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Abstract

Positional encoding plays a key role in
Transformer-based architecture, which is to in-
dicate and embed token sequential order infor-
mation. Understanding documents with unre-
liable reading order information is a real chal-
lenge for document Transformer model. This
paper proposes a new and generic positional en-
coding method, learnable sinusoidal positional
encoding (LoPE), by combining sinusoidal po-
sitional encoding function and a learnable feed-
forward network. We apply LoPE to document
Transformer model and pretrain the model on
document datasets. Then we finetune and eval-
uate the model performance on document un-
derstanding tasks in form and receipt domains.
Experimental results not only show our pro-
posed method outperforms other baselines and
state-of-the-arts, but also demonstrate its ro-
bustness and stability on handling noisy data
with incorrect order information.

1 Introduction

Document understanding (or in some contexts
known as Document intelligence, Document Al)
aims to extract, recognize and understand infor-
mation from document images. The performance
of document understanding model is largely ben-
efited from recent development of large scale pre-
training technique on cross-modality data and ef-
fective transformer architectures (Cui et al., 2021).
Document Transformer Model, e.g. LayoutLM
(Xu et al., 2020b), is pretrained from visually-rich
document data which consists of text, layout and vi-
sual information based on Transformer architecture
(Shaw et al., 2018). Recently, (Xu et al., 2020a;
Hong et al., 2021; Appalaraju et al., 2021; Li et al.,
2021a) propose various approaches to further im-
prove the performance of Transformer model on
more challenging document understanding tasks.
Different from recurrent and convolutional based
structures, Transformer based model does not en-
code relative or absolute position information ex-

plicitly since it is solely based on order-invariant
attentional mechanism. In the original Transformer
architecture (Vaswani et al., 2017), both learnable
vector embedding and sinusoidal function are intro-
duced as positional encoding methods for capturing
positional information from input tokens. In order
to improve positional representation ability, (Shaw
et al., 2018; Huang et al., 2020; He et al., 2021;
Chi et al., 2021) introduce several relative posi-
tion strategies into attention computation steps in
Transformer. Along with sequential reading order
from text, visually-rich documents contain more
spatial information of text block which poses a
greater challenge to understand rich semantic and
spatial relationship information at same time. To
obtain text blocks from document image, current
off-the-shelf method is borrowing results from ex-
isting Optical Character Recognition (OCR) engine
while mostly the reading order of text blocks is just
arranged by a heuristic manner, top-to-bottom and
left-to-right (Clausner et al., 2013; Wang et al.,
2021). For documents with complex layout, such
as forms, invoices or receipts, the performance of
reading order is not consistent which always leads
to irrelevant or embarrassing predictions (Cui et al.,
2021). Moreover, existing Document Transformer
Models suffer from huge performance degrada-
tion on noisy data with unreliable reading order
information (Hong et al., 2021). Therefore posi-
tional encoding plays an essential role in document
Transformer models, which is to encode position
embedding from data with inherent reading or spa-
tial information. Thus, it’s crucial to improve the
robustness and learnability of position encoding
method, and boost the model performance on noisy
data with unreliable order and spatial information.

In this paper, we introduce a learnable sinusoidal
position encoding method, LoP E, by combining
the sinusoidal positional encoding function and a
learnable fully connected feed-forward network.
And we apply it to represent multidimensional po-



sition information in document Transformer model.
Compared with current discrete embedding layer in
Transformer model, our method is numeric contin-
uous for position scales which improve positional
representation of relative position or distances be-
tween spatial elements. We enhance the original
sinusoidal positional function by adding a learnable
network which allows pretrained language model
to adapt to various downstream tasks effectively. It
keeps the advantage of extrapolability from sinu-
soidal function which could extend to longer posi-
tion than training cases. We pretrain transformer
model on document datasets with our positional
encoding and baseline methods. Then we evaluate
the model performance on document understanding
downstream tasks and compare model performance
with various positional encoding methods with the
same input modality and model size setting. Ex-
perimental results illustrate that our LoP E method
significantly outperforms baseline methods and re-
cent pretrained document language models on both
FUNSD and SROIE benchmarks. In addition, we
evaluate the model robustness on noisy order data
by utilizing global and local shuffling augmentation
strategies. Our method shows stable performance
than other positional encoding methods with unreli-
able order information. Furthermore, we visualize
and analyze similarity of positional representation
for each method from the 1D to 2D positional em-
beddings of our pretrained models.

In summary, our contributions could be high-
lighted as follows: 1) We propose LoPE as a new
and generic learnable positional encoding method
with better learnability and extrapolability to im-
prove document Transformer model. 2) We pre-
train document Transformer models with LoPE
and other baselines, and evaluate model perfor-
mance on document understanding tasks. Experi-
mental results show our proposed method outper-
forms other baselines and recent SOTA approaches
on FUNSD and SROIE datasets.3) By ablation
study of employing global and local block shuffling
augmentation strategies, our method demonstrates
optimal performance and robustness on noisy data
with unreliable reading order information. Finally,
our pretrained models with implementation of fine-
tuning code will be open to public.

'Our code will be made publicly available.
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Figure 1: Visualization of 768-dimensional sinusoidal
positional encoding for sequence with the maximum
length of 256. Each position row p represents the em-
bedding vector PE;,.(p) as positional representation.

2 Background

Positional Encoding Methods in Transformer
In the original proposal of Transformer architec-
ture (Vaswani et al., 2017), both learnable vector
and sinusoidal function are introduced as positional
encoding methods and perform nearly identically
in their downstream tasks. Although sinusoidal
version with predefined wavelength has unique ex-
trapolability which allows to encode longer sequen-
tial position than pre-training samples, it does not
always perform well on downstream tasks (Shaw
et al., 2018), due to the lack of learnability and
flexibility. In practical, most pretrained language
models, (e.g. (Devlin et al., 2018; Liu et al., 2019)),
utilize learnable vector embedding (Gehring et al.,
2017) as positional representation. Recently, sev-
eral approaches are proposed to enhance positional
representation by adding relative position infor-
mation into attention score computation stage to
improve performance of Transformer based models
(Shaw et al., 2018; Huang et al., 2020; Dai et al.,
2019). By leveraging relative positional encoding
and other advanced pre-training techniques, (He
et al., 2021), (Chi et al., 2021) achieve state-of-
the-art performance on multiple nature language
understanding tasks. (Li et al., 2021b) explore the
position encoding method in vision domain and
propose a learnable Fourier feature to enhance po-
sitional encoding in Transformer. It outperforms
other methods on both accuracy and convergence
speed with vision transformer (Dosovitskiy et al.,
2020) based model. Since it is non-trivial to modify
or replace backbone of model structure during fine-
tuning stage, some research works propose auxil-
iary tasks (Wang et al., 2019; Pham et al., 2021) or
data augmentation approaches (Wei and Zou, 2019;
Dai and Adel, 2020) to leverage absolute or rela-



tive position information without modifying model
structure.

Document Transformer Models In document
understanding area, LayoutLM (Xu et al., 2020b)
utilizes the pretrained language model to resolve
document understanding tasks, and achieves state-
of-the-art performance on multiple document un-
derstanding benchmarks. To represent 2D posi-
tion embedding, it decouples the x- and y- axes
of text bounding box and sums up positional rep-
resentations from each dimension independently.
LayoutLMv2(Xu et al., 2020a) introduces spatial-
aware self-attention mechanism to enhance the lay-
out representation from both 1d and 2d relative
position bias. BROS(Hong et al., 2021) uses rela-
tive position information in attentional mechanism
along with absolute positional encoding from sinu-
soidal function, which perceives more spatial lay-
out information. (Li et al., 2021a) utilizes shared
position information in the text block as position
representation which further improves entity extrac-
tion performance by understanding cell information
from layout. (Appalaraju et al., 2021) proposes an
End-to-End Transformer based model with 1D rela-
tive position embedding in attentional mechanism.

Document Understanding Tasks RVL-CDIP
(Harley et al., 2015) is a document classification
dataset with 400K gray-scale English document
images in 16 document categories. This dataset
is a subset of IIT-CDIP (Lewis et al., 2006) and
widely used for pre-training language model pur-
pose. Entity extraction is a classic and essential
task in nature language understanding. It is to lo-
cate the boundary of entities and assign predefined
classes to them. There are several popular bench-
marks, consisting of multi-modality information
with text, layout, and visual, to evaluate the per-
formance of visually-rich document understanding.
FUNSD (Guillaume Jaume, 2019) is a form under-
standing dataset for key-value extraction research
2 from 199 English forms. SROIE (Huang et al.,
2019) and CORD (Park et al., 2019) are receipt un-
derstanding datasets to extract related entity types
in English. XFUND (Xu et al., 2021) is an ex-
tended multi-lingual FUNSD dataset, which con-
tains visually-rich documents in seven commonly-
used languages.

2 . . - .
More license and term of use information at https://guillaumejaume.
github.io/FUNSD/work/
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Figure 2: Flow of four positional encoding methods
in Transformer based architecture: learnable vector
embedding (LearnV ec), sinusoidal positional encod-
ing (Sine), learnable sinusoidal positional encoding
(LoPE) and LoP Egc with skip connection structure.

3 Methodology

In this section, we formulate our positional encod-
ing method LoPE and introduce its applications
on document transformer based language model.
In order to evaluate its robustness and stability on
noisy data with unreliable order information, we
introduce two augmentation strategies: global and
local text-block shuffling during fine-tuning stage.

3.1 Learnable Sinusoidal Positional Encoding

Positional representation is utilized as an induc-
tive bias of positional relevance information by
positional encoding function (P E) in Transformer
model (Vaswani et al., 2017). Sinusoidal positional
encoding is originally proposed and employed in
attentional mechanism as better extrapolability and
spatial correlation from the clean mathematical def-
inition. Figure 1 shows the heatmap of sinusoidal
positional encoding method. The hidden represen-
tation of position p in a sequence could be com-
puted as Equation 1:
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PFEgine(p,2d + 1) = cos

PEgine(p,2d) = si
» (1)
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In practical applications, some pretrained Trans-
former language models (Gehring et al., 2017; De-
vlin et al., 2018; Liu et al., 2019; Xu et al., 2020b;
Dosovitskiy et al., 2020) treat each position in-
dex p as a discrete learnable embedding vector
(LearnVec) by learning from pre-training and fine-
tuning data. This approach is generic and effec-
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tive to adapt pretrained Transformer models to spe-
cific domains and tasks with various behavior of
spatial sensitivity. However, for more challeng-
ing tasks, such as document understanding tasks,
the performance of document Transfomer model
with existing positional encoding approach drops
significantly on noisy data with unreliable order
information (Hong et al., 2021).

We propose a learnable sinusoidal positional en-
coding (LoPE) method by combining sinusoidal
position encoding function with a fully connected
feed-forward network, which consists of two lin-
ear transformations with Ge LU (Hendrycks and
Gimpel, 2020) as activation function o in between
as:

FFN(.T) = U(l‘Wl +b1)W2 + by

2
PELOPE(p) = FFN(PEszne(p)) @)

Skip connection is a generic strategy to sum the
input and output representation from a computa-
tional unit with a skip edge. In transformer based
models, (He et al., 2020) has proposed a residual at-
tention layer and shown some regularization effects
that could stabilize training and benefit fine-tuning
stages. Inspired by this, we conduct the skip con-
nection strategy in LoP E module as a variant of
our method. It could be formulated as eq.3.

PELOPE'sc(p) = PEsine(p) + PELoPE(P) (3)

Figure 2 visualizes the flow of our proposed
method and baselines in this paper. Compared
with discrete embedding, our method extends from
sinusoidal function and treats position index as a
continuous-valued vector which allows the model
to extrapolate to longer length from training cases.
Meanwhile, the learnable F'F'N component boosts
the learnability and flexibility of positional repre-
sentation for multidimensional spatial information.

3.2 Positional Representation in Document
Transformer Language Model

Distinct from nature language data which only con-
sist of 1D order information, visually-rich docu-
ment data require more model capacity to represent
both 1D and 2D positional information from in-
dividual element. Given token x; series from a
document D, let p; donate 1D position index and
b; as ((zo, yo), (x1,y1)) present the bounding box
in normalized 2D coordinate system.

As a general and commonly used pre-trained
model for Document Al, LayoutLM (Xu et al.,
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Figure 3: An example of text block shuffling augmen-
tation methods, Neighbor Block Swapping and Global
Block Shuffling.

2020b) utilizes independent 2D spatial embedding
layers along with 1D position embedding initial-
ized from pretrained BERT (Devlin et al., 2018)
to represent positional information. Its composed
positional representation R; is computed via:

k

RZP =) (PE,(z;) + PEy(y;
i jz;( () + PEy(y;)) @

R; = PE1a(p;) + RP

Where k donates the count of points in bounding
box, and PFEy4, PE,, PE, are the positional en-
coding methods for 1D order and 2D spatial infor-
mation separately. The original positional encoding
of LayoutLM is a learnable embedding which is
identical to PELeqrnvec3.1 in this paper. The com-
posed positional representation will be summed up
with text embedding and token type embedding
vectors as input of Transformer.

3.3 Text Block Shuffling Augmentations

In practical, understanding documents with incor-
rect reading order is a real challenge for document
Transformer model which always leads to irrelevant
or embarrassing error results. We introduce two
text block shuffling augmentation methods: Global
Block Shuffling and Neighbor Block Swapping,
to simulate the noisy reading order scenario as
shown in Figure 3. We apply these methods on
text block level to a document, and keep the rela-
tive word order in the same text block. The text
block is defined as a group of continual words in a
spatial region (or a line of words).

For global block shuffling process, we first ob-
tain the block information for each token, and shuf-
fle the order of block index but keep the relative
token order in the input sequence. For neighbor
block swapping method, each text block is swapped



Parameter Name Value
max_steps 500K
per_device_train_batch_size 12
gradient_accumulation_steps 4
max_seq_length 512
max_2d_position_embeddings 1024
learning_rate Te-5
warmup_ratio 0.1

Table 1: Pretraining hyperpameters for document Trans-
former model with our positional encoding methods.

to neighbor block randomly, and the distance d of
swapped block pair follows a normal distribution
function A/ (0, 02).

The intuition of applying augmentation method
on text block level is that we observe it is closed
to error cases from document understanding appli-
cation in real word, and the text block information
could be obtained from existing OCR engines.

4 [Experiments

4.1 Pretraining

In order to verify the effectiveness of our positional
encoding approach, we employ LayoutLM frame
and exclude the visual feature related structure. We
reproduce the pretraining experiments with our po-
sitional encoding method as well as baseline meth-
ods on a 1M random subset of IIT-CDIP (Lewis
et al., 2006) pretraining data set.

All pretraining jobs run on 8 NVIDIA Tesla
V100 32GB GPUs server with approximately
150 hours for each job. The pretraining hyper-
parameters are shown in Table 1. The pretrain
models are initialized from Bert-base-uncased ex-
cept for specified positional encoding weights.

We obtain our pretrained models with four
positional encoding methods (LearnVec, Sine,
LoPFEsc, LoPFE) for next fine-tuning experiments.
The name of positional encoding method is used to
indicate the pretrained model in the result table.

4.2 Experimental Settings

We fine-tune and evaluate the performance of our
pretrained models on two datasets: FUNSD (Guil-
laume Jaume, 2019) and SROIE (Huang et al.,
2019), which are two popular benchmark datasets
for entity extraction in form and receipt domains.
FUNSD 3 consists of noisy scanned documents.
There are 149 scanned forms for training and 50
scanned forms for testing with more than 31K

3
https://guillaumejaume.github.io/FUNSD

words, 9.7K entities, and 5.3K relations in combi-
nation. For more fair comparison, we refer the eval-
uation results from LayoutLM, DocFormer, and
BROS with the same text and spatial features as
input and similar model size architecture.

SROIE * attracts a lot of attention from both re-
search and industry community as an open-source
OCR and information extraction benchmark for re-
ceipt understanding. The dataset consists of 626
receipt images for training and 347 receipt images
for testing with four predefined entities which are
company, date, address, and total. There is no
post-processing strategy before evaluation as we
tend to compare the performance gap only from po-
sitional encoding differences. We also experiment
with official pretrained LayoutLM> with the same
fine-tuning hyper-parameters for a fair comparison
purpose.

We use entity recognition evaluation metrics in-
cluding entity-level precision, recall, and F1-score
for each experiment by default settings of seqeval
package (Nakayama, 2018). The learning rate is
set to 3e-5 with linear decay, and 10% of total steps
are used for warm-up purpose. We use max_steps
as 2k, and report the evaluation metrics on the fi-
nal fine-tuned model. Other environment settings
or hyper-parameters are same as pretraining ex-
periments 4.1. We average evaluation results with
different initial seeds to eliminate bias of shuffling
augmentations.

4.3 Experimental Results

As shown in Table 2, on FUNSD dataset, our
LoPFE model achieves 82.04 F1-score and outper-
forms other baseline methods. The Sine model
achieves low performance and LoP Eg¢ is worse
than LoP E which indicates the sinusoidal function
cannot represent layout positional information with
skip connection structure. The small performance
gap between our LearnV ec and official LayoutLM
model with shared model structure might be from
different pretraining data and settings since our pre-
training experiments run on a 1M subset training
data and fewer pretraining steps.

We observe similar trend on SROIE experiment
from Table 3. LoP E model achieves F1 score of
93.87 with text and spatial features. With larger
scale of training size on SROIE, the performance
gap is narrowed down between LearnVec and
LoPFE in testing data set.

4
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These results illustrate the effectiveness of our
LoPFE on document understanding tasks with dif-
ferent data scale. The ability of positional represen-
tation affects the final performance significantly on
document understanding models.

Method P(%) R(%) F1(%)
Layout LM (2020b) 75.97  81.55 78.66
DocFormer(2021) 77.63  83.69 80.54
BROS(2021) 80.56 81.88 81.21
LearnVec 75.97 80.04 77.95
Sine 72.8 77.24 74.95
LoPEsc 78.25  82.79 80.46
LoPE 80.4 83.74 82.04

Table 2: Entity level evaluation results on FUNSD
dataset. All models utilize input features of text and
spatial information with "Base" model size architecture.

Method P(%) R(%) F1(%)
Layout LMpgse 91.98 94.16 93.06
LearnVec 92.57 94.31 93.43
Sine 87.72 90.06 88.87
LoPEsc 89.89 92.87 91.35
LoPE 92.94 94.81 93.87

Table 3: Results on SROIE datasets. All above experi-
ments are fine-tuned with same hyper-parameter setting.
We evaluate the performance on official Layout L My se
model for reference.

4.4 Ablation Study

In real-world application, the reading order of text
blocks is not always reliable and consistent. The
incorrect reading order harms the performance of
existing document language models and leads to
embarrassing error of predictions in downstream
tasks. We conduct three ablation experiments to
simulate the impact of such error with the above
augmentation methods 3.3.

Neighbor Block Swapping and Global Block
Shuffling We apply these methods to training data
only during fine-tuning which simulates impact of
incorrect block order data. The testing set is kept
as original which allows us to compare the perfor-
mance with 2 fairly. The o of neighbor block swap-
ping is set to 1 in all experiments. Note that the
augmentation methods in this paper require block
information of each token, and that might cause
leaking of block boundary information during the
model training indirectly. Besides of data impact,

the model receives inconsistent reading order dur-
ing training and it might benefit the evaluation per-
formance by eliminating the over-fitting from 1D
positional embedding, and tent to learn more infor-
mation of relative token order inside block and 2D
spatial information.

In Table 4, with these noisy data by adding
these two augmentation methods, our LoP E meth-
ods show better performance than existing discrete
LearnV ec embedding or sinusoidal function Sine
consistently on FUNSD data. The global block
shuffling is harmful for all pretrained models while
the performance impact of neighbor block swap-
ping is marginally. The discrete positional encod-
ing method shows more sensitive with significant
performance drop by global block shuffling aug-
mentation.

Removing 1D Position Input We throw the 1D
positional embedding and only consider the 2D po-
sitional representation R2” in eq. 4 in composed
positional representation for both training and test-
ing data sets. The model does not receive word
order information on both text block and sub-token
level. We refer the performance result from BROS
(Hong et al., 2021) with similar setting for compar-
ison.%

On FUNSD dataset, we observe a significant per-
formance degradation across all positional meth-
ods in Table 5. The LearnV ec leads a huge drop
from approximately 79% to 49% F1 score which
indicates the discrete 2D embedding is not well rep-
resented without optimal order information. The
continuous 2D positional encoding methods per-
form better relatively. LoP Eg¢ performs best with
2.67% F1 drops in absolute from Table 2, and keeps
a reasonable mode even with none order informa-
tion.

From Table 6, we observe our LoPE model
achieves 89.98 F1 score with 3.89% absolute drop
(4.14% relatively) from Table 3. The performance
of LoPFEgc drops 3.2% relatively which shows
better robustness on such extreme condition. There
is significant performance regression with discrete
LearnV ec method on this receipt understanding
data set. The LoP Es¢ performs better with global
block shuffling method on FUNSD data set which
might be beneficial from regularization advantage
of skip connection structure.

Ablation study results further prove that better
learnability and spatial correlation of positional rep-

6Result from text line in their ablation study paragraph
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Method

\ P(%) R(%) F1(%) \ P (%) R(%) F1 (%)
LearnVec 76.43 79.49 77.93 72.32 69.78 71.03
Sine 73.77 78.24 75.94 74.1 74.99 74.54
LoPEg¢c 78.72 81.79 80.23 77.09 80.14 78.59
LoPE 79.9 82.14 81.01 78.03 78.34 78.18

Table 4: Comparison on FUNSD dataset for four positional encoding methods by applying Neighbor Block
Swapping and Global Block Shuffling on training data set, evaluation results clearly shows our methods perform

stable and robustness with unreliable order information.
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Figure 4: Similarity of 1D position embedding from our pretrained Sine, official BERT, LearnVec, LoP E models.

resentation are essential factors to improve existing
document Transformer model. By comparing with
baseline positional encoding methods and other re-
cent pretrained Transformer based solutions, our
methods demonstrate optimal performance and ro-
bustness on noisy data with unreliable order infor-
mation.

Method P(%) R(%) F1(%)
BROS(2021) — — 70.07
LearnVec 44.66 54.63 49.14
Sine 69.4 73.74 71.5

LoPEsc 75.71 79.99 77.79
LoPE 72.2 77.19 74.61

Table 5: Experimental results by removing 1D posi-
tion inputs on training and testing sets of FUNSD. The
BROS performance is referenced from their ablation
study with similar experimental setting.

Method P(%) R(%) F1(%)
LearnVec 75.12 79.18 771

Sine 83.71 87.03 85.34
LoPEsc 87.46 89.41 88.42
LoPE 87.9 92.15 89.98

Table 6: Experimental results by removing 1D position
inputs on training and testing sets of SROIE. The LoPE
achieves best performance and LoP Es¢c keeps lowest
relative performance drop with this extra settings.

5 Position Embedding Similarity Analysis

In this section, we visualize the similarity of posi-
tional representation from our pretrained models,
official BERT, and LayoutLM as reference. We
obtain our pretrained models with different posi-
tional encoding methods from 4.1. The positional
representation could be computed from the specific
position embedding layer and a range of position
inputs. We use Cosine similarity to measure the
similarity between two positional representations.

In Figure 4, we obtain the 1D positional rep-
resentation from our pretrained model with Sine,
LearnVec, and LoP E methods in range 0 to 512.
The position embedding of official BERT model is
also computed as reference. The points which are
closer to diagonal tend to have higher similarity on
each positional encoding method. Meanwhile, with
learnable structures, the similarity heatmap shows
different texture patterns which might be learned
from pretraining data. The length of text input from
document data set is usually longer than samples
from NLP data which might lead different attention
distribution on 1D position embedding. Our LoPE
method shows clear volatility from heatmap of 1D
positional similarity.

Figure 5 shows similarity heatmap of x- and y-
axes 2D positional embedding from our pretrained
LearnVec and LoPE models. Figure 6 demon-
strates the similarity of R?” representation from
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Figure 5: Similarity of x and y axes in 2D positional embedding from our pretrained LearnV ec and LoP E models.
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Figure 6: Similarity of 2D positional representation on 5 fixed points ((250, 250), (250, 750), (750, 250), (750, 750),
(500, 500)) to rest position from official LayoutLLM, LearnVec, Sine, LoPE based pretrained model.

five specific points to rest position from our pre-
trained models and official LayoutLM model. We
observe slightly different distribution of heatmap
between our pretrained LearnV ec and official Lay-
outLM model, which might arise from distinct
pretraining dataset and settings. The official Lay-
outLM model shows boarder vision horizontally
with proper spatial correlation. The similarity of
Sine is decaying rapidly from central point and
shows sharp edge on the 2D heatmap. Our LoPFE
shows higher wave frequency on both x- and y-
axes which tend to capture the long distance sig-
nals with speckled pattern.

6 Conclusions

In this paper, we propose a new and generic learn-
able positional encoding method LoPFE to im-
prove the positional representation in Transformer
based model. By combining sinusoidal positional
function and learnable feed-forward network, our

method takes advantages of better learnability
and extrapolability. Experimental results on both
FUNSD and SROIE data sets clearly illustrate the
effectiveness of our proposed method on document
understanding tasks. By leveraging global and lo-
cal shuffling augmentation methods or removing
order information from inputs, we demonstrate our
methods substantially outperform other positional
encoding methods on noisy data with unreliable
order information.

The conclusion of this paper is made from lim-
ited tasks, datasets and linguistic terms which
might be bias from the task definition, annotation
guidance or imbalanced data distribution. Mean-
while, it is unclear if our method is effective on
other domain, modality, and area. For future re-
search, we will evaluate our method on other tasks
and transfer to other area such as image related
tasks with Vision Transformer (Dosovitskiy et al.,
2020) architecture.
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