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Abstract

As a promising memory-efficient technique, zeroth-order (ZO) optimization en-1

ables large language models (LLMs) to bypass costly backpropagation during2

fine-tuning by estimating gradients through function evaluations. However, to3

minimize approximate variance in high-dimensional parameter spaces, existing ZO4

methods focus on exploring the estimate of gradients within random subspaces,5

neglecting the benefits of searching for more accurate subspaces of LLMs on6

gradient estimates. Due to inaccurate gradient estimates obtained from random7

spaces, fine-tuning performance is inevitably degraded, thus compromising the8

performance of downstream tasks. To address the limitation of existing ZO meth-9

ods, this paper proposes a novel ZO subspace fine-tuning method named SVD-0.10

Based on singular value decomposition (SVD), SVD-0 can effectively obtain more11

accurate subspace projection matrices, which can be used to improve the accuracy12

of gradient estimates. Experimental results on various complex language modeling13

tasks show that SVD-0 achieves better fine-tuning performance than state-of-the-art14

ZO methods.15

1 Introduction16

Due to the powerful capabilities of language understanding and reasoning, large language models17

(LLMs) have demonstrated significant performance on a wide range of tasks, such as mathematical18

reasoning[15], creative writing [36]. Currently, fine-tuning (FT) the pre-trained foundation model to19

adapt to downstream tasks has become the mainstream paradigm for AI application development.20

However, because of the extremely large number of model parameters, traditional first-order (FO)21

optimization-based fine-tuning methods face the serious challenge of excessive memory consumption.22

Typically, since the backpropagation process in FO needs to store the activations and optimizer states,23

the memory requirements of FT are significantly larger than those of reasoning, which seriously24

limits the development of LLM-based applications.25

To achieve memory-efficient FT, existing methods can be classified into two categories, i.e., parameter-26

efficient fine-tuning (PEFT) methods [25, 16] and zeroth-order (ZO) optimization methods [29]. PEFT27

methods attempt to reduce the number of trainable parameters to alleviate memory requirements.28

However, since PEFT methods are still based on FO optimization, they have to consume a lot29

of memory to store intermediate training results, which severely limits the choice of trainable30

parameters. ZO optimization methods [29] emerge as a promising alternative by estimating gradients31

through forward-pass perturbations, eliminating backpropagation’s memory overhead. However,32

conventional ZO methods face a critical challenge: the high variance of gradient approximations in33

billion-parameter spaces severely degrades optimization efficiency and model performance.34

Recent advances in ZO optimization for LLMs, such as SubZero [43] and LOZO [5], attempt to35

mitigate this issue by constraining perturbations to random low-dimensional subspaces. These36
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methods are based on the finding that gradient matrices become low-rank during LLM training and37

fine-tuning [47]. While these subspace methods reduce approximation variance, they fundamentally38

rely on arbitrary projection matrices that fail to match the low-rank structure implied by the gradient.39

This limitation stems from a fundamental disconnect - the subspace construction process ignores40

critical gradient information that could guide more effective parameter updates. Therefore, how to41

determine the optimal low-dimensional subspaces without relying on first-order optimizers poses a42

fundamental challenge.43

The similarity between the gradient estimated by ZO optimizers and the true gradient has been44

experimentally demonstrated [29]. Consequently, we consider it viable to derive the low-rank45

structure of the true gradient from the estimated gradient. Based on this idea, we performed a46

prestudy. The experimental findings indicate that there is considerable similarity between the47

estimated gradient and the true gradient when comparing their singular value vectors. Therefore, we48

conclude that applying the SVD decomposition to the gradient estimated by the ZO optimizer enables49

us to obtain a low-rank structure that closely resembles the true gradient’s low-rank structure.50

Based on the above motivation, we propose SVD-0, a novel gradient-guided subspace optimization51

framework that synergizes zeroth-order efficiency with principled subspace discovery. Our key52

insight is that, while exact first-order gradients remain inaccessible due to memory constraints, ZO53

gradient estimates contain sufficient directional information to reconstruct high-fidelity subspaces.54

Specifically, SVD-0 periodically performs singular value decomposition (SVD) on ZO gradient55

estimates to derive layer-wise projection matrices that capture dominant optimization directions. By56

preserving the intrinsic structure of the subspace, our method effectively enhances the performance57

of subspace-based ZO methods. The contributions of this work are summarized as follows:58

• We propose a novel method for exploring more accurate subspace projection matrices59

and conducting layerwise perturbations on low-rank matrices. With periodic updates of60

the projection matrices, our method continuously captures the subspaces of the varying61

parameters.62

• To overcome the paradox that obtaining subspace projection matrices requires FO gradients,63

we develop a novel gradient-guided ZO method to approximate these two projection matrices,64

ensuring low memory usage throughout the entire fine-tuning process.65

• We conduct comprehensive experiments on various model scales and language modeling66

tasks. The corresponding results show the superiority of our method compared to various67

ZO optimization methods tailored for LLM fine-tuning.68

2 Related Work69

Memory efficient fine-tuning for LLMs. Recent work has concentrated on exploring memory-70

efficient fine-tuning methods to enable LLM fine-tuning on memory-intensive hardware. A critical71

line of research centers on Parameter-Efficient Fine-Tuning (PEFT) methods [25, 16] by freezing72

the backbone of LLMs while only tuning a small group of parameters. For instance, LoRA [18]73

only updates parameters based on low-rank structures while being competitive with full-parameter74

fine-tuning. LISA [31] distinguishes trainable layers based on their contribution to task-specific75

performance and freezes other layers to reduce the memory footprint. Further, parameter quanti-76

zation [24, 12] has played a pivotal role in enhancing memory efficiency. By discretizing model77

parameters (e.g., from 32-bit to 8-bit or lower precision), quantization methods such as QLoRA [10]78

and LLM.int8() [9] reduce storage requirements without significant degradation in task performance.79

Complementary to PEFT and the quantization method, subspace projection techniques have emerged80

as a powerful strategy to reduce the dimensionality of the optimization space. Galora [47] and81

FLORA [17] both leverage the low-rank property of gradients to constrain updates on a compact sub-82

space of the full parameter space [19]. By discovering the projection matrices of low-rank subspaces,83

the memory costs for storing gradients and optimizer states (e.g., the first and second order states in84

Adam optimizer [21]) are greatly reduced.85

Zero-order optimization. ZO approaches enable backpropagation-free optimization by approx-86

imating exact gradients through finite differences. This flexibility has driven interest in ZO for87

solving a range of machine learning problems, including on-chip learning, black-box adversarial88

strategies and memory-efficient LLMs fine-tuning [29, 46]. Despite these strengths, the practical89
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use of ZO is mainly confined to smaller-scale tasks and models. A critical limitation stems from the90

high error in its gradient approximations [32], which becomes more pronounced as problems grow91

larger and more complex, making scaling challenging. To address this issue, approaches such as92

MeZO-SVRG [13] and DiZO [39] utilize variance-reduction methodologies [28] to mitigate gradient93

divergence. Furthermore, methods including SparseMezo [27], TeZO [38], and AdaZeta [42] have94

been proposed to diminish approximation errors by reducing dependence on the parameter dimension95

through parameter sparsification and tenorization. Subspace methods [30], including SubZero [43]96

and LOZO [5], are explored to leverage low-rank structures for decreasing the error. Although97

they effectively alleviate the variance of gradient approximation, the randomly generated projection98

matrices cannot precisely reflect the transformation between the subspace and full space, leading to99

model performance degradation.100

3 Prestudy101

In exploring the alignment between estimated ZO and true FO gradients in the parameter spaces102

of large language models, we perform a targeted analysis using the OPT-1.3B model [45] on the103

RTE task [7, 1, 14, 2]. For every 50 training steps, we determine the exact FO gradients through104

backpropagation with a batch size of 16 and ZO gradient estimates via MeZO’s simultaneous105

perturbation method [29]. Subsequently, we apply singular value decomposition (SVD) to both106

gradient matrices. We then assess the cosine similarity between the singular value vectors.107
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Figure 1: Cosine similarity of estimated
ZO gradients compared to true gradients
(Original and After SVD).

Figure 3 shows that the singular vectors have a high co-108

sine similarity, indicating that the ZO gradients maintain109

key optimization directions and show a similar low-rank110

structure. This observation supports our main hypoth-111

esis. ZO gradient estimates possess enough spectral112

information to reconstruct FO-guided low-rank sub-113

spaces. The preserved directional accuracy suggests114

that limiting ZO perturbations to the primary gradient115

subspaces could reduce approximation variance while116

still maintaining effective updates. These concepts lay117

the groundwork for our SVD-0 optimization framework,118

which systematically uses the inherent structure in the119

ZO gradient estimates to achieve FO-guided efficiency without the computational burden of back-120

propagation.121

4 Methodology122

4.1 Overview of Our Method123
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Figure 2: Framework and workflow of our SVD-0 method.

Figure 2 illustrates our approach, centering on two primary components, i.e., the matrix update module124

and the parameter perturbation module. The matrix update module deals with the computations125

and adjustments of projection matrices, denoted by U ∈ Rm×r and V ∈ Rn×r. These matrices, in126

3



conjunction with a low-dimensional random matrix Z ∈ Rr×r, are utilized to produce a low-rank127

perturbation Z̃.128

Algorithm 1 GenerateProjMatrix(G, r)

Input: i) G, estimated gradient of parameter matrix;
ii) r, rank.
Output: U , V , projection matrices.
1: (P ,S,Q)← SVD(G)
2: U ← P [:, : r]
3: V ← Q[:, : r]
4: return U , V

Within the first module (i.e., the matrix update129

module), we introduce an innovative and precise130

approach to acquire the matrices U and V , as131

detailed in Algorithm 1. Traditional approaches132

often utilized random low-rank perturbation ma-133

trices [5, 43]. This randomness contributed to134

uncertainty in the gradient update process dur-135

ing training. In contrast, our approach computes136

the U and V matrices based on the gradient in-137

formation derived using the MeZO method [29] before each update.138

Algorithm 2 PerturbParams(W ,U ,V, r, ε, s)
Input: i) W , model parameter set; ii) U and V ,
projection matrix sets; iii) r, rank; iv) ε, perturba-
tion scale; v) s, seed.
Output: Model parameter set after perturbation.

1: ResetGenerator(s)
2: for i = 1, 2, . . . , l do
3: Zi ← GeneratePerturbMatrix(r)
4: W i ←W i + εU iZiV

T
i

5: end for
6: return W

The second module serves to perturb the param-139

eters, as described in Algorithm 2. Common en-140

hancements, like SubZero [43] and the SVD-0141

approach suggested here, reformulate the update142

mechanism by adopting a low-rank perturbation143

method. As illustrated in Figure 2, the low-rank144

perturbation Z̃ ∈ Rm×n is determined in the145

following manner:146

Z̃ = UZV T , (1)

where Z ∈ Rr×r is a random perturbation ma-147

trix sampled from N(0, 1). Consequently, the148

parameter θt ∈ Rm×n during the tth iteration is determined by θ±t = θ ± Z̃ = θ ±UZV T . Thus,149

the gradient is approximated using two forward evaluations as expressed below:150

∇̂L(θ±t ) =
L(θ+t ;B)− L(θ−t ;B)

2ϵ
UZV T . (2)

4.2 Gradient-Guided Subspace Projection Matrix Acquisition151

Existing approaches to projection matrix construction consist of a spectrum of techniques, ranging152

from randomized sampling methods [5, 43] to computationally intensive deterministic algorithms [48].153

Although the former is computationally efficient, it has the defect of insufficient approximation154

accuracy due to randomness. The latter introduces significant computational overhead while not155

significantly improving the approximation accuracy. To address this limitation, we propose a156

balancing strategy based on adaptive subspace decomposition, as shown in lines 4-7 of Algorithm 3.157

To retain the advantage of memory efficiency of zero-order optimizations, we calculate the gradient158

using the MeZO [29] method, as shown in lines 5-6 of Algorithm 3. Before calculating the projection159

matrix each time, the gradient calculation is required. Then, as shown in the algorithm 1, the U160

and V matrices are updated according to the gradient obtained this time. We use the SVD method161

to calculate the projection matrix. Through this method, the original gradient is projected onto a162

compact space R ∈ Rr×r: R = UTGV . After that, we can generate a low-rank perturbation Z in163

this space, as shown in lines 3-4 of the Algorithm 2, and then use the previously calculated U and V164

matrices to restore this low-rank perturbation to the original high-rank space. In this way, we can165

successfully apply gradient-based low-rank perturbations to the parameters, and this process will not166

introduce additional overhead compared to the traditional ZO method (i.e., MeZO).167

4.3 Periodical Subspace Update168

As mentioned above, we obtain the gradient using the MeZO [29] method and obtain the projection169

matrices U and V by SVD. These two projection matrices jointly determine the gradient approxi-170

mation and the parameter update of the tth step. However, this iterative update method presents a171

critical trade-off between computational efficiency and subspace adaptability. High-frequency updates172

restrict the complete evolution of the gradient subspace while incurring substantial computational173

costs, particularly due to the need for gradient recomputation prior to each projection matrix update.174
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Algorithm 3 SVD-0
Input: i) W i ∈ Rmi×ni , i = 1, . . . , l, parameter matrix in the i-th layer; ii) L, loss; iii) T , step
budget; iv) ϵ, perturbation scale; v) {ηt}, learning rate schedule; vi) F , subspace update frequency;
vii) r, rank.

1: for t = 1, . . . , T in parallel do
2: Bt ← SampleMinbatch (st) {Sample a minbatch Bt ⊂ D and a random seed st}
3: for i = 1, 2, . . . , l do
4: if t mod F ≡ 0 then
5: Gi ← EstimateGradient(W t

i , ϵ) {Estimate the gradient of W t
i using the same way of

MeZO}
6: U t

i,V
t
i ← GenerateProjMatrix(Gi, r)

7: else
8: U t

i ← U t−1
i , V t

i ← V t−1
i

9: end if
10: end for

{W t = {W t
i}li=1, U t = {U t

i}li=1, Vt = {V t
i}li=1}

11: W t ← PerturbParams (W t,U t, Vt, r, ε, st)
12: ℓt+ ← L(W

t;Bt)
13: W t ← PerturbParams (W t,U t, Vt, r,−2ε, st)
14: ℓt− ← L(W

t;Bt)
15: W t ← PerturbParams (W t,U t, Vt, r, ε, st)
16: ρt←

(
ℓt+ − ℓt−

)
/(2ε)

17: ResetGenerator(s) {Reset random number generator with seed s }
18: for i = 1, 2, . . . , l do
19: Zt

i ← GeneratePerturbMatrix(r) { Regenerate the perturbation matrix Zt
i ∈ Rr×r whose

entries are sampled from N (0, 1)}
20: W t+1

i ←W t
i − ηtρt

(
U t

iZ
t
iV

t
i
T
)

21: end for
22: end for

In contrast, low-frequency updates risk not capturing the dynamic variations in the gradient subspace175

throughout the training process.176

Therefore, we propose a periodic subspace update strategy. As presented in lines 4-10 in Algorithm 3,177

we use the MeZO method to calculate the gradient once at the start step and every F steps thereafter.178

Then the obtained gradient is used to update the projection matrices U and V , and keep them179

unchanged in the subsequent steps. We have experimentally proved the effectiveness and necessity of180

this strategy. As shown in Table 3, the appropriate update frequency can not only ensure efficiency181

but also bring significant improvements to model performance.182

Table 1: Memory cost of methods in fine-
tuning RoBERTa-large.

Method Total GPU Memory

MeZO [29] 2.042GB
LOZO [5] 2.042GB

SVD-0 2.562GB

Despite reducing computational complexity, this strategy183

will only cause minimal extra memory usage, as presented184

in Table 1. We adopt a layer-wise parameter update strat-185

egy by updating only the parameters of a certain layer of186

the model at the same time. This means that during the en-187

tire training process, we only need to store two additional188

small matrices at the same time, including the projection189

matrices U ∈ Rm×r and V ∈ Rn×r, where r is much190

smaller than the dimension of the parameter matrix θ ∈ Rm×n. Therefore, the memory usage191

introduced by the two matrices remains at the same low level as that introduced in [43]. This strategy192

makes our method almost consistent with the memory required by the MeZO [29] method without193

any performance loss, and maintains the memory-saving advantage of the ZO method.194
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5 Convergence Analysis195

In this section, we theoretically analyze the convergence of our proposed SVD-0. Following the196

derivations in [43, 30] and [47], we first introduce our proposition and the corresponding lemma.197

Lemma 1 (Low-rank subspace of weight matrices [47]). Gradient matrices become low-rank198

during fine-tuning. The weight matrix update can be formed as199

θT = θ0 + η

T−1∑
t=0

∇̃f(θ)t, ∇̃f(θ)t = Ut(U
⊤
t f(θ)tVt)V

⊤
t , (3)

where η is the learning rate, Ut ∈ Rm×r and Vt ∈ Rn×r are projection matrices and can be200

approximated by the spectrum of∇f(θ)t through (U, V ) = SV D(∇f(θ)t).201

Lemma 1 shows that subspace projection matrices can be approximated by adopting SVD on gradients.202

Given that the SPSA is an unbiased approximation of the exact gradient∇f(θ), we can use the SPSA203

gradient to compute the two projection matrices.204

Proposition 1 (Block-diagonal matrix based on SVD). The singular matrices U and V are column-205

orthogonal. Therefore, we can similarly define the following notations based on Equation 1:206

P = bdiag(V 1 ⊗U1, . . . ,V l ⊗U l),

z =
[
vec(Z1)

⊤, . . . , vec(Zl)
⊤]⊤ , z̃ =

[
vec(Z̃1)

⊤, . . . , vec(Z̃l)
⊤
]⊤

.

Proposition 1 shows that the projection matrices in our method have the same properties as the207

column-orthogonal matrices used in [43]. Therefore, the subsequent theoretical analysis can proceed208

in the same way as that proved in [43].209

Lemma 2 (Bounded gradient estimation error [43]). For the gradient estimation in Equation 2, the210

following two properties hold.211

(1) By using gradient estimation in Equation 2, the estimated gradient ∇̂f(θ) is equivalent to212

∇̂f(θ) = f(θ + εPz)− f(θ − εPz)

2ε
Pz, (4)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P⊤P = Iq with d =
∑l

i=1 mini and q = lr2.213

(2) Let z ∼ N (0, Iq), and f ∈ C2,2
L2

(Rd). Based on Equation 4 whose properties have been analyzed214

in [30], our method has the same bounded gradient estimation error as that in [43]:215 ∥∥∥Ez

[
∇̂f(θ)

]
− PP⊤∇f(θ)

∥∥∥
2
≤ ε2

6
L2(q + 4)2. (5)

Note that f ∈ Cs,p
L (S) denotes the class of s-th smooth and p-th L-smooth functions over the set S.216

Theorem 1 (Convergence of SVD-0). Consider the optimization problem x∗ = argmin
x∈Rd

f(x), in217

which f ∈ C1,1
L1

(Rd) and f exhibits non-convex behavior. Define the stochastic sequence Ek =218

(z0, z1, . . . ,zk), where each zk follows the normal distributionN (0, Iq). Set the step-size parameter219

as η =
1

4(q + 4)L1
. Let {xk}k>0 denote the iterates produced via Algorithm 3. For SVD-0, we220

establish its convergence rate as:221

1

T

T−1∑
k=0

EEk

[∥∥∇f(xk)
∥∥2] ≤ ε,

under the scaling T = Ω

(
d

ε

)
for ε ≤ O

(
1

q3/2d1/2L
3/2
1

)
, aligning with prior theoretical deriva-222

tions.223

Combining Proposition 1 and Lemma 2 within the framework proposed in [43], Theorem 1 proves224

our SVD-0 achieves a convergence rate of O( d
T ), which matches the rate derived in [43].225
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6 Experiments226

To evaluate the effectiveness of our approach, we implemented SVD-0 on top of the PyTorch227

framework (version 20.10). All experiments were carried out on a Linux workstation running CentOS,228

featuring two NVIDIA A100-40GB GPUs, dual Intel 6240R CPUs, and 384GB of RAM. We designed229

our experiments to explore the following research questions (RQs).230

RQ1 (Superiority of SVD-0): To what extent does SVD-0 outperform SOTA methods in accuracy?231

RQ2 (Impact of Hyperparameters): What are the impacts of critical hyperparameters (e.g., learning232

rate, subspace rank, subspace update frequency) on SVD-0-based fine-tuning?233

RQ3 (Applicability of SVD-0): How does SVD-0 perform when fine-tuning models of varying sizes234

or architectures (e.g., masked or causal language models)?235

6.1 Experimental Settings236

ZO Baselines. Our SVD-0 method was evaluated against six latest ZO optimization algorithms, i.e.,237

MeZO [29], ZO-AdaMU [20], S-MeZO [27], SubZero [43], LOZO [5], and HiZOO [48]. Meanwhile,238

we examined three memory-efficient inference-only approaches, i.e., zero-shot evaluation, in-context239

learning (ICL) [4], and linear probing (LP) [22].240

Model Settings. In our experiments, we took into account both large-scale autoregressive language241

models (i.e., OPT-1.3B and OPT-13B [45]) and a masked language model (i.e., RoBERTa-large [26]).242

In the experiments, all ZO methods used a batch size of 16, except where specified, since larger243

batches help minimize the gradient approximation variance. We chose MeZO as the main baseline244

because it is the first widely-adopted ZO optimizer for LLMs, and included the first-order SGD245

as a reference for optimization. In line with previous research [29, 46], our experiments utilized246

standardized prompt templates, which are crucial in influencing the performance of ZO methods.247

Moreover, to ensure a fair comparison, we considered multiple values for each key hyperparameter.248

For example, we investigated the following hyperparameter configurations for OPT-13B: a learning249

rate in {1e−7, 2e−7, 5e−7, 1e−6}, ϵ = 1e− 3, a batch size of 16 (except for MultiRC and DROP250

which have a batch size of 8), a rank in {24, 32, 48, 64, 128}, and a subspace update frequency in251

{500, 1000, 2000}. Please refer to Appendix A for detailed configurations of other models. Similarly252

to the work in [43], we conducted an exhaustive grid search over hyperparameters for each pairing of253

ZO methods and LLMs, and used the best results for an equitable comparison.254

Dataset Settings. For OPT models, we experimented with the SuperGLUE benchmark [40],255

which consists of various types of tasks, including classification tasks (e.g., SST-2 [37], RTE [1,256

2, 7, 14], CB [8], BoolQ [6], WSC [23], and WIC [33]), multiple choice tasks (e.g., COPA [35]257

and ReCoRD [44]), and generation tasks (e.g., SQuAD [34] and DROP [11]). Here, for each task,258

we randomly selected 1000 samples for training, 500 samples for validation, and 1000 samples for259

testing. For the RoBERTa-large model, in addition to the task SST-2, we investigated three more tasks,260

i.e., SST-5 [37], SNLI [3], and MNLI [41]. In this case, we fixed the parameter k at 512 throughout261

the training and validation phases, indicating that 512 samples are allocated for each category. For262

the testing phase, we randomly chose a total of 1000 samples.263

6.2 Comparison with State-of-the-Arts (R1)264

We compared our proposed SVD-0 method with the SOTA ZO optimizers. The experiments were265

conducted on the SuperGLUE benchmark employing both the OPT-13B and OPT-1.3B language266

models of different sizes. Note that in each experiment, we applied the adopted stochastic gradient267

descent (SGD) or ZO method to all model parameters.268

Table 2 compares the fine-tuning performance on SuperGLUE benchmark tasks using the OPT-13B269

model. Here, we considered three types of fine-tuning methods: i) the traditional fine-tuning method270

(i.e., SGD) with backpropogation; ii) inference-only methods (i.e., Zero-shot, ICL and LP) without271

fine-tuning; and iii) memory-efficient ZO-based methods. To enable a fair comparison between ZO-272

based methods, we used the MeZO method here as a reference. We evaluated the overall performance273

across each classification task category and denoted the improvement in performance compared to274

the baseline (i.e., MeZO) in the sub-column labeled “Total”. For example, the total performance275

on multiple choice tasks with MeZO and SVD-0 is 169.0 and 171.2, respectively. In this case,276
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Table 2: Comparison of OPT-13B fine-tuning performance (%) on SuperGLUE, where the best results
are presented in bold and the second-best results are highlighted with underlines.

Method Classification Task Multiple Choice Task Generation Task All Task

SST-2 RTE CB BoolQ WSC WIC MultiRC Total COPA ReCoRD Total SQuAD DROP Total Total

SGD 94.9 82.3 85.7 78.4 65.3 65.8 74.2 - 90.0 82.4 - 88.0 35.5 - -

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 - 80.0 81.2 - 46.2 14.6 - -
ICL [4] 87.0 62.1 57.1 66.9 39.4 50.5 53.1 - 87.0 82.5 - 75.9 29.6 - -
LP [22] 93.4 68.6 67.9 59.3 63.5 60.2 63.5 - 55.0 27.1 - 3.7 11.1 - -

MeZO [29] 92.1 71.5 71.4 74.4 61.5 60.0 60.1 0% 87.0 82.0 0% 84.2 31.2 0% 0%
ZO-AdaMU [20] 92.1 72.9 67.9 73.0 61.5 60.7 63.0 0.02% 89.0 83.0 1.78% 82.4 32.0 -0.87% 0.27%

S-MeZO [27] 92.3 76.9 75.0 76.5 61.1 58.2 63.3 2.51% 87.0 71.2 -6.39% 77.9 31.9 -4.85% -0.53%
HiZOO [48] 91.3 69.3 69.4 67.3 63.5 59.4 55.5 -3.12% 88.0 81.4 0.24% 81.9 31.3 -1.91% -2.21%
LOZO [5] 91.7 70.4 69.6 71.9 63.5 60.8 63.0 -0.02% 89.0 81.3 0.77% 84.9 30.7 0.17% 0.18%

SubZero [43] 92.1 74.0 73.2 75.3 65.4 60.8 61.0 2.20% 88.0 82.3 0.77% 84.5 32.0 0.95% 1.70%
SVD-0 93.6 75.5 71.4 75.2 63.5 65.4 60.6 2.89% 89.0 82.2 1.30% 85.1 30.9 0.52% 2.19%

SVD-0 improves inference performance by 1.30% compared to MeZO. From the results provided in277

the “Total” sub-columns, we can find that SVD-0 can always achieve top-2 inference performance.278

Furthermore, we used the final column to show the relative performance improvement for all tasks.279

From this column, we can find that SVD-0 achieves the best overall performance. Interestingly, while280

S-MeZO matches SVD-0 in the number of tasks where it excels, its overall performance, shown in281

the final column, is noticeably inferior to SVD-0 and even falls short of the reference (i.e., MeZO).282

6.3 Impacts of Hyperparameters (R2)283

Hyperparameters play an important role in fine-tuning. In this experiment, we investigate three key284

hyperparameters (i.e., subspace update frequency, rank, and learning rate) to evaluate their impacts285

on fine-tuning performance.286

Table 3: Impact of subspace update frequency, where the best results are highlighted in bold.

Frequency SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

50 90.5 57.0 64.3 65.0 63.5 55.6 57.5 72.0 72.4 74.2 23.0
500 89.5 55.6 69.6 64.1 63.5 53.9 58.1 73.0 72.2 74.3 22.9
1000 90.6 58.5 71.4 65.2 63.5 56.4 58.2 73.0 72.1 73.7 24.0
2000 89.2 56.7 73.2 64.5 62.5 57.4 58.1 73.0 71.7 72.6 23.8

20000 89.8 56.3 71.4 65.3 62.5 57.5 58.2 72.0 72.1 72.6 22.6

For the subspace update frequency F , our aim is to assess the impact of altering the subspace update287

frequency on model performance in various tasks. We conducted experiments based on SVD-0288

and the OPT-1.3B model with a fixed rank of r = 24 and a learning rate of 1 × 10−7. In this289

analysis, we evaluated five frequencies at varying magnitudes, specifically selected from the set290

{50, 500, 1000, 2000, 20000}. Table 3 provides the experimental results. From this table, we can291

find that when the frequency is set to 1000 (i.e., the subspace is updated in every 1000 steps), SVD-0292

achieves the best performance in six of the eleven tasks. Note that SVD-0-based fine-tuning is not293

sensitive to the hyperparameter F . Therefore, we suggest setting F to 1000 by default for fine-tuning.294

Table 4: Impacts of rank and learning rate.

Rank \ LR 1e−7 5e−7 1e−6
2 87.7 91.2 86.7
24 90.6 92.2 90.3
48 89.5 91.6 90.1
64 89.9 90.4 91.6

128 90.0 91.3 90.6

We also investigated the rank of hyperspace (i.e., r)295

and the learning rate together. Table 4 presents the296

fine-tuning performance under various combinations297

of these two hyperparameters, where the rank is se-298

lected from {2, 24, 48, 64, 128} and the learning rate299

is selected from {1e − 7, 5e − 7, 1e − 6}. All the300

experimental results are collected based on the SST-2301

task using the OPT-1.3B model, with a fixed subspace302

update frequency of 1000. From this table, we can303

find that the fine-tuning performance is weak when the rank is low (i.e., r = 2). While elevating the304

rank can enhance fine-tuning performance, once the rank surpasses 24, the extent of this enhancement305

becomes negligible. Note that at low ranks, the performance can vary significantly with different306

learning rates. In contrast, increasing rank tends to reduce this variability in performance. Moreover,307

we can observe a similar trend for the learning rate hyperparameter, where setting the learning rate to308

5e− 7 can achieve the best performance for most rank settings. However, when learning rates are309

increased, the inference performance may worsen.310
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6.4 Impact of Model Sizes and Architectures (R3)311

In Table 2, we have evaluated the adaptability of SVD-0 to large-scale LLMs. To further validate312

the generalizability of our approach, we extended our evaluation to the OPT-1.3B model based on313

representative tasks of different types, where SST-2 and WIC are classification tasks, ReCoRD is a314

multiple choice task, and SQuAD is a generation task. Table 5 presents the results of the comparison315

between four ZO-based fine-tuning methods, where the last column shows the average fine-tuning316

performance of the four tasks. From this table, we can find that SVD-0 is also well-suited for fine-317

tuning on small-scale LLMs. Although LOZO delivers the highest performance in this experiment,318

the difference in the average fine-tuning performance between SVD-0 and LOZO is minimal (i.e.,319

merely 0.2%). Note that SVD-0 achieves better performance than MeZO, the reference method,320

while SubZero fails to beat MeZO. Moreover, SVD-0 can always achieve better performance than its321

counterpart (i.e., SubZero) with an average improvement of 0.7%. All these observations substantiate322

the efficiency of our method in enhancing subspaces for optimizing LLMs.323

Table 5: Fine-tuning performance (%) comparison
for OPT-1.3B, where the top-2 results are marked in
bold and with underlines, respectively.

Method SST-2 WIC ReCoRD SQuAD AVG.

MeZO [29] 91.7 61.1 72.2 77.4 75.6
LOZO [5] 93.2 62.4 71.9 78.1 76.4

SubZero [43] 91.9 60.7 72.0 77.6 75.5
SVD-0 (Ours) 93.0 61.1 73.0 77.6 76.2

Table 6: Fine-tuning performance (%) comparison for
RoBERTa-large, where the top-2 results are marked in
bold and with underlines, respectively.

Method SST-2 SST-5 SNLI MNLI

Zero-shot 79.0 35.5 50.2 48.8
MeZO [29] 93.7 (0.4) 53.9 (1.9) 84.8 (1.1) 76.6 (0.8)
LOZO [5] 94.1 (0.7) 53.0 (0.4) 85.4 (0.8) 80.4 (1.0)

SVD-0 (Ours) 94.4 (0.7) 54.4 (0.7) 85.4 (1.3) 80.4 (1.5)

We investigated the fine-tuning performance of different optimization methods on RoBERTa-large,324

where we considered four downstream tasks, including two sentiment classification tasks (i.e., SST-2325

and SST-5) and two natural language inference tasks (i.e., SNLI and MNLI). For a fair comparison,326

like the work in [5], we performed fine-tuning on each task five times using different random seeds.327

Table 6 presents the experimental results, reflecting both the average inference performance and328

its standard deviation (indicated in parentheses) for each combination of fine-tuning methods and329

tasks. From this table, we can find that SVD-0 has the best performance compared with SOTA ZO330

optimization methods, showing the adaptability of our approach to different model architectures.331

6.5 Discussion332

Limitations. While the SVD-0 technique improves the ZO subspace fine-tuning approach, the333

accuracy of the subspace projection matrices is significantly influenced by the precision of the ZO334

gradients. In smaller models like the OPT-1.3B, the ZO gradients may have a greater approximation335

error, which can result in decreased precision in obtaining the projection matrices.336

Border Impact. In this paper, we introduced a new approach to derive more precise projection337

matrices, which can be used to improve the effectiveness of ZO subspace fine-tuning techniques for338

LLMs. Our method utilizes SVD on ZO gradients to extract projection matrices, eliminating the need339

for the memory-demanding FO gradients. Our theoretical convergence analysis in conjunction with340

the experimental findings demonstrates that our research contributes positively to the advancement of341

memory-efficient fine-tuning methods for LLMs.342

7 Conclusion343

Although various zeroth-order (ZO) optimization methods have been proposed to enable memory-344

efficient fine-tuning for large language models (LLMs), due to the use of random subspaces, most345

of them suffer from inaccurate gradient estimation, resulting in inferior training performance. To346

address this problem, this paper presents a novel ZO subspace fine-tuning method named SVD-0. By347

precisely capturing fine-tuning subspaces, SVD-0 enables the construction of projection matrices with348

higher accuracy to achieve more accurate gradient estimation, thus improving the LLM fine-tuning349

performance. Extensive experimental findings demonstrate the efficacy of SVD-0 in dealing with350

complex language modeling tasks. In the future, we plan to combine our SVD-0 method with various351

parameter quantization methods to further reduce the memory required by LLM fine-tuning.352
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A Detailed Experimental Settings510

A.1 Hyperparameter Settings511

This section provides a detailed overview of the hyperparameters employed in our grid search across512

the experiments, as depicted in Tables 7 and 9. For the OPT model, we carried out 20,000 steps513

for each method. Both the SGD and ZO methodologies were implemented for an identical number514

of steps. In the remaining RoBERTa experiments, ZO optimization strategies were applied over515

100,000 training steps. For both models, we evaluated the validation loss every 1,000 training steps516

to determine the optimal model checkpoint. In the S-MeZO strategy, the sparsity rate is set to 0.75.517

Table 7: The hyperparameter grids used for OPT-13B experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

SGD 16 {1e−4, 1e−3, 5e−3 } – – –
MeZO [29] 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 – –

S-MeZO [27] 16 {1e−6, 5e−6} 1e−3 – –
LOZO [5] 16 {1e−7, 1e−6} {1e−3, 1e−4} {1, 2, 4} {50, 100}

SubZero [43] 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 {32, 64, 128, 256} {500, 1000, 2000}
SVD-0 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 {24, 32, 48, 64, 128} {500, 1000, 2000}

Table 8: The hyperparameter grids used for OPT-1.3B experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

MeZO [29] 16 {1e−7, 5e−7, 1e−6} 1e−3 – –
LOZO [5] 16 {1e−7, 1e−6} {1e−3, 1e−4} {1, 2, 4} {50, 100}

SubZero [43] 16 {1e−7, 5e−7, 1e−6} 1e−3 {24, 48} 1000
SVD-0 16 {1e−7, 5e−7, 1e−6} 1e−3 {8, 24, 48} {50, 500, 1000}

For all previously mentioned ZO methods, we utilized a consistent learning rate schedule and set the518

weight decay to zero. Typically, we chose a batch size of 16 for the OPT-1.3B and OPT-13B models519

across various tasks. Nonetheless, due to limited GPU resources, we reduced the batch size to 8 for520

the DROP, MultiRC, and SQuAD evaluations.521

Table 9: Hyperparameter Grids for RoBERTa-large Experiments

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

MeZO [29] 64 {1e−7, 1e−6, 1e−5} 1e−3 – –
LOZO [5] 64 2e−7 1e−3 {4, 8} {50, 100}

SVD-0 64 1e−6 1e−3 {8, 16, 24} 1000
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proof sketch to provide intuition.581

• Inversely, any informal proof provided in the core of the paper should be complemented582

by formal proofs provided in appendix or supplemental material.583

• Theorems and Lemmas that the proof relies upon should be properly referenced.584

4. Experimental result reproducibility585

Question: Does the paper fully disclose all the information needed to reproduce the main ex-586

perimental results of the paper to the extent that it affects the main claims and/or conclusions587

of the paper (regardless of whether the code and data are provided or not)?588

Answer: [Yes] .589

Justification: Please refer to Section 6 and Appendix A.590

Guidelines:591

• The answer NA means that the paper does not include experiments.592

• If the paper includes experiments, a No answer to this question will not be perceived593

well by the reviewers: Making the paper reproducible is important, regardless of594

whether the code and data are provided or not.595

• If the contribution is a dataset and/or model, the authors should describe the steps taken596

to make their results reproducible or verifiable.597

• Depending on the contribution, reproducibility can be accomplished in various ways.598

For example, if the contribution is a novel architecture, describing the architecture fully599

might suffice, or if the contribution is a specific model and empirical evaluation, it may600

be necessary to either make it possible for others to replicate the model with the same601

dataset, or provide access to the model. In general. releasing code and data is often602

one good way to accomplish this, but reproducibility can also be provided via detailed603

instructions for how to replicate the results, access to a hosted model (e.g., in the case604

of a large language model), releasing of a model checkpoint, or other means that are605

appropriate to the research performed.606

• While NeurIPS does not require releasing code, the conference does require all submis-607

sions to provide some reasonable avenue for reproducibility, which may depend on the608

nature of the contribution. For example609

(a) If the contribution is primarily a new algorithm, the paper should make it clear how610

to reproduce that algorithm.611

(b) If the contribution is primarily a new model architecture, the paper should describe612

the architecture clearly and fully.613

(c) If the contribution is a new model (e.g., a large language model), then there should614

either be a way to access this model for reproducing the results or a way to reproduce615

the model (e.g., with an open-source dataset or instructions for how to construct616

the dataset).617

(d) We recognize that reproducibility may be tricky in some cases, in which case618

authors are welcome to describe the particular way they provide for reproducibility.619

In the case of closed-source models, it may be that access to the model is limited in620

some way (e.g., to registered users), but it should be possible for other researchers621

to have some path to reproducing or verifying the results.622

5. Open access to data and code623

Question: Does the paper provide open access to the data and code, with sufficient instruc-624

tions to faithfully reproduce the main experimental results, as described in supplemental625

material?626
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Answer: [Yes] .627

Justification: We have packed and uploaded our code.628

Guidelines:629

• The answer NA means that paper does not include experiments requiring code.630

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/631

public/guides/CodeSubmissionPolicy) for more details.632

• While we encourage the release of code and data, we understand that this might not be633

possible, so is an acceptable answer. Papers cannot be rejected simply for not including634

code, unless this is central to the contribution (e.g., for a new open-source benchmark).635

• The instructions should contain the exact command and environment needed to run to636

reproduce the results. See the NeurIPS code and data submission guidelines (https:637

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.638

• The authors should provide instructions on data access and preparation, including how639

to access the raw data, preprocessed data, intermediate data, and generated data, etc.640

• The authors should provide scripts to reproduce all experimental results for the new641

proposed method and baselines. If only a subset of experiments are reproducible, they642

should state which ones are omitted from the script and why.643

• At submission time, to preserve anonymity, the authors should release anonymized644

versions (if applicable).645

• Providing as much information as possible in supplemental material (appended to the646

paper) is recommended, but including URLs to data and code is permitted.647

6. Experimental setting/details648

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-649

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the650

results?651

Answer: [Yes] .652

Justification: Please refer to Appendix A.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• The experimental setting should be presented in the core of the paper to a level of detail656

that is necessary to appreciate the results and make sense of them.657

• The full details can be provided either with the code, in appendix, or as supplemental658

material.659

7. Experiment statistical significance660

Question: Does the paper report error bars suitably and correctly defined or other appropriate661

information about the statistical significance of the experiments?662

Answer: [Yes] .663

Justification: We reported the results from different random seeds in Section 6.664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The authors should answer "Yes" if the results are accompanied by error bars, confi-667

dence intervals, or statistical significance tests, at least for the experiments that support668

the main claims of the paper.669

• The factors of variability that the error bars are capturing should be clearly stated (for670

example, train/test split, initialization, random drawing of some parameter, or overall671

run with given experimental conditions).672

• The method for calculating the error bars should be explained (closed form formula,673

call to a library function, bootstrap, etc.)674

• The assumptions made should be given (e.g., Normally distributed errors).675

• It should be clear whether the error bar is the standard deviation or the standard error676

of the mean.677
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• It is OK to report 1-sigma error bars, but one should state it. The authors should678

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis679

of Normality of errors is not verified.680

• For asymmetric distributions, the authors should be careful not to show in tables or681

figures symmetric error bars that would yield results that are out of range (e.g. negative682

error rates).683

• If error bars are reported in tables or plots, The authors should explain in the text how684

they were calculated and reference the corresponding figures or tables in the text.685

8. Experiments compute resources686

Question: For each experiment, does the paper provide sufficient information on the com-687

puter resources (type of compute workers, memory, time of execution) needed to reproduce688

the experiments?689

Answer: [Yes]690

Justification: Please refer to Section 6.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,694

or cloud provider, including relevant memory and storage.695

• The paper should provide the amount of compute required for each of the individual696

experimental runs as well as estimate the total compute.697

• The paper should disclose whether the full research project required more compute698

than the experiments reported in the paper (e.g., preliminary or failed experiments that699

didn’t make it into the paper).700

9. Code of ethics701

Question: Does the research conducted in the paper conform, in every respect, with the702

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?703

Answer: [Yes] .704

Justification: This study complies with the NeurIPS ethical guidelines.705

Guidelines:706

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.707

• If the authors answer No, they should explain the special circumstances that require a708

deviation from the Code of Ethics.709

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-710

eration due to laws or regulations in their jurisdiction).711

10. Broader impacts712

Question: Does the paper discuss both potential positive societal impacts and negative713

societal impacts of the work performed?714

Answer: [NA] .715

Justification: We studied the general model fine-tuning method, which is not directly716

associated with a specific application or deployment.717

Guidelines:718

• The answer NA means that there is no societal impact of the work performed.719

• If the authors answer NA or No, they should explain why their work has no societal720

impact or why the paper does not address societal impact.721

• Examples of negative societal impacts include potential malicious or unintended uses722

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations723

(e.g., deployment of technologies that could make decisions that unfairly impact specific724

groups), privacy considerations, and security considerations.725
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• The conference expects that many papers will be foundational research and not tied726

to particular applications, let alone deployments. However, if there is a direct path to727

any negative applications, the authors should point it out. For example, it is legitimate728

to point out that an improvement in the quality of generative models could be used to729

generate deepfakes for disinformation. On the other hand, it is not needed to point out730

that a generic algorithm for optimizing neural networks could enable people to train731

models that generate Deepfakes faster.732

• The authors should consider possible harms that could arise when the technology is733

being used as intended and functioning correctly, harms that could arise when the734

technology is being used as intended but gives incorrect results, and harms following735

from (intentional or unintentional) misuse of the technology.736

• If there are negative societal impacts, the authors could also discuss possible mitigation737

strategies (e.g., gated release of models, providing defenses in addition to attacks,738

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from739

feedback over time, improving the efficiency and accessibility of ML).740

11. Safeguards741

Question: Does the paper describe safeguards that have been put in place for responsible742

release of data or models that have a high risk for misuse (e.g., pretrained language models,743

image generators, or scraped datasets)?744

Answer: [NA] .745

Justification: This research releases only the model training code, not the data or deployable746

models.747

Guidelines:748

• The answer NA means that the paper poses no such risks.749

• Released models that have a high risk for misuse or dual-use should be released with750

necessary safeguards to allow for controlled use of the model, for example by requiring751

that users adhere to usage guidelines or restrictions to access the model or implementing752

safety filters.753

• Datasets that have been scraped from the Internet could pose safety risks. The authors754

should describe how they avoided releasing unsafe images.755

• We recognize that providing effective safeguards is challenging, and many papers do756

not require this, but we encourage authors to take this into account and make a best757

faith effort.758

12. Licenses for existing assets759

Question: Are the creators or original owners of assets (e.g., code, data, models), used in760

the paper, properly credited and are the license and terms of use explicitly mentioned and761

properly respected?762

Answer: [Yes] .763

Justification: Please refer to Section 6, Appendix A and our repository.764

Guidelines:765

• The answer NA means that the paper does not use existing assets.766

• The authors should cite the original paper that produced the code package or dataset.767

• The authors should state which version of the asset is used and, if possible, include a768

URL.769

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.770

• For scraped data from a particular source (e.g., website), the copyright and terms of771

service of that source should be provided.772

• If assets are released, the license, copyright information, and terms of use in the773

package should be provided. For popular datasets, paperswithcode.com/datasets774

has curated licenses for some datasets. Their licensing guide can help determine the775

license of a dataset.776

• For existing datasets that are re-packaged, both the original license and the license of777

the derived asset (if it has changed) should be provided.778
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• If this information is not available online, the authors are encouraged to reach out to779

the asset’s creators.780

13. New assets781

Question: Are new assets introduced in the paper well documented and is the documentation782

provided alongside the assets?783

Answer: [Yes] .784

Justification: We have packed and uploaded our code.785

Guidelines:786

• The answer NA means that the paper does not release new assets.787

• Researchers should communicate the details of the dataset/code/model as part of their788

submissions via structured templates. This includes details about training, license,789

limitations, etc.790

• The paper should discuss whether and how consent was obtained from people whose791

asset is used.792

• At submission time, remember to anonymize your assets (if applicable). You can either793

create an anonymized URL or include an anonymized zip file.794

14. Crowdsourcing and research with human subjects795

Question: For crowdsourcing experiments and research with human subjects, does the paper796

include the full text of instructions given to participants and screenshots, if applicable, as797

well as details about compensation (if any)?798

Answer: [NA] .799

Justification: We did not involve crowdsourcing or research with human subjects.800

Guidelines:801

• The answer NA means that the paper does not involve crowdsourcing nor research with802

human subjects.803

• Including this information in the supplemental material is fine, but if the main contribu-804

tion of the paper involves human subjects, then as much detail as possible should be805

included in the main paper.806

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,807

or other labor should be paid at least the minimum wage in the country of the data808

collector.809

15. Institutional review board (IRB) approvals or equivalent for research with human810

subjects811

Question: Does the paper describe potential risks incurred by study participants, whether812

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)813

approvals (or an equivalent approval/review based on the requirements of your country or814

institution) were obtained?815

Answer: [NA] .816

Justification: We did not involve crowdsourcing or research with human subjects.817

Guidelines:818

• The answer NA means that the paper does not involve crowdsourcing nor research with819

human subjects.820

• Depending on the country in which research is conducted, IRB approval (or equivalent)821

may be required for any human subjects research. If you obtained IRB approval, you822

should clearly state this in the paper.823

• We recognize that the procedures for this may vary significantly between institutions824

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the825

guidelines for their institution.826

• For initial submissions, do not include any information that would break anonymity (if827

applicable), such as the institution conducting the review.828

16. Declaration of LLM usage829
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Question: Does the paper describe the usage of LLMs if it is an important, original, or830

non-standard component of the core methods in this research? Note that if the LLM is used831

only for writing, editing, or formatting purposes and does not impact the core methodology,832

scientific rigorousness, or originality of the research, declaration is not required.833

Answer: [NA]834

Justification: LLMs is not an important, original, or non-standard component of the core835

methods in this research.836

Guidelines:837

• The answer NA means that the core method development in this research does not838

involve LLMs as any important, original, or non-standard components.839

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)840

for what should or should not be described.841
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