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Abstract

Recent major milestones have successfully re-001
constructed natural language from non-invasive002
brain signals (e.g. functional Magnetic Reso-003
nance Imaging (fMRI) and Electroencephalo-004
gram (EEG)) across subjects. However, we005
find current dataset splitting strategies for006
cross-subject brain-to-text decoding are wrong.007
Specifically, we first demonstrate that all cur-008
rent splitting methods suffer from data leakage009
problem, which refers to the leakage of vali-010
dation and test data into training set, resulting011
in significant overfitting and overestimation of012
decoding models. In this study, we develop a013
right cross-subject data splitting criterion with-014
out data leakage for decoding fMRI and EEG015
signal to text. Some SOTA brain-to-text decod-016
ing models are re-evaluated correctly with the017
proposed criterion for further research.018

1 Introduction019

Brain-to-text decoding aims to recover natural lan-020

guage from brain signals stimulated by correspond-021

ing speech. Recent studies (Makin et al., 2020;022

Wang and Ji, 2022; Xi et al., 2023; Tang et al.,023

2023; Duan et al., 2024) have successfully decoded024

non-invasive brain signals (e.g. fMRI, EEG) to025

text by applying deep neural networks. Most of026

these works perform within-subject data splitting027

for training and evaluating decoding models. This028

subject-specific splitting method causes two main029

problems. First, it only uses a small part of the030

whole dataset. For example, Tang et al. (2023)031

trained and tested model three times on three sub-032

jects respectively. Since brain signal collection is033

costly and time-consuming, such splitting method034

results in a significant waste of data resources. Sec-035

ond, it leads to poor model generalization. As every036

brain has unique functional and anatomical struc-037

tures, subject-specific models may exhibit consider-038

able variability across individuals and fail to gener-039

alize to other subjects (Liu et al., 2024). Moreover,040

decoding models trained from scratch on limited 041

data are prone to facing the overfitting problem. 042

Human brain responds similarly to the same 043

stimuli, despite the individual discrepancy (Hasson 044

et al., 2004; Pereira et al., 2018). Therefore, some 045

studies (Wang and Ji, 2022; Xi et al., 2023; Duan 046

et al., 2024) begin to shed light on cross-subject 047

brain-to-text decoding, which performs data split- 048

ting based on all the subjects, trains and evaluates 049

decoding model once. Cross-subject data split- 050

ting effectively compensates for the shortcomings 051

of subject-specific splitting, and has been widely 052

applied in brain-to-image decoding (Wang et al., 053

2024; Liu et al., 2024). However, unlike datasets 054

for brain-to-image decoding (Allen et al., 2022; 055

Chang et al., 2019) where subjects are guided to 056

see different and unrepeated pictures, different sub- 057

jects will be stimulated by the same story in com- 058

mon naturalistic language comprehension dataset, 059

which challenges cross-subject data splitting. 060

Based on our observations, current cross-subject 061

data splitting methods for brain-to-text decoding 062

are wrong because data for validation and test leaks 063

into the training set, rendering the evaluation of 064

the decoding process meaningless. Specifically, we 065

find two types of data leakage: brain signal leakage 066

and text stimuli leakage. Brain signal leakage refers 067

to test subject’s brain signal appears in training set. 068

Text stimuli leakage refers to text in test set appears 069

in the training set. Modern brain-to-text decoding 070

models follow an encoder-decoder manner. We 071

pick two representative models (detailed in Section 072

B): EEG2Text (Wang and Ji, 2022) and UniCoRN 073

(Xi et al., 2023) to reveal data leakage and its dam- 074

age. Experiments support that data leakage affects 075

model training on both encoder side and decoder 076

side. For the encoder, the encoder will become 077

overfitting and fail to well represent brain signals 078

if brain signal leakage exists. For the decoder, the 079

situation gets worse if text stimuli leakage happens. 080

Any data leakage would cause the auto-regressive 081
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decoder to memorize previously seen paragraphs082

during training stage, resulting in poor generaliza-083

tion to unseen text.084

To avoid data leakage and fairly evaluate the per-085

formance of cross-subject brain-to-text decoding086

models, we propose a right data splitting method.087

We focus on fMRI and EEG signals in this study,088

although the proposed criterion could be applied089

to any datasets satisfying the prescribed format. In090

the proposed method, we follow two basic rules:091

(1) Brain signals collected from specific subject in092

validation set and test set will not appear in train-093

ing set, which means the trained encoder cannot094

get access to any brain information belonging to095

subjects in test set. (2) Text stimuli in validation096

set and test set will not appear in training set. The097

decoder learns to reconstruct language with brain098

signals instead of memorizing seen text.099

Our contributions can be summarized as follows:100

• To the best of our knowledge, we are the first101

to identify the issue of data leakage in current102

cross-subject data splitting methods for brain-103

to-text decoding.104

• We define the splitting criterion for cross-105

subject brain-to-text decoding, and propose106

a right dataset splitting method.107

• Some SOTA brain-to-text decoding models108

are re-evaluated using the proposed cross-109

subject data splitting method to ensure a fair110

assessment of their performance.111

2 Problem Formulation112

2.1 Dataset Description113

A naturalistic language comprehension dataset D114

contains brain signals of N subjects when they115

passively listen to K spoken stories. Suppose that116

not all subjects are stimulated by all stories, and117

different subjects may hear the same story.118

Formally, S1, S2, . . . , SN denotes to the N sub-119

jects and M1,M2, . . . ,MK denotes to the K sto-120

ries in dataset. The k-th story Mk consists of lk121

text segments Tk1, Tk2, . . . , Tklk . If the i-th subject122

Si hears the j-th text segment Tkj , then his brain123

signal is denoted as Fijk.124

2.2 Use Graph to Describe Dataset125

We use graph to describe the intricate structure of126

naturalistic language comprehension dataset. We127

first introduce multigraph and k-partite graph.128

Definition 2.1. An directed multigraph G is a type129

of graph which is permitted to have multiple edges130

𝑖-th subject

𝑘-th task

𝑗-th text stimuli
under 𝑘-th task

𝑆𝑖:

𝑀𝑘:

𝑇𝑘𝑗:

𝐹𝑖𝑗: 𝑖-th subject’s
brain signal
stimulated by
𝑗-th text

Notation
Graph 1 Subject 𝑆 is guided to listen to

story 𝑀. For example, story 𝑀1 is
heard by subjects 𝑆1, 𝑆2, 𝑆3. Such
connections are reflected by
black lines.

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

Graph 2 Each story 𝑀 consists of text
segment 𝑇. For example, Story
𝑀1 consists of 𝑇11, 𝑇12, 𝑇13, 𝑇14. 𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑀1 𝑀2 𝑀3

Graph 3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝐹 represents subject’s brain signal
stimulated by text segment 𝑇.
Subjects respond differently to
the same stimuli. For example,
𝐹121, 𝐹221, 𝐹321 are brain signals
of 𝑆1, 𝑆2, 𝑆3 when hearing 𝑇12.

Graph 4

𝐹121𝐹221𝐹321 𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…… ……

With Graph 1-3, one sample can
be formatted in Subject-Story-Text-
Brain (𝑆𝑖 , 𝑀𝑘 , 𝑇𝑘𝑗 , 𝐹𝑖𝑗𝑘) pair, which

means the brain signal 𝐹𝑖𝑗𝑘 of 𝑖-th

subject 𝑆𝑖 stimulated by 𝑗-th text
segment 𝑇𝑘𝑗 from 𝑘-th story 𝑀𝑘.

For example, the light blue line
stands for (𝑆3, 𝑀2, 𝑇22, 𝐹32).

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21 𝑇22 𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31 𝑇32 𝑇33 𝑇34

𝐹11𝐹21 𝐹31 𝐹12𝐹22 𝐹32 𝐹42 𝐹33 𝐹43

…… ……

Graph 5
𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝐹122𝐹222𝐹322𝐹422𝐹121𝐹221𝐹321 𝐹343𝐹443

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀2

𝐹122𝐹222𝐹322𝐹422

𝑇21𝑇22𝑇23

With the above definitions, all the
samples in one dataset can be
described through symbols and
lines. The right figure shows
examples of (1) 𝑆1, 𝑆2, 𝑆3 listen to
𝑇12, (2) 𝑆1, 𝑆2, 𝑆3, 𝑆4 listen to 𝑇22,
(3) 𝑆3, 𝑆4 listen to 𝑇34. Lines
connecting symbols with the
same color indicate one sample.

…… ……

Figure 1: Illustration of how to build graph to describe
dataset step by step.

between two vertices. When the edges own identity, 131

G can be written as G = (V, E , f), where f : E → 132

V ×V is an incidence function that maps each edge 133

to a pair of vertices. 134

Definition 2.2. A k-partite graph G is a type 135

of graph that can be divided into k distinct in- 136

dependent sets such that no two vertices in the 137

same set are connected. G = (V, E), where 138

V = V1 ∪ V2 ∪ · · · ∪ Vk and ∀i ̸= j,Vi ∩ Vj = ∅. 139

Following the dataset definition in Section 2.1, 140

we use graph to describe a naturalistic language 141

comprehension dataset with Definition 2.1 and 2.2. 142

Definition 2.3. A naturalistic language compre- 143

hension datasetD can be represented via a directed 144

4-partite multigraph GD. 145

How to build the directed 4-partite multigraph 146

GD step by step is shown in Figure 1. Graph 1 is a 2- 147

partite graph indicating subject Si listening to story 148

Mk. Subject Si and story Mk are viewed as ver- 149

tices, and edges connecting them indicate certain 150

type of relationship (e.g. Si “listen to” Mk in this 151

case). Graph 2 illustrates that story Mk consists 152

of text segments Tkj . Graph 3 shows the brain sig- 153

nals Fijk of subject Si stimulated by text segment 154

Tkj . Graph 4 is an example of combining the three 155

2-partite graphs Graph 1-3: F122, F222, F322, F422 156

are brain signals of S1, S2, S3, S4 stimulated by 157

text segment T22 from story M2. In this exam- 158
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ple, four edges between M2 and T22 correspond159

to the different responses of four subjects to the160

same text segment. There are three edges between161

S2 and M2 because M2 contains three text seg-162

ments. Edges of the same color indicate one sam-163

ple in dataset. Graph 5 shows the complete di-164

rected 4-partite multigraph GD for representing165

whole dataset. Every sample in dataset can be rep-166

resented through ordered subject-story-text-brain167

(Si,Mk, Tkj , Fijk) pair. We introduce the formal168

notation of GD:169

Notation 2.4. GD = (V, E , f), where V = S ∪170

M∪T ∪F , S = {Si}Ni=1,M = {Mk}Kk=1, T =171

{Tkj}K,lk
k,j=1, F = {Fijk}N,lk,K

i,j,k=1 denote subject set,172

story set, text segment set, and brain signal set.173

f : E → V ⊗ V is an incidence function that maps174

each edge to a pair of vertices.175

Notation 2.5. ⊗ is a Cartesian product-like op-176

erator. X ⊗ Y = {(x, y)|x ∈ X, y ∈ Y, there177

exists relationship between x and y in dataset}.178

It’s designed to describe the connectivity among179

S,M, T ,F . For example, edges in S ⊗ M in-180

dicates certain subjects are stimulated by certain181

stories as described in dataset.182

2.3 Brain-to-text Decoding Task183

The brain-to-text decoding task seeks to build a184

decoding model that reconstructs natural language185

text from brain signals, with the goal of accurately186

decoding what the subject hears.187

Take fMRI and EEG signal for example. fMRI188

captures brain responses at second level and such189

interval is known as TR (Repetition Time), whereas190

EEG samples brain activity at the millisecond level.191

As a result, the pre-processing for fMRI and EEG192

input varies. Previous practice in fMRI-to-text de-193

coding (Tang et al., 2023; Xi et al., 2023) concate-194

nated L future fMRI frames and corresponding text195

segments to form one sample:196

T ∗
k,j = concat(Tk,j , Tk,j+1, . . . , Tk,j+L), (1)197

F ∗
i,j,k = concat(Fi,j,k, Fi,j+1,k, . . . , Fi,j+L,k).

(2)
198

In this case, one (Si,Mk, Tkj , Fijk) pair in graph199

GD only represents the start point of one sample,200

while (Si,Mk, T
∗
kj , F

∗
ijk) indicates the whole sam-201

ple. In EEG-to-text decoding, previous methods202

sampled continuous EEG signal Fijk that corre-203

sponds to text Tkj . So one (Si,Mk, Tkj , Fijk) pair204

is viewed as one sample in our definition.205

3 Methodology 206

We first introduce the criterion for cross-subject 207

splitting. Then we discuss current cross-subject 208

data splitting methods, and point out that all ex- 209

isting methods suffer from data leakage problem. 210

Finally, we design a right splitting method that sat- 211

isfies cross-subject splitting criterion. 212

3.1 Cross-Subject Data Splitting Criterion 213

Consistent with cross-subject brain-to-image de- 214

coding (Wang et al., 2024; Liu et al., 2024), the 215

dataset splitting should obey two basic principles: 216

(1) If brain signal Fijk appears in test set, then any 217

brain signal Fi∗k belonging to this subject i should 218

not appear in training set. (2) If text segment Tkj ap- 219

pears in test set, then it should not appear in training 220

set. Following the definitions in Section 2, graph 221

GD is applied to describe data splitting. Training 222

and test set are denoted as Gtrain and Gtest. Since 223

the validation samples are split in the same man- 224

ner as the test samples, we focus solely on the test 225

samples. Therefore, we have GD = Gtrain ∪ Gtest. 226

We formally define cross-subject splitting criterion 227

which is applicable to training set and test set. Test 228

set definition is omitted for simplicity. 229

Definition 3.1. The training set for cross-subject 230

brain-to-text decoding should be formatted in 231

Gtrain = Strain ⊗ M ⊗ Ttrain ⊗ Ftrain, where 232

Strain = {Si|∀S′
i ∈ Stest, Si ̸= S′

i}; Ftrain = 233

{Fijk|i ∈ I}, I = {i|∀j,∀k, Fijk /∈ Ftest}; 234

Ttrain = {Tkj |∀T ′
kj ∈ Ttest, Tkj ̸= T ′

kj}. 235

3.2 Analysis of Current Splitting Methods 236

As illustrated in Figure 2, we use different colored 237

edges to represent their classification as either part 238

of the training set or the test set. (Si,Mk, Tkj , Fijk) 239

pairs with green edges indicate training samples, 240

and those with orange edges are test samples. Cur- 241

rent cross-subject data splitting methods (Wang and 242

Ji, 2022; Xi et al., 2023) can be summarized as five 243

categories: 244

• Method (a): Split subjects S randomly with 245

given ratio. 246

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i}
(3) 247

• Method (b): Split storiesM randomly with 248

given ratio. 249

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest,Mk ̸= M ′

k}
(4) 250
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(a) Split by subjects (b) Split by tasks (c) Split by signals

(d) Split by signals under certain story (e) Split by consecutive signals (f) Our method (EEG example)

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝐹121𝐹221

…

𝐹321

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

𝑆1 𝑆3 𝑆4𝑆2

𝑀1 𝑀2 𝑀3

𝑇21𝑇22𝑇23𝑇14𝑇13𝑇12𝑇11 𝑇31𝑇32𝑇33𝑇34

Train Test Abandoned Subject Story Text segment𝑆𝑖 𝑀𝑘 𝑇𝑘𝑗 𝐹𝑖𝑗𝑘 Brain signal

𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

𝐹121𝐹221

…

𝐹321𝐹122𝐹222𝐹322𝐹422 𝐹343𝐹443

…

Figure 2: Different splitting methods for cross-subject brain-to-text decoding. (Color printing is preferred.)

• Method (c): Split all the brain signals F ran-251

domly with given ratio.252

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, Fijk ̸= F ′

ijk}
(5)253

• Method (d): Different from Method (c), it254

splits brain signals under each story randomly255

with given ratio, and union them to form the256

whole training and test set.257
• Method (e): Different from Method (d), it258

splits continuous brain signals under each259

story with given ratio, and union them to form260

the whole training and test set.261

It’s evident that Equation (3), (4), (5) do not meet262

the criterion outlined in Definition 3.1. To facili-263

tate a thorough analysis, we introduce the concept264

of brain signal leakage and text stimuli leakage.265

Specifically, brain signal leakage refers to test sub-266

ject’s brain signal appears in training set. Text267

stimuli leakage refers to text segment in test set268

appears in the training set. Formal definitions of269

two types of data leakage are given.270

Definition 3.2. Brain signal leakage happens when271

∀(Si,Mk, Tkj , Fijk) ∈ Gtrain,
∃(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, S′

i = Si.
(6)272

Definition 3.3. Text stimuli leakage happens when273

∀(Si,Mk, Tkj , Fijk) ∈ Gtrain,
∃(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest, T ′

kj = Tkj .
(7)274

fMRI Method(a) Method(b) Method(c) Method(d) Method(e)

Brain Signal Leakage ✗ ✓ ✓ ✓ ✓
Text Stimuli Leakage ✓ ✗ ✓ ✓ ✓

Table 1: Data leakage in five different splitting methods
applied to fMRI-to-text decoding.

EEG Method(a) Method(b) Method(c) Method(d) Method(e)

Brain Signal Leakage ✗ ✓ ✓ ✓ N/A
Text Stimuli Leakage ✓ ✗ ✓ ✓ N/A

Table 2: Data leakage in five different splitting methods
applied to EEG-to-text decoding.

We prove in Appendix E that a splitting method 275

without brain signal and text stimuli leakage will 276

satisfy the splitting criterion in Definition 3.1. Data 277

leakage can be directly identified in graph GD. As 278

shown in Figure 2, if edges connected to Si are of 279

different colors, it indicates that brain signals of 280

Si appears in both training set and test set, which 281

leads to brain signal leakage. Similarly, if edges 282

connected to Tkj are of different colors, it suggests 283

that text segment Tkj appears in both training set 284

and test set, which leads to text stimuli leakage. 285

As a result, in the scenario of EEG signals where 286

(Si,Mk, Tkj , Fijk) is viewed as a sample: Method 287

(a) suffers from text stimuli leakage. Method (b) 288

faces brain signal leakage. Method (c) is affected 289

by leakage of both text stimuli and brain signals. 290

Method (d) and (e) do not show any differences 291

compared to method (c) in EEG-to-text decoding. 292

In fMRI-to-text decoding, continuous fMRI frames 293
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and text stimuli are concatenated to form one sam-294

ple. (Si,Mk, Tkj , Fijk) indicates the start point of295

one sample instead of the whole sample (recall Sec-296

tion 2.3). In this case, method (d) and (e) mean297

differently. Similar to method (c), method (d) and298

(e) face both brain signal leakage and text stimuli299

leakage. But for method (e) the text stimuli is slight.300

It only happens in the overlapping part between301

training samples and test samples. The situations302

of data leakage in different splitting methods are303

detailed in Table 1 and 2.304

3.3 A Right Cross-Subject Splitting Method305

We propose a right cross-subject splitting method to306

eliminate both brain signal leakage and text stimuli307

leakage. The key point is to ensure zero brain signal308

leakage and text stimuli leakage.309

Gtrain = {(Si,Mk, Tkj , Fijk)|∀(S′
i,M

′
k,

T ′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i, Tkj ̸= T ′
kj}.

(8)310

Given the differences of EEG and fMRI dataset, we311

address them separately and propose two data split-312

ting methods. In EEG dataset, (Si,Mk, Tkj , Fijk)313

forms one sample. As shown in Figure 3, our pro-314

posed splitting method consists of three steps:315

• Step 1: Select
∑K

k=1 lk samples from GD and316

form a new graph G′D that satisfies317

∀(S′
i,M

′
k, T

′
kj , F

′
ijk), (S

′′
i ,M

′′
k , T

′′
kj , F

′′
ijk)

∈ G′D, T ′
kj ̸= T ′′

kj .
(9)318

• Step 2: Split G′D to G′train and G′test with a319

given ratio. The splitting should follow320

G′train = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ G′test, Si ̸= S′

i},
(10)321322

G′test = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ G′train, Si ̸= S′

i}.
(11)323

• Step 3: Expand G′train and G′test with324

G′train_exp and G′test_exp separately.325

G′train ← G′train ∪ G′train_exp

G′test ← G′test ∪ G′test_exp
(12)326

where G′train_exp and G′test_exp are327

G′train_exp = {(Si,Mk, Tkj , Fijk) ∈ GD|
Si ∈ S ′train, Tkj ∈ T ′

train},
(13)328

329

G′test_exp = {(Si,Mk, Tkj , Fijk) ∈ GD|
Si ∈ S ′test, Tkj ∈ T ′

test}.
(14) 330

S ′train, T ′
train, S ′test, T ′

test indicate subject set, text 331

segment set in G′train and subject set, text segment 332

set in G′test respectively. 333

Some samples are discarded in our proposed 334

splitting method, i.e. GD ̸= G′train ∪ G′test. In 335

Appendix E, we demonstrate that it is unavoidable 336

for some samples to be discarded in order to satisfy 337

the cross-subject data splitting criterion. 338

To fMRI dataset, continuous text segments and 339

brain signals are concatenated to form one sample 340

(Si,Mk, T
∗
kj , F

∗
ijk). If we follow the same split- 341

ting method as to EEG dataset, text stimuli leakage 342

will happen in the overlapping part of two samples, 343

when one sample is assigned to training set and 344

the other is assigned to validation or test set. We 345

propose a simple solution that achieves the balance 346

between discarding as little data as possible while 347

ensuring zero data leakage: Step 1 and Step 3 re- 348

main the same as splitting method for EEG dataset. 349

In Step 2, G′train and G′test should follow 350

G′train = {(Si,Mk, Tkj , Fijk)|∀(S′
i,M

′
k,

T ′
kj , F

′
ijk) ∈ G′test, Si ̸= S′

i,Mk ̸= M ′
k},

(15) 351

352
G′test = {(Si,Mk, Tkj , Fijk)|∀(S′

i,M
′
k,

T ′
kj , F

′
ijk) ∈ G′train, Si ̸= S′

i,Mk ̸= M ′
k}.

(16) 353

4 Experimental Settings 354

4.1 Implementation Detail 355

We test two SOTA cross-subject brain-to-text de- 356

coding models UniCoRN (Xi et al., 2023) and 357

EEG2Text (Wang and Ji, 2022) on fMRI dataset 358

Narratives (Nastase et al., 2021) and EEG dataset 359

ZuCo (Hollenstein et al., 2018). Dataset details 360

are introduced in Appendix C. Because the num- 361

ber of stories in ZuCo dataset is too small, and 362

method (e) makes no difference to EEG as method 363

(d), we only consider splitting method (a), (c), (d) 364

for EEG. We follow the same settings of UniCoRN 365

and EEG2Text, except all the datasets are split to 366

the ratio of 8:1:1 for fair comparison. Details are 367

shown in Appendix C. 368

4.2 Evaluation Metrics 369

Data Leakage Metrics We design two novel 370

evaluation metrics Brain Signal Leakage Rate 371

(BSLR) and Text Stimuli Leakage Rate (TSLR) 372
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Figure 3: The detailed steps of our proposed cross-subject data splitting method. (Color printing is preferred.)

Type Method Narratives ZuCo

BSLR(%)

(a) 0.00±0.00 0.00±0.00

(b) 9.67±4.80 /
(c) 12.50±0.04 12.50±0.03

(d) 12.80±0.01 12.59±0.02

(e) 12.27±0.01 /
(f) 0.00±0.00 0.00±0.00

TSLR(%)

(a) 100.00±0.00 22.50±1.31

(b) 0.00±0.00 /
(c) 100.00±0.00 13.07±0.11

(d) 99.82±0.17 12.88±0.04

(e) 9.29±0.06 /
(f) 0.00±0.00 0.00±0.00

Table 3: Results of Brain Signal Leakage Rate (BSLR)
and Text Stimuli Leakage Rate (TSLR). Lower is better.

to quantify two types of data leakage. Note that the373

situation for validation set is the same as test set,374

so we only consider test set in experiments. BSLR375

indicates the average percentage of each subject’s376

brain signals in test set appearing in training set,377

which could be formulated as378

1

Ntest

Ntest∑
i=1

min(1,
|{Fijk|Fijk ∈ (Gtest ∩ Gtrain)}|
|{Fijk|Fijk ∈ Gtrain}|

)

(17)379

where Ntest stands for the total number of subjects380

in test set. | · | stands for the cardinality of a set.381

Function min(·, ·) is applied to make sure for each382

subject the data leakage rate is less than one.383

The definition of TSLR is different for EEG sig-384

nal and fMRI signal. Since (Si,Mk, Tkj , Fijk) in-385

dicates one sample in EEG dataset, definition of386

TSLR for EEG dataset is similar to BSLR, which387

measures the average percentage of certain text in388

test set appearing in training set.389

1

Mtest

Mtest∑
j=1

min(1,
|{Tkj |Tkj ∈ (Gtest ∩ Gtrain)}|
|{Tkj |Tkj ∈ Gtrain}|

)

(18)390

where Mtest stands for the total number of text391

segments in test set. To fMRI dataset, continuous392

fMRI frames with corresponding text segments are393

concatenated as one sample. As a result, TSLR for394

fMRI signal is considered as the average percent- 395

age of the same text segments in test set appearing 396

in training set, which is 397

1

Mtest

Mtest∑
j=1

τ
|{Tkj |Tkj ∈ (Gtest ∩ Gtrain)}|

|Gtest| × L

(19) 398

where τ = 0 if {Tkj |Tkj ∈ Gtest ∩ Gtrain} = ∅ 399

else 400

τ = min(1,
|{Tkj |Tkj ∈ Gtrain}|

|{Tkj |Tkj ∈ (Gtest ∩ Gtrain})|
).

(20) 401

Decoding Performance Metrics Automatic eval- 402

uation metrics including BLEU (Papineni et al., 403

2002) and ROUGE (Lin, 2004) are applied to mea- 404

sure the decoding performance. BLEU measures 405

the n-gram overlap between decoded content and 406

ground truth. ROUGE-N comparing the consis- 407

tency of N-grams between the decoded content and 408

the ground truth. 409

5 Experiments and Analysis 410

We first conduct a data leakage verification exper- 411

iment to quantify the data leakage condition of 412

different methods with BSLR and TSLR metrics. 413

Then we demonstrate the damage of data leakage 414

on encoder side and decoder side. For model en- 415

coder, we analyze its validation loss under different 416

splitting methods. For model decoder, three ex- 417

periment settings are applied: (1) An additional 418

test set that ensures zero data leakage is left out as 419

comparison to original test set. (2) The input brain 420

signals are randomly shuffled. (3) Training original 421

models with more epochs and smaller learning rate. 422

5.1 Verification for Data Leakage 423

Experiments on BSLR and TSLR are conducted 424

four times with different seeds. The results in Ta- 425

ble 3 are consistent with theoretical analysis. A 426

value of zero in BSLR and TSLR demonstrate no 427

brain signal leakage and text stimuli leakage, while 428

higher values suggest more significant data leakage 429
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Dataset Model Method Original Test Set / Additional Test Set
BLEU-1 BLEU-2 BLEU-3 ROUGE1-F

Narratives UniCoRN

(a) 49.56 / 18.43 30.49 / 1.25 21.07 / 0.00 40.65 / 16.38
(b) 26.37 / 23.31 7.50 / 5.79 2.48 / 1.44 19.62 / 18.74
(c) 50.24 / 16.96 30.83 / 0.09 21.23 / 0.00 41.01 / 15.12
(d) 49.63 / 17.20 30.29 / 1.15 20.85 / 0.00 41.03 / 15.83
(e) 28.94 / 21.79 9.39 / 4.62 4.07 / 1.19 19.49 / 18.78
(f) 22.83 / 21.64 5.69 / 4.97 1.43 / 1.28 19.04 / 18.45

ZuCo

UniCoRN

(a) 58.09 / 18.54 49.23 / 1.31 43.23 / 0.00 67.50 / 15.39
(c) 52.30 / 18.38 42.89 / 1.03 36.80 / 0.00 67.29 / 15.25
(d) 50.02 / 19.84 43.53 / 1.20 32.71 / 0.03 67.33 / 15.12
(f) 23.32 / 22.89 7.78 / 7.46 3.01 / 2.75 17.92 / 17.63

EEG2Text

(a) 51.22 / 17.41 33.83 / 1.04 22.99 / 0.00 46.58 / 15.92
(c) 53.83 / 17.38 38.99 / 0.84 29.57 / 0.00 53.56 / 16.07
(d) 53.92/ 16.86 41.06 / 1.32 23.12 / 0.00 49.38 / 15.83
(f) 24.49 / 23.71 7.49 / 7.42 2.28 / 2.33 25.74 / 23.30

Table 4: Performance of brain-to-text decoding models under different splitting methods on original test set and an
additional test set. The green mark denotes a method without text stimuli leakage, whereas the red mark signifies
methods that have text stimuli leakage.
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Figure 4: Validation loss of encoder under different
dataset splitting methods in two datasets.

issues. Notably, only our method (f) prevents both430

brain signal leakage and text stimuli leakage.431

5.2 Damage of Data Leakage to Encoder432

Evaluating the encoder independently can be chal-433

lenging in an end-to-end training scenario. There-434

fore, we primarily focus on a pre-trained encoder.435

Since a proper evaluation index of encoder’s rep-436

resentation ability is missing, validation loss is ap-437

plied to measure data leakage. The validation loss438

of encoder under different data splitting methods439

is shown in Figure 4. For fMRI data, the presence440

of brain signal leakage causes the validation loss441

of methods (b), (c), (d), and (e) to continuously442

decrease even over extended training epochs. This443

indicates that the encoder is actually overfitting and444

its representation ability is degrading. In contrast,445

with methods (a) and (f) that are not affected by446

brain signal leakage, the validation loss quickly447

increases after reaching its minimum within a few448

epochs, which aligns with the fundamental princi-449

ples of machine learning. For EEG, we find valida- 450

tion loss keeps dropping for all methods even with 451

very long training epochs, regardless of brain signal 452

leakage or not. We think the poor spatial resolution 453

of EEG signal might lead to this phenomenon. 454

5.3 Damage of Data Leakage to Decoder 455

Evaluation on Additional Test Set An addi- 456

tional test set that ensures zero data leakage is left 457

out to evaluate the actual performance of brain-to- 458

text decoding models. If the original test set is cor- 459

rectly split, its decoding result should be similar to 460

that of the additional test set. From Table 4, we ob- 461

serve that the decoding model tends to overfit when 462

text stimuli leakage occurs, as seen in methods (a), 463

(c), (d), and (e) in Narratives, and methods (a) and 464

(c) in ZuCo. The BLEU and ROUGE score is sig- 465

nificantly lower in the additional test set. While 466

in our proposed splitting method (f), the decoding 467

performance of original and additional test set are 468

similar. We also notice that methods with a high 469

Text Stimuli Leakage Rate (TSLR), such as method 470

(a) in Narratives, exhibit more overfitting compared 471

to methods with a low TSLR, like method (e). 472

Shuffle Input Brain Signals We conduct a 473

chance-level experiment to investigate whether de- 474

coding models learn language reconstruction from 475

brain signals. Specifically, the input brain signals 476

are randomly shuffled. Decoding performance in 477

test set is expected to be very poor if text stimuli 478

7



Dataset Model Method Ordered Input / Shuffled Input
BLEU-1 BLEU-2 BLEU-3 ROUGE1-F

Narratives UniCoRN

(a) 49.56 / 47.39 30.49 / 28.95 21.07 / 18.40 40.65 / 35.12
(b) 26.37 / 20.18 7.50 / 3.52 2.48 / 0.51 19.62 / 15.58
(c) 50.24 / 48.48 30.83 / 30.21 21.23 / 19.39 41.01 / 38.43
(d) 49.63 / 50.21 30.29 / 32.18 20.85 / 21.46 41.03 / 41.69
(e) 28.94 / 24.84 9.39 / 6.56 4.07 / 2.04 19.49 / 17.90
(f) 22.83 / 18.21 5.69 / 2.47 1.43 / 0.22 19.04 / 16.83

ZuCo

UniCoRN

(a) 58.09 / 59.23 49.23 / 51.35 43.23 / 44.27 67.50 / 68.93
(c) 52.30 / 50.24 42.89 / 37.96 36.80 / 30.21 67.29 / 63.43
(d) 50.02 / 51.12 43.53 / 40.85 32.71 / 28.24 67.33 / 64.88
(f) 23.32 / 19.38 7.78 / 2.51 3.01 / 0.00 17.92 / 15.21

EEG2Text

(a) 51.22 / 50.63 33.83 / 32.19 22.99 / 20.63 46.58 / 44.70
(c) 53.83 / 50.33 38.99 / 33.42 29.57 / 23.19 53.56 / 48.78
(d) 53.92 / 51.46 41.06 / 35.87 23.12 / 24.75 49.38 / 47.42
(f) 24.49 / 18.72 7.49 / 2.01 2.28 / 0.00 25.74 / 15.36

Table 5: Performance of brain-to-text decoding models under different splitting methods with ordered brain signals
and randomly shuffled brain signals as model input respectively.

Dataset Model BLEU-N (%) ROUGE-1 (%)
N = 1 N = 2 N = 3 N = 4 R P F

Narratives UniCoRN 22.83 5.69 1.43 0.48 15.55 24.80 19.04

ZuCo UniCoRN 23.32 7.78 3.01 1.09 18.47 20.00 17.92
EEG2Text 24.49 7.49 2.28 0.62 23.98 23.95 25.74

Table 6: A fair benchmark for evaluating the perfor-
mance of cross-subject brain-to-text decoding models.

leakage does not happen, as the shuffled input is479

considered as noise. However, if text stimuli in test480

set leaks into training set, the model will simply481

memorize seen text and the decoding performance482

is not supposed to be affected.483

Results are presented in Table 5. For fMRI, we484

find the decoding performance of models under485

splitting method (a), (c), and (d) remain the same486

no matter the input is ordered or shuffled. Simi-487

lar phenomenon is also observed in EEG dataset488

when it comes to splitting method (a), (c), (d). But489

in splitting method without text stimuli leakage,490

model performance with shuffled input drops sig-491

nificantly. This experiment demonstrates that the492

brain-to-text decoding task become meaningless493

when text stimuli leakage exists, as the Transformer494

block is capable of generating text that was previ-495

ously encountered during the training phase.496

Longer Training Epochs with Smaller Learning497

Rate According to fundamental machine learn-498

ing principle, model performance in test set will499

first increase and then drop as the training pro-500

ceeds. In this experiment, we try training models501

under different splitting methods with longer train-502

ing epochs and smaller learning rate. If text stimuli 503

leakage happens, the model is overfitting and its 504

performance is supposed to keep increasing. 505

Results and detailed analysis are presented in Ap- 506

pendix F. In conclusion, the model’s performance 507

on test set continues to improve when text stimuli 508

leakage happens, confirming that such leakage re- 509

sults in significant overfitting in decoding models. 510

5.4 A Fair Benchmark 511

We re-evaluate two SOTA models for brain-to- 512

text decoding under our cross-subject data split- 513

ting method and release a fair benchmark. Uni- 514

CoRN is tested for both fMRI and EEG decoding, 515

EEG2Text model is tested for EEG decoding. The 516

results are listed in Table 6. For EEG dataset, Uni- 517

CoRN achieves higher results in BLEU-2,3,4 while 518

EEG2Text is better in BLEU-1 and ROUGE-1. 519

6 Conclusion 520

In this paper, we focus on revealing the false dataset 521

splitting method and its detrimental impact on 522

cross-subject brain-to-text decoding research. We 523

evidence that all current dataset splitting methods 524

have data leakage problem through theoretical anal- 525

ysis and experiments. Such data leakage leads to 526

model overfitting and largely exaggerates model 527

performance, rendering model evaluation meaning- 528

less. To fix this issue, we propose a right cross- 529

subject data splitting method. Current SOTA mod- 530

els are re-evaluated for further researches. 531
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Limitations532

The limitations of this work include three aspects:533

(1) Although our splitting method can be applied534

to any natural language comprehension cognitive535

dataset, we only analyze cross-subject data split-536

ting methods in fMRI and EEG dataset. We leave537

the investigation of other cognitive signals (e.g.538

ECoG, MEG, etc.) to future work. (2) Our pro-539

posed dataset splitting method meets the above re-540

quirements at the expense of discarding some data541

in the dataset. We recommend future datasets in542

this domain follow these guidelines. The division543

of the training set, validation set, and test set should544

be provided when the dataset is released. Besides,545

we suggest hiring new subjects with unique stimuli546

for the validation set and test set, which is good for547

testing the generalization ability of models without548

loss of data. (3) During experiments we find exist-549

ing models rely more on a strong auto-regressive550

decoder to achieve good generation quality. The551

encoder is of limited use in all SOTA models. And552

we also notice in experiments that the encoder of553

EEG2Text keeps overfitting whether with or with-554

out brain signal leakage. We leave it as future555

research.556

Ethics Statement557

In this paper, we introduce a new dataset splitting558

method to avoid data leakage for decoding brain559

signals to text task. Experiments are conducted560

on the publicly accessible cognitive datasets “Nar-561

ratives” and ZuCo1.0 with the authorization from562

their respective maintainers. Both datasets have563

been de-identified by dataset providers and used564

for researches only.565
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A Related Work 690

Brain Signal Brain signals can be classified into 691

three categories: invasive, partially invasive, and 692

non-invasive according to how close electrodes get 693

to brain tissue. In this paper, we mainly focus on 694

non-invasive signals EEG and fMRI. EEG signal 695

is electrogram of the spontaneous electrical activ- 696

ity of the brain, with frequencies ranging from 1 697

Hz to 30 Hz. EEG is of high temporal resolution 698

and relatively tolerant of subject movement, but its 699

spatial resolution is low and it can’t display active 700

areas of the brain directly. fMRI measures brain 701

activity by detecting changes of blood flow. Blood 702

flow of a specific region increases when this brain 703

area is in use. The spatial resolution of fMRI is 704

measured by the size of voxel, which is a three- 705

dimensional rectangular cuboid ranging from 3mm 706

to 5mm (Vouloumanos et al., 2001; Noppeney and 707

Price, 2004). Unlike EEG which samples brain sig- 708

nals continuously, fMRI samples based on a fixed 709

time interval named TR, usually at second level. 710

Brain-to-text Decoding Previous research on 711

brain-to-text decoding (Herff et al., 2015; Anu- 712

manchipalli et al., 2019; Zou et al., 2021; Moses 713

et al., 2021; Défossez et al., 2023) mainly focused 714

on word-level decoding in a restricted vocabulary 715

with hundreds of words (Panachakel and Ramakr- 716

ishnan, 2021). These models typically apply re- 717

current neural network or long short-term memory 718

(Hochreiter and Schmidhuber, 1997) network to 719

build mapping between brain signals and words 720

in vocabulary. Despite relatively good accuracy, 721

these methods fail to generalize to unseen words. 722

Some progress (Sun et al., 2019) has been made 723

by expanding word-level decoding to sentence- 724

level through encoder-decoder framework or using 725

less noisy ECoG data (Burle et al., 2015; Anu- 726

manchipalli et al., 2019). However, these models 727

struggle to generate accurate and fluent sentences 728

limited by decoder ability. Wang and Ji (2022) 729

introduced the first open vocabulary EEG-to-text 730

decoding model by leveraging the power of pre- 731

trained language models. Xi et al. (2023) improved 732

the model design and proposed a unified framework 733

for decoding both fMRI and EEG signals. 734

B Brain-to-text Decoding Models 735

UniCoRN UniCoRN provides a unified encoder- 736

decoder framework for EEG and fMRI to text de- 737

coding. The training of UniCoRN follows a three- 738
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stage manner. The fMRI encoder is first pre-trained739

with a cognitive signal reconstruction task to cap-740

ture spatial feature via a 3D-CNN module. Then741

a Transformer encoder is stacked into the fMRI742

encoder to capture temporal connections. Finally743

BART is fine-tuned to translate fMRI representa-744

tion into natural language in the generation stage.745

EEG2Text EEG2Text treats each EEG feature746

sequence as an encoded sentence by the human747

brain. An additional encoder is then trained to748

map the embedding from the human brain to the749

embedding from the pretrained BART. EEG feature750

vectors are used directly as initial word embeddings751

to feed into the model.752

C Implementation Details753

We apply the “Narratives” (Nastase et al., 2021)754

dataset for fMRI-to-text decoding and the ZuCo755

(Hollenstein et al., 2018) dataset for EEG-to-text756

decoding in experiments. The “Narratives” dataset757

contains fMRI data from 345 subjects listening to758

27 diverse stories. Since the data collection pro-759

cess involves different machines, we only consider760

fMRI data with 64 × 64 × 27 voxels. The ZuCo761

dataset includes 12 healthy adult native English762

speakers reading English text for 4 to 6 hours. It763

contains simultaneous EEG and Eye-tracking data.764

The reading tasks include Normal Reading (NR)765

and Task-specific Reading (TSR) extracted from766

movie views and Wikipedia. Both datasets are split767

into training, validation, and test set with a ratio of768

80%, 10%, 10% in all experiments.769

We perform the same filtering steps to “Nar-770

ratives” dataset as UniCoRN paper (Xi et al.,771

2023) and the same filtering steps to ZuCo1.0 as772

EEG2Text paper (Wang and Ji, 2022). In BSLR773

and TSLR calculation, the number of four differ-774

ent seeds are set as 1, 2, 3, 4 respectively. In signal775

reconstruction task for encoder of UniCoRN, the776

batch size of EEG and fMRI data is 512 and 320777

respectively. The learning rate is set as 1e-4 and778

1e-3 separately as the author claimed in the original779

paper. In the fair benchmark, for fMRI data, en-780

coder of UniCoRN is trained through 1e-4 learning781

rate and decaying to 1e-6 finally for 30 training782

epochs. Decoder is trained through 1e-4 learning783

rate and decaying to 1e-6 finally for 10 training784

epochs with 90 batch size. Sample length L is set785

as 10 for all experiments related to fMRI. For EEG786

data, EEG2Text model is trained with 1e-6 learning787

rate for 80 epochs. UniCoRN model is trained with788

the same settings as fMRI data. 789

D Cross-Subject Data Splitting in 790

Practice 791

We present the pseudo-code of two dataset split- 792

ting methods for EEG and fMRI signal. We only 793

consider a bipartite graph G1 = (U ,V, E) instead 794

of a 4-partite graph in real practice. For EEG sig- 795

nal, U = {Si}Ni=1, V = {Tj}Mj=1. While for fMRI 796

signal, U = {Si}Ni=1, V = {Mk}Kk=1. E is the 797

edge between node in U and node in V . N,M,K 798

indicate the total number of subjects, text segments 799

and stories. We assert M > N for EEG dataset 800

and K < N for fMRI dataset, so e = (u, v) ∈ E 801

exists for every v ∈ V , as each text segment or 802

story is listened by at least one subject. As shown 803

in step 1 of Figure 3, first we pick one edge for 804

each node v ∈ V and build a new bipartite graph 805

G2 = (U ,V, E ′). Then following step 2, we split 806

graph G2 by subject U with the given splitting ratio 807

and form three disjoint graphs Gtrain,Gval,Gtest. 808

In step 3, we extend each graph Gtrain,Gval,Gtest 809

by adding edges without data leakage. 810

The main difference of splitting methods for 811

EEG and fMRI lies in how G2 is generated. We al- 812

ways choose the side with fewer nodes in bipartite 813

graph G1 to generate G2. Specifically, in Algorithm 814

1 where we assert |U| < |V|, the adjacency matrix 815

is initialized as M × N . In Algorithm 2 where 816

|V| < |U|, the adjacency matrix is initialized as 817

N ×K. All assertions are based on real cognitive 818

datasets. One more thing to notice is that in Line 14 819

of both pseudo-code, the loop indicates extending 820

training set, validation set, and test set respectively. 821

So the names of variable should be alternated in the 822

repeat loop and the displayed part in pseudo-code 823

is a case example of extending training set. We 824

write it in this way for simplicity of expression. 825

E Supplementary Proof 826

Why a method without brain signal leakage and 827

text stimuli leakage must satisfy cross-subject 828

brain-to-text decoding criterion Training set 829

Gtrain without brain signal leakage and text stimuli 830

leakage is formatted in 831

Gtrain = {(Si,Mk, Tkj , Fijk)|
∀(S′

i,M
′
k, T

′
kj , F

′
ijk) ∈ Gtest,

Si ̸= S′
i, Tkj ̸= T ′

kj}
= Strain ⊗M⊗ Ttrain ⊗F

(21) 832
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where Strain = {Si|∀S′
i ∈ Stest, Si ̸=833

S′
i}, Ttrain = {Tkj |∀T ′

kj ∈ Ttest, Tkj ̸= T ′
kj}.834

Since Fijk ∈ F indicates brain signal of subject835

Si stimulated by text segment Tkj , and given the836

definition of operator ⊗, F is determined when S837

and T are specified, which is838

F = {Fijk|i ∈ I, kj ∈ J},
I = {i|Si ∈ Strain},
J = {kj|Tkj ∈ Ttrain}.

(22)839

F can also be written as F = {Fijk|i ∈ I},840

I = {i|∀j,∀k, Fijk /∈ Ftest}, which is equal to841

Definition 3.1.842

Why the proposed splitting method satisfy zero843

data leakage Take the splitting method for EEG844

signal as example, the training set and test set after845

step 1 and step 2 already satisfy846

Gtrain = {(Si,Mk, Tkj , Fijk)|∀(S′
i,M

′
k,

T ′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i, Tkj ̸= T ′
kj}

(23)847

848
Gtest = {(Si,Mk, Tkj , Fijk)|∀(S′

i,M
′
k,

T ′
kj , F

′
ijk) ∈ Gtrain, Si ̸= S′

i, Tkj ̸= T ′
kj}

(24)849

So we only need to prove expanded graph850

G′train_exp and G′test_exp satisfy zero data leakage,851

which is obvious from Equation 13 and 14.852

Why we must discard samples to ensure853

no data leakage If Gtrain ∪ Gtest = GD,854

suppose ∀(Si,Mk, Tkj , Fijk) ∈ Gtrain,855

(S′
i,M

′
k, T

′
kj , F

′
ijk) ∈ Gtest, Si ̸= S′

i, Tkj ̸= T ′
kj .856

For f(E) = (Mk, Tkj), f(E ′) = (M ′
k, T

′
kj),857

Tkj ̸= T ′
kj :858

• If Mk = M ′
k, then there must exist a subject859

Si = S′
i such that he is stimulated by the860

whole stories.861

• If Mk ̸= M ′
k, then there must exist a subject862

Si = S′
i such that he is stimulated by two863

different stories.864

As a result, if Gtrain ∪ Gtest = GD,865

then ∃(Si,Mk, Tkj , Fijk) ∈ Gtrain,866

(S′
i,M

′
k, T

′
kj , F

′
ijk) ∈ Gtest, s.t. Si = S′

i or867

Tkj = T ′
kj . Some samples must be discarded to868

ensure no data leakage.869

F Supplementary Experiment870

Results and analysis on experiments on longer train-871

ing epochs with smaller learning rate is supple-872

mented. If evaluation indicators keep improving873

as training epochs increase, we believe part of the 874

test set is leaked into training set and the model is 875

overfitting. For fMRI signal, we test five current 876

dataset splitting methods under different training 877

settings. As shown in Table 7, we test two kinds 878

of UniCoRN models. One is UniCoRN with hyper- 879

parameters claimed in the original paper, and the 880

other is UniCoRN∗ whose encoder is randomly 881

initialized. Besides, UniCoRN∗ is trained with 882

longer epochs and smaller learning rate. In method 883

(a), (c), (d), due to text stimuli leakage, if we re- 884

duce the learning rate and extend training epochs, 885

UniCoRN∗ performs much better than UniCoRN 886

and its performance keeps rising with longer train- 887

ing epochs. As to method (b) and (e) with no text 888

stimuli leakage, changing training epochs or learn- 889

ing rates makes no obvious difference to model 890

performance. For EEG signal, the conclusion is 891

similar as shown in Table 8. For method (a) and (c) 892

with text stimuli leakage, model performance keeps 893

rising with longer training epochs. For method (d) 894

without text stimuli leakage, both models reach 895

optimal performance after the first few rounds of 896

training epochs. 897
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Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)
N = 1 N = 2 N = 3 N = 4 F P R

UniCoRN

10+1e-3+(a) 49.56 30.49 21.07 15.49 44.83 50.41 40.65
10+1e-3+(b) 26.37 7.50 2.48 0.99 22.28 25.99 19.62
10+1e-3+(c) 50.24 30.83 21.23 15.60 44.68 49.44 41.01
10+1e-3+(d) 49.63 30.29 20.85 15.32 45.06 50.47 41.03
10+1e-3+(e) 28.94 9.39 4.07 1.53 21.68 24.64 19.49

UniCoRN∗

20+1e-4+(a) 50.19 34.25 25.98 21.00 46.59 50.36 43.62
30+1e-4+(a) 55.46 40.99 32.85 27.56 52.08 55.02 49.68

20+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57
30+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57

20+1e-4+(c) 72.44 60.84 53.35 47.88 70.52 74.10 67.53
30+1e-4+(c) 72.82 61.42 53.95 48.44 71.24 74.41 68.57

20+1e-4+(d) 65.31 51.02 42.54 36.72 62.76 67.09 59.29
30+1e-4+(d) 66.56 53.00 44.75 39.02 63.89 67.51 60.95

20+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35
30+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35

Table 7: Generation quality of UniCoRN model for fMRI under different training settings. Here UniCoRN∗

indicates the encoder of UniCoRN is randomly initialized instead of pre-trained through signal reconstruction task.

Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)
N = 1 N = 2 N = 3 N = 4 F P R

UniCoRN

50+1e-4+(a) 58.09 49.23 43.23 38.43 63.88 61.12 67.50
80+1e-4+(a) 60.88 50.52 43.42 37.84 65.17 61.16 70.72

50+1e-4+(c) 52.30 42.89 36.80 32.17 57.39 51.09 67.29
80+1e-4+(c) 60.78 55.92 53.18 51.10 84.64 63.16 71.50

50+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33
80+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33

EEG2Text

50+1e-4+(a) 51.22 33.83 22.99 16.05 46.40 46.85 46.58
80+1e-4+(a) 63.32 52.52 45.19 39.50 65.96 64.74 68.01

50+1e-4+(c) 53.83 38.99 29.57 23.01 53.64 54.19 53.56
80+1e-4+(c) 65.42 57.56 52.56 48.60 73.00 69.99 77.01

50+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89
80+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89

Table 8: Generation quality of UniCoRN and EEG2Text model for EEG under different training settings.

13



Algorithm 1: Dataset splitting method for EEG signal

1 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1 and V = {Tj}Mj=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(U) and C[i] = 0;

2 for u← U1 to UN do
3 Ccopy ← C;
4 for v ← A1[u][0] to A1[u][M ] do
5 if v = 0 then
6 Ccopy[v.index]←∞;

7 Minimum = min(Ccopy);
8 A2[u][Minimum.index]← 1;
9 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

10 Split by subjects U according to default ratio;
11 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
12 repeat // To three sets respectively, below is for training set
13 for u in U do
14 for v in V do
15 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and u /∈ Uval ∪ Utest then
16 E ′train ← E ′train ∪ {e};

17 until Gtrain,Gval,Gtest are all extended;
18 return Gtrain,Gval,Gtest;

Algorithm 2: Dataset splitting method for fMRI signal

19 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1, V = {Mk}Kk=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(V) and C[i] = 0;

20 for v ← V1 to VK do
21 Ccopy ← C;
22 for u← A1[v][0] to A1[v][K] do
23 if u = 0 then
24 Ccopy[u.index]←∞;

25 Minimum = min(Ccopy);
26 A2[v][Minimum.index]← 1;
27 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

28 Split by tasks V according to default ratio;
29 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
30 repeat // To three sets respectively, below is for training set
31 for v in V do
32 for u in U do
33 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and v /∈ Vval ∪ Vtest then
34 E ′train ← E ′train ∪ {e};

35 until Gtrain,Gval,Gtest are all extended;
36 return Gtrain,Gval,Gtest;
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