey. Transactions on Machine Learning Research
(TMLR), 2024.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: low-rank adapters are secretly gradient
compressors. In Proceedings of the International Conference on Machine Learning (ICML),
pages 17554-17571, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
Proceedings of the International Conference on Learning Representations (ICLR), 2022.

Jia-Hong Huang, Yixian Shen, Hongyi Zhu, Stevan Rudinac, and Evangelos Kanoulas. Gradient
weight-normalized low-rank projection for efficient llm training. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), volume 39, pages 24123-24131, 2025.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi
Liu, and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and
uncertainty in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 38, pages 1836318371, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Proceedings of the International Conference on the Principles of Knowledge Representation
and Reasoning, 2012.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device 1lm compression and acceleration. Proceedings of the Machine Learning and
Systems (MLSys), 6:87-100, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics (ACL), pages 61-68,
2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoOBERTa: A robustly optimized BERT
pretraining approach. arXiv:1907.11692,2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order 1lm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Shaocong Ma and Heng Huang. Revisiting zeroth-order optimization: Minimum-variance
two-point estimators and directionally aligned perturbations. In Proceedings of The Thirteenth
International Conference on Learning Representations (ICLR), 2025.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen,
and Sanjeev Arora. Fine-tuning language models with just forward passes. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages 53038-53075,
2023.

11

448
449
450

451
452
453
454

455

457

458
459

461

462
463
464

465
466

467
468

469
470
471
472

473
474
475

476
477
478

479
480
481
482

483
484
485
486

487
488
489
490

491
492
493

494
495
496

[30] Ryota Nozawa, Pierre-Louis Poirion, and Akiko Takeda. Zeroth-order random subspace algo-

rithm for non-smooth convex optimization. Journal of Optimization Theory and Applications,
204(3):53, 2025.

[31] Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
layerwise importance sampling for memory-efficient large language model fine-tuning. Proceed-
ings of the Advances in Neural Information Processing Systems (NeurIPS), 37:57018-57049,
2024.

[32] Sihwan Park, Jihun Yun, SungYub Kim, Souvik Kundu, and Eunho Yang. Unraveling zeroth-
order optimization through the lens of low-dimensional structured perturbations. arXiv preprint
arXiv:2501.19099, 2025.

[33] Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL), pages 1267-1273, 2019.

[34] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 23832392, 2016.

[35] Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alterna-
tives: An evaluation of commonsense causal reasoning. 2011.

[36] Murray Shanahan and Catherine Clarke. Evaluating large language model creativity from a
literary perspective. arXiv preprint arXiv:2312.03746, 2023.

[37] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2013.

[38] Yan Sun, Tiansheng Huang, Liang Ding, Li Shen, and Dacheng Tao. Tezo: Empowering the
low-rankness on the temporal dimension in the zeroth-order optimization for fine-tuning llms.
arXiv preprint arXiv:2501.19057, 2025.

[39] Qitao Tan, Jun Liu, Zheng Zhan, Caiwei Ding, Yanzhi Wang, Jin Lu, and Geng Yuan. Harmony
in divergence: Towards fast, accurate, and memory-efficient zeroth-order llm fine-tuning. arXiv
preprint arXiv:2502.03304, 2025.

[40] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose

language understanding systems. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

[41] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL), 2018.

[42] Yifan Yang, Kai Zhen, Ershad Banijamali, Athanasios Mouchtaris, and Zheng Zhang. Adazeta:
Adaptive zeroth-order tensor-train adaption for memory-efficient large language models fine-
tuning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 977-995, 2024.

[43] Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua Huang. Subzero: Random subspace zeroth-
order optimization for memory-efficient llm fine-tuning. arXiv preprint arXiv:2410.08989,
2024.

[44] Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
ReCoRD: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint 1810.12885, 2018.

12

497
498
499

500
501

503

504
505
506

507
508
509

[45] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained
transformer language models. arXiv:2205.01068, 2022.

[46] Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient Ilm fine-tuning: a benchmark. In Proceedings of the International Conference
on Machine Learning (ICML), pages 59173-59190, 2024.

[47] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient 1lm training by gradient low-rank projection. In Proceedings of
the International Conference on Machine Learning (ICML), pages 61121-61143. PMLR, 2024.

[48] Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

13

510

511

512
513
514
515
516
517

518
519
520
521

A Detailed Experimental Settings

A.1 Hyperparameter Settings

This section provides a detailed overview of the hyperparameters employed in our grid search across
the experiments, as depicted in Tables[/|and E} For the OPT model, we carried out 20,000 steps
for each method. Both the SGD and ZO methodologies were implemented for an identical number
of steps. In the remaining RoBERTa experiments, ZO optimization strategies were applied over
100,000 training steps. For both models, we evaluated the validation loss every 1,000 training steps
to determine the optimal model checkpoint. In the S-MeZO strategy, the sparsity rate is set to 0.75.

Table 7: The hyperparameter grids used for OPT-13B experiments.

Method ‘ Hyperparameters
| Batch Size Learning Rate € Rank Update Interval
SGD 16 {le—4,1e—3,5e¢—3} - - -
MeZO [29] 16 {le—7,2e—7,5e—7,1e—6} le—3 - -
S-MeZO [27] 16 {le—6,5e—6} le—3 - -
LOZO [3] 16 {le—7,1e—6} {le—3,1le—4} {1,2,4} {50,100}
SubZero [43]] 16 {le—7,2e—7,5e—7,1le—6} le—3 {32, 64,128,256} {500, 1000, 2000}
SVD-0 16 {le—7,2e—7,5e—7,1e—6} le—3 {24, 32,48,64,128} {500, 1000, 2000}

Table 8: The hyperparameter grids used for OPT-1.3B experiments.

Method | Hyperparameters
\ Batch Size Learning Rate € Rank Update Interval
MeZO [29] 16 {le—7,5e—7,1le—6} le—3 - -
LOZO [3] 16 {le—7,1e—6} {le—3,1e—4} {1,2,4} {50, 100}
SubZero [43] 16 {le—7,5e—7,1e—6} le—3 {24,48} 1000
SVD-0 16 {le—7,5e—7,1e—6} le—3 {8,24,48} {50,500, 1000}

For all previously mentioned ZO methods, we utilized a consistent learning rate schedule and set the
weight decay to zero. Typically, we chose a batch size of 16 for the OPT-1.3B and OPT-13B models
across various tasks. Nonetheless, due to limited GPU resources, we reduced the batch size to 8 for
the DROP, MultiRC, and SQuAD evaluations.

Table 9: Hyperparameter Grids for RoOBERTa-large Experiments

Method | Hyperparameters
\ Batch Size Learning Rate € Rank Update Interval
MeZO [29] 64 {le—7,1e—6,1le—5} le—3 - -
LOZO [3] 64 2e—7 le—3 {4,8} {50,100}
SVD-0 64 le—6 le—3 {8,16,24} 1000

14

522

523

524
525

526

527

528

529

530
531

533

534
535

536
537

538

539

540

541

542

543
544
545
546
547
548
549
550
551
552
553

554
555
556
557
558

559
560

561
562

563
564
565
566
567
568

569

570
571

572

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .
Justification: Please refer to Section [11
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: Please refer to Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

15

573

574

575
576
577
578
579
580
581
582
583

584

585

586
587
588

589

590

591

592
593
594
595
596
597
598
599
600
601

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

623

624
625
626

Justification: Please refer to Section
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .
Justification: Please refer to Section [6|and Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

627

628

629

630

631
632

633
634
635

636

638

639
640

641
642
643

644
645

647

648

649
650
651

652

653

654

655

656
657

658
659
660

661
662

663

664

666
667
668
669
670
671
672
673
674
675
676
677

Answer: [Yes] .
Justification: We have packed and uploaded our code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: Please refer to Appendix [A]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .
Justification: We reported the results from different random seeds in Section [6]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

678
679
680

681
682
683

684

686

687
688
689

690

691

692

693

694
695

696
697

698
699
700

701

702
703

704

705

706

707

708
709

710
71

712

713
714

715

716
717

718

719

720
721

722
723
724
725

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .
Justification: This study complies with the NeurIPS ethical guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: We studied the general model fine-tuning method, which is not directly
associated with a specific application or deployment.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

726
727
728
729
730
731
732

734
735
736

737
738
739
740

741

742
743
744

745

746
747

748

749

750
751
752
753

754
755

756
757
758

759

760
761
762

763

764

765

766
767

768
769
770
771
772
773
774
775
776
77
778

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This research releases only the model training code, not the data or deployable
models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: Please refer to Section[6] Appendix [A]and our repository.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

779
780

781

782
783

784

785

786

787
788

790
791
792
793
794

796
797
798

799

800

801

802

803

804
805
806
807
808
809

810
811

812
813
814
815

816

817

818

819

820
821
822
823
824
825
826
827
828

829

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .
Justification: We have packed and uploaded our code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: We did not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: We did not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

20

830
831
832
833

834

835
836

837

838
839
840
841

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs is not an important, original, or non-standard component of the core
methods in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Prestudy
	Methodology
	Overview of Our Method
	Gradient-Guided Subspace Projection Matrix Acquisition
	Periodical Subspace Update

	Convergence Analysis
	Experiments
	Experimental Settings
	Comparison with State-of-the-Arts (R1)
	Impacts of Hyperparameters (R2)
	Impact of Model Sizes and Architectures (R3)
	Discussion

	Conclusion
	Detailed Experimental Settings
	Hyperparameter Settings

