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ABSTRACT

Recent advances in autonomous driving systems have shifted towards reducing
reliance on high-definition maps (HDMaps) due to the huge costs of annotation
and maintenance. Instead, researchers are focusing on online vectorized HDMap
construction using on-board sensors. However, sensor-only approaches still face
challenges in long-range perception due to the restricted views imposed by the
mounting angles of onboard cameras, just as human drivers also rely on bird’s-eye-
view navigation maps for a comprehensive understanding of road structures. To
address these issues, we propose to train the perception model to "see" standard
definition maps (SDMaps). We encode SDMap elements into neural spatial map
representations and instance tokens, and then incorporate such complementary
features as prior information to improve the bird’s eye view (BEV) feature for
lane geometry and topology decoding. Based on the lane segment representation
framework, the model simultaneously predicts lanes, centrelines and their topology.
To further enhance the ability of geometry prediction and topology reasoning, we
also use a topology-guided decoder to refine the predictions by exploiting the
mutual relationships between topological and geometric features. We perform
extensive experiments on OpenLane-V2 datasets to validate the proposed method.
The results show that our model outperforms state-of-the-art methods by a large
margin, with gains of +6.7 and +9.1 on the mAP and topology metrics. Our analysis
also reveals that models trained with SDMap noise augmentation exhibit enhanced
robustness.

1 INTRODUCTION

Autonomous driving has witnessed remarkable advancements in recent years, becoming increasingly
integral to the future of transportation. As a crucial component, perceiving the complex road
scenarios to estimate the lane geometry and road topological connections is critical not only to the
downstream planning, but also to ensuring the reliability and explainability of the overall system. As
the foundational infrastructure for autonomous driving, high-definition maps (HDMaps) can provide
a detailed and accurate source of road structures and geometries. Nevertheless, the annotation and
maintenance costs of HDMaps are substantial, which poses limitations on their scalability across
widespread areas. To alleviate these issues, recent researches such as (Li et al., 2022a; Liu et al.,
2023; Liao et al., 2022; 2023b; Ding et al., 2023) are exploring how to construct online HD maps
using onboard sensor input powered by deep learning models. However, relying solely on onboard
sensors to accurately recognize lane-level geometry and topology remains challenging in real-world
environments. They may produce low-quality lane lines or erroneous topology connections due to
constrained camera views and limited visual ranges, and the situations are particularly exacerbated
during severe weather conditions or occlusion.

It is natural that human drivers maneuver vehicles not only by observing the surroundings of the
vehicle, but also by referring to navigation maps, i.e. standard-definition maps (SDMaps), or a
memory map in one’s mind. SDMaps encompass the road structures, typically consisting of road
networks, intersections, and other basic geographic features. With the localization of the global
position system (GPS), the corresponding SDMaps serve as a quick visual prompt of the surrounding
real environment and complement the sensor input. Importantly, compared to HDMaps, SDMaps are
easier to obtain and are updated more frequently to accommodate new road changes, which makes
SDmaps preferable prior information for model input to complement the pure sensor input.
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Figure 1: Comparison between the previous lane segment perception pipeline and ours. We incorpo-
rate SDMap information as prior to enhance the geometry and topology learning.

As shown in Figure 1, based on the framework of predicting lane segments only using cameras, we
incorporate the SDMap into the perception model to solve the problem of understanding driving
scenes and improving the map construction on lane geometry and topology.

To make use of SDMaps, we encode the elements in the map into a representation that the neural
network can learn from. We employ two distinct encoding methodologies: 1) spatial map encoding
– drawing various SDMap attributes into 2D spatial maps aligned with the BEV range; 2) map
tokenization – encoding SDmap information, e.g. the class and coordinates of SDMap polylines in
a larger range into token vectors. Consequently, the key information of road networks is encoded
into such representations and is then fused into the BEV feature to help online map construction
and improve prediction confidence. From the intrinsic characteristics of these encoding methods,
the advantage of the former is that the geometry and topology information of the connected road
polylines can be encoded in the spatial distribution of SD neural maps, thereby complementing the
BEV feature. Conversely, the latter method offers the advantage of encoding a broader range of
road information beyond the BEV perception range and capturing the global topology relationships
between different SDMap instances.

While the goal of the lane segment perception task is to unify the geometry and topology modeling,
the mutual promotion between geometrical and topological features remains unexplored. The com-
mon practice for topology prediction typically involves using independent branches for geometry
and topology prediction tasks. To further exploit reciprocal benefits between two prediction tasks,
we design a topology-guided decoder operating recursively to gradually encourage prediction con-
sistency among queries using an adjacent matrix conveying the topology information. It takes into
account both the successor and predecessor of a lane, which further improves the accuracy of both
topological and geometrical predictions. We conduct extensive experiments on the lane segment
perception benchmark OpenLaneV2 dataset. Compared to current state-of-the-art methods, our
model demonstrates substantial improvements, achieving a +6.7 increase in mAP, a +9.1 increase in
the topology metric, and a +5.5 increase in the OLS score.

Our contributions can be summarized as follows: (1) We incorporate the SDMap as prior information
to tackle the task of lane segment perception. We propose two complementary SDMap encoding
methods to leverage the topology and geometry information of SDMap to enhance the BEV perception.
(2) We propose a Topology-Guided Decoder to exploit the mutual promotive relationships between
geometrical and topological features, enhancing the predictions of both geometry and topology. (3)
We conduct extensive experiments on the OpenLaneV2 benchmark. The results show that our model
outperforms the counterpart methods with a large margin, and achieves state-of-the-art performance
in the lane segment perception task. We also conduct a comprehensive analysis of the impact of
SDMap errors or noise on performance and propose potential strategies to enhance model robustness.

2 RELATED WORK

Lane detection & Online HD Map construction Lane detection is the common task of detecting
lane elements in the road scenes. Many of them focus on single-view lane recognition and they can be
classified into segmentation-based (Pan et al., 2018; Abualsaud et al., 2021), anchor-based (Tabelini
et al., 2021; Qin et al., 2020; Xiao et al., 2023) and keypoint-based (Ko et al., 2021; Wang et al.,
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2022) methods. Recently, great progress has been made in the field of online HD map construction.
BEV-LaneDet (Wang et al., 2023c) and HDMapNet (Li et al., 2022a) adopt a typical rasterized map
representations, which outputs segmentation results and embeddings for clustering. However, such
methods need extra post-processing to generate maps for downstream planning modules. In contrast,
vectorized map representation induces an end-to-end learning paradigm, with various methods (Liu
et al., 2023; Liao et al., 2022; 2023b; Ding et al., 2023; Zhang et al., 2024; Qiao et al., 2023a;b)
having been proposed. MapTR (Liao et al., 2022) and MapTRv2 (Liao et al., 2023b) employ point-
level queries for each lane instance and an end-to-end learning paradigm, effectively enhancing the
perceptual accuracy of vectorized maps. PivotNet (Ding et al., 2023) proposes a compact pivot-based
map representation and attempts to model the topology in dynamic point sequences by introducing
the concept of sequence matching. GeMap (Zhang et al., 2023) proposes to learn Euclidean shapes
and relations of map instances beyond basic perception. MapTracker (Chen et al., 2024) formulates
the map construction as a tracking task, uses the memory buffer to ensure consistent reconstructions
over time and augments the mAP metrics with consistency checks.

Lane Topology Reasoning. Lane topology reasoning is directly related to the detection of centerlines
and their connectivity. STSU (Can et al., 2021) introduces a DETR-like network to detect centerlines,
and uses a MLP to infer their connectivity to form a directed graph. CenterLineDet (Xu et al., 2023)
regards centerlines as vertices in a graph and employs a model trained through imitation learning
to update the topology. TopoMLP (Wu et al., 2023) uses two high-performance detectors and two
MLP networks for lane detection and topology reasoning. LaneGAP (Liao et al., 2023a) uses a path-
wise approach to translate the lane graph into continuous and complete paths and a heuristic-based
algorithm to recover the lane graph. TopoNet (Li et al., 2023) explicitly models the connectivity
of centerlines and integrates traffic elements to learn a comprehensive understanding of the driving
scene. LaneSegNet (Li et al., 2024) introduces a new representation of lane segments. It leverages
both geometric and topological modeling, further enhancing the prediction ability of road structure.
In this paper, we use the same representation of lane segment but introduce the SDMap information
as prior and design a topology-guided decoder to further improve the accuracy of geometry and
topology predictions.

Map Fusion. Recent approaches make attempts to leverage some prior map for online HD mapping.
Neural Map Prior (Xiong et al., 2023) builds a neural representation of global maps as a strong
prior map, which are fused and updated when conducting local map inference. (Gao et al., 2023)
proposes using satellite maps to complement onboard sensors to improve HD map construction.
The satellite image features are fused into the BEV feature using a hierarchical fusion module.
StreamMapNet (Yuan et al., 2024) fuses the temporal information from the memory feature updated
by history frames to improve performance. MapEX (Sun et al., 2023) proposes to improve online
HD construction using existing maps. It encodes the elements of HDMap into the map queries and
leverage the decoder to utilize the existing map. There are some concurrent works incorperate SDMap
as extra inforamtion to improve the onlien HD mapping. P-MapNet (Jiang et al., 2024) incorporates
both SDMap and HDMap as prior to improve the model performance. It uses attention-based
architecture to fuse the relevant SDMap skeletons for map construction and pre-trains a HDMap prior
module to refine the map segmentation results. SMERF (Luo et al., 2023) integrates SD maps into
online map construction. It encodes the class and coordinates of SDMap polylines into vectors using
a Transformer encoder, and the map features are fused into the BEV feature using cross-attentions.
The proposed map tokenization in this paper builds upon this method to encode a larger range of
SDMap. Additionally, we propose a spatial representation encoding to enhance the geometric and
topological attributes of SDMap.

3 METHOD

We aim to tackle the task of driving scene structure perception and reasoning, particularly focusing
on the lane detection and the topology prediction. Built upon the lane segment based representa-
tion (Wang et al., 2023b; Li et al., 2024), we exploit standard-definition maps (SDMaps) as prior to
enrich the perception information in BEV, as SDMaps can offer rough road geometry and topology
information to generate map structure. To exploit the mutual relationships between the topological
and geometrical feature, we employ a Topology-Guided Decoder (TGD) equipped with a topology-
guided self-attention mechanism to optimize the centerline geometry and topology using a predicted
adjacent matrix.
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Figure 2: The overall model architecture. The model receives perspective images from cameras
arranged in a surrounding view configuration and a locally aligned SDMap as inputs. The images are
processed by the image backbone to obtain multi-scale image features. The polylines of SDMap are
encoded as two representations – a 2D-shaped SD feature map and a set of vectorized SD tokens. We
adopt a BEVFormer-like encoder to extract BEV features. The SD feature map is added to the BEV
queries and BEV features. The SD tokens interact with BEV queries via cross-attention. Then we use
a Topology-Guided Decoder to predict the lane segment results. SA denotes the Self-Attention layer.

3.1 LANE SEGMENT PERCEPTION TASK

In this task, a lane segment is a minimum unit to predict which contains a centerline, a left-boundary,
and a right-boundary of a lane instance in form of polylines, denoted as V = {vc,vl,vr} respectively.
For the left or the right boundary, the line type of them {al, ar} are defined within: non-visible, solid,
and dashed. Besides, following LaneSegNet (Li et al., 2024), we convert the pedestrian crossing into
the format of lane segment and exclude the prediction of road boundary.

The task of lane segment perception is not only to accurately detect the geometries of lane segment
but is to generate the topological relationships between detected lane segments, i.e., the lane graph.
This lane graph is represented as a directed graph G = (V,E). Each lane segment V is denoted
as a node in the set V , and the edges in set E represent connections between lane segments. Each
edge signifies a directed connection between two lane segments that have preceding and succeeding
relationships.

3.2 SDMAP ENCODING AND FUSION

We use the SDMaps as the extra input, which conveys information about the road type, the road shape
and topological connection. To make full use of them, we encode the map entities in the map into a
representation that the neural network can learn from by using two distinct encoding methodologies
as follows.

1) spatial map encoding . This encoding method is to draw SDMap elements into 2D canvas maps.
Assuming a 2D canvas is drawn according to the geometry and types of roads in the SDMap, the
pixels in this canvas convey the SDMap information locally and the road structure in the bird’s
eye view can be expressed in the 2D maps. In light of this, the SDMap polyline elements are first
encoded into different canvas maps. These maps are drawn with thick lines to describe the geometry,
connections, shape, and types of the roads. And we employ cosines and sines of the inclination angle
of the road line segments to express the curvature of the roads. And then these maps are processed by
a CNN to achieve the SD feature Fs ∈ Rd×h×w. Refer to Appendix A for more details on encoding.

2) map tokenization. As the SD features only encode the SDMap information locally, we use
another approach – map tokenization to encode the class and coordinate information in a global scope.
Inspired by the polyline sequence representation in SMERF (Luo et al., 2023), we encode S polyline
instances in SDMap as S token vectors, each of which is combined by a one-hot category vector
representation with K dimensions and N point coordinate embeddings with c dimension. In other
words, the dimension of each SD token vector is N · c+K. The S SD token vectors are then sent to
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a Transformer encoder to model the internal relationships among these SD elements and transformed
into the D dimension token-based map feature Ts ∈ RS×D.

SDMap Pre-fusion. Given this new input modal, how and where to incorporate such SDMap
information is critical to the model performance. Considering that SDMap only contains coarse road
structure information, we advocate for introducing the SDMap to the model at an earlier stage of
processing, rather than integrating it during the final lane prediction phase when the local information
is much more crucial.

To this end, we propose to pre-fuse SDMap in the stage of constructing BEV feature and expect
to reduce the possible negative interference when the inconsistency between sensor data and map
occurs. We adopt a BEVFormer-based (Li et al., 2022b) encoder to generate the BEV feature. We
add SD features Fs to initial BEV queries Bq ∈ RD×h×w and the output of the BEVformer Encoder.
In the stage of BEV feature learning, the BEV queries can further aggregate image features from
surrounding perspective-view images via a cross-attention mechanism. After this cross-attention,
another cross-attention layer is appended to query the BEV feature with SD tokens Ts. The purpose of
this design is to enable bev queries to select the most relevant tokens to fuse. Finally, the obtained SD-
enhanced BEV feature FB ∈ RD×h×w are sent to the decoder for further processing. In experiments,
we find all these designs are indispensable for achieving good performance.

3.3 TOPOLOGY-GUIDED DECODER

Although this task of lane segment perception is to uniformly learn the geometry and topology of
the road structure, the mutual influence of topology and geometry has not been fully explored in
current approaches. In LaneSegNet (Li et al., 2024), the topology information is inferred using
the final queries after the geometrical locations of centerlines have been predicted. However, this
approach ignores the fact that topology information may affect the geometric position of the cen-
terline. Intuitively, for two lanes with topological connections, their geometric endpoints are also
connected with each other. If carefully designed, an approach should benefit from the relationship
between lane topology and geometric layout. Therefore, we insert a topology-guided self-attention
mechanism in each decoder layer, which allows the predicted topology information to influence
the prediction of geometric information layer by layer, thus promoting mutual interaction between
topology information and geometric positions.

We employ a deformable DETR (Zhu et al., 2020) style decoder to map the SDMap-enhanced BEV
feature to final outputs through multiple heads. The learnable instance queries Q ∈ RN×D represent
lane segments. For the interactions with the BEV feature, we still keep the Lane Attention mechanism
proposed in LaneSegNet to cross-attention with BEV feature FB , obtaining its outputted instance
queries.

Topology-guided Self Attenion Mechanism. After the Lane Attention, we insert Topology-guided
Self-Attenion. In Topology-guided Self-Attenion, a topology head is used to predict the topology
adjacency matrix between lane segments Mtopo ∈ RN×N . Then we use this predicted topology
matrix to fuse the geometrical information of the predecessor and the successor. More specifically,
we leverage the adjacency matrix Mtopo to represent the topological connectivity. Each element in
the matrix has a value between 0 and 1, a higher score representing a higher connectivity possibility.
An element in the matrix Mtopo indexed with (i, j) represents the possibility of the endpoint of i-th
lane segment connected with the start point of j-th lane segment. Assuming the feature outputted
by the self-attention is F . By left-multiplying F with Mtopo, we obtain the successor connection
enhanced feature: Fsucc = MtopoF ∈ RN×D Similarly, left-multiplying the transpose of Mtopo

with F yields the predecessor connection enhanced feature Fprede = MT
topoF . We carry out these

two operations right after the self-attention layer in the decoder. These three features F , Fsucc, and
Fprede are concatenated with MLPs to form the final topology-enhanced feature:

F = MLP (Concatenate(F ,MLP (Fsucc),MLP (Fprede)) ∈ RN×D. (1)

As a result, these enhanced features F have incorporated the original self-attention information with
successor and predecessor connection features, providing a more comprehensive representation of
the interactions between different instances. We embed this topology-guided attention operation in
each decoder layer. Through multiple decoder layers, the geometric information of lanes can be
optimized by the topology matrix and the topology adjacent matrix in each decoder layer is predicted
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Table 1: Comparison with State-of-the-Art method on the lane segment perception task. We mainly
compare the proposed method with the official results of LaneSegNet on subset_A set. The TOPlsls

is based on the newly updated metric. The results of TopoNet and MapTR are from the paper (Li
et al., 2024). For P-MapNet, we follow the official implementation regarding the cross-attention,
OSM-CNN and the downsampling settings. We downsample the BEV feature and SD feature by 4
times (cross-attention with size of 50 × 25) for their cross-attentions and then recover their sizes.

Method SDMap Encoder Epoch mAP APls APped TOPlsls

TopoNet (Li et al., 2023) - 24 23.0 23.9 22.0 -
MapTRv2 (Liao et al., 2023b) - 24 28.5 26.6 30.4 -
LaneSegNet (Li et al., 2024) - 24 33.5 32.0 34.9 25.4

LaneSegNet + SMERF (Luo et al., 2023) Transformer 24 37.1 37.2 36.9 30.5
LaneSegNet + P-MapNet (SD cross-attn.) (Jiang et al., 2024) OSM CNN 24 30.0 29.2 30.8 25.1
LaneSegNet + P-MapNet (SD cross-attn.) (Jiang et al., 2024) ResNet-18 24 33.2 32.6 33.9 28.3

Ours-1 (LaneSegNet + Spatial Enc. + Tokenization) ResNet-18+Transformer 24 39.9 (+6.4) 37.8 (+5.8) 41.9 (+7.0) 32.0 (+6.6)
Ours-2 (LaneSegNet + Spatial Enc. + Tokenization + TGD) ResNet-18+Transformer 24 40.2 (+6.7) 38.6 (+6.6) 41.7 (+6.8) 34.5 (+9.1)

by the updated lane segment queries, thereby mutually enhancing the accuracy of both topology and
geometric predictions.

Heads. Like LaneSegNet, we adopt multiple MLP heads to decode the class, line types, centerline
coordinates, and offsets from each instance query. The left and right boundary lines can be obtained
by subtracting and adding the predicted offset to the predicted centerline, respectively: v̂l = v̂c − ô,
v̂r = v̂c + ô. And the final output instance queries are sent to the topology head to predict the
adjacency matrix. Due to the fact that the centerlines of lane segments are connected by start points
and end points. Therefore, we design a connection head to predict the adjacency matrix using
start points and end points information. In this connection head, each query is firstly transformed
into the end embedding Ee ∈ RN×De , and start embedding Es ∈ RN×De by two distinct MLPs.
We use the inner product as an association score, and hence the adjacency matrix is computed as
Mtopo = EeE

T
s ∈ RN×N .

4 EXPERIMENTS

Dataset. We conducted experimental validation on the subset A set of OpenLaneV2 Dataset (Wang
et al., 2023a). OpenLaneV2 is a large-scale 3D lane dataset and comprises 1000 segments of various
scenarios, including daytime, nighttime, sunny, rainy, urban, rural, and more. Each scenario lasts
approximately 15 seconds, effectively providing feedback on the algorithm’s efficacy. The annotations
of lane segments and the perception range are within ±50m along the x-axis and ±25m along the
y-axis. For the used SDMaps, we pre-process the original SDMap polylines to a large range within
±100m along the x-axis and ±50m along the y-axis, the center of which is still aligned with the
center of the perception range.

Metric. As we mainly focus on the lane segmentation perception task, we report the results on the
specifically designed metrics based on the lane segment distance Dls, following (Li et al., 2024). It
induces the average precision APls and APped to evaluate the accuracy of lane segments, pedestrian
crossings and the mean AP is computed as the average of APls and APped. We use TOPlsls to
evaluate the accuracy of topological connections between centerlines. See more information about
the implementation details and metrics in Appendix C.

4.1 COMPARISON WITH STATE-OF-THE-ART

Due to that the LaneSegNet is the first method performing on the lane segment perception benchmark,
we mainly compare our models with it on the overall metrics and report the results of other HDMap
constructing methods. As shown in Table 1, ours-1 model with SDMap pre-fusion substantially
outperforms the LaneSegNet with +6.4 on the mAP and +6.6 on the TOPlsls metric. Such results
demonstrate that the SDMap can provide a strong prior to help generate the maps and improve the
predictions on lane segments’ geometry and topology. Further enhanced by the Topology-Guided
Decoder (TGD), our model achieves a new set of state-of-the-art performance with 40.2% on mAP
and 34.5% on TOPlsls, gaining obvious improvements with +6.7 on mAP and +9.1 on TOPlsls

compared with LaneSegNet. To ensure a fair comparison with contemporary works, SMERF (Luo
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et al., 2023) and P-MapNet (Jiang et al., 2024), we integrated them with LaneSegNet. For the
LaneSegNet model incorporating P-MapNet, we utilized our spatial encoded maps as SDMap inputs.
The comparative results presented in Table 1 demonstrate that our proposed models (such as ’our-1’)
exhibit superior performance across multiple metrics.

To show the overall performances on the complex road scene perception and understanding, we
train our model the map bucket with multiple tasks on OpenLaneV2 based on the lane segment
representation. The pedestrian and road boundary are detected by an additional MapTR head (Liao
et al., 2022). The traffic elements are detected by a Deformable DETR head (Zhu et al., 2020). The
hyper-parameters are roughly set. As shown in Table 2, our model still surpasses the LaneSegNet
model on all metrics.

Table 2: Comparison with State-of-the-Art method on OpenLaneV2 map element bucket. We mainly
compare the proposed method with LaneSegNet by running its official bucket configuration.

Method Epoch DETls DETa DETt TOPlsls TOPlste OLS score

LaneSegNet 24 27.4 18.4 38.0 24.1 20.9 35.7

Ours 24 37.0 21.6 40.4 33.6 24.0 41.2

4.2 ABLATION STUDY

In this section, we conduct ablations to validate the proposed SDMap encoding and fusion methods,
as well as the Topology-guided decoder.

Ablations on SD encoding. Since we propose two types of SDMap encodings, we validate the effec-
tiveness of two encoding methods respectively, as well as the effect of combining both SD encoding
methods. As shown in Table 3, our findings indicate that both encoding methods independently bring
significant gains, and their combination results in even higher gains. This means that two types of SD
encoding methods can play different roles without conflicts at different levels, particularly for the
map tokenization method that encodes a larger range of SDMap road polylines than the spatial map
encoding.

Ablations on the fusion method. For the SD map tokenization, we use cross-attention layers in
the BEV Encoder to fuse SD tokens with the BEV feature by default. However, especially for the
utilization of SD spatial map encodings, there are still multiple choices to fuse the SD feature.

We observe that fusing the SD feature into the BEV query (Exp-5) results in greater improvements
in mAP (+4.8) and TOPlsls (+6.4) compared to fusing the SD feature (Exp-4) into the BEV feature,
which showed improvements in mAP (+3.6) and TOPlsls (+5.1). Such results imply that incorporating
2D spatial SD structure information in the BEV query may provide a stronger prior and give more
room for the BEV query to aggregate online visual information from cameras. We find that adding SD
feature to both the BEV query and BEV feature still gains further improvements (Exp-6 in Table 3).

Ablation on Topology-guided decoder. Based on the SD fusion model, we validate the effectiveness
of the topology-guided decoder. The results in Table 3 show that the topology-guided decoder can
gain improvements of 0.8 and 2.5 on the APls and TOPlsls metrics, which means that the geometry
and topology lane segments are specifically optimized thanks to the topology enhanced decoder.

Table 3: Ablations on SDMap encoding and fusion methods, as well as the Topology-Guided Decoder.
The column of Fusion Position only indicates where to fuse the SD feature when using spatial
encoding.

Exp Spatial Enc. Tokenization Fusion Position Decoder mAP APls APped TOPlsls

1 - - - LaneSeg 33.5 32.0 34.9 25.4
2 ✓ - BEV feat. LaneSeg 36.8 34.6 39.1 28.9
3 - ✓ - LaneSeg 37.2 36.9 36.9 30.5
4 ✓ ✓ BEV feat. LaneSeg 39.1 37.3 40.9 30.7
5 ✓ ✓ BEV query LaneSeg 38.3 37.2 39.4 31.8
6 ✓ ✓ BEV feat. + BEV query LaneSeg 39.9 37.8 41.9 32.0
7 ✓ ✓ BEV feat. + BEV query Topo-Guided 40.2 38.6 41.7 34.5

7
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(a) The mAP metric under different SDMap noise level. (b) The APls under different SDMap noise level.

(c) The APped under different SDMap noise level. (d) The TOPlsls under different SDMap noise level.

Figure 3: The model performances under different levels of SDMap noise. Each curve represents the
same model trained under some condition of adding SDMap noise.

4.3 STUDY ON THE ERROR PROBLEMS OF SDMAP

In practical applications, SDMap errors are a crucial consideration, particularly concerning system
localization and map annotation. These errors can arise from factors such as imprecise GPS signals
and ambiguous road centerline positions in the forward direction. To simulate these errors in real-
world scenarios, we conducted experiments involving the addition of random shifting and rotational
noise during training and testing.

Table 4: Performances on different settings of SDMap random noise.

Method Training SDMap noise Testing SDMap noise mAP TOPlsls

LaneSegNet - - 33.5 25.4

Baseline SD model (Ours-2) - - 40.2 34.5
Baseline SD model (Ours-2) - rot5_std5_prob0.5 23.6 (-41.3%) 24.4 (-29.3%)

Noisy SD model (Ours-2) rot5_std5_prob0.5 - 35.1 32.5
Noisy SD model (Ours-2) rot5_std5_prob0.5 rot5_std5_prob0.5 34.6 (-1.4%) 31.8 (-2.2%)

Assuming the baseline SD model is trained using the original SDMap annotations, we train the
same model with different SDMap noise injection by adding a random shifting sampled from a
Gaussian distribution and a random rotation sampled from a uniform distribution. We set three
variables: the standard deviation (std, with meter as its unit) of the Gaussian distribution for shifting
noise and the maximum rotation angle (rot) for the random rotation, and the probability (prob) of
whether to add random noise. We control these variables to combine several configurations such as
rot5_std2_prob0.5.

In Table 4, we present comparative results demonstrating the model performance when trained and
tested with or without adding random SDMap noise. In Figure 3, we train the baseline model using
different noise configurations and evaluate their performance across noise levels ranging from level-0
to level-8 (see details in Appendix B). Our findings indicate that when testing without adding noise
to the SDMap input, the baseline model outperforms the models trained with noisy SDMap input.
This suggests that the model heavily relies on the geometric information provided by the SDMap for
accurate predictions. However, as the level of noise increases, the performance of the baseline model
gradually deteriorates, eventually collapsing at the highest noise level. Interestingly, the models
trained with noisy SDMaps, despite experiencing performance degradation, demonstrate relatively
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GT       LaneSegNet Ours      Ours*Surrounding Images

Figure 4: Visualization results on some cases. We compare our model with the ground truth, and
the prediction results of LaneSegNet. * means the predicted lane segments with the input SDMap
polylines. The blue, black and green lines represent roads, sidewalks and crosswalks in SDMap.

better performance at higher noise levels. This phenomenon implies that these models develop a
robust reliance on both the SDMap and visual features, enabling them to perform well even in the
presence of SDMap errors or shifting.

4.4 COMPUTATIONAL COMPLEXITY AND EFFICIENCY ANALYSIS

Table 5: Computational efficiency analysis. The BEV feat. size and SD feat. size both indicate the
resolutions when fusing them together. The inference speeds are tested on a single Tesla V100-32G
GPU with a batch size of 1. Nsd represents the maximum number of SDMap elements in a batch.

Method SDMap Encoder Inference Speed (FPS) Model Params. BEV feat. size SD feat. size

LaneSegNet - 4.3 45.4M 200×100 -

LaneSegNet + SMERF Transformer 4.0 48.6M 200×100 Nsd

LaneSegNet + P-MapNet (SDMap cross-attention) Small OSM CNN 3.9 51.4M 50 ×25 50×25
LaneSegNet + P-MapNet (SDMap cross-attention) ResNet-18 3.5 61.9M 50 ×25 50×25
LaneSegNet + P-MapNet (SDMap cross-attention) ResNet-18 3.3 61.4M 100 ×50 100×50

Ours (LaneSegNet + Spatial Enc.) ResNet-18 3.7 56.6M 200×100 200×100
Ours (LaneSegNet + Spatial Enc. + Tokenization) ResNet-18 + Transformer 3.6 59.9M 200×100 200×100
Ours (LaneSegNet + Spatial Enc. + Tokenization + TGD) ResNet-18 + Transformer 3.3 67.0M 200×100 200×100

In Table 5, we report the inference speeds and model parameters. Our model utilizes a lightweight
ResNet-18 (13M parameters) to extract SD features for the map spatial encoding component and
directly add the SD feature to the BEV feature. The increased latency is primarily attributed to
the CNN-based SDMap encoder. P-MapNet uses cross-attention to fuse the 2D-grid based SDMap
feature with BEV queries, the complexity of which is proportional to O(hbev ∗ wbev ∗ hSD ∗ wSD).
If their resolutions are large, such as 200× 100 in LaneSegNet, it will consume much more GPU
memory and reduce computing efficiency. Thus it is necessary to downsample the BEV feature and
SD feature before fusing them via cross-attention. Despite downsampling, the inference speeds and
performances of P-MapNet still lag behind our model with spatial encoding and SD add operation.
The map tokenization introduces several Transformer self-attention and cross-attention layers (3.2M
parameters), and the fusion computational complexity is O(hbev ∗ wbev ∗NSD), where NSD is the
maximum number of SDMap elements in a batch and NSD << hSD ∗ wSD.
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Figure 5: Visualization results on some cases that the given SDMaps has some inconsistency with the
lane annotations. For each example, we show 4 sub-figures: GT lane segments, GT lane segments
with SDMap, predicted lane segments and predicted lane segments with SDMap.

We also test our model on the Jetson Orin X platform using ONNX deployment, using the SD
fusion module. Under FP16, the inference latency for the spatial encoding and SD feature addition
is approximately 2 ms. Combining both spatial encoding and tokenization-based cross-attention
does not exceed 4 ms. Such performances can meet the requirements for real-time performance for
auto-driving vehicles.

4.5 QUALITATIVE RESULTS

In Figure 4, we present a comparison between the predicted lane segment results of our proposed
model and LaneSegNet. Overall, our model demonstrates superior accuracy in predicting lane
geometry and topology. The predicted lane directions align closely with the SDMap road lines.
However, LaneSegNet faces challenges in detecting key intersections and long-distance lane lines
due to less prominent visual features. In contrast, our model successfully detects junctions and lanes
in long-range scenarios, thanks to the complementary SDMap feature.

In certain challenging cases, we notice inconsistencies between the lane annotations and the SDMap
road lines, as illustrated in Figure 5. Some lanes are annotated in the map without corresponding
SDMap road lines, while other SDMap lines lack corresponding annotated lanes. The presence of
such inconsistent annotations necessitates our model to strike a balance between predictions derived
from visual features and SDMap features.

5 DISCUSSION

In this work we propose to incorporate SDMap information as prior to enhance the predictions of
geometry and topology in the lane segment perception. We conduct two complementary methods
to encode the geometry and topology information in SDMap and pre-fuse SD feature and tokens
into the BEV feature. To further explore the mutual relationships between the geometrical and
topological feature, we design a topology-guided decoder to iteratively optimize both geometry and
topology. The experiments validate the effectiveness of two combined encoding methods and the
proposed topology-guided decoder. We also study the effect of SDMap noise on the performance
considering real-world practical applications. Our model achieves state-of-the-art performance on the
OpenLaneV2 dataset.

Limitation. While SDMaps offer valuable information regarding the geometry and topology of road
structures, the information is currently restricted to the road level, lacking lane-level attributes. In
addition, the discrepancy between SDMaps and the actual visual environment pose challenges for the
perception model in practical applications. Moreover, SDMap may contain errors of several meters
due to the positioning shifting and their inherent ambiguity. Future works should focus more on
improving the quality of SDMaps and increasing the robustness of the model when the maps are
inconsistent with real environments.
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A SDMAP ENCODING

Figure 6: Visualization results on the map spatial encoding method. The 1-th map: the road map; the
2-th map: the road map with Guassian Blurred; the 3-th map: the side walk map; the 4-th map: the
cross walk; the 5-th map: the dx map (cosine of the inclination angle) of the road line segments; the
6-th map: the dy map (sine of the inclination angle) of the road line segments.

For the spatial map encoding method, it has 6 channels of 2D canvas maps to represent different
road types and attributes of elements in SDMap. As shown in Figure 6, the shape map of roads, the
Gaussian blurred shape of roads, the shape map of cross walks, the shape of side walks, and the
cosines and sines of the inclination angle of the road line segments that express the curvature of the
roads. The map size is set to 800 × 400, which is 4 times to the size of BEV feature grids 200 ×
100. So each grid in the encoded spatial map corresponding 0.125m × 0.125m in actual BEV range.
We assume the width of the road in each map are set to 6m and the widths of the cross walk and
side walk are set to 1.25m by default. Then we use a lightweight ResNet-18 He et al. (2016) without
pre-training to extract 2D feature from these canvas maps. The strides of the four stages of ResNet-18
are set to [2, 2, 1, 1]. As a result, the output feature are 4× downsampled w.r.t the original input,
having the same size with the BEV feature, i.e., 200× 100.

B MODEL ARCHITECTURE

Implementation details. For the BEV feature extractor, we follow LaneSegNet Li et al. (2024) to
adopt the BEVFormer-like architeure. It use ResNet50 He et al. (2016) and FPN Lin et al. (2017) for
multi-scale image feature extraction and aggregation. The number of BEV Encoder layers is set to 3.
The size of BEV feature grids is set to 200× 100, corresponding to ±50m and ±25m in the x and y
directions. For the decoder part, the number of query is set to 200. The number of decoder layers is
set to 6.

We conduct all training experiments on 8 Tesla A100 GPUs. When training, we employ the
AdamW Loshchilov & Hutter (2018) as the optimizer. The initial learning rate is set to 2e−4

with a cosine annealing schedule. All experiments are conducted with a total batch size of 8 for 8
GPUs and a total training epochs of 24.
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Training loss. Regarding the loss, we combine mainly four types of loss, regression loss, calssification
loss, segmentation loss and topology loss:

L = λregLreg + λclsLcls + λsegLseg + λtopLtop + λtypeLtype, (2)

where Lreg means L1 Loss for regressing location of each instance, Lcls supervises each instance
category of left boundary, right boundary and centerline by Focal Loss, Lseg contains traditional
Cross Entropy Loss and Dice Loss for segmentation tasks and Ltop uses Focal Loss for topology
connection. Ltype applies cross-entropy loss on the classification of laneline types between {âl, âr}
and {al, ar} correspondingly. The hyperparameters are defined as: λreg = 0.05, λcls = 1.5,
λseg = 3.0, λtop = 5.0, λtype = 0.01.

SDMap testing noise levels. In Figure 3, we compare the model performances under different
SDMap noise levels, from level 0 to level 8. The configurations from level-0 to level-8 are: no_noise,
rot5_std2_prob0.5, rot5_std5_prob0.5, rot5_std7_prob0.5, rot5_std10_prob0.5, rot5_std20_prob0.5,
rot5_std30_prob0.5, rot5_std20_prob1, rot5_std30_prob1.

C METRICS

Following LaneSegNet Li et al. (2024), we use the defined lane segment distance to measure the
average precision of the detected lane segments. The lane segment distance is defined as a weighted
sum of distances between left/right lane boundaries and centerlines and their direction:

Dls(v̂,v) = 0.5 · [Chamfer ([v̂l, v̂r] , [vl,vr]) + Frechet (v̂c,vr)] . (3)

Based on this distance metric, the average precision, APls, is computed over three matching thresholds:
1.0m, 2.0m, 3.0m. The APped is based on the Chamfer distance to evaluate the non-directional
pedestrian crossing, with thresholds of 0.5m, 1.0m, and 1.5m for evaluation.

Similar to TOPll, TOPlsls represents the similarity between the predicted lane graph among lane
segments and the ground truth. It is defined as the averaged vertice mAP between the ground truth
G = (V,E) and the predicted graph (V̂

′
, Ê

′
):

TOP =
1

|V |
∑
v∈V

∑
n̂′∈N̂ ′(v) P (n̂′)1condition (n̂

′ ∈ N (v))

|N (v) |
, (4)

where N(v) denotes the ordered list of neighbors of vertex v in the ground truth ranked by confidence
and P (v) is the precision of the i-th vertex v in the predicted ordered list. The TOPlsls is for
topology among lane segments on the graph (Vls, Elsls), while the TOPlste is for topology between
lane segments and traffic elements on the graph (Vls ∪ Vte, Elste).

Besides, we also report the results on the performances on the multiple tasks of OpenLaneV2 map
element bucket in Table 2, with extra metrics of DETt, and TOPlste. The DETt is to evaluate the task
of traffic element detection, which is based on IoU distance between the detected traffic element boxes
and the ground truth boxes and is averaged over different traffic element attributes. The TOPlste is to
evalaute the task of topology prediction between lane segments and traffic elements.

D MORE ABLATION RESULTS

Ablation on the topology head. We present the results of the ablations on the design of the topology
head. LaneSegNet Li et al. (2024) firstly uses two MLPs to project the instance queries Q ∈ RN×D

to two embeddings E1 ∈ RN×De and E2 ∈ RN×De , and then broadcast both embeddings to new
shapes of RN×N×c. Finally, two embeddings with shape of RN×N×De are concatenated at the
feature dimension to form a shape of RN×N×2∗De and sent to an association MLP to predict the
adjacent matrix with shape of RN×N×1. In the implementation of the proposed connect head, we
also use two MLPs to project the queries to two embeddings Es ∈ RN×De and Ee ∈ RN×De , but we
simply compute their inner-products as the adjacent matrix among different lane segment instances.
As shown in Table 6, with fewer parameters, the topology head via inner-product computing has
achieved similar result w.r.t the mAP metric and better result w.r.t the topology metrics in comparison
to the association MLP.
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Table 6: Ablation on the topology head.

Topology Head #Params. mAP APls APped TOPlsls

Association MLP 321k 37.0 34.5 39.5 28.5
Inner Product 129k 36.8 34.6 39.1 28.9

Ablation on the fusion position for SDMap. As SDMaps provide road-level rather than lane-level
geometry and topology, there inevitably existing meter-level errors or inconsistent road description.
Thus it is critical to choose an appropriate position to fuse the SD information into the neural network
model. From the view of fusion position, we classify the SDMap fusion into two categories: SD
fusion in the BEV encoder and SD fusion in the lane segment Decoder. In the Section 4.2, we make
ablations on fusing SD features on the BEV queries or BEV features. In this part, we expore to fuse
the SDMap in the lane segment Decoder part.

In each layer of the lane segment Decoder, we insert an additional SD cross-attention layer between
the self-attention layer and the lane-attention cross-attention layer. Note that we do not use the
topology-guided self-attention for the sake of reducing the effects from other variables. The lane
segment instances queries are interacted with the SD feature Fs ∈ Rd×h×w (as keys and values)
through this SD cross-attention layer. As shown in Table 7, fusing SD features in the lane segment
decoder, performs worse than fusing SD features in the BEV Encoder part regardless of in BEV
quries or BEV features. This phenomenon suggests that the geometric and topological information
represented in SDMap is inherently coarse, rendering it unsuitable for fusion near the output of the
model. Instead, it is better suited for fusing in the earlier stage of the model as a coarse prompt of
road structure.

Table 7: Ablation on the fusion position of SD features.

SDMap feature Fusion Position mAP APls APped TOPlsls

BEV Encoder (BEV Query Fusion) 38.3 37.2 39.4 31.8
BEV Encoder (BEV Feature Fusion) 39.1 37.3 40.9 30.7

Lane segment Decoder (Instance Query Fusion) 37.9 36.8 39.1 30.5

E MORE VISUALIZATION RESULTS

The Figure 7 show more visualization examples and the comparisons with LaneSegNet. See more
examples in the supplementary materials. All the visualization results of LaneSegNet is based on the
official release weight 1.

1https://huggingface.co/OpenDriveLab/lanesegnet_r50_8x1_24e_olv2_
subset_A/resolve/main/lanesegnet_r50_8x1_24e_olv2_subset_A.pth
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Figure 7: Visualization results. * means the lane segments plotted with the SDMap elements.
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