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Abstract

Positional encoding plays a key role in001
Transformer-based architecture, which is to in-002
dicate and embed token sequential order infor-003
mation. Understanding documents with unre-004
liable reading order information is a real chal-005
lenge for document Transformer model. This006
paper proposes a new and generic positional en-007
coding method, learnable sinusoidal positional008
encoding (LoPE), by combining sinusoidal po-009
sitional encoding function and a learnable feed-010
forward network. We apply LoPE to document011
Transformer model and pretrain the model on012
document datasets. Then we finetune and eval-013
uate the model performance on document un-014
derstanding tasks in form and receipt domains.015
Experimental results not only show our pro-016
posed method outperforms other baselines and017
state-of-the-arts, but also demonstrate its ro-018
bustness and stability on handling noisy data019
with incorrect order information.020

1 Introduction021

Document understanding (or in some contexts022

known as Document intelligence, Document AI)023

aims to extract, recognize and understand infor-024

mation from document images. The performance025

of document understanding model is largely ben-026

efited from recent development of large scale pre-027

training technique on cross-modality data and ef-028

fective transformer architectures (Cui et al., 2021).029

Document Transformer Model, e.g. LayoutLM030

(Xu et al., 2020b), is pretrained from visually-rich031

document data which consists of text, layout and vi-032

sual information based on Transformer architecture033

(Shaw et al., 2018). Recently, (Xu et al., 2020a;034

Hong et al., 2021; Appalaraju et al., 2021; Li et al.,035

2021a) propose various approaches to further im-036

prove the performance of Transformer model on037

more challenging document understanding tasks.038

Different from recurrent and convolutional based039

structures, Transformer based model does not en-040

code relative or absolute position information ex-041

plicitly since it is solely based on order-invariant 042

attentional mechanism. In the original Transformer 043

architecture (Vaswani et al., 2017), both learnable 044

vector embedding and sinusoidal function are intro- 045

duced as positional encoding methods for capturing 046

positional information from input tokens. In order 047

to improve positional representation ability, (Shaw 048

et al., 2018; Huang et al., 2020; He et al., 2021; 049

Chi et al., 2021) introduce several relative posi- 050

tion strategies into attention computation steps in 051

Transformer. Along with sequential reading order 052

from text, visually-rich documents contain more 053

spatial information of text block which poses a 054

greater challenge to understand rich semantic and 055

spatial relationship information at same time. To 056

obtain text blocks from document image, current 057

off-the-shelf method is borrowing results from ex- 058

isting Optical Character Recognition (OCR) engine 059

while mostly the reading order of text blocks is just 060

arranged by a heuristic manner, top-to-bottom and 061

left-to-right (Clausner et al., 2013; Wang et al., 062

2021). For documents with complex layout, such 063

as forms, invoices or receipts, the performance of 064

reading order is not consistent which always leads 065

to irrelevant or embarrassing predictions (Cui et al., 066

2021). Moreover, existing Document Transformer 067

Models suffer from huge performance degrada- 068

tion on noisy data with unreliable reading order 069

information (Hong et al., 2021). Therefore posi- 070

tional encoding plays an essential role in document 071

Transformer models, which is to encode position 072

embedding from data with inherent reading or spa- 073

tial information. Thus, it’s crucial to improve the 074

robustness and learnability of position encoding 075

method, and boost the model performance on noisy 076

data with unreliable order and spatial information. 077

In this paper, we introduce a learnable sinusoidal 078

position encoding method, LoPE, by combining 079

the sinusoidal positional encoding function and a 080

learnable fully connected feed-forward network. 081

And we apply it to represent multidimensional po- 082
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sition information in document Transformer model.083

Compared with current discrete embedding layer in084

Transformer model, our method is numeric contin-085

uous for position scales which improve positional086

representation of relative position or distances be-087

tween spatial elements. We enhance the original088

sinusoidal positional function by adding a learnable089

network which allows pretrained language model090

to adapt to various downstream tasks effectively. It091

keeps the advantage of extrapolability from sinu-092

soidal function which could extend to longer posi-093

tion than training cases. We pretrain transformer094

model on document datasets with our positional095

encoding and baseline methods. Then we evaluate096

the model performance on document understanding097

downstream tasks and compare model performance098

with various positional encoding methods with the099

same input modality and model size setting. Ex-100

perimental results illustrate that our LoPE method101

significantly outperforms baseline methods and re-102

cent pretrained document language models on both103

FUNSD and SROIE benchmarks. In addition, we104

evaluate the model robustness on noisy order data105

by utilizing global and local shuffling augmentation106

strategies. Our method shows stable performance107

than other positional encoding methods with unreli-108

able order information. Furthermore, we visualize109

and analyze similarity of positional representation110

for each method from the 1D to 2D positional em-111

beddings of our pretrained models.112

In summary, our contributions could be high-113

lighted as follows: 1) We propose LoPE as a new114

and generic learnable positional encoding method115

with better learnability and extrapolability to im-116

prove document Transformer model. 2) We pre-117

train document Transformer models with LoPE118

and other baselines, and evaluate model perfor-119

mance on document understanding tasks. Experi-120

mental results show our proposed method outper-121

forms other baselines and recent SOTA approaches122

on FUNSD and SROIE datasets.3) By ablation123

study of employing global and local block shuffling124

augmentation strategies, our method demonstrates125

optimal performance and robustness on noisy data126

with unreliable reading order information. Finally,127

our pretrained models with implementation of fine-128

tuning code will be open to public.1129

1Our code will be made publicly available.

Figure 1: Visualization of 768-dimensional sinusoidal
positional encoding for sequence with the maximum
length of 256. Each position row p represents the em-
bedding vector PEsine(p) as positional representation.

2 Background 130

Positional Encoding Methods in Transformer 131

In the original proposal of Transformer architec- 132

ture (Vaswani et al., 2017), both learnable vector 133

and sinusoidal function are introduced as positional 134

encoding methods and perform nearly identically 135

in their downstream tasks. Although sinusoidal 136

version with predefined wavelength has unique ex- 137

trapolability which allows to encode longer sequen- 138

tial position than pre-training samples, it does not 139

always perform well on downstream tasks (Shaw 140

et al., 2018), due to the lack of learnability and 141

flexibility. In practical, most pretrained language 142

models, (e.g. (Devlin et al., 2018; Liu et al., 2019)), 143

utilize learnable vector embedding (Gehring et al., 144

2017) as positional representation. Recently, sev- 145

eral approaches are proposed to enhance positional 146

representation by adding relative position infor- 147

mation into attention score computation stage to 148

improve performance of Transformer based models 149

(Shaw et al., 2018; Huang et al., 2020; Dai et al., 150

2019). By leveraging relative positional encoding 151

and other advanced pre-training techniques, (He 152

et al., 2021), (Chi et al., 2021) achieve state-of- 153

the-art performance on multiple nature language 154

understanding tasks. (Li et al., 2021b) explore the 155

position encoding method in vision domain and 156

propose a learnable Fourier feature to enhance po- 157

sitional encoding in Transformer. It outperforms 158

other methods on both accuracy and convergence 159

speed with vision transformer (Dosovitskiy et al., 160

2020) based model. Since it is non-trivial to modify 161

or replace backbone of model structure during fine- 162

tuning stage, some research works propose auxil- 163

iary tasks (Wang et al., 2019; Pham et al., 2021) or 164

data augmentation approaches (Wei and Zou, 2019; 165

Dai and Adel, 2020) to leverage absolute or rela- 166
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tive position information without modifying model167

structure.168

Document Transformer Models In document169

understanding area, LayoutLM (Xu et al., 2020b)170

utilizes the pretrained language model to resolve171

document understanding tasks, and achieves state-172

of-the-art performance on multiple document un-173

derstanding benchmarks. To represent 2D posi-174

tion embedding, it decouples the x- and y- axes175

of text bounding box and sums up positional rep-176

resentations from each dimension independently.177

LayoutLMv2(Xu et al., 2020a) introduces spatial-178

aware self-attention mechanism to enhance the lay-179

out representation from both 1d and 2d relative180

position bias. BROS(Hong et al., 2021) uses rela-181

tive position information in attentional mechanism182

along with absolute positional encoding from sinu-183

soidal function, which perceives more spatial lay-184

out information. (Li et al., 2021a) utilizes shared185

position information in the text block as position186

representation which further improves entity extrac-187

tion performance by understanding cell information188

from layout. (Appalaraju et al., 2021) proposes an189

End-to-End Transformer based model with 1D rela-190

tive position embedding in attentional mechanism.191

Document Understanding Tasks RVL-CDIP192

(Harley et al., 2015) is a document classification193

dataset with 400K gray-scale English document194

images in 16 document categories. This dataset195

is a subset of IIT-CDIP (Lewis et al., 2006) and196

widely used for pre-training language model pur-197

pose. Entity extraction is a classic and essential198

task in nature language understanding. It is to lo-199

cate the boundary of entities and assign predefined200

classes to them. There are several popular bench-201

marks, consisting of multi-modality information202

with text, layout, and visual, to evaluate the per-203

formance of visually-rich document understanding.204

FUNSD (Guillaume Jaume, 2019) is a form under-205

standing dataset for key-value extraction research206
2 from 199 English forms. SROIE (Huang et al.,207

2019) and CORD (Park et al., 2019) are receipt un-208

derstanding datasets to extract related entity types209

in English. XFUND (Xu et al., 2021) is an ex-210

tended multi-lingual FUNSD dataset, which con-211

tains visually-rich documents in seven commonly-212

used languages.213

2
More license and term of use information at https://guillaumejaume.

github.io/FUNSD/work/

Figure 2: Flow of four positional encoding methods
in Transformer based architecture: learnable vector
embedding (LearnV ec), sinusoidal positional encod-
ing (Sine), learnable sinusoidal positional encoding
(LoPE) and LoPESC with skip connection structure.

3 Methodology 214

In this section, we formulate our positional encod- 215

ing method LoPE and introduce its applications 216

on document transformer based language model. 217

In order to evaluate its robustness and stability on 218

noisy data with unreliable order information, we 219

introduce two augmentation strategies: global and 220

local text-block shuffling during fine-tuning stage. 221

3.1 Learnable Sinusoidal Positional Encoding 222

Positional representation is utilized as an induc- 223

tive bias of positional relevance information by 224

positional encoding function (PE) in Transformer 225

model (Vaswani et al., 2017). Sinusoidal positional 226

encoding is originally proposed and employed in 227

attentional mechanism as better extrapolability and 228

spatial correlation from the clean mathematical def- 229

inition. Figure 1 shows the heatmap of sinusoidal 230

positional encoding method. The hidden represen- 231

tation of position p in a sequence could be com- 232

puted as Equation 1: 233

PEsine(p, 2d) = sin
p

100002d/D

PEsine(p, 2d+ 1) = cos
p

100002d/D

(1) 234

In practical applications, some pretrained Trans- 235

former language models (Gehring et al., 2017; De- 236

vlin et al., 2018; Liu et al., 2019; Xu et al., 2020b; 237

Dosovitskiy et al., 2020) treat each position in- 238

dex p as a discrete learnable embedding vector 239

(LearnV ec) by learning from pre-training and fine- 240

tuning data. This approach is generic and effec- 241
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tive to adapt pretrained Transformer models to spe-242

cific domains and tasks with various behavior of243

spatial sensitivity. However, for more challeng-244

ing tasks, such as document understanding tasks,245

the performance of document Transfomer model246

with existing positional encoding approach drops247

significantly on noisy data with unreliable order248

information (Hong et al., 2021).249

We propose a learnable sinusoidal positional en-250

coding (LoPE) method by combining sinusoidal251

position encoding function with a fully connected252

feed-forward network, which consists of two lin-253

ear transformations with GeLU (Hendrycks and254

Gimpel, 2020) as activation function σ in between255

as:256

FFN(x) = σ(xW1 + b1)W2 + b2

PELoPE(p) = FFN(PEsine(p))
(2)257

Skip connection is a generic strategy to sum the258

input and output representation from a computa-259

tional unit with a skip edge. In transformer based260

models, (He et al., 2020) has proposed a residual at-261

tention layer and shown some regularization effects262

that could stabilize training and benefit fine-tuning263

stages. Inspired by this, we conduct the skip con-264

nection strategy in LoPE module as a variant of265

our method. It could be formulated as eq.3.266

PELoPEsc(p) = PEsine(p) + PELoPE(p) (3)267

Figure 2 visualizes the flow of our proposed268

method and baselines in this paper. Compared269

with discrete embedding, our method extends from270

sinusoidal function and treats position index as a271

continuous-valued vector which allows the model272

to extrapolate to longer length from training cases.273

Meanwhile, the learnable FFN component boosts274

the learnability and flexibility of positional repre-275

sentation for multidimensional spatial information.276

3.2 Positional Representation in Document277

Transformer Language Model278

Distinct from nature language data which only con-279

sist of 1D order information, visually-rich docu-280

ment data require more model capacity to represent281

both 1D and 2D positional information from in-282

dividual element. Given token xi series from a283

document D, let pi donate 1D position index and284

bi as ((x0, y0), (x1, y1)) present the bounding box285

in normalized 2D coordinate system.286

As a general and commonly used pre-trained287

model for Document AI, LayoutLM (Xu et al.,288

Figure 3: An example of text block shuffling augmen-
tation methods, Neighbor Block Swapping and Global
Block Shuffling.

.

2020b) utilizes independent 2D spatial embedding 289

layers along with 1D position embedding initial- 290

ized from pretrained BERT (Devlin et al., 2018) 291

to represent positional information. Its composed 292

positional representation Ri is computed via: 293

R2D
i =

k∑
j=0

(PEx(xj) + PEy(yj))

Ri = PE1d(pi) +R2D
i

(4) 294

Where k donates the count of points in bounding 295

box, and PE1d, PEx, PEy are the positional en- 296

coding methods for 1D order and 2D spatial infor- 297

mation separately. The original positional encoding 298

of LayoutLM is a learnable embedding which is 299

identical to PELearnV ec3.1 in this paper. The com- 300

posed positional representation will be summed up 301

with text embedding and token type embedding 302

vectors as input of Transformer. 303

3.3 Text Block Shuffling Augmentations 304

In practical, understanding documents with incor- 305

rect reading order is a real challenge for document 306

Transformer model which always leads to irrelevant 307

or embarrassing error results. We introduce two 308

text block shuffling augmentation methods: Global 309

Block Shuffling and Neighbor Block Swapping, 310

to simulate the noisy reading order scenario as 311

shown in Figure 3. We apply these methods on 312

text block level to a document, and keep the rela- 313

tive word order in the same text block. The text 314

block is defined as a group of continual words in a 315

spatial region (or a line of words). 316

For global block shuffling process, we first ob- 317

tain the block information for each token, and shuf- 318

fle the order of block index but keep the relative 319

token order in the input sequence. For neighbor 320

block swapping method, each text block is swapped 321
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Parameter Name Value
max_steps 500K
per_device_train_batch_size 12
gradient_accumulation_steps 4
max_seq_length 512
max_2d_position_embeddings 1024
learning_rate 7e-5
warmup_ratio 0.1

Table 1: Pretraining hyperpameters for document Trans-
former model with our positional encoding methods.

to neighbor block randomly, and the distance d of322

swapped block pair follows a normal distribution323

function N (0, σ2).324

The intuition of applying augmentation method325

on text block level is that we observe it is closed326

to error cases from document understanding appli-327

cation in real word, and the text block information328

could be obtained from existing OCR engines.329

4 Experiments330

4.1 Pretraining331

In order to verify the effectiveness of our positional332

encoding approach, we employ LayoutLM frame333

and exclude the visual feature related structure. We334

reproduce the pretraining experiments with our po-335

sitional encoding method as well as baseline meth-336

ods on a 1M random subset of IIT-CDIP (Lewis337

et al., 2006) pretraining data set.338

All pretraining jobs run on 8 NVIDIA Tesla339

V100 32GB GPUs server with approximately340

150 hours for each job. The pretraining hyper-341

parameters are shown in Table 1. The pretrain342

models are initialized from Bert-base-uncased ex-343

cept for specified positional encoding weights.344

We obtain our pretrained models with four345

positional encoding methods (LearnV ec, Sine,346

LoPEsc, LoPE) for next fine-tuning experiments.347

The name of positional encoding method is used to348

indicate the pretrained model in the result table.349

4.2 Experimental Settings350

We fine-tune and evaluate the performance of our351

pretrained models on two datasets: FUNSD (Guil-352

laume Jaume, 2019) and SROIE (Huang et al.,353

2019), which are two popular benchmark datasets354

for entity extraction in form and receipt domains.355

FUNSD 3 consists of noisy scanned documents.356

There are 149 scanned forms for training and 50357

scanned forms for testing with more than 31K358

3
https://guillaumejaume.github.io/FUNSD

words, 9.7K entities, and 5.3K relations in combi- 359

nation. For more fair comparison, we refer the eval- 360

uation results from LayoutLM, DocFormer, and 361

BROS with the same text and spatial features as 362

input and similar model size architecture. 363

SROIE 4 attracts a lot of attention from both re- 364

search and industry community as an open-source 365

OCR and information extraction benchmark for re- 366

ceipt understanding. The dataset consists of 626 367

receipt images for training and 347 receipt images 368

for testing with four predefined entities which are 369

company, date, address, and total. There is no 370

post-processing strategy before evaluation as we 371

tend to compare the performance gap only from po- 372

sitional encoding differences. We also experiment 373

with official pretrained LayoutLM5 with the same 374

fine-tuning hyper-parameters for a fair comparison 375

purpose. 376

We use entity recognition evaluation metrics in- 377

cluding entity-level precision, recall, and F1-score 378

for each experiment by default settings of seqeval 379

package (Nakayama, 2018). The learning rate is 380

set to 3e-5 with linear decay, and 10% of total steps 381

are used for warm-up purpose. We use max_steps 382

as 2k, and report the evaluation metrics on the fi- 383

nal fine-tuned model. Other environment settings 384

or hyper-parameters are same as pretraining ex- 385

periments 4.1. We average evaluation results with 386

different initial seeds to eliminate bias of shuffling 387

augmentations. 388

4.3 Experimental Results 389

As shown in Table 2, on FUNSD dataset, our 390

LoPE model achieves 82.04 F1-score and outper- 391

forms other baseline methods. The Sine model 392

achieves low performance and LoPESC is worse 393

than LoPE which indicates the sinusoidal function 394

cannot represent layout positional information with 395

skip connection structure. The small performance 396

gap between our LearnV ec and official LayoutLM 397

model with shared model structure might be from 398

different pretraining data and settings since our pre- 399

training experiments run on a 1M subset training 400

data and fewer pretraining steps. 401

We observe similar trend on SROIE experiment 402

from Table 3. LoPE model achieves F1 score of 403

93.87 with text and spatial features. With larger 404

scale of training size on SROIE, the performance 405

gap is narrowed down between LearnV ec and 406

LoPE in testing data set. 407

4
https://github.com/zzzDavid/ICDAR-2019-SROIE

5
https://github.com/microsoft/unilm/tree/master/layoutlm
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These results illustrate the effectiveness of our408

LoPE on document understanding tasks with dif-409

ferent data scale. The ability of positional represen-410

tation affects the final performance significantly on411

document understanding models.412

Method P(%) R(%) F1(%)

LayoutLM(2020b) 75.97 81.55 78.66
DocFormer(2021) 77.63 83.69 80.54
BROS(2021) 80.56 81.88 81.21

LearnV ec 75.97 80.04 77.95
Sine 72.8 77.24 74.95
LoPESC 78.25 82.79 80.46
LoPE 80.4 83.74 82.04

Table 2: Entity level evaluation results on FUNSD
dataset. All models utilize input features of text and
spatial information with "Base" model size architecture.

Method P(%) R(%) F1(%)

LayoutLMbase 91.98 94.16 93.06

LearnV ec 92.57 94.31 93.43
Sine 87.72 90.06 88.87
LoPESC 89.89 92.87 91.35
LoPE 92.94 94.81 93.87

Table 3: Results on SROIE datasets. All above experi-
ments are fine-tuned with same hyper-parameter setting.
We evaluate the performance on official LayoutLMbase

model for reference.

4.4 Ablation Study413

In real-world application, the reading order of text414

blocks is not always reliable and consistent. The415

incorrect reading order harms the performance of416

existing document language models and leads to417

embarrassing error of predictions in downstream418

tasks. We conduct three ablation experiments to419

simulate the impact of such error with the above420

augmentation methods 3.3.421

Neighbor Block Swapping and Global Block422

Shuffling We apply these methods to training data423

only during fine-tuning which simulates impact of424

incorrect block order data. The testing set is kept425

as original which allows us to compare the perfor-426

mance with 2 fairly. The σ of neighbor block swap-427

ping is set to 1 in all experiments. Note that the428

augmentation methods in this paper require block429

information of each token, and that might cause430

leaking of block boundary information during the431

model training indirectly. Besides of data impact,432

the model receives inconsistent reading order dur- 433

ing training and it might benefit the evaluation per- 434

formance by eliminating the over-fitting from 1D 435

positional embedding, and tent to learn more infor- 436

mation of relative token order inside block and 2D 437

spatial information. 438

In Table 4, with these noisy data by adding 439

these two augmentation methods, our LoPE meth- 440

ods show better performance than existing discrete 441

LearnV ec embedding or sinusoidal function Sine 442

consistently on FUNSD data. The global block 443

shuffling is harmful for all pretrained models while 444

the performance impact of neighbor block swap- 445

ping is marginally. The discrete positional encod- 446

ing method shows more sensitive with significant 447

performance drop by global block shuffling aug- 448

mentation. 449

Removing 1D Position Input We throw the 1D 450

positional embedding and only consider the 2D po- 451

sitional representation R2D in eq. 4 in composed 452

positional representation for both training and test- 453

ing data sets. The model does not receive word 454

order information on both text block and sub-token 455

level. We refer the performance result from BROS 456

(Hong et al., 2021) with similar setting for compar- 457

ison.6 458

On FUNSD dataset, we observe a significant per- 459

formance degradation across all positional meth- 460

ods in Table 5. The LearnV ec leads a huge drop 461

from approximately 79% to 49% F1 score which 462

indicates the discrete 2D embedding is not well rep- 463

resented without optimal order information. The 464

continuous 2D positional encoding methods per- 465

form better relatively. LoPESC performs best with 466

2.67% F1 drops in absolute from Table 2, and keeps 467

a reasonable mode even with none order informa- 468

tion. 469

From Table 6, we observe our LoPE model 470

achieves 89.98 F1 score with 3.89% absolute drop 471

(4.14% relatively) from Table 3. The performance 472

of LoPESC drops 3.2% relatively which shows 473

better robustness on such extreme condition. There 474

is significant performance regression with discrete 475

LearnV ec method on this receipt understanding 476

data set. The LoPESC performs better with global 477

block shuffling method on FUNSD data set which 478

might be beneficial from regularization advantage 479

of skip connection structure. 480

Ablation study results further prove that better 481

learnability and spatial correlation of positional rep- 482

6
Result from text line in their ablation study paragraph
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Method Neighbor Block Swapping Global Block Shuffling

P(%) R(%) F1(%) P (%) R(%) F1 (%)

LearnV ec 76.43 79.49 77.93 72.32 69.78 71.03
Sine 73.77 78.24 75.94 74.1 74.99 74.54
LoPESC 78.72 81.79 80.23 77.09 80.14 78.59
LoPE 79.9 82.14 81.01 78.03 78.34 78.18

Table 4: Comparison on FUNSD dataset for four positional encoding methods by applying Neighbor Block
Swapping and Global Block Shuffling on training data set, evaluation results clearly shows our methods perform
stable and robustness with unreliable order information.

(a) Sine (b) official BERT (c) LearnV ec (d) LoPE

Figure 4: Similarity of 1D position embedding from our pretrained Sine, official BERT, LearnV ec, LoPE models.

resentation are essential factors to improve existing483

document Transformer model. By comparing with484

baseline positional encoding methods and other re-485

cent pretrained Transformer based solutions, our486

methods demonstrate optimal performance and ro-487

bustness on noisy data with unreliable order infor-488

mation.489

Method P(%) R(%) F1(%)

BROS(2021) − − 70.07

LearnV ec 44.66 54.63 49.14
Sine 69.4 73.74 71.5
LoPESC 75.71 79.99 77.79
LoPE 72.2 77.19 74.61

Table 5: Experimental results by removing 1D posi-
tion inputs on training and testing sets of FUNSD. The
BROS performance is referenced from their ablation
study with similar experimental setting.

Method P(%) R(%) F1(%)

LearnV ec 75.12 79.18 77.1
Sine 83.71 87.03 85.34
LoPESC 87.46 89.41 88.42
LoPE 87.9 92.15 89.98

Table 6: Experimental results by removing 1D position
inputs on training and testing sets of SROIE. The LoPE
achieves best performance and LoPESC keeps lowest
relative performance drop with this extra settings.

5 Position Embedding Similarity Analysis 490

In this section, we visualize the similarity of posi- 491

tional representation from our pretrained models, 492

official BERT, and LayoutLM as reference. We 493

obtain our pretrained models with different posi- 494

tional encoding methods from 4.1. The positional 495

representation could be computed from the specific 496

position embedding layer and a range of position 497

inputs. We use Cosine similarity to measure the 498

similarity between two positional representations. 499

In Figure 4, we obtain the 1D positional rep- 500

resentation from our pretrained model with Sine, 501

LearnV ec, and LoPE methods in range 0 to 512. 502

The position embedding of official BERT model is 503

also computed as reference. The points which are 504

closer to diagonal tend to have higher similarity on 505

each positional encoding method. Meanwhile, with 506

learnable structures, the similarity heatmap shows 507

different texture patterns which might be learned 508

from pretraining data. The length of text input from 509

document data set is usually longer than samples 510

from NLP data which might lead different attention 511

distribution on 1D position embedding. Our LoPE 512

method shows clear volatility from heatmap of 1D 513

positional similarity. 514

Figure 5 shows similarity heatmap of x- and y- 515

axes 2D positional embedding from our pretrained 516

LearnV ec and LoPE models. Figure 6 demon- 517

strates the similarity of R2D representation from 518
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(a) PEx of LearnV ec (b) PEy of LearnV ec (c) PEx of LoPE (d) PEy of LoPE

Figure 5: Similarity of x and y axes in 2D positional embedding from our pretrained LearnV ec and LoPE models.

(a) official LayoutLM (b) LearnV ec

(c) Sine (d) LoPE

Figure 6: Similarity of 2D positional representation on 5 fixed points ((250, 250), (250, 750), (750, 250), (750, 750),
(500, 500)) to rest position from official LayoutLM, LearnV ec, Sine, LoPE based pretrained model.

five specific points to rest position from our pre-519

trained models and official LayoutLM model. We520

observe slightly different distribution of heatmap521

between our pretrained LearnV ec and official Lay-522

outLM model, which might arise from distinct523

pretraining dataset and settings. The official Lay-524

outLM model shows boarder vision horizontally525

with proper spatial correlation. The similarity of526

Sine is decaying rapidly from central point and527

shows sharp edge on the 2D heatmap. Our LoPE528

shows higher wave frequency on both x- and y-529

axes which tend to capture the long distance sig-530

nals with speckled pattern.531

6 Conclusions532

In this paper, we propose a new and generic learn-533

able positional encoding method LoPE to im-534

prove the positional representation in Transformer535

based model. By combining sinusoidal positional536

function and learnable feed-forward network, our537

method takes advantages of better learnability 538

and extrapolability. Experimental results on both 539

FUNSD and SROIE data sets clearly illustrate the 540

effectiveness of our proposed method on document 541

understanding tasks. By leveraging global and lo- 542

cal shuffling augmentation methods or removing 543

order information from inputs, we demonstrate our 544

methods substantially outperform other positional 545

encoding methods on noisy data with unreliable 546

order information. 547

The conclusion of this paper is made from lim- 548

ited tasks, datasets and linguistic terms which 549

might be bias from the task definition, annotation 550

guidance or imbalanced data distribution. Mean- 551

while, it is unclear if our method is effective on 552

other domain, modality, and area. For future re- 553

search, we will evaluate our method on other tasks 554

and transfer to other area such as image related 555

tasks with Vision Transformer (Dosovitskiy et al., 556

2020) architecture. 557
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