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Abstract001

Recent advancements in large language mod-002
els (LLMs) have expanded their scope in nat-003
ural language processing (NLP) to encompass004
multimodal functions. However, integrating005
listening capabilities effectively remains a sig-006
nificant challenge for generalization and com-007
plex auditory task execution. In this work,008
we introduce WavLLM, a robust and adaptive009
speech large language model featuring dual010
encoders—a Whisper encoder for semantics011
and a WavLM encoder for speaker characteris-012
tics. Within the two-stage curriculum learning013
framework, WavLLM first builds its founda-014
tional capabilities by optimizing on mixed el-015
ementary single tasks, followed by advanced016
multi-task training on more complex tasks such017
as combinations of the elementary tasks. To en-018
hance the flexibility and adherence to different019
tasks and instructions, a prompt-aware LoRA020
weight adapter is introduced in the second ad-021
vanced multi-task training stage. We validate022
the proposed model on universal speech bench-023
marks and also apply it to specialized speech-024
question-answer (SQA) dataset, and speech025
Chain-of-Thought (CoT) evaluation set. Exper-026
iments demonstrate that the proposed model027
achieves state-of-the-art performance across028
a range of speech tasks on the same model029
size, exhibiting robust generalization capabili-030
ties in executing complex tasks using CoT ap-031
proach. The codes, models, audio samples, and032
SQA evaluation set can be accessed at https:033
//github.com/wavllm/wavllm-anonymous.034

1 Introduction035

Large language models (LLMs) have witnessed a036

meteoric rise in advancement within the last cou-037

ple of years, reaching or even exceeding the profi-038

ciency of humans in a myriad of natural language039

processing (NLP) tasks (OpenAI, 2023; Touvron040

et al., 2023; Anil et al., 2023). With large language041

models attaining substantial breakthroughs, the fo-042

cus is increasingly shifting towards the capabilities043

and advancements of multi-modal large language 044

models (MLLMs), which possess the ability to lis- 045

ten (Tang et al., 2024; Deshmukh et al., 2023), 046

speak (Rubenstein et al., 2023; Hao et al., 2023), 047

see (Huang et al., 2023; OpenAI, 2023), and create 048

content (Pan et al., 2023; Brooks et al., 2024). 049

Amidst the broadening scope of abilities, speech 050

stands out as a crucial form of human communica- 051

tion, prompting extensive research to equip large 052

language models (LLMs) with speech perception 053

capabilities (Shu et al., 2023; Wu et al., 2023; Wang 054

et al., 2023; Tang et al., 2024; Chu et al., 2023). 055

Typically, LLMs are augmented with an auxiliary 056

audio encoder designed to preprocess audio signals, 057

transforming them into the same input space as that 058

of the LLMs, enabling them to achieve various 059

speech tasks, such as automatic speech recognition 060

(ASR), speech question answering (SQA), and so 061

on. However, previous research has yet to over- 062

come significant challenges in achieving effective 063

generalization due to two main issues: (1) special- 064

ized tasks are highly sensitive to prompt design, 065

resulting in performance degradation when con- 066

fronted with unseen or complex instructions; (2) 067

there is an absence of speech Chain-of-Thought 068

(CoT) (Wei et al., 2022) capability, which is essen- 069

tial for addressing complex tasks. 070

In this work, we propose a robust and adaptive 071

speech large language model, WavLLM, aiming 072

at enhancing the generalization capabilies, follow- 073

ing speech instruction effectively, and processing 074

the given speech in accordance with provided tex- 075

tual prompts, as well as supporting multi-round 076

dialog. Specifically, to distinguish various types 077

of speech information, we utilize a Whisper (Rad- 078

ford et al., 2023) encoder to encode the semantic 079

content of the speech, and a WavLM (Chen et al., 080

2022) encoder to capture the acoustic information, 081

like unique characteristics of the speaker’s identity. 082

During the model training phase, we develop a 083

curriculum learning method that progressively fine- 084
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tune LLMs to follow instructions for understand-085

ing and processing speech, starting from simple086

tasks and advancing towards more complex ones.087

In the initial mixed single-task training stage, we088

leverage a substantial dataset of synthesized spoken089

question-answering content generated by GPT-4090

and tailored to various speech-centric tasks such091

as automatic speech recognition (ASR), speech-092

to-text translation (ST), emotion recognition (ER),093

speaker verification (SV), and so on, to fine-tune094

the WavLLM with Low Rank Adaptation (LoRA)095

techniques (Hu et al., 2022).096

To enhance the generalization on the unseen or097

complex instructions1, we introduce an advanced098

multi-task training stage, incorporating a specially099

constructed prompt-aware multi-task dataset, such100

as combinations of the elementary tasks. Fur-101

thermore, we design a novel prompt-aware LoRA102

weight adapter for this stage, capable of adaptively103

tuning the LoRA weights according to varying104

prompts, thereby improving the model’s general-105

ization capacity and robustness.106

We evaluate the proposed model on 1) single107

tasks, including a) universal speech benchmark,108

including ASR, SV, ER and ST; b) spoken-query-109

based question answering and English Listening110

Comprehension test in Chinese National College111

Entrance Examination, which presents a spoken112

dialogue, and requires to answer text-based choice113

questions related to the conversation, and 2) multi-114

ple tasks, consisting of c) instruction-independent115

multi-tasks dataset that combines multiple indepen-116

dent prompts in a single instruction; d) speech CoT117

evaluation set that decomposes a complex task into118

multiple sub-tasks. Extensive evaluations demon-119

strate that our proposed model exhibits robust gen-120

eralization and CoT capabilities, consistently sur-121

passing strong baselines across a broad spectrum122

of speech-related tasks.123

In summary, the contributions of this paper can124

be categorized as follows:125

1) Equipped with a prompt-aware LoRA weight126

adapter, we introduce a curriculum learning-based127

training approach that incrementally fine-tunes128

large language models with robust speech process-129

ing and generalization capabilities, beginning with130

simple tasks and progressing to complex ones.131

2) Our model employs a decoupling strategy for132

speech information, utilizing the Whisper encoder133

to capture semantic content and the WavLM en-134

1Please find detailed motivations in Section 2.

coder for acoustic features, thereby enriching 135

speech representation and improving performance 136

on downstream tasks. 137

3)WavLLM demonstrates exceptional general- 138

ization capabilities when responding to diverse 139

prompts and completing complex tasks. It exhibits 140

impressive capabilities in zero-shot SQA such as 141

English listening comprehension, and shows strong 142

proficiency in CoT-based tasks, delivering perfor- 143

mance gains over non-CoT tasks. 144

2 Related Work 145

The exploration of multi-modal large language 146

models involves the integration of diverse data 147

types including text, images, video, speech, audio, 148

and more. This represents a natural progression 149

from text-based large language models, designed 150

to enable the perception of the world and the cre- 151

ation of content (OpenAI, 2023; Huang et al., 2023; 152

Hao et al., 2023). For instance, Kosmos-1 (Huang 153

et al., 2023) and GPT-4V (OpenAI, 2023) are able 154

to perceive general modalities beyond text, and fol- 155

low instruction provided by users to process and 156

analyze image inputs. Another research direction 157

focuses on improving the multi-modal generative 158

abilities of language models, enabling them to pro- 159

duce visual content like images or videos, as ex- 160

emplified by MiniGPT-5 (Zheng et al., 2023) and 161

Sora (Brooks et al., 2024). Related research to this 162

work focuses on speech-enhanced large language 163

models that aim to endow LLMs with the capability 164

to perceive and process speech signal (Zhang et al., 165

2023; Shu et al., 2023; Wu et al., 2023; Tang et al., 166

2024; Chu et al., 2023; Wang et al., 2023). 167

Among these studies, SpeechGPT (Zhang et al., 168

2023) empowers large language models with cross- 169

modal conversational abilities by three-stage train- 170

ing stages, using hidden units as the discrete rep- 171

resentation of speech. LLaSM (Shu et al., 2023) 172

builds a large Chinese/English speech language 173

model that can understand and follow instructions, 174

through pre-training and cross-modal instruction 175

fine-tuning stages. BLSP (Wang et al., 2023) boot- 176

straps Language-Speech Pre-training via behavior 177

alignment of continuation writing. SALMONN 178

(Tang et al., 2024), named from a speech audio 179

language music open neural network, boosts large 180

language models with generic hearing abilities with 181

a activation tuning stage by playing with the LoRA 182

scaling factor. Qwen-audio (Chu et al., 2023) 183

scales up audio-language pre-training to cover over 184

30 tasks and various audio types, including human 185
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speech, natural sounds, music, and songs.186

Motivation Previous research on Speech Large187

Language Models (Speech LLMs) has primarily188

concentrated on executing a single speech task in189

response to a given instruction, while the feasibil-190

ity of using a single instruction to simultaneously191

complete multiple and complex speech tasks has192

remained unexplored. The employment of multi-193

task instructions allows for the efficient completion194

of several tasks at once and improves performance195

by dividing complex tasks into logical, related sub-196

tasks, such as CoT tasks. Such capabilities also197

suggest the robustness and generalizability of the198

Speech LLM.199

Our initial experiments indicate that (1) prior200

open-source speech LLMs underperformed in201

multi-task scenarios, demonstrating these models’202

limited ability to generalize to complex instruc-203

tions; (2) reducing the LoRA scaling factor can204

be beneficial for multi-task instructions, but leads205

to a substantial degradation of the results of train-206

ing tasks (Tang et al., 2024), which suggests that207

single and multiple tasks might benefit from dis-208

tinct LoRA scaling factors; (3) there is a notable209

decline in performance when the model encoun-210

ters unseen or diverse prompts as opposed to seen211

prompts (3.5% vs. 2.1%, see Section 4.3), when212

employing various prompts to evaluate the ASR213

performance of the open-source model. Conse-214

quently, we introduce a curriculum learning ap-215

proach that progresses from simple to complex216

instruction tasks, propose a prompt-aware LoRA217

weight adapter which dynamically adjusts the am-218

plitude of the LoRA output according to the in-219

struction, and further enhance the generalization220

by utilizing a diverse array of prompts generated221

by GPT-4 across all training tasks.222

3 Method223

The WavLLM is optimized by maximizing the fol-224

lowing probability:225

p(Y |[X,T ];Θ) =

TY∏
t=0

p(yt|[X,T ,Y<t];Θ) (1)226

where X and T are the speech input and text227

prompt respectively. Y = [y1,y2, ...,yTY
] is the228

target text output. Θ denotes the parameters of229

WavLLM. The detailed template of WavLLM’s230

training data can be found in Appendix D.231

3.1 Model Architecture 232

The model architecture of our framework is shown 233

in Figure 1, which consists of speech encoders 234

(i.e., Whisper (Radford et al., 2023) and WavLM 235

(Chen et al., 2022)) as well as modality adapters, a 236

large language model (i.e., LLaMA (Touvron et al., 237

2023)) and a proposed prompt adapter. 238

Speech Encoders and Modality Adapters In 239

order to extract both the semantic and acoustic 240

information in the speech, we utilize two state- 241

of-the-art speech encoders, namely Whisper and 242

WavLM. Whisper is trained for ASR and ST tasks 243

in a weakly supervised fashion on a massive 680k- 244

hour speech corpus recorded in diverse conditions, 245

making it well suited for encoding semantic infor- 246

mation in speech. WavLM is a predictive based 247

self-supervised learning (SSL) pre-trained model. 248

During its pre-training stage, WavLM mixes each 249

utterance with signals from multiple speakers in 250

the same batch, yet selectively predicts only the tar- 251

gets associated with the utterance’s original speaker. 252

Such training method allows WavLM to better ex- 253

tract speaker-related acoustic information. In our 254

work, the 32-layer transformer-based encoder of 255

Whisper-large-v2 and WavLM-base are utilized. 256

Both modality adapters have three components, 257

including two 1-D convolution layers to down- 258

sample and align the output of both encoders within 259

the temporal domain, a down-up bottleneck adapter 260

(Houlsby et al., 2019), and a final linear projec- 261

tor. The semantic adapter receives its input from 262

the Whisper encoder’s output, while the acoustic 263

adapter takes a weighted sum of the hidden states 264

from all layers of WavLM, where the weights are 265

learnable. The outputs of both adapters are con- 266

catenated together before feedforwarding into the 267

linear projector. 268

LLM, LoRA and Prompt Adapter Our frame- 269

work utilizes the LLaMA-2-7B-chat as the LLM 270

backbone, featuring a 32-layer Transformer de- 271

coder with an attention dimension of 4096, specifi- 272

cally optimized for dialogue-related use cases. To 273

integrate the speech modality within the LLM, we 274

employ the parameter-efficient fine-tuning method 275

known as LoRA, which is specifically applied to 276

the key, query, value, and output weight matrices 277

within the attention module of the LLaMA. 278

To enable adaptive LoRA scaling factors for dif- 279

ferent single-task and multiple-task instructions, in- 280

spired by adapter layer in (Houlsby et al., 2019), we 281
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Figure 1: Overview of the proposed WavLLM. The left part (a) is the two-stage curriculum learning. The right part
(b) is the model architecture. Two speech encoders and adapters with different focuses are utilized, where Whisper
is used for extracting semantic information, and WavLM for extracting acoustic information. Before being fed to
the LLM, these two representations are concatenated together and linearly transformed. Adaptive LoRA approach
is used for cross-modal efficient fine-tuning with online adaptation, where the prompt adapter is able to generate
prompt-dependent parameters to adjust the amplitude of LoRA in the second advanced multi-task training stage.

propose an online adaptation strategy by introduc-282

ing a down-up prompt-aware LoRA weight adapter283

(aka. prompt adapter) with attention weights, de-284

signed to modulate the effect of LoRA on LLaMA,285

as shown in Figure 1. Given the text-based prompts286

T with length M , we can get the representation t ∈287

RD×M with LLaMA, where D is the dimension288

of LLaMA hidden states and t = f(T ;ΘLLaMA).289

This representation is fed into the prompt adapter290

to get the LoRA scaling factors, r ∈ RD×1:291

r = g(t;Θprompt_adapter) (2)292

= Softmax(ID(WAo))⊙ oIM (3)293

o = P uGeLU(P dt) (4)294

where WA ∈ R1×D is the matrix of attention295

weights, ID(WAo) ∈ RD×M is unnormalized296

weights for the hidden states o ∈ RD×M . ID ∈297

RD×1 and IM ∈ RM×1 are the all-ones vectors.298

P u ∈ RD×K and P d ∈ RK×D are up-linear pro-299

jection and down-linear projection layers respec-300

tively, and GeLU is the GeLU activation function301

(Hendrycks and Gimpel, 2016). The hidden states302

of an attention layer equipped with adaptive LoRA303

are expressed by:304

h = W0x+ (BAx)⊙ (rIT
M+N ) (5)305

where x ∈ RD×(N+M) is the input of the attention306

layer from the speech input X with the length N307

and text prompt T . B ∈ RD×R and A ∈ RR×D308

are the LoRA parameters, W0 ∈ RD×D is a weight309

matrix in the attention layer. IM+N ∈ R(M+N)×1310

is the all-ones vector.311

3.2 Curriculum Learning 312

In this section, we present the two-stage 313

curriculum-learning (CL) based training method, 314

which facilitates a progression from learning sim- 315

ple data to understanding complex data, thereby 316

enhancing the model’s capacity for generalization. 317

3.2.1 Mixed Single-Task Training Stage 318

In the first stage, various single-task, cross-modal, 319

speech-text pairing datasets or text-only datasets 320

are utilized to endow the LLM with robust capabil- 321

ities in speech processing and comprehension. We 322

freeze the parameters of LLM, WavLM, and Whis- 323

per encoder, and optimize the modality adapters, a 324

linear layer and LoRA components. 325

Data Construction The first mixed single-task 326

training stage involves various speech tasks, includ- 327

ing automatic speech recognition (ASR), speech- 328

to-text translation (ST), speaker verification (SV), 329

emotion recognition (ER), spoken-based instruc- 330

tion tuning and text-based instruction tuning (IT) 331

tasks, as well as a large mount of GPT-generated 332

speech question answering (SQA). There are var- 333

ious questions within the SQA tasks, including 334

those related to the speaker and gender, as well 335

as continuation and summary tasks. Concurrently, 336

these tasks draw upon multiple datasets, including 337

LibriSpeech (Panayotov et al., 2015) with English 338

reading speech, AMI (Carletta et al., 2005) with 339

multi-talker meeting recordings, as well as Fisher 340

(Cieri et al., 2004) and Switchboard (Godfrey et al., 341

1992) corpora with 2-channel English telephony 342

conversations. Examples of the training data and 343
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prompts used to generate data with GPT-4 can be344

found in the Appendix A.1 and A.3 respectively.345

The speech audio clips of spoken-based instruction346

tuning task are generated by using Microsoft Azure347

text-to-speech API2. The detailed task information348

about description, data source, and data hours can349

be found in Appendix F.350

3.2.2 Advanced Multi-Task Training Stage351

Owing to the incongruity between textual and spo-352

ken modalities, extensively fine-tuning the model353

using the LoRA method on a large amount of354

prompt-repetitive speech-text data, such as ASR355

and ST tasks, may cause the model to overfit on356

specific speech tasks, thereby compromising the357

LLM’s powerful instruction-following capabilities.358

For instance, the model exhibits subpar perfor-359

mance when handling multi-task instructions, of-360

ten only managing to accomplish a fraction of the361

tasks assigned. Specifically, if ASR is included362

in the tasks, the model might complete only the363

ASR portion while failing to address the remaining364

instructions.365

To this end, we construct a more complex366

prompt-aware multi-task dataset in the second367

stage, by integrating various single-task instruc-368

tions. Multi-task and single-task datasets are uti-369

lized together in this training stage. Besides, we370

noted that simply incorporating more challeng-371

ing training data may slightly diminish the per-372

formance of single-task instructions, such as ASR,373

when compared to results of the first training phase.374

Hence we introduce a prompt adapter, as illustrated375

in Section 3.1, to produce adaptive LoRA scal-376

ing factors for different instructions and tasks, and377

serve as an effective approach to concurrently en-378

hance the model’s generalization capabilities.379

Data Construction Given a speech audio clip,380

we combine different task prompts for this audio381

segment as well as text-based instruction tuning382

tasks together as instructions. The training target383

is designed to complete the tasks sequentially and384

to repeat key parts of each prompt prior to deliv-385

ering a response. For example, for an utterance386

in LibriSpeech, ASR, SQA and text-based IT (t-387

IT) tasks can be combined into multi-task dataset.388

Please refer to Appendix A.2 for specific exam-389

ples. In our work, a total of 2.9K hours of var-390

ious multitask data are used, including ER+t-IT,391

2https://azure.microsoft.com/en-us/products/ai-
services/text-to-speech

Table 1: Single-task and multi-task evaluation bench-
marks, including tasks, datasets, and metrics. “Acc.”
stands for accuracy.

Task Dataset Split Metric

Single
-task

ASR LibriSpeech
test-clean

WER (%)
test-others

ST
CoVoST2 (Wang et al., 2020)

En2De BLEU
MUSTC (Di Gangi et al., 2019)

SV VoxCeleb1 (Nagrani et al., 2017) test set Acc. (%)
ER IEMOCAP (Busso et al., 2008) Session 5 Acc. (%)

SQQA WikiQA (Yang et al., 2015) test set Acc. (%)
SQA MuTual (Cui et al., 2020) test set Acc. (%)

Multi
-task

II-Task In-house, based on MuTual - Acc., IFR (%)

CoT
In-house, based on

Gigaword (Graff et al., 2003)
- R-1, R-2,

R-L,
BERTScore

In-house, based on
story generated by GPT-4

-

ASR+t-IT, ST+t-IT, SV+t-IT, SQA+t-IT, ASR+ST, 392

ASR+SQA, ASR+ST+t-IT and ASR+SQA+t-IT 393

combined tasks, which are summarized in Ap- 394

pendix F. 395

4 Experiments 396

Please find implementation details in Appendix G. 397

4.1 Evaluation Setup 398

Corresponding to the training methods, two pri- 399

mary levels of testing tasks were evaluated, namely, 400

single-task and multi-task evaluations. The detailed 401

information of the two types of task evaluations are 402

provided in the Table 1. Single-task evaluation con- 403

sists of ASR, ST, SV, ER, SQA, and spoken-query- 404

based question answering (SQQA). The main dif- 405

ference between SQQA and SQA is that in SQQA 406

the questions are directly in the audio, whereas 407

in SQA the questions are given by text-based in- 408

structions. In our work, the single-answer multiple- 409

choice questions of English Listening Comprehen- 410

sion examination (Gaokao) in China are used as the 411

zero-shot SQA task, which gives a short dialogue, a 412

question, and three options. The model is required 413

to choose the correct one from three options. The 414

performance of SQA is not only a measure of the 415

comprehension of the cross-modal speech and tex- 416

tual content, but also serves as an indicator of the 417

model’s generalization capabilities with respect to 418

a diverse array of instructions. 419

In the multi-task evaluation, two distinct types of 420

tasks are tested, both of which are given a speech 421

audio clip: the tasks that consist of independent 422

instructions (II-Task) and the tasks that feature se- 423

quentially progressive instructions, which are also 424

known as CoT tasks. Examples of these two tasks 425

can be found in the Appendix B. For II-Task, our 426
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Table 2: Single-task instruction performance of our WavLLM model compared to other open-source speech large
language models and cascaded Whisper+LLM baseline model. “*” stands for the results from public paper.

Models
ASR ST (En2De)

SV ER SQQA SQA
test-clean test-other CoVoST2 MUSTC

WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

Whisper + LLM 2.7∗ 5.2∗ 18.2 11.5 - - 0.78 59.30% (63.50%)
SALMONN-7B 2.4 5.4 17.1 12.5 0.86 - - 39.95% (40.00%)
SALMONN-13B 2.1∗ 4.9∗ 18.6∗ 19.5 0.94∗ 0.69∗ 0.41∗ 43.35% (43.35%)

Qwen-Audio-Chat 7B 2.2 5.1 23.2 18.4 0.50 - 0.38 25.50% (54.25%)
Our WavLLM 7B 2.0 4.8 23.6 21.7 0.91 0.72 0.57 67.55% (67.55%)

focus lies on not only the ability to follow instruc-427

tions, i.e. instruction following rate (IFR)3, but428

also the correct completion of each instruction.429

Whereas for CoT tasks, our primary concern is the430

performance of the final instruction, which will be431

compared to the performance of one-shot non-CoT432

based instructions. The multitasking instruction433

of zero-shot II-tasks includes ASR, SQA, ST and434

the general knowledge question task. The audio435

for zero-shot CoT task is generated from the Giga-436

word (Graff et al., 2003) dataset using Microsoft437

Azure text-to-speech API, and the target German438

texts are translated from English summaries of Gi-439

gaword dataset4 by utilizing GPT-4. The CoT task440

requires the Speech LLM to complete ASR, sum-441

mary and translation tasks in turn. In contract, the442

one-shot non-CoT based instructions require the443

cross-lingual summarization directly. For open-444

ended or target-lack test sets, GPT-4 is utilized to445

score the outputs, including the accuracy of SQQA446

and II-task, which is conducted three times and447

then take the average to minimize the randomness448

from GPT-4.449

4.2 Main Results450

We compare the performance of WavLLM with451

other open source text-instruction (chat) based452

speech LLMs, including SALMONN (Tang et al.,453

2024) and Qwen-Audio-Chat (Chu et al., 2023), as454

well as the baseline system that cascades Whisper455

large-v2 with LLaMA-2-7b-chat, across various456

single-task and multi-task instructions.457

Single-task Evaluation As shown in Table 2, for458

the ASR task, our chat model achieves state-of-459

the-art WERs of 2.0% and 4.8% on test-clean and460

test-other sets of LibriSpeech corpus, surpassing461

other open-source chat models on the same size462

(7B). Similar superior performance are observed in463

ST, SV, ER and SQQA tasks.464

3The IFR is scored manually on 10% of the test utterances.
4Translation directions of ASR+SQA+ST tasks in second

advanced training stage are all English to Chinese.

The SQA task in our paper is the zero-shot En- 465

glish listening comprehension tests. As shown in 466

column “SQA” of Table 2, two types of accuracy 467

are evaluated: a) the correct option must be ex- 468

plicitly given (the first number); b) answers that 469

are semantically equivalent to the correct option 470

is considered correct (the second number), which 471

are scored by GPT-4 (The scoring instruction can 472

be found in Appendix C.1). The larger the both 473

accuracy, the better the model’s comprehension 474

and generalization capacity, while the smaller the 475

difference between the both accuracy, the better 476

the model’s ability to follow instructions. From 477

the results, we can observe that our WavLLM 478

model consistently surpasses the cascaded Whisper 479

+ LLaMA baseline, and other open source speech 480

LLMs (67.55% vs. 25.50-59.30%). Additionally, 481

our WavLLM model supports multiple dialogue 482

scenario, with a representative instance detailed in 483

Appendix E. 484

Multi-task Evaluation As shown in Table 3, 485

despite the optimization of SALMONN through 486

activation tuning, and the fact that Qwen-Audio- 487

Chat conducts fine-tuning only on audio en- 488

coder without impacting LLM by LoRA weights, 489

their performance in following multitasking in- 490

structions remains significantly suboptimal. Our 491

final chat model produces a markedly higher 492

instruction-following rate for the II-Task compared 493

to SALMONN and Qwen-Audio-Chat (92.50% vs. 494

24.25%-57.75%), which suggests the necessity and 495

effectiveness of our advanced multi-task training 496

stage with prompt adapter. From the accuracy 497

based on GPT-4, which further focuses on whether 498

they are completed correctly, similar trend can be 499

observed (62.44% vs. 19.58%-37.99%). The scor- 500

ing instruction can be found the Appendix C.2. 501

When the model is able to handle multi-task in- 502

structions, we aspire to enhance its performance by 503

Chain of Thought (CoT) methodology. Specifically, 504

the CoT based prompt is excepted to give a better 505

performance than one-shot non-CoT based instruc- 506

6



Table 3: Multi-task instruction performance of our WavLLM model compared to other open-source speech LLMs.

Models
II-tasks CoT (ASR+SUMM+En2De, gigaword) w/o CoT (De_SUMM, gigaword)

Acc.↑ IFR↑ R-1↑ R-2↑ R-L↑ BERTScore↑ R-1↑ R-2↑ R-L↑ BERTScore↑

SALMONN-7B 22.49 34.50 11.9 2.4 10.7 66.46 15.0 3.3 13.5 69.50
SALMONN-13B 19.58 24.25 10.9 2.1 9.8 68.12 14.0 2.9 12.6 69.11

Qwen-Audio-Chat 7B 37.99 57.75 5.9 0.9 5.7 67.62 5.8 0.9 5.3 65.84
Our WavLLM 7B 62.44 92.50 16.5 4.1 14.7 70.60 15.4 3.8 13.9 70.37

tions. We list the examples of these two types of507

prompts in the Appendix B.2. From the results508

in Table 3, we can draw two conclusions: 1) Our509

WavLLM model produces the best performance510

on the CoT-task instructions; 2) Compared with511

the performance given one-shot non-CoT instruc-512

tions, our model produces consistent performance513

improvements on all metrics.514

Table 4: Model performance with/without advanced
training on multi-task instructions. mixed training and
advanced training stand for the first and training stage.
“BS.” refers to BERTScore (Zhang et al., 2019).

Models
II-tasks

CoT (ASR+SUMM+En2De)
gigaword story

Acc.↑ IFR↑ R-1↑ R-2↑ R-L↑ BS.↑ R-1↑ R-2↑ R-L↑ BS.↑

mixed training 22.92 26.25 14.7 3.3 13.2 69.71 18.0 2.9 13.7 68.61
+ advanced training 62.44 92.50 16.5 4.1 14.7 70.60 24.5 4.8 19.0 72.52

4.3 Analysis515

The Effect of Advanced Training Table 4 shows516

the results of our models after first mixed single-517

task training stage and second advanced multi-task518

training stage5. For zero-shot II-tasks, significant519

enhancement of generalization ability is obtained520

after advanced training, as evidenced not only by521

the increased adherence to instructions (92.50%522

vs. 26.25%) but also by the higher accuracy of523

each executed instruction (62.44% vs. 22.92%).524

For cross-lingual summary tasks using CoT based525

instructions, our advanced multi-task trained model526

consistently outperforms the first stage model.527

In addition, we found that the first stage model528

mainly accomplished the ST task and did not per-529

form the summarization task. To better demon-530

strate the effectiveness of the second stage, we531

crafted a long story-based CoT task by GPT-4532

where the audio contains a 100-word story, and533

the target is a 20-word summary in German. In this534

task, if the model solely focuses on completing the535

translation, there will be a noticeable discrepancy536

in length between its output and the target. From537

the results of this task in Table 4, the second ad-538

5The results of single-task instructions can be found in
Appendix H. After advanced training, our model produces
comparable or even better performance on single-task prompts
compared to the first-stage model.

vanced multi-task training stage model significantly 539

outperforms the first stage model, up to 65.52% rel- 540

ative improvement on R-2. When compared to 541

SALMONN-7B on story-based CoT task instruc- 542

tions, a similar greater enhancements can be ob- 543

tained (24.5/4.8/19.0/72.52 vs. 10.6/1.3/7.8/63.90 544

on R-1, R-2, R-L and BERTScore respectively.). 545

Table 5: Model performance across training stages
with/without a prompt adapter on single-task instruc-
tions. one-stage denotes the model is trained by utilizing
all single-task and multi-task data simultaneously. two-
stage (LoRA) stands for two-stage training method with
only LoRA technique. “t-c”, “t-o”, “CoV.” and “MU.”
stand for test-clean, test-other, CoVoST2 and MUSTC.

Models
ASR ST (En2De)

SV ER SQQA SQA
t-c t-o CoV. MU.
WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

one-stage 2.1 5.0 22.7 21.0 0.88 0.71 0.51 65.35%
two-stage (LoRA) 2.1 5.1 23.3 21.2 0.89 0.71 0.54 63.70%
+ Prompt Adapter 2.0 4.9 23.6 21.6 0.90 0.72 0.57 65.00%

The Effect of Prompt Adapter Despite the fact 546

that data-level curricular learning benefits the per- 547

formance on complex cross-modal tasks, using the 548

same LoRA parameters between single-task and 549

multi-task instructions may diminish the perfor- 550

mance on both instructions. A prompt-aware LoRA 551

weight adapter (prompt adapter) is proposed to ad- 552

dress this issue. Comparative experiments are con- 553

ducted to analyze the effect of prompt adapter dur- 554

ing the second advanced multi-task training stage. 555

Additionally, we build a one-stage model trained 556

by combining all data, including both single-task 557

and multi-task data6. 558

From the results of Table 5 and 6, the following 559

conclusions can be drawn. Firstly, the results of 560

two-stage model without a prompt adapter against 561

one-stage model further demonstrate that the two- 562

stage curriculum learning based training is effective 563

as evidenced by 1) the comparable performance of 564

single-task instructions; 2) consistent performance 565

improvements on zero-shot II-task and CoT-task 566

prompts. Secondly, incorporating the proposed 567

prompt adapter consistently outperforms the base- 568

6Due to the computing resource constraints, only a por-
tion of the single-task dataset are utilized during the second
advanced multi-task training stage in this section.
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Figure 2: TSNE visualization of the proposed prompt adapter’s outputs. Each point corresponds to a prompt.

line two-stage model without such module on all569

single-task and multi-task instructions.570

Table 6: Model performance across training stages
with/without a prompt adapter on multi-task prompts.

Models
II-tasks CoT (gigaword)

Acc.↑ IFR↑ R-1↑ R-2↑ R-L↑ BS.↑

one-stage 59.34 85.50 14.8 3.4 13.2 69.64
two-stage (LoRA) 61.15 90.25 15.8 3.8 14.5 70.42
+ Prompt Adapter 63.05 92.75 16.5 4.0 14.8 70.75

The Effect of WavLM WavLM model has been571

widely used for speech processing as a founda-572

tion model, especially for speaker information ex-573

traction. Table 7 shows the single-task instruction574

performance on models with or without WavLM575

encoder after the first mixed single-task training576

stage. Incorporating the weighted sum of all layers577

in WavLM-base encoder not only brings perfor-578

mance improvements to speaker verification task579

but also enhances other tasks such as ASR (rela-580

tive WER reductions of 13.04% and 11.11% on581

test-clean and test-other) and ST tasks.582

Table 7: Single-task instruction performance of models
w or w/o WavLM encoder after the mixed training.

Models
ASR ST (En2De)

SV ER SQQA SQA
t-c t-o CoV. MU.
WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

WavLLM 2.0 4.8 23.9 21.9 0.91 0.72 0.55 67.30%
WavLLM w/o WavLM 2.3 5.4 23.4 21.0 0.89 0.73 0.55 68.55%

Robustness Analysis In this subsection, the ro-583

bustness of the speech LLMs is evaluated by com-584

paring the performance between the seen and585

the unseen prompts on our WavLLM model and586

SALMONN model7. From the results in Table587

8, compared to the SALMONN model, which ex-588

perienced a decline in performance with unseen589

or diverse prompts, our WavLLM model does not590

exhibit any performance degradation with unseen591

prompts on ASR tasks and even produces perfor-592

mance improvement on the ST task, demonstrating593

our model’s powerful robustness.594

Visualization of LoRA Weights In this sub-595

section, TSNE (Van der Maaten and Hinton,596

7Various prompts generated by GPT-4 are used as unseen
prompts.

Table 8: Model performance using seen(se.) or unseen
(unse.) prompts on WavLLM and SALMONN.

Models
ASR (WER↓) ST-CoVoST2 (BLEU↑)

test-clean test-other En2De
se. unse. se. unse. se. unse.

SALMONN-7B 2.4 81.8 5.4 85.5 17.1 15.9
SALMONN-13B 2.1 3.5 4.9 8.8 18.6 18.2
Our WavLLM 7B 2.0 2.0 4.8 4.8 23.4 23.6

2008) based visualization of the proposed prompt 597

adapter’s output is given in Figure 2. Several trends 598

can be observed: 1) The overlap between two 599

clusters of the seen and unseen ASR prompts im- 600

plies the generalization of the proposed prompt 601

adapter; 2) the clear discrimination among single- 602

task prompts suggests that the proposed prompt 603

adapter is capable of discerning various single- 604

task instructions and assigning disparate weights 605

to each; 3) Similar strong discrimination between 606

single-task and multi-task instructions is obtained 607

which validates our motivation; 4) The wide dis- 608

tribution of the SQA task with various prompts, 609

illustrates that the prompt adapter can accommo- 610

date diverse prompts. 611

5 Conclusion 612

In this paper, we propose WavLLM, a robust and 613

adaptive speech large language model, which uses 614

LLaMA-2-chat as foundational LLM backbone, 615

and extracts semantic and acoustic information 616

from speech audio utilizing Whisper and WavLM 617

encoders. Utilizing a curriculum learning approach, 618

the proposed WavLLM commences with single- 619

task instruction training in the initial mixed train- 620

ing phase and subsequently expanding our train- 621

ing to encompass additional multi-task prompts in 622

the second advanced phase with the integration of 623

the proposed prompt adapter. Massive experiments 624

demonstrate that our WavLLM model delivers state- 625

of-the-art performance on various speech-related 626

tasks and robust generalization abilities on single- 627

task and multi-task instructions, enhanced by a 628

CoT processing ability that greatly improves its 629

effectiveness in tackling intricate tasks. 630

8



Limitations631

Although WavLLM shows a remarkable profi-632

ciency in handling speech-related tasks and impres-633

sive cross-modal instruction following and gener-634

alization capacity, it also exhibits some specific635

constraints.636

Adaptive Use of CoT Our WavLLM model pro-637

duces performance improvements using CoT based638

instructions compared to one-shot non-CoT based639

instructions. However, it lacks the capability to640

autonomously decompose complex one-shot non-641

CoT based tasks into CoT based ones. For future642

work, we are interested in advancing the capability643

of adaptive use of CoT. This requires WavLLM644

to determine whether a task can be decomposed645

into multiple sub-tasks, and then applying the CoT646

approach accordingly.647

Broader Applicability Although our WavLLM648

model focuses primarily on speech in English, it649

can be readily extended to accommodate multi-650

ple languages. Additionally, the WavLLM model651

excels at processing and comprehending spoken652

language, yet it lacks the capability to generate653

speech. We defer the task of expanding WavLLM’s654

capabilities to synthesize speech to future research.655

Safety and Ethics Employing continuous speech656

representations within our WavLLM model may657

render it more vulnerable to adversarial attacks,658

potentially undermining the model’s compliance659

with the HHN criteria (Harmless, Helpful, Honest).660

This vulnerability merits further investigation for661

solutions.662
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A Some Examples of Training Data831

A.1 SQA Task832

speech transcript instructions targets source
the nautilus would still have nothing to
fear from their attacks

What animal would still
have nothing to fear from
attacks?

The nautilus. LibriSpeech

as gelatinous or glutinous matters im-
press the sense of touch i have spoken
both of sound and of voice i mean to
say that the sound was one of distinct
of even wonderfully thrillingly distinct

What is the gender of the
speaker? And what is the
speaker talking about?

The speaker is fe-
male. And she is
talking about sound
and voice being dis-
tinct.

LibriSpeech

A: so how do you feel about it; B:
uh i don’t see any problem with with
random- testing for random drugs; A:
yeah i myself almost um am in favor of
it uh; A: i work at Honeywell and i went
through a a pretty i don’t know i went
through a standard drug testing thing
before i was brought on; B: um-hum

What is the second
speaker’s opinion on
random drug testing?

The second speaker
doesn’t see any
problem with
random drug
testing.

Switchboard
833
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A.2 Multi-task Instruction Datasets834

speech transcript instructions targets source
the nautilus would still
have nothing to fear from
their attacks

Initially, Analyze the
speech in the given audio
clip and provide a com-
plete textual transcription;
Then, answer the question:
What animal would still
have nothing to fear from
attacks?; Thirdly, ignore
the audio clip, Come
up with 5 activities for
a birthday party for a
5-year-old.

The audio transcription is: the
nautilus would still have nothing
to fear from their attacks \n For
the question “What animal would
still have nothing to fear from at-
tacks?”, the response is: The nau-
tilus. \n The response to “Come
up with 5 activities for a birth-
day party for a 5-year-old. ” is:
1. Play a game of freeze dance
\n 2. Make balloon animals \n 3.
Have a color scavenger hunt \n 4.
Bake cupcakes \n 5. Make a craft
project together

LibriSpeech,
Alpaca

835
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A.3 The Prompts for Generating SQA Data836

by GPT-4837

You are asked to generate **only one** questions, and their corresponding answers, according to some
conversational sentences given below. These sentences have been transcribed from conversational speech
data with one or multiple speakers who are taking to each other. “Speaker A” and “Speaker B” in the
senteces are labeled by human and your response must not contain human-marked information, namely
“Speaker A” and “Speaker B”. Here are the requirements: 1. Your response should strictly follow the
format below: “Question”: “xxx”, “Answer”: “xxx”; 2. Please ignore “Speaker A” and “Speaker B” in
the given sentences. Your response should strictly not include the phrase “Speaker A” and “Speaker B”; 3.
Your question should be highly related to the conversation, and your answer must be **correct**, and
should be simple and clear. Besides, you question should be designed as your answer has to be reasoned
from the conversation; 4. For example, a sentence “Speaker A: It is a good day; Speaker B: Yes, but I
have to go to hospital” means that speaker A first say it is a good day and speaker B then say that Yes, but
I have to go to hospital. 5. **Very Importance**: Your questions and answers **can not** contain the
word “Speaker A” and “Speaker B”, because “Speaker A” and “Speaker B” in the sentences are additional
labels for transcripts, and they are different people. For example, the question “What is Speaker B’s
opinion?” **does not** meet the requirements because it contains word “Speaker B”. Namely, you can
not use “Speaker A” and “Speaker B” to represent they in questions and answers, maybe you can use the
first or second speaker to denote “Speaker A” or “Speaker B”; 6. The type of response should be diverse.
The respone **must contain** double quotation marks for each part. Here are the sentences: transcript

838
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B Some Examples of Evaluation Data839

B.1 Examples of II-task Instruction840

speech transcript instructions targets source
Women: “How much time
do you usually spend ex-
ercising daily?” Man:
“Frankly speaking, I’m an
awfully lazy man. I know
it’s time to change.”

To begin, What will the man do next? A. Start to
take exercise; B. Do as he always does; C. Change
his working time.; Next, Create a French transcript
for this English audio clip; Furthermore, Recognize
the speech and give me the transcription; Last step,
setting aside the audio, Who wrote “The Adventures
of Sherlock Holmes”?

- MuTual

841

B.2 Examples of CoT-task and Non-CoT-task842

Instruction843

speech transcript instructions targets source
three films from Asia-Pacific
are in the running for the cov-
eted golden palms at this yearś
Cannes film festival, competing
in a field dominated by Euro-
pean productions, organizers an-
nounced Monday.

First of all, transcribe the audio record-
ing into text, capturing every spoken
word; Additionally given this audio
clip and text, can you condense it into
a clear, concise summary, no more
than 20 words?; Lastly disregarding the
sound, translate this English summary
into German.

Drei Filme
aus dem
asiatisch-
pazifischen
Raum im
Rennen in
Cannes

gigaword

three films from Asia-Pacific
are in the running for the cov-
eted golden palms at this yearś
Cannes film festival, competing
in a field dominated by Euro-
pean productions, organizers an-
nounced Monday.

Please summarize the content of the au-
dio clip in German, no more than 20
words.

Drei Filme
aus dem
asiatisch-
pazifischen
Raum im
Rennen in
Cannes

gigaword
844
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C The Prompt for Scoring using GPT-4845

C.1 SQA Scoring846

Next, I will give you a multiple-choice question along with its correct answer, as well as a generated
answer that needs to be evaluated for correctness. You will need to determine whether the given answer is
correct based on the question and the correct answer, and give a simple reason. The answer must explicitly
give the correct option to be considered correct and not by implication or indirect response. Your response
should strictly follow the format:{"result": "xx", "reason": "xx"}, if the given answer is correct, then
your response should be {"result": "True", "reason": "xx"}, otherwise your response should be {"result":
"False", "reason": "xx"}.Here is the question: {"What will the man do next? A. Start to take exercise; B.
Do as he always does; C. Change his working time."},and the correct answer is {"A"},the answer that
needs to be judged is {"B. Do as he always does"}.

847
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C.2 II-task Scoring848

Next i will give you an audio transcription, instructions related or unrelated to the audio, and the
corresponding responses. You need to use the given information to figure out how many instructions were
completed correctly in the given responses and how many were left unanswered or answered incorrectly,
then give the simple and clear reason why each question was completed or not, Finally, you need to do the
self-examination to ensure responses you give must be correct and without inconsistencies.
You must adhere to the following rules: 1. instructions are only answered sequentially, and one answer
must only correspond to one instruction; 2. For choice questions, the answer must be in **English** and
only **one** of the three options, multiple options or none of the options are considered incomplete,
e.g. the answer is “A. xx; B. xx; C. xx.” (note that options may appear across sentences or lines); 3. All
instructions must be completed in **English**, except translation tasks; 4. The translation task is not a
translation of instructions, but a translation of the content of the given audio speech 5. If the response is a
repetition of the instruction, then it is considered not completed.
Your response should strictly follow the format: {“instructions completed”: “xx”, “instructions incom-
pleted”: “xx”, “Reasons for each instructions”: [“instruction_1: xx”, “instruction_2: xx”, “instruction_3:
xx”, “instruction_4: xx”]}.
You need to refer to this example: the transcription of the audio: “So James What are you going to do for
your birthday? Well, I was hoping to have a party but most of my friends are busy so I have accepted
my sisters offer to take me to a film. At least it is better than going out for a meal with my parents.”; the
instructions are “To begin, ignore the audio clip, Who is known for developing the theory of relativity?;
Then, What will the man do on his birthday? A. Have a party; B. See a movie; C. Go out for a meal.;
Moreover, Convert the spoken words in this audio file into a textual format; Last step, Translate this
English speech into Japanese";
and the respones are “1. エイトリングの理論を発展した人物は誰ですか？; 2. What will the man
do on his birthday? A. Have a party; B. See a movie; C. Go out for a meal.; 3. この音声>ファイルをテ
キスト形式に変換してください。; 4. この英語のスピーチを日本語に翻訳してください。”.
And your output should be {“instructions completed”: “0”, “instructions incompleted”: “4”, “Reasons for
each instructions”: [“instruction_1: incompleted, the answer is the Japanese translation of the instruction.
Q&A task should be completed in English.”, “instruction_2: incompleted, the answer is the a repetition
of the instruction. More than one options were given”, “instruction_3: incompleted, the answer is the
Japanese translation of the instruction”, “instruction_4: incompleted, the answer is the Japanese translation
of the instruction”]}.
Be sure to carefully follow the rules and refer to the examples for responses.
Here is the transcription of the audio: {“I really want to go to the concert, but I haven’t got a ticket yet
leave it to me, I’ll organize that we can go together really that’s wonderful.”},
the instructions are {“To begin, disregarding the sound, How many elements are on the periodic table?;
Then, Translate this English speech into Japanese; Additionally, How will the speaker get a ticket to the
concert? A. The man will go to buy the ticket; B. The woman will get the ticket; C. The man will have
someone buy the ticket.; Lastly, Transcribe the given audio clip into text”},
the responses is {“Addressing the prompt ’How many elements are on the periodic table?’, the answer is:
There are currently 118 elements on the periodic table. From the audio, we have the following translations:
コンサートに行きたいけどまだチケットがないのどうするんだ？ For the question “How will the
speaker get a ticket to the concert? A. The man will go to buy the ticket; B. The woman will get the ticket;
C. The man will have someone buy the ticket.”, the response is: B; The audio transcription is: i really
want to go to the concert but i haven’t got a ticket yet b leave it to me i’ll organize that we can go together
r really that’s wonderful }

849
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D Prompt Template for WavLLM850

The template of our WavLLM containing a851

speech audio clip, text instructions and targets are852

constructed as follows:853

854
<bos>[INST]«SYS»\n As a helpful language and
speech assistant, you are able to understand the
speech content provided by the user, and assist
the user with a variety of tasks using natural
language. \n«/SYS»\n\n <SPEECH>“ speech ”
</SPEECH>“instruction” [/INST]“ target ”<eos>

855

856

where “speech” will be replaced by the 4096-dim857

speech features extracted from speech encoders858

and modality adapters, while “instruction” and859

“target” are the specific task prompts and outputs.860

The input to the WavLLM is this template with the861

<eos> removed, while the target is this template862

without the <bos>. During training, only the863

“target” part is involved in the loss calculation.864

E Example of Multi-round Dialog865

Women: How much time do you usually spend exercising daily? 
Man: Frankly, speaking, I'm an awfully lazy man I know it's time to change.

What will the man do next? A. Start to take exercise; B. Do as he always does; 
C. Change his working time.

WavLLM The answer is A.

Why the answer is not B?

WavLLM Because the man himself acknowledges that he is a lazy person and is willing 
to change.

Figure 3: An example of multi-round dialog
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F Training Data Details866

Training data used in the first stage and second867

stage. For all tasks, the instructions are diverse.868

“#Hours” refers to the duration of speech data for869

each task, not the total number of hours of the data870

source. The targets of SQA tasks are generated871

using GPT3.5, GPT-4 or LLaMA-2-chat.872

Task Description Data Source #Hours

Single
-task

automatic speech recognition (ASR)
LibriSpeech 960

LibriHeavy medium 1800
speech-to-text translation (ST), including English to German (En2De),

English to Japanese (En2Ja), and English to Chinese (En2Zh)
CoVoST2 440
MuST-C 280

speaker verification (SV) VoxCeleb 1290
emotion recognition (ER) IEMOCAP Session 1-4 5

speech question answering (SQA),
including gender and speaker-related questions,

and multi-round QA

LibriSpeech 520
AMI 50

Fisher 710
Switchboard 230

speech question answering (SQA), continue writing tasks LibriSpeech 960
speech question answering (SQA), summary tasks LibriSpeech 410

instruction tuning (IT), including spoken based and text based tasks Alpaca 90

Multi
-task

ER + text based IT IEMOCAP Session 1-4, Alpaca 71
ASR + text based IT LibriSpeech, Alpaca 274
ST + text based IT CoVoST2, MuST-C, Alpaca 343
SV + text based IT VoxCeleb, Alpaca 243

SQA + text based IT AMI, Fisher,Switchboard, Alpaca 773
ASR + ST LibriSpeech 74

ASR + SQA LibriSpeech 43
ASR + ST + text-based IT CoVoST2, Alpaca 5

ASR + SQA + text-based IT LibriSpeech, Alpaca 1066

873
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G Implementation Details874

As mentioned above, the semantic and acoustic875

speech encoders are the encoder of Whisper-large-876

v28 and WavLM-base9, the backbone LLM is877

LLaMA-2-chat-7b10, and all of their parameters are878

frozen. The outputs of both modality adapters have879

a time stride of 80 ms and a dimension of 2048,880

and the rank (R) of LoRA is set as 32. In the first881

mixed single-task training stage, the total number882

of parameters in our model is 7.55 billion, of which883

76.6 million are trainable. In the advanced training884

phase, the bottleneck dimension (K) of the prompt885

adapter is set as 1024. The 4096-dimensional886

prompt-dependent parameters produced by prompt887

adapter are element-wise multiplied with the out-888

puts of the LoRA. Our models are trained with the889

two-stage curriculum-learning method on 32 V100890

GPUs using the Adam optimizer, set with hyper-891

parameters β1 = 0.9, β2 = 0.98 and batch size892

equivalent to 30 seconds per GPU, where the first893

stage consisted of 400K steps and the subsequent894

stage involved an additional 150K steps. Addi-895

tionally, we employed a maximum learning rate of896

1 × 10−4, incorporating a warm-up phase for the897

first 10% of steps. The two-stage training data are898

presented in data construction part of Section 3.2.899

H The Effect of Advanced Training for900

Single-tasks901

Performance of model with or without advanced902

training on single-task instructions. mixed training903

means the first mixed single-task training stage,904

and advanced training means the second advanced905

multi-task training stage.906

Models
ASR ST (En2De)

SV ER SQQA SQA
test-clean test-other CoVoST2 MUSTC

WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

mixed training 2.0 4.8 23.9 21.9 0.91 0.72 0.55 67.30%
+ advanced training 2.0 4.8 23.6 21.7 0.91 0.72 0.57 67.55%

907

908

8https://huggingface.co/openai/whisper-large-v2
9https://huggingface.co/microsoft/wavlm-base

10https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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