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Abstract001

Large Language Models (LLMs) excel in many002
areas but continue to face challenges with com-003
plex reasoning tasks, such as Multi-Hop Ques-004
tion Answering (MHQA). MHQA requires in-005
tegrating evidence from diverse sources while006
managing intricate logical dependencies, of-007
ten leads to errors in reasoning. Retrieval-008
Augmented Generation (RAG), widely em-009
ployed in MHQA tasks, faces challenges in010
effectively filtering noisy data and retrieving011
all necessary evidence, thereby limiting its ef-012
fectiveness in addressing MHQA challenges.013
To address these challenges, we propose RISE:014
Reasoning Enhancement via Iterative Self-015
Exploration, a novel framework designed to016
enhance models’ reasoning capability through017
iterative self-exploration. Specifically, RISE018
involves three key steps in addressing MHQA019
tasks: question decomposition, retrieve-then-020
read, and self-critique. By leveraging continu-021
ous self-exploration, RISE identifies accurate022
reasoning paths, iteratively self-improving the023
model’s capability to integrate evidence, main-024
tain logical consistency, and enhance perfor-025
mance in MHQA tasks. Extensive experiments026
on multiple MHQA benchmarks demonstrate027
that RISE significantly improves reasoning ac-028
curacy and task performance.029

1 Introduction030

Large language models (LLMs) demonstrate out-031

standing capabilities in natural language under-032

standing and generation (Brown et al., 2020; Zhang033

et al., 2022; Zeng et al., 2022; Chowdhery et al.,034

2023; Touvron et al., 2023). However, LLMs still035

face challenges with complex Multi-Hop Question036

Answering (MHQA) tasks. MHQA requires mod-037

els to integrate evidence from multiple sources038

and manage intricate logical relationships. This039

involves both retrieving and combining various040

pieces of evidence and constructing coherent rea-041

soning chains. Prompt-based methods, such as042

Sub Question: 
When was The Book Of Eli released?

Sub Answer: 2015Sub Answer: 1990

Final Answer (ERROR): 
According to the evidences provided, The 
Book of Eli was released in 2009, while 
Fire Birds was released on Blu-ray in 
2015. Therefore, Fire Birds was released 
more recently than The Book of Eli.

Final Answer (CORRECT): 
According to the evidences provided, The
Book of Eli was released in 2010, while

Fire Birds was released in 1990. Therefor
e, The Book of Eli was released more rec
ently than Fire Birds.

Sub Answer: 2009Sub Answer: 2010
… …

Question:Which film was released more recently, The Book Of Eli or Fire Birds?

Reference 1: Fire Birds released on Blu-ray this week on Kino Lorber’s Studio Classics 
line. (A previous edition, now out-of-print, was released by Mill Creek in 2015).
Reference 2: … Fire Birds Released on May 25, 1990. Directed by David Green. … 
Filmed on location in Texas and Arizona. Released on video in 1990.
…
Reference N: …

Sub Question:
What is the production year of 
The Book Of Eli ?

Reference 1: ... 
Reference 2: …Principal photography 
began in February 2009 and took place 
in New Mexico. …
…
Reference N: …

Reference 1: ... The Book of Eli is a 2010
American post-apocalyptic, dystopia, 
neo ...
Reference 2: …
…
Reference N: …

Sub Question: When was Fire Birds released?
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Figure 1: The upper part of the figure (blue) illustrates
an Evidence Aggregation Error, where the Blu-ray re-
lease year of Fire Birds (2015) is mistaken for its theatri-
cal release year. The lower part (green and red) shows
a Reasoning Decomposition Error. The incorrect path
formulates the sub-question as the production year of
The Book of Eli (2009) instead of its release year (2010).

Chain-of-Thought (CoT) (Wei et al., 2022b; Wang 043

et al., 2023a; Yu et al., 2023), are employed to 044

address MHQA by split complex problems into 045

smaller, thereby harnessing the reasoning poten- 046

tial of LLMs. However, these methods often lack 047

external knowledge, resulting in key evidence be- 048

ing overlooked and generate hallucinations (Rawte 049

et al., 2023; Ji et al., 2023; Ye et al., 2023). 050

Retrieval-Augmented Generation (RAG) meth- 051

ods (Guu et al., 2020; Lewis et al., 2020; Izac- 052

ard et al., 2022; Nakano et al., 2021; Asai et al., 053

2023; Ma et al., 2023; Yu et al., 2024; Shi et al., 054

2024a) have been proposed to address the afore- 055
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mentioned challenges. By incorporating external056

knowledge, RAG effectively mitigates hallucina-057

tion phenomena and achieves significant results in058

MHQA tasks through multiple retrievals. However,059

RAG is constrained by the performance of the re-060

trievers, inevitably introducing noise. Additionally,061

the multi-round retrieval process may lead to error062

propagation, resulting in two main types of errors:063

Evidence Aggregation Errors and Reasoning De-064

composition Errors. As illustrated in Figure 1, Ev-065

idence Aggregation Errors occur when the model066

fails to accurately integrate evidence from multiple067

evidences, leading to hallucinations. Reasoning068

Decomposition Errors arise when problem decom-069

position phase generates sub-questions that do not070

align with original question’s intent. These issues071

are particularly pronounced in smaller models with072

weaker reasoning capabilities.073

Distillation and fine-tuning (Uesato et al., 2022;074

Luo et al., 2023; Shridhar et al., 2023) effectively075

enhance the reasoning capabilities of LLMs by076

leveraging large-scale models or high-quality, man-077

ually annotated data to improve performance. How-078

ever, biases brought by human subjective anno-079

tations may undermine the performance of fine-080

tuning (Casper et al., 2023; Lightman et al., 2023),081

and these methods are costly, requiring substan-082

tial human or computational resources. Mean-083

while, self-iteration methods (Yuan et al., 2024;084

Wang et al., 2024; Madaan et al., 2024) demon-085

strate tremendous potential in complex reasoning086

tasks. Unlike approaches that depend on large-087

scale models and manual annotations, self-iteration088

methods enable models to generate and learn from089

their own data, achieving outstanding results in090

complex tasks such as code generation and intel-091

ligent agents (Jiang et al., 2023; Ni et al., 2024;092

Qiao et al., 2024). Nevertheless, research on com-093

bination self-iteration methods with RAG remains094

limited. The integration of these two approaches095

has the potential to improve performance in com-096

plex reasoning tasks and leads to cost reduction.097

In this paper, we introduce an innovative frame-098

work, RISE (Reasoning Enhancement via Iterative099

Self-Exploration), which combines the paradigms100

of RAG and self-iteration to address key chal-101

lenges in MHQA tasks. Specifically, RISE de-102

fines three core actions: question decomposition,103

retrieve-then-read, and self-critique. By repeatedly104

executing these actions, the model autonomously105

explores accurate reasoning paths for problems.106

During this process, RISE accumulates experience107

datasets for the three actions and updates the model 108

based on this experience. Through multiple iter- 109

ations, RISE significantly enhances the model’s 110

reasoning capabilities in MHQA tasks. Experi- 111

mental results demonstrate that RISE outperforms 112

baseline methods on several MHQA benchmark 113

datasets, strongly validating its effectiveness in 114

solving MHQA tasks while offering lower usage 115

costs. Our main contributions are as follows: 116

• We propose RISE, which combines RAG and 117

self-iteration to address two key challenges in 118

MHQA tasks: Evidence Aggregation Errors 119

and Reasoning Decomposition Errors. 120

• We design self-exploration mechanism, con- 121

verts MHQA in RAG into multi-objective op- 122

timization problem, thus improving model’s 123

reasoning capability and reducing costs. 124

• We integrate self-iteration paradigm with 125

RAG, bridging gap in applying self-iteration 126

strategies within MHQA RAG framework. 127

2 Methods 128

2.1 Overview 129

In this section, we provide a concise description 130

of RISE, focusing on its algorithmic process. As 131

shown in algorithm 1, RISE begins with a seed 132

question set Q0 and an initial model M0. The 133

model iteratively performs self-exploration for each 134

question q ∈ Qi, with details presented in Sec- 135

tion 2.2. The exploration results are stored as his- 136

torical experienceH. After completing the explo- 137

ration for all questions, the accumulated experi- 138

ences optimize the model through multi-objective 139

training, yielding an enhanced model Mi+1. Sub- 140

sequently, Mi+1 expands the question set based on 141

the previous seed questions Qi, generating Qi+1 142

to initiate the next round of exploration. This 143

self-iterative process enables RISE to continuously 144

improve capabilities without external supervision, 145

leveraging the model’s intrinsic potential. 146

2.2 Self-Exploration Mechanism 147

The self-exploration mechanism enables the model 148

to address complex problems through iterative rea- 149

soning, comprising three core actions: question de- 150

composition, retrieve-then-read, and self-critique. 151

These actions collectively form a structured explo- 152

ration pathway, with the resulting information col- 153

lected as historical data to support the model’s self- 154
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Figure 2: A complete iteration cycle in RISE. a) Self-Exploration: Model M i decomposes complex questions q0
into simpler sub-questions, generates sub-answers via retrieve-then-read, and evaluates their validity, leading to a
final answer a0. Interactions are stored as historical data D. b) Iterative Optimization: RISE optimizes model M i

using historical data D to create an enhanced model M i+1, which generates new questions Qi+1 for the next cycle.

improvement in complex problem-solving. The155

related prompts are provided in Appendix A.1.1.156

Question Decomposition. In this task, the157

model incrementally decomposes the initial com-158

plex question into fine-grained sub-questions.159

At the t-th exploration node, the model uses160

previously explored sub-questions and answers161

as historical information, denoted as H =162

(subq1, suba1), · · · , (subqt−1, subat−1). The163

original question q0 is combined withH and input164

into model M to generate the next sub-question.165

The model ends exploration by generating the final166

answer if the historical information suffices for q0.167

Formally, this process is represented as Formula 1:168

subqt = Fd(M,H, q0) (1)169

a0 = M(q0,H), ifH is sufficient. (2)170

Additionally, all decomposition steps, includ-171

ing the original question and generated sub-172

questions, are recorded to form the dataset Dd =173 {
{q0,H, subq}

np
i=1

}Nq . By leveraging this fine-174

grained and structured dataset, the model learns175

the logical dependencies and relationships between176

questions and sub-questions, thereby improving its177

ability to decompose complex problems.178

Retrieve-then-Read. This task follows the stan-179

dard RAG paradigm to provide evidence-based an-180

swers for sub-questions. At the t-th exploration 181

node, a retriever obtains relevant fragments rt 182

based on the sub-question, and model M gener- 183

ates answer using the retrieved evidence: 184

subat = Fg(M, subqit, rt) (3) 185

Each sub-question and its answer form an ex- 186

ploration node (subqi, subai), added to the histor- 187

ical information Ht+1 = Ht ∪ {(subqi, subai)}. 188

All nodes are recorded to construct the dataset 189

Dr =
{
(subq, r, suba)

np
i=1

}Nq . Training on this 190

dataset helps the model integrate evidence into rea- 191

soning, improving answer accuracy and reliability. 192

Self-Critique. In this task, the model’s critique 193

capability is incorporated into the exploration pro- 194

cess. Specifically, after completing the question 195

decomposition and retrieve-then-read tasks at the 196

t-th exploration node, the model M critiques the 197

relevance and utility of the node for solving the 198

original question and outputs a binary decision. If 199

critiqued as True, it is retained, and exploration 200

proceeds to the next step. If critiqued as False, the 201

node is temporarily stored, and the process reverts 202

to the preceding valid node to generate a new node. 203

This process is formalized in Formula 4: 204
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Algorithm 1 RISE
Input: Seed question set Q0, Initial model M0,
Retriever R, Maximum nodes Nmax = 20

1: Initialize: HistoryH ← ∅, Model index i← 0
2: while True do
3: for each question q ∈ Qi do
4: n← 0 ▷ Start self-exploration.
5: while Mi(q,H) = More information

needed and n < Nmax do
6: subq ←Mi(H)
7: r ← R(subq)
8: suba←Mi(subq, r)
9: σ ←Mi(subq, suba)

10: if σ = 1 then
11: Add (subq, suba) toH
12: end if
13: n← n+ 1
14: end while
15: a←Mi(H)
16: end for ▷ End self-exploration.
17: Mi+1 ← Multi-Objective Train(Mi,H)
18: Qi+1 ← Qustion Expansion(Mi+1,Qi)
19: i← i+ 1
20: end while
Output: Final model Mi

σt = Fc(M, subqt, subat), σt ∈ {0, 1} (4)205

Similarly, we record critique historical infor-206

mation and then construct the dataset Dc =207 {
{⟨subq, suba⟩, σ}np

i=1

}Nq , to enhance the self-208

critique capabilities of the model, ensuring logical209

consistency and relevance within the exploration.210

2.3 Self-Iterative Optimization211

RISE is a self-iterative fine-tuning framework that212

optimizes the model in each training round based213

on data generated by the model itself, gradually en-214

hancing its generalization ability and reasoning per-215

formance. Through a closed-loop iteration of data216

generation and model training, RISE effectively un-217

covers the model’s reasoning potential in complex218

tasks, driving continuous self-improvement.219

Initialization. We initially use randomly sampled220

question set Q0 from the training sets of three221

tasks—2Wiki, HotpotQA, and Musique, with 800222

examples from each. Subsequently, we employ223

self-exploration mechanism to automatically ex-224

pand and collect the three types of dataset. Subse-225

quently, we employ self-exploration mechanism to226

weights ratios
α 1 1 4 1 1
β 1 4 1 2 3
γ 4 1 1 3 2

Accuracy 41.55 40.32 41.94 38.71 37.63
α 2 2 3 3 2
β 1 3 1 2 2
γ 3 1 2 1 2

Accuracy 39.78 40.32 43.01 41.13 44.27

Table 1: Performance on the 2WikiMultiHopQA dataset
under varying weight ratios of α, β, and γ.

automatically expand and collect Dd, Dr, and Dc 227

datasets for subsequent model training. 228

Multi-Objective Optimization. These three 229

datasets, Dd, Dr, and Dc, are interconnected, with 230

sample sizes ranging from 2k to 8k (detailed statis- 231

tics are provided in Appendix 5). We believe that 232

joint training facilitates complementary learning 233

and enhances model capabilities. Therefore, we 234

adopt a multi-objective optimization approach to 235

integrate the objectives of different tasks into a uni- 236

fied optimization goal. The effectiveness of this 237

approach is validated through ablation study at Sec- 238

tion 4.3. The overall loss function is defined as 239

follows Formula 5: 240

L = αLd + βLr + γLc (5) 241

Here, α, β, and γ represent the task weights, 242

which are primarily determined based on the pro- 243

portion of each task within the dataset. Meanwhile, 244

Experimental results (see Table 1) indicate that the 245

weights assigned to different tasks have an impact 246

on model performance, and appropriate weight ad- 247

justments facilitate fine-grained performance op- 248

timization. Notably, to avoid potential overfitting 249

caused by manual weight tuning which may af- 250

fect the final evaluation we do not perform any 251

fine-tuning of the task weights in our experiments. 252

Instead, we adopt a uniform weighting strategy, 253

assigning equal weights to all three tasks. 254

Question Expansion After completing multi- 255

objective optimization, we use the questions gener- 256

ated in the previous iteration as seed data for M i+1 257

to perform question expansion, thereby acquiring 258

training data for the next iteration. This method is 259

inspired by (Wang et al., 2023c), leveraging multi- 260

round in-context learning to ensure the diversity 261

and richness of the newly generated questions. De- 262

tailed information about the question expansion 263

prompts is provided in the appendix Figure 10. 264

4



3 Experiments Setup265

Datasets: For the main experiments, we use three266

QA datasets: 2WikiMultiHopQA (2WIKI) (Ho267

et al., 2020), HotpotQA (Hotpot) (Yang et al.,268

2018), and MuSiQue (MSQ) (Trivedi et al., 2022),269

which provide diverse reasoning challenges to eval-270

uate the robustness of our framework. Addition-271

ally, for the analysis experiments, we include Nat-272

ural Questions (NQ) (Kwiatkowski et al., 2019),273

Web Questions (WebQ) (Berant et al., 2013) and274

TriviaQA (Joshi et al., 2017) to assess the model’s275

performance on open-domain Question Answering276

tasks, further extending the evaluation scope.277

Models and Methods: In our experiments, we278

use LLaMA-3.1-8B (Dubey et al., 2024) as the279

base model for our method in main experiments.280

Similarly, most of the reproduced methods are281

also implemented using LLaMA-3.1-8B. Addi-282

tionally, based on the characteristics of MHQA283

tasks, we select and reproduce a variety of methods,284

categorized into non-retrieval-based methods and285

retrieval-based methods. Non-retrieval-based meth-286

ods include Naive LLM (LLaMA-3.1-8B, GPT-3.5-287

turbo), CoT (Wei et al., 2022b), CoT-SC (Wang288

et al., 2023a) and GenRead (Yu et al., 2023), while289

the retrieval-based methods consist of Naive RAG,290

Self-Ask (Press et al., 2023), WebGLM (Liu et al.,291

2023), Self-RAG (Asai et al., 2023), RRR (Ma292

et al., 2023), and GenGround (Shi et al., 2024a). In293

the analysis experiments, we employ GPT-4o1 as294

the evaluation model, combining subjective analy-295

sis with specific metrics to comprehensively assess296

model performance.297

Retrieval: We adopt a two-stage retrieval frame-298

work (Liu et al., 2023), consisting of coarse-grained299

web search (via Chrome) followed by fine-grained300

LLM-enhanced retrieval. We consistently use the301

same retrieval method to reproduce results for other302

approaches that incorporate retrievers.303

Evaluation Metrics: We assess performance using304

Accuracy (Acc), F1 score (F1), and Exact Match305

(EM) to evaluate QA quality. Additionally, we306

evaluate the quality of the reasoning chains from307

the perspectives of chain length and four subjective308

dimensions: conciseness, rationality, sequencing,309

and goal orientation.310

We provide comprehensive experimental details311

in Appendix A.2, including implementation details,312

datasets, and other relevant information.313

1We use GPT models accessed via the OpenAI API: https:
//openai.com/api/.
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Figure 3: Changes in model accuracy (a) and reasoning
length (b) across datasets. Accuracy consistently im-
proves across datasets, while reasoning length, despite
some fluctuations, shows an overall decreasing trend.

4 Results and Analysis 314

In this section, we evaluate RISE from three as- 315

pects. First, we validate effectiveness of multiround 316

self-iterative and compare RISE with mainstream 317

MHQA methods. Second, we conduct an in-depth 318

analysis of the performance of question decomposi- 319

tion, retrieve-then-read, and self-critique using ob- 320

jective metrics and AI-based evaluations. Finally, 321

we conduct ablation studies to verify the impor- 322

tance of different tasks in enhancing performance. 323

4.1 Overall Performance 324

RISE Outperforms Other Methods: Table 2 325

presents the experimental results across three 326

MHQA datasets and three SHQA datasets. We 327

observe that retrieval-based enhancement is cru- 328

cial for MHQA tasks. While CoT achieves rela- 329

tively good performance, other non-retrieval meth- 330

ods generally perform worse than most RAG ap- 331

proaches with the same model. For the relatively 332

simpler SHQA tasks, retrieval-based enhancement 333

does not seem to offer significant advantages. No- 334

tably, RISE achieves outstanding results in both 335

task types over all datasets, even surpassing GPT- 336

3.5. Furthermore, our method excels in F1 and EM 337

metrics, demonstrating its efficiency (additional 338

metrics are provided in Appendix A.4). 339

5
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Method Model MHQA SHQA
2WIKI Hotpot MSQ NQ WebQ Trival

w/o retrieval
Naive LLM LLaMA-3.1-8B 35.90 27.30 11.30 57.50 61.25 71.50

GPT-3.5-turbo 47.10 41.50 19.10 57.25 58.30 80.25
CoT (Wei et al., 2022b) LLaMA-3.1-8B 43.00 34.60 16.20 56.75 62.00 71.75
CoT-SC* (Wang et al., 2023a) GPT-3.5-turbo 21.00 30.60 8.90 39.75 38.50 79.25
GenRead (Yu et al., 2023) LLaMA-3.1-8B 20.00 28.40 10.30 46.25 43.00 67.00

w retrieval
Naive RAG LLaMA-3.1-8B 43.50 37.50 15.00 51.75 57.75 73.75
Self-Ask (Press et al., 2023) LLaMA-3.1-8B 22.90 29.70 12.70 44.50 46.50 66.00
WebGLM (Liu et al., 2023) LLaMA-3.1-8B 37.60 36.50 13.30 55.75 62.25 73.75
Self-RAG* (Asai et al., 2023) LLaMA2-7B 32.00 30.20 8.00 54.50 60.25 74.25

LLaMA2-13B 30.80 29.40 8.80 55.25 58.75 75.00
RRR (Ma et al., 2023) LLaMA-3.1-8B 23.70 11.80 5.40 22.50 30.50 36.75

GPT-3.5-turbo 28.20 29.70 8.70 57.75 56.50 80.50
GenGround (Shi et al., 2024a) LLaMA-3.1-8B 37.90 36.10 17.80 48.50 44.50 75.25
RISE(Ours) LLaMA-3.1-8B 49.40 40.50 21.70 59.50 62.50 80.25

Table 2: Comparison of RISE’s accuracy with other methods on 2WikiMultiHopQA, HotpotQA, MuSiQue, Natural
Questions, Web Questions, and TriviaQA. Methods marked with an asterisk (*) involve specific considerations:
CoT-SC uses GPT-3.5 due to LLaMA-3.1’s instruction-following limitations, and Self-RAG employs public model
weights as its dataset is unavailable. Other methods use LLaMA-3.1-8B. denote Prompting-based Methods, while

denote Finetuning-based Methods. Due to space constraints, F1 and EM metrics are in Appendix A.4.

Steady Performance Improvement: Meanwhile,340

as shown in Figure 3 (a) Accuracy per Iteration, we341

illustrate how the model’s accuracy evolves over342

four iterations on multiple datasets. The results343

demonstrate a consistent upward trend in accuracy344

with each iteration, further validating the effective-345

ness of our proposed self-training method in im-346

proving the model’s overall performance.347

4.2 Analysis Experiments348

Question Decomposition Capability: To evaluate349

improvement in the model’s decomposition capabil-350

ity for MHQA tasks, we first analyze the changes351

in reasoning length. As shown in Figure 3 (b) Rea-352

soning Length per Iteration, accuracy steadily im-353

proves, while reasoning length initially increases354

and then decreases, ultimately showing downward355

trend. This trend reflects model’s decomposition356

ability progressively improves over iterations.357

To further analyze changes in decomposition358

ability, we using GPT-4o as a judge to evaluate the359

model’s query decomposition across four dimen-360

sions (including conciseness, rationality, sequenc-361

ing and goal orientation, see Appendix A.1.2 for362

more details.). As illustrated in Figure 4, we com-363

pare the performance of the model across iterations364

and observe newer model consistently outperforms365

the previous iteration. These findings demonstrate366

that self-training not only improves reasoning paths367

but also enhances the rationality of decomposition.368

Retrieve-then-Read Capability: In MHQA tasks, 369

models often struggle to integrate logical informa- 370

tion from extensive evidence, especially in filtering 371

irrelevant content. To evaluate the changes in the 372

model’s summarization capability over iterations, 373

we disable the decomposition functionality and in- 374

stead allow model to perform single-round retrieval 375

and direct question-answering. To ensure robust- 376

ness in the experiments, we introduce relatively 377

simpler datasets such as NQ, WebQ, and TriviaQA 378

(Figure 5 (a) Simple Questions) while retaining the 379

complex datasets from main experiments (Figure 5 380

(b) Complex Questions). The experimental results 381

show that, as iterations progress, RISE consistently 382

improves its performance across six datasets. This 383

demonstrates the advantage of RISE in MHQA 384

tasks and its effectiveness in conventional QA tasks, 385

further validating its generalizability. 386

Self-Critique Capability: To evaluate the changes 387

in the model’s self-critique capability, we designed 388

a third set of experiments. In this experiment, 389

both our model and GPT-4o assess the same set 390

of decomposition results, with GPT-4o serving as 391

a reference. By analyzing the consistency between 392

our model and GPT-4o evaluations, we measure 393

the improvement in the model’s self-critique ca- 394

pability. As shown in Table 3, the consistency 395

between our model and GPT-4o steadily increases 396

with each iteration. This indicates that the iterative 397
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0 20 40 60 80 100

Round 1 vs. Round 0

Round 2 vs. Round 1

Round 3 vs. Round 2

Round 4 vs. Round 3

48.4% 20.3% 31.3%

49.8% 16.2% 34%

47.6% 23.0% 29.4%

57.3% 19.7% 23.0%

Win Tie Loss

Figure 4: Evaluating the win rates between the current and previous iterations using GPT-4o to assess model’s
question decomposition capability. Results indicate that each new iteration consistently outperforms the previous
one in subjective effectiveness, demonstrating RISE’s continuously enhance the model’s decomposition capability.
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2WIKI Hotpot MSQ
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35
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40.6 40.3

43.0 43.5
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39.4

41.9
43.1 42.2

11.9 11.1
12.7 13.8 14.3

(b) Complex Questions

Round 0
Round 1
Round 2
Round 3
Round 4

Figure 5: Changes in the model’s retrieve-then-read capability. (a) Results on simpler datasets (NQ, TriviaQA,
WebQ), (b) Results on more complex datasets (2Wiki, HotpotQA, MSQ), where accuracy shows consistent growth
with each iteration, even in challenging scenarios.

Consistency with GPT-4o (%)
2WIKI HotpotQA MSQ

Round 1 74.30 64.70 60.00
Round 2 72.67 66.30 76.00
Round 3 79.67 77.33 79.33
Round 4 80.67 79.33 78.00

Table 3: Consistency analysis with GPT-4o on each
datasets. The results show progressive improvements
in consistency with GPT-4o, highlighting the model’s
enhanced self-critique ability through iterative training.

process in RISE effectively enhances the model’s398

self-criticism capability. (For more experiment de-399

tails see Appendix A.2.3.)400

4.3 Ablation Study401

To evaluate the impact of each synthesized training402

dataset on the model’s performance, we conduct an403

ablation study. As shown in Table 4, the experiment404

uses the same three MHQA datasets as before and405

the three training datasets generated in the round1,406

with accuracy as the primary evaluation metric. 407

Removing the question decomposition dataset 408

leads to accuracy drop of 3.5% on 2Wiki, highlight- 409

ing its importance in enabling effective multi-hop 410

reasoning. Excluding the retrieve-then-read dataset 411

causes accuracy declines on HotpotQA (2.77%) 412

and Musique (2.43%), highlighting the importance 413

of this dataset in synthesizing evidence from di- 414

verse sources to mitigate the impact of noise. The 415

removal of the self-critique dataset results in con- 416

sistent accuracy reductions across all three datasets, 417

emphasizing its pivotal function in refining reason- 418

ing paths processes. These results demonstrate the 419

complementary and indispensable contributions of 420

the question decomposition, retrieve-then-read, and 421

self-critique datasets to the model’s performance. 422

Furthermore, we conduct separate training for 423

the three tasks (Separate), where three LLMs are in- 424

dividually trained for decomposition, retrieve-then- 425

read, and self-critique tasks. Compared to joint 426

training (RISE), the accuracy of separate training 427

is consistently lower across all datasets. 428
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2WIKI Hotpot MSQ
Acc Acc Acc

w/o Decomp 37.63 33.89 11.08
w/o R-t-R 40.59 33.06 9.46
w/o Critique 38.98 33.89 10.27
Separate 40.86 34.72 10.54
RISE 41.13 35.83 11.89

Table 4: Ablation study on 2WIKI, HotpotQA, and
MSQ, showing the impact of removing individual tasks
(Question Decomposition, Retrieve-then-Read, and Self-
Critique) and comparing joint training (RISE) with sep-
arate training (Separate) of individual tasks.

5 Related Works429

Multi-hop Question Answering: MHQA tasks ad-430

dress questions that require integrating information431

from multiple sources and performing multi-step432

reasoning to produce a complete answer (Zhang433

et al., 2024; Li and Du, 2023). Question decomposi-434

tion has been a pivotal approach for understanding435

and solving multi-hop questions, some works (Wei436

et al., 2022a; Wang et al., 2023b; Zhou et al., 2023;437

Shi et al., 2024b) leverage LLMs to divide complex438

questions into simpler single-hop sub-questions439

that are solved sequentially. Self-Ask (Press et al.,440

2023) uses LLMs to generate and resolve follow-441

up sub-questions with an external search engine.442

However, the effectiveness of these approaches de-443

pends on LLM’s inherent question decomposition444

capability, which constrained by hallucinations.445

Retrieval-Augmented Generation for MHQA:446

RAG (Guu et al., 2020; Lewis et al., 2020; Izac-447

ard et al., 2022; Nakano et al., 2021; Asai et al.,448

2023; Ma et al., 2023; Yu et al., 2024; Shi et al.,449

2024a) integrates retrieval with generation to solve450

knowledge-intensive tasks (Zhu et al., 2024; Feng451

et al., 2024). The original RAG framework excels452

at single-hop QA but faces significant challenges453

in handling multi-hop QA and complex reasoning454

tasks (Lewis et al., 2020; Xu et al., 2024).455

To address these challenges, various methods456

have been proposed. Chain of Thought (CoT) (Wei457

et al., 2022b) and Tree of Thought (ToT) (Yao et al.,458

2024) are integrated with RAG to enable multi-step459

reasoning and iterative retrieval (Press et al., 2023;460

Yao et al., 2023; Zhou et al., 2023; Khattab et al.,461

2023), allowing the model to incorporate a broader462

range of external knowledge and improve its rea-463

soning capabilities. However, existing retrieval-464

augmented systems are inevitably affected by the465

limitations of retrievers, often introducing irrele- 466

vant or noisy information (Yin et al., 2023; Xu et al., 467

2024; Ma et al., 2023). Enhancing the model’s rea- 468

soning capabilities to filter noise and focus on crit- 469

ical evidence is essential for accurate summaries, 470

which our method achieves through reasoning de- 471

composition, improving both logical reasoning and 472

QA performance. 473

Self-Improvement in Large Language Models: 474

Self-improvement refers to the process by which 475

models generate and utilize their own output data 476

to enhance performance (Zelikman et al., 2024; 477

Singh et al., 2024; Gülçehre et al., 2023). Exist- 478

ing approaches, such as self-training (Du et al., 479

2021) and self-play (Yuan et al., 2024; Chen et al., 480

2024), leverage pseudo-label generation and itera- 481

tive policy optimization to improve the utilization 482

of unlabeled data and enhance decision-making 483

capabilities. Self-Rewarding (Yuan et al., 2024) 484

employs the LLM-as-Judge paradigm to strengthen 485

reasoning abilities, while Self-Refine (Madaan 486

et al., 2024) iteratively optimizes generated out- 487

puts through self-feedback mechanisms. 488

In complex tasks like code generation and agent- 489

based learning, self-improvement proves effective. 490

Methods such as Self-Evolve (Jiang et al., 2023), 491

NExT (Ni et al., 2024), and AutoAct (Qiao et al., 492

2024) leverage self-feedback, self-guided track- 493

ing, and self-planning to enhance performance. 494

However, the application of self-iterative tech- 495

niques in RAG scenarios remains underexplored. 496

Our method addresses this gap by integrating self- 497

exploration into RAG to generate diverse training 498

data, enabling continuous model evolution and en- 499

hancing performance in complex tasks. 500

6 Conclusion 501

We propose RISE, a framework that addresses two 502

key errors in MHQA tasks: Evidence Aggrega- 503

tion and Reasoning Decomposition. Through self- 504

exploration, RISE continuously enhances reason- 505

ing capabilities. Additionally, RISE integrates self- 506

iterative paradigm with RAG framework, bridg- 507

ing the gap in applying self-iterative strategies to 508

MHQA scenarios without requiring manual inter- 509

vention or reliance on large models, thereby offer- 510

ing a cost-effective solution. Experimental results 511

on MHQA benchmarks demonstrate significant im- 512

provements in reasoning accuracy and task perfor- 513

mance, highlighting RISE’s robustness and adapt- 514

ability in tackling complex reasoning challenges. 515
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Limitation516

While RISE achieves strong performance in com-517

plex reasoning tasks, there remain opportunities518

for further enhancement. The current framework519

relies on external retrieval mechanisms without520

explicit optimization, which may limit the qual-521

ity of evidence for downstream reasoning. Future522

work could explore self-improvement across the523

entire pipeline—spanning question decomposition,524

retrieval, generation, and reflection—to achieve525

more seamless integration and efficiency.526
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A Appendix866

A.1 Prompts867

A.1.1 Self-Exploration Prompts868

We designed detailed prompts for the three tasks in869

the self-exploration phase: question decomposition870

(Figure 6), retrieve-then-read(Figure 7), and self-871

critique(Figure 8). The examples used in the de-872

composition prompt are inspired by self-ask (Press873

et al., 2023).874

A.1.2 Self-Decomposition Evaluation Prompt875

In this paper, the evaluation of the question decom-876

position capability is conducted using GPT-4o with877

prompt as shown in Figure 9. The analysis involves878

assessing and scoring the decomposition results of879

different iterations across multiple dimensions, ulti-880

mately leading to a comparative analysis of the two881

models. The dimensions of the analysis include:882

• Conciseness: Whether the decomposition883

avoids redundancy while ensuring comprehen-884

siveness.885

• Rationality: Whether the decomposed sub-886

problems are closely related to the original887

problem.888

• Sequencing: Whether the decomposition of889

sub-problems follows a logical order and fa-890

cilitates the problem-solving process.891

• Goal Orientation: Whether the decompo-892

sition is clearly centered around addressing893

the main problem’s objective. Are the sub-894

problems closely aligned with the core goal895

of the main problem? Does it avoid redundant896

issues that deviate from the primary objective?897

A.2 Experiment detail898

A.2.1 Implementation Details899

We conduct all experiments on a server equipped900

with four NVIDIA A800 80G GPUs. For the ex-901

perimental setup, we use the following hyperpa-902

rameters: learning rate of 1× 10−4, batch size of903

64,and cut-off length of 8192. Furthermore, for the904

weighting parameters α, β, andγ in the overall loss905

function, values of 1 are uniformly adopted in this906

research.907

Datasets Dd Dr Dc

Round 1 3276 2501 3925
Round 2 8309 6311 8074
Round 3 4858 2106 2312
Round 4 6913 4759 5307

Table 5: Number of samples accumulated in datasets
Dd, Dr, and Dc after each round of self-exploration.

2WIKI HotpotQA MSQ
Round 1 223 194 180
Round 2 218 199 228
Round 3 239 232 238
Round 4 242 238 234

Total 300 300 300

Table 6: Number of instances in each round’s self-
critique capability evaluation that aligned with GPT-4o.

A.2.2 Datasets 908

The cold-start dataset Q0 consists of 800 randomly 909

sampled instances from the training sets of 2Wiki- 910

MultiHopQA, HotpotQA, and MuSiQue, totaling 911

2,400 cold-start samples. Table 5 provides detailed 912

information on the training datasets constructed 913

during each round of self-exploration. The eval- 914

uation datasets we used 2WikiMultiHopQA, Hot- 915

potQA, and MuSiQue each contain 1,000 samples, 916

Nature Questions, Web Questions, and TriviaQA 917

each contain 400 samples. 918

A.2.3 Self-Critique Capability Experiments 919

Details 920

To demonstrate the improvement in the self-critique 921

capability of the model across iterations, we sam- 922

pled 300 instances from the generated Dc at each 923

round and compared them with GPT-4o. The re- 924

sponses from GPT-4o were used as ground truth to 925

calculate the self-critique accuracy of our model. 926

In Table 6, we present the number of instances in 927

each round’s self-critique capability evaluation that 928

aligned with GPT-4o. 929

A.3 Additional Experiments 930

A.3.1 RISE Robustness 931

To further verify the robustness of our experimental 932

conclusions, we conducted additional experiments 933

using the Qwen2.5-7B model. Specifically, we 934

performed four rounds of self-exploration follow- 935

ing the same experimental setup as in our original 936

RISE framework. The results consistently demon- 937

strate the effectiveness of RISE, with performance 938
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2WIKI HotpotQA MSQ
Acc F1 EM Acc F1 EM Acc F1 EM

Round 0 38.98 23.28 12.10 31.94 21.72 10.28 7.30 8.98 2.70
Round 1 45.97 46.49 32.50 35.83 44.55 32.50 10.54 18.65 8.92
Round 2 46.24 46.33 30.83 36.11 41.58 30.00 11.89 16.19 8.92
Round 3 47.31 47.10 34.41 38.33 42.82 31.39 13.24 20.70 10.81

Table 7: Performance of the Qwen2.5-7B model after four rounds of self-exploration on different datasets, showing
improvements in accuracy, F1, and EM scores across 2WIKI, HotpotQA, and MSQ.

Methods Average Input Token Average Output Tokens Number of LLMs Calls
Naive LLM 18 244 1

CoT 24 284 1
CoT-SC 240 2840 10
GenRead 307 233 2

Naive RAG 440 104 1
Self-Ask 782 172 2
WebGLM 436 103 1
Self-RAG 866 294 2

RRR 496 86 2
GenGround 2449 167 5

RISE 2881 192 5

Table 8: Token consumption comparison between RISE and other baseline methods, showing average input tokens,
average output tokens, and the number of LLMs calls required for each approach. RISE demonstrates a higher input
token consumption due to its multi-step reasoning, but maintains efficient reasoning performance.

improvements observed across multiple datasets939

after each iteration. This confirms that RISE main-940

tains strong generalization capabilities and stable941

performance even when applied to different large942

language models.943

A.3.2 Token Consumption Details944

In addition to performance evaluation, we analyzed945

the token consumption of RISE compared to other946

baseline methods. We measured both the average947

input token consumption and the average output948

token length, as well as the number of model calls949

required in each approach. The results reveal that950

while RISE consumes more input tokens due to its951

multi-step reasoning process, it achieves higher ef-952

ficiency in output generation and overall reasoning953

effectiveness. This analysis highlights the trade-954

off between token usage and model performance,955

demonstrating that RISE achieves a balanced opti-956

mization in complex reasoning tasks.957

A.4 Supply Metrics of Main Results958

This section provides additional details to sup-959

plement the main results, including comprehen-960

sive Exact Match (EM) and F1 scores across961

six QA datasets: 2WikiMultiHopQA, HotpotQA,962

MuSiQue, Natural Questions, Web Questions, and 963

TriviaQA. We compare RISE (Ours) with both 964

prompting-based and fine-tuning-based methods, 965

under settings with and without retrieval. The re- 966

sults offer a deeper understanding of RISE’s perfor- 967

mance, highlighting its consistent improvements 968

over baseline models. 969
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Method Model MHQA SHQA
2WIKI Hotpot MSQ NQ WebQ Trival

w/o retrieval
Naive LLM LLaMA-3.1-8B 0.00 0.30 0.00 0.25 0.00 2.25

GPT-3.5-turbo 0.50 5.50 0.20 2.50 0.75 26.75
CoT (Wei et al., 2022b) LLaMA-3.1-8B 0.00 0.00 0.00 0.00 0.00 0.25
CoT-SC* (Wang et al., 2023a) GPT-3.5-turbo 18.40 31.90 9.60 30.75 22.75 71.75
GenRead (Yu et al., 2023) LLaMA-3.1-8B 17.00 25.60 7.60 35.75 25.50 61.75

w retrieval
Naive RAG LLaMA-3.1-8B 0.30 1.70 0.20 0.00 0.00 2.25
Self-Ask (Press et al., 2023) LLaMA-3.1-8B 17.00 25.60 9.60 28.50 21.50 58.75
WebGLM (Liu et al., 2023) LLaMA-3.1-8B 0.00 0.30 0.00 0.00 0.00 0.00
Self-RAG* (Asai et al., 2023) LLaMA2-7B 2.90 3.90 0.80 0.00 0.00 2.00

LLaMA2-13B 3.40 2.50 0.40 0.00 0.00 4.50
RRR (Ma et al., 2023) LLaMA-3.1-8B 0.00 0.40 0.00 0.75 0.75 2.75

GPT-3.5-turbo 3.20 2.20 0.30 2.50 2.00 20.00
GenGround (Shi et al., 2024a) LLaMA-3.1-8B 23.50 24.30 10.20 20.50 18.50 60.25
RISE(Ours) LLaMA-3.1-8B 32.70 30.50 11.70 28.50 19.25 59.50

Table 9: EM metrics of RISE with other methods on the 2WikiMultiHopQA, HotpotQA, MuSiQue, Natural
Questions, Web Questions and TriviaQA. Methods marked with asterisk (*) involve specific considerations: CoT-SC
uses GPT-3.5 due to LLaMA-3.1’s limitations in adhering to instructions, and Self-RAG employs publicly released
model weights because its dataset is unavailable. All other methods are reproduced with LLaMA-3.1-8B.
represent Prompting-based Methods, while represent Finetuning-based Methods.

Method Model MHQA SHQA
2WIKI Hotpot MSQ NQ WebQ Trival

w/o retrieval
Naive LLM LLaMA-3.1-8B 7.99 5.49 2.67 4.09 5.46 17.55

GPT-3.5-turbo 13.38 17.66 8.10 16.53 19.14 44.11
CoT (Wei et al., 2022b) LLaMA-3.1-8B 2.95 2.31 1.53 1.77 2.19 4.93
CoT-SC* (Wang et al., 2023a) GPT-3.5-turbo 24.31 39.59 15.36 40.98 36.54 80.65
GenRead (Yu et al., 2023) LLaMA-3.1-8B 22.39 34.51 15.26 47.90 42.55 69.59

w retrieval
Naive RAG LLaMA-3.1-8B 6.39 9.60 4.02 9.02 9.72 19.37
Self-Ask (Press et al., 2023) LLaMA-3.1-8B 23.42 36.14 19.67 40.35 39.61 67.02
WebGLM (Liu et al., 2023) LLaMA-3.1-8B 8.27 6.03 3.76 5.57 6.68 9.30
Self-RAG* (Asai et al., 2023) LLaMA2-7B 17.38 15.44 6.02 25.56 21.45 11.34

LLaMA2-13B 14.82 13.41 6.70 15.65 9.34 15.34
RRR (Ma et al., 2023) LLaMA-3.1-8B 5.35 3.21 1.48 4.46 6.68 9.56

GPT-3.5-turbo 13.70 16.76 6.08 22.80 23.16 43.68
GenGround (Shi et al., 2024a) LLaMA-3.1-8B 34.33 34.53 19.81 36.29 28.93 67.20
RISE(Ours) LLaMA-3.1-8B 43.01 42.00 22.87 42.97 36.22 72.70

Table 10: F1 metrics of RISE with other methods on the 2WikiMultiHopQA, HotpotQA, MuSiQue, Natural
Questions, Web Questions and TriviaQA. Methods marked with asterisk (*) involve specific considerations: CoT-SC
uses GPT-3.5 due to LLaMA-3.1’s limitations in adhering to instructions, and Self-RAG employs publicly released
model weights because its dataset is unavailable. All other methods are reproduced with LLaMA-3.1-8B.
represent Prompting-based Methods, while represent Finetuning-based Methods.
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Decomposition Prompt

Instruction: Please answer the following questions according to the given format. Strictly follow
each format specification, as this will ensure consistency and clarity in your response.

- Only add follow-up questions if additional details are needed to arrive at the final answer.
- For each follow-up question, use exactly this format: ’Follow up: question’
- Ensure each follow-up question is direct and structured to be easily searchable, focusing on key
information for efficient search engine retrieval.
- For each answer to a follow-up question, use exactly this format: ’Intermediate answer: answer’
- Do not repeat or alter any previously generated follow-up questions or intermediate answers.
- Conclude with the final answer using this exact format: ’So the final answer is: final answer’ if
no further questions are needed.

Use the examples below to understand the expected structure, and follow this format
without deviating from these instructions.

Question: Who lived longer, Muhammad Ali or Alan Turing?
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali.

Question: When was the founder of craigslist born?
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952.
... ...
—
Now, **continue the response** using the following question and information provided below.
Only add follow-up questions if necessary to reach the final answer.
**Ensure all follow-up questions are optimized for search engine queries, making each question
concise, direct, and easily searchable. Avoid modifying or repeating any existing content.**
—

Question (ORIGINAL): {question}
Are follow up questions needed here: Yes.

Figure 6: Question Decomposition prompt template.
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Retrieve-then-Read Prompt

#Question-Answering-in-Reference-Task#

Instruction:
- Use the references provided to answer the question as specifically and completely as possible.
- If the references do not directly answer the question, combine relevant information from multiple
references to create a well-supported answer.
- When references are Null or insufficient, use your own knowledge to provide a clear and relevant
answer.
- When a direct answer cannot be determined, list any information in the references that could be
relevant or provide partial insights related to the question. Avoid responses such as ’I don’t know’
or ’more information is needed.’
- Always prioritize specificity and relevance in your answer, providing helpful context or details
that approach a complete answer.

Reference [1]
Reference [2]
...

Question: {question}

Figure 7: Retrieve-then-Read prompt template.
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Self-Critique Prompt

Main Question: {question}
Below is a list of previously generated subquestions and their intermediate answers, created as part
of a multi-step reasoning process to answer the main question.
Your task is to evaluate whether the information in the current subquestion is necessary and
contributes incrementally towards solving the main question.

Previously generated subquestions and answers:
{previous subquestions}

Current subquestion and answer candidate:
{subquestion and intermediate answer }

Instruction:
- Step 1: Check for Redundancy. Check if the current subquestion or answer repeats information
already provided in previous subquestions. If it does, return ’flag = False’ as this information is
redundant.
- Step 2: Assess Relevance. If the information is not a duplicate, analyze its relevance to the main
question. Determine whether it provides new, relevant information that helps move closer to
solving the main question, even if it only provides indirect context or background.
Note that information does not need to directly answer the main question to be considered relevant;
it can also support understanding or provide necessary context. Mark it as ’flag = True’.
- Step 3: Based on your analysis, provide a final judgment in the following format:

**Final Judgment**: [flag = True or flag = False]

Examples:

Main Question: “Who lived longer, Muhammad Ali or Alan Turing?”
• Follow up: “How old was Muhammad Ali when he died?” (Flag = True, relevant for lifespan
comparison.)
• Follow up: “How old was Alan Turing when he died?” (Flag = True, completes lifespan
comparison.)
• Redundant Example: “How old was Muhammad Ali when he passed?” (Flag = False, redundant
with earlier subquestion.)
Main Question: “Are both the directors of Jaws and Casino Royale from the same country?”
• Follow up: “Who directed Jaws?” (Flag = True, needed for director identification.)
• Follow up: “Where is Steven Spielberg from?” (Flag = True, relevant to nationality check.)
• Irrelevant Example: “What is Steven Spielberg’s favorite genre?” (Flag = False, not relevant to
nationality.)

Reminder: Use “flag = True” for any subquestion that provides useful information or
context toward solving the main question, even if indirectly. Set “flag = False” only if it is
redundant or entirely irrelevant.

Figure 8: Self-Critique prompt template.
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Self-Decomposition Evaluation Prompt

You are given two problem decomposition results for the same complex problem. Your task is to
compare these results from Conciseness, Rationality, Sequencing and Goal Orientation. Analyze
the two decomposition results using the criteria above. Clearly explain which approach is more
effective for solving the problem and why, while highlighting the strengths and weaknesses of
each approach in detail.

# Scoring Criteria:
- Score each dimension on a scale of 1-5, where:
- 1: Poor
- 2: Needs Improvement
- 3: Average
- 4: Good
- 5: Excellent
# The output follows the format below. Do not add any additional text: {
"Conciseness": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "How effectively does each decomposition avoid unnecessary complexity while
still addressing all relevant aspects of the problem? Is the explanation clear and straightforward?"
},
"Rationality": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "Are the identified components logical and directly related to the problem? Do the
solutions align well with the identified components?"
},
"Sequencing": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "Is the order of steps or components logical and easy to follow? Does the sequence
facilitate efficient problem-solving?"
},
"Goal Orientation": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "Do the sub-questions stay aligned with the core goal of the main problem? Are
there any redundant sub-questions that deviate from the primary objective?"
},
"Result": "Decomposition Results 1 Decomposition Results 2 Tie"
}
# Problem:
{problem} # Decomposition Results to Compare:
- Decomposition Results 1:
{result1}
- Decomposition Results 2:
{result2} # Output:

Figure 9: GPT-4o decomposition prompt template.
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Multi-Hop Question Generation Prompt

#Multi-Hop-Question-Generation-in-{Task}#

Instruction:
- You are an AI assistant tasked with generating multi-hop questions similar to those in the {task}
dataset.
- These questions require combining multiple pieces of information to reach the answer.
- Typically, these questions involve indirect references and nested relationships.

Examples from the {task} dataset:
Example 1: Question: [Insert Example Here]
Example 2: Question: [Insert Example Here]
Example 3: Question: [Insert Example Here]
Example 4: Question: [Insert Example Here]
Example 5: Question: [Insert Example Here]
Example 6: Question: [Insert Example Here]
Example 7: Question: [Insert Example Here]
Example 8: Question: [Insert Example Here]

Please generate a **new and unique multi-hop question** that meets the following crite-
ria:
- **Requires reasoning across multiple facts or entities**.
- **Asks for only one piece of information or answer** without multiple sub-questions.
- **Is a single, coherent question** that requires multi-step reasoning to answer.
- **Includes indirect references or nested relationships**.
- **Matches the complexity and structure** of questions in the {task} dataset.
- **Is concise** (one sentence) and clearly worded.
- **Covers new topics** or involves different entities from the examples above.
- **Avoids being a duplicate** of the examples above.
- **Avoids using conjunctions like ’and’, ’or’, or commas** to ask more than one thing.

Your response should **only contain the generated question** without any extra text
and follow the format:
Question: {question}

Figure 10: Multi-hop question generation prompt template.
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