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ABSTRACT

Disentanglement learning is a core issue for understanding and re-using trained
information in Variational AutoEncoder (VAE), and effective inductive bias has
been reported as a key factor. However, the actual implementation of such bias is
still vague. In this paper, we propose a novel method, called Multiple Invertible
and Equivariant transformation (MIE-transformation), to inject inductive bias by
1) guaranteeing the invertibility of latent-to-latent vector transformation while pre-
serving a certain portion of equivariance of input-to-latent vector transformation,
called Invertible and Equivariant transformation (IE-transformation), 2) extend-
ing the form of prior and posterior in VAE frameworks to an unrestricted form
through a learnable conversion to an approximated exponential family, called Ex-
ponential Family conversion (EF-conversion), and 3) integrating multiple units of
IE-transformation and EF-conversion, and their training. In experiments on 3D
Cars, 3D Shapes, and dSprites datasets, MIE-transformation improves the disen-
tanglement performance of state-of-the-art VAEs.

1 INTRODUCTION

Disentanglement learning to learn more interpretable representations is broadly useful in artificial
intelligence fields such as classification (Singla et al., 2021), zero-shot learning (Tenenbaum, 2018),
and domain adaptation (Li et al., 2019; Zou et al., 2020). The disentangled representation is defined
as a change in a single dimension, which corresponds to unique semantic information. Several works
have been conducted based on this framework.

A major model for enhancing the disentanglement learning is Variational AutoEncoder
(VAE) (Kingma & Welling, 2013). Based on VAE, unsupervised disentangled representation learn-
ing has been elaborated (Higgins et al., 2017; Chen et al., 2018; Kim & Mnih, 2018; Jeong & Song,
2019; Li et al., 2020) through the factorizable variations and control of uncorrelatedness of each di-
mension of representations. Moreover, VAE models to handle the shape of prior as a Gaussian mix-
ture (Dilokthanakul et al., 2016) or von Mises-Fisher (Davidson et al., 2018) were also developed,
but the disentanglement is still incomplete. As a critical point, there is a report that unsupervised
disentanglement learning is impossible without inductive bias (Locatello et al., 2019).

Recently, such inductive bias has been introduced in various perspectives on transformation of latent
vector space. Intel-VAE (Miao et al., 2021) proposed the benefit of invertible transformation of the
space to another latent space to provide better data representation, which includes hierarchical rep-
resentations. Group theory based bias also shows significant improvement of disentanglement (Zhu
et al., 2021; Yang et al., 2021), whose definition follows Higgins et al. (2018a), which is based on
the group theory. The works show that equivariant transformation between input and latent vector
space has a key role of disentanglement.

Inspired by the above works, we propose a Multiple Invertible and Equivariant transformation
(MIE-transformation) method1, which is simply insertable to VAEs. The method adopts the ma-
trix exponential to hold the invertible property of latent-to-latent (L2L) vector transformation. Then,
to preserve at least some potential equivariance between input-to-latent (I2L) vector transforma-
tion, we constrain the L2L transformation to a symmetric matrix exponential, called invertible and

1available on Github, which will be released after publication.
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equivariant transformation (IE-transformation). The IE-transformation generates an uncertain form
of latent vector distributions, so we provide a training procedure to force them to be close to an
exponential family, called exponential family conversion (EF-conversion). This conversion enables
the uncertain distribution to work in the typical training framework of VAEs. Then, we mathemati-
cally show that the multiple uses of IE-transformation work as β parameters (Higgins et al., 2017)
controlled for enhancing disentanglement learning. Also, we propose the sparse log-normalizer
to induce an implicit semantic mask in the latent vector space, different to Yang et al. (2020). In
experiments with quantitative and qualitative analysis, MIE-transformation shows significant im-
provement in disentangled representation learning in 3D Cars, 3D Shapes, and dSprites tasks. Our
main contributions are summarized as follows.

1. We propose to use a symmetric matrix exponential as a latent-to-latent vector transforma-
tion function for inducing inductive bias based on invertible and equivariant properties with
mathematical analysis.

2. We provide a training procedure and losses for VAEs to learn unknown latent vector distri-
bution as an approximated exponential family.

3. We propose the novel MIE-transformation architecture to integrate multiple IE-
transformation and EF-conversion, which is widely applicable to state-of-the-art VAEs.

4. We empirically analyze the properties of MIE-transformation and validate its effectiveness
in disentanglement learning on benchmarks.

2 RELATED WORK

Recently, various works have focused on the unsupervised disentanglement learning. One of the
branches is InfoGAN (Chen et al., 2016) based works such as IB-GAN (Jeon et al., 2021) and
OOGAN (Liu et al., 2020) showed the improvements, but these works regularize informativeness
introduced in Lin et al. (2020) to elaborate regularizing MI. The other branch is based on the
Variational AutoEncoder (VAE). β-VAE (Higgins et al., 2017) penalizes Kullback-Leibler diver-
gence (KL divergence) with weighted hyper-parameters. Factor VAE (Kim & Mnih, 2018) and
β-TCVAE (Chen et al., 2018) are trained with total correlation (TC) to make independent dimen-
sions on a latent vector with discriminator and divided KL divergence term. Differently, we consider
the impact based on group theory based on Higgins et al. (2018a).

Following the definitions of disentangled representation learning by group theory, several works
have emphasized equivariant and improved disentangled representation learning. Commutative Lie
Group VAE (CLG-VAE) (Zhu et al., 2021) proposed direct mapping of the latent vector into Lie
algebra to obtain group structure (inductive bias) with constraints: commutative and hessian loss.
Furthermore, Groupified VAE (Yang et al., 2021) extends Spatial Broadcast Decoder (Watters et al.,
2019) with the group theory, and it also proves the necessity of the proposed abel loss and order loss
with cyclic groups and n-th root unity group to improve disentangled representation. Topographic
VAE (Keller & Welling, 2021) combines Student’s-t distributions and variational inference. It en-
forces rotated latent vectors to be equivariant. On the other hand, we apply unrestricted prior and
posterior for disentanglement learning.

Other works elaborate uncertainty of exponential family distribution with Bayesian update (Char-
pentier et al., 2020; 2022b). Other approaches in VAEs, some works have implemented extension
prior such as a transformed Gaussian distribution, Gaussian mixture distribution (Kalatzis et al.,
2018) or von Mises-Fisher distribution (Davidson et al., 2018). InteL-VAE (Miao et al., 2021) shows
that transformed Gaussian distribution by the invertible function trains hierarchical representation
with manual function. We show more clear relation of invertibility to disentanglement and improve
VAEs to use its unrestricted form of prior.

Invertible and equivariant Deep Neural Networks have been investigated with normalizing flows.
As proven by Xiao & Liu (2020), utilized matrix exponential on Neural networks is invertible,
but it only provides mathematical foundations of the transformation. Matrix exponential flows are
proposed in Hoogeboom et al. (2020) for equivariant simultaneously. In our work, we show how to
use it for disentanglement learning.
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Figure 1: The overall architecture of our proposed MIET-VAE. The invertible and equivariant func-
tion ψ(·) consists of a symmetric matrix exponential to be 1) invertible and 2) partially equivariant.
Then 3) EF conversion module converges the distribution of unrestricted ẑ to the power density
function of EF with Lel loss. Also, it applies KL divergence loss (Lkl) between the transformed
posterior and prior, which are expressed by the power density function of EF. In the last, EF conver-
sion reduces the computational error (Lcali) between approximated and true KL divergence. 4) The
reddish color represents the integration parts. The details of the gray box are in Fig. 2a.

3 METHOD

The overview of a VAE equipped with MIE-transformation is shown in Fig. 1. The MIE-
transformation has three main components: 1) IE-Transformation Unit to transform latent vectors
with invertible and equivariant properties, 2) EF-conversion Unit to extend VAEs to learn the ex-
ponential family distribution of latent vectors, and 3) integrated training and generation process for
multiple uses of IE-transformation and EF-conversion.

3.1 INVERTIBLE AND EQUIVARIANT TRANSFORMATION

Invertible Property by Using Matrix Exponential To guarantee the invertible property of IE-
transformation, we use a function ψ(·) = eM ∗ · for the transformation, where M is in n ×
n real number matrix set Mn(R) (Xiao & Liu, 2020). The operator ∗ is matrix multiplication,

and eM =
∑∞
k

Mk

k! . InteL-VAE effectively extracts hierarchical representation which includes
low-level features (affect to a specific factor) and high-level features (affect to complex factors)
with invertible transformation function (Miao et al., 2021). Our motivation is to use the benefits of
injecting explicit inductive bias for disentanglement Locatello et al. (2019); Miao et al. (2021).

Why Should L2L Transformation Be Equivariant? Let’s consider equivariance between the
input space and the final latent vector space directly used for a decoder in the VAE frameworks.
We assume that previous works are equivariant over a subset of symmetries on the input and the
latent vector space because these methods have improved disentanglement learning. However, if we
apply the unrestricted L2L transformation to the VAE, then there is no guarantee to be equivariant
between the input and final space. This problem is more precisely shown in Fig. 2a, which illustrates
equivariance over the input space X , latent vector space Z , and its transformed latent vector space
Ẑ with a corresponding group of symmetries GI , GL, and GT , respectively. In the VAEs literature,
it has not been reported to restrict L2L transformation to guarantee equivariant function between
two spaces, so we propose a solution to guarantee at least a part of symmetries to be equivairant.
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(a) Space and symmetries. (b) Venn diagram of each group. (c) Defitnition of each symbol.

Figure 2: GI , and GL are obtained through qϕ. Fig. 2a shows the relation between each space
and symmetries. If qϕ, and ψ(·) is equivariant function over all GI , GL, and GT , then there exist
Ξ, and Γ, respectively, where Ξ : GI → GL, and Γ : GL → GT , and Ξ ◦ Γ : GI → GT . However,
unrestricted ψ(·) has no guarantee to be equivariant. The red arrows represent our method.

Equivariance Property with Symmetric Matrix Exponential To enhance the equivariance of
L2L transformation, we set M of ψ(·) to a symmetric matrix. We show that 1) a group with the
constraint guarantees equivariance of ψ(·) in the group, 2) ψ(·) being equivariant over subset of
symmetries between the input transformed latent vector space, and 3) the constraint increases the
probability of ψ(·) to be in the group.

We distinguishMn(R), EM , ES , andGS as shown in Fig 2b, and 2c. The intersection a : GS ∩GL
is shown in Fig. 2a, and 2b. We particularly call the transformations as symmetries (Higgins et al.,
2022) to distinguish them from IE- and I2L-transformations. For the generality of our method, we
consider an arbitrary VAE model that has no restriction on creating intersections to any set as Fig. 2b.

Proposition 1. Any ψ(·) ∈ GS , notated as ψGS (·), is equivariant to group GS .

Proof. The groupGS is closed to matrix multiplication, and its element is always a symmetric matrix
by definition. Then, any two elements inGS are commutative because if matrix multiplication of two
symmetric matrices is symmetric then both are commutative. As a result, ψGS (·) and group elements
of GS are commutative (GS is an abelian group). Because of the commutativity, ψGS (gs ◦ z) =

eSgsz = gse
Sz = gs ◦ ψGS (z) for gs ∈ GS if the group action ◦ is set to matrix multiplication,

where ψGS ∈ GS . This equation satisfies the general definition of an equivariant function that a
function f(·) is equivariant if f(g ◦ z) = g ◦ f(z) for all g in a group G by matching f , g, and G to
ψGS , gs, and GS , respectively. ■

Proposition 2. If qϕ is equivariant over defined on group of symmetries GaI and GaL, then
ψGS (qϕ(·)) is equivariant to symmetryies in GI corresponding to a and GT corresponding to a by
the equivariance of qϕ.

Proof. The function ψGS (·) is an equivariant function over group elements in a by Proposition 1.
Then, the composite function, ψGS (·) and qϕ, is an equivariant function of GI corresponding to a
and GT corresponding to a (see Appendix C.2). ■

In other words, ψGS (·) guarantees to preserve the equivariance of I2L-transformation to certain
symmetries in a after IE-transformation.

Let P (B) be the probability of ψ(·) ∈ B for a subset B ⊂Mn(R) after VAE training. Then,

Proposition 3. Pr(ψES (·) ∈ GS) > Pr(ψEM (·) ∈ GS) > Pr(ψM (·) ∈ GS).

Proof. All eS ∈ ES are in EM since Symn(R) ⊂ Mn(R). However, EM ̸⊂ ES because eS

is always symmetric, but eM can be an asymmetric matrix (see Appendix C.1). Therefore, the
probability Pr(ψEM (·) ∈ GS) = P (GS)

P (EM ) is greater than Pr(ψES (·) ∈ GS) = P (GS)
P (ES)

. In the

same way, Pr(ψEM (·) ∈ GS) > Pr(ψM (·) ∈ GS) = P (GS)
P (Mn(R)) because EM ⊂ Mn(R) and

non-invertible functions are only in Mn(R). ■

Therefore, ψES clearly increases the probability of preserving a certain type of equivariance com-
pared to unrestricted ψ functions.
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dSprites
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIET original MIET original MIET original MIET

β-VAE 69.15(±5.88) 74.19(±5.62) 9.49(±8.30) 19.72(±11.37) 2.43(±2.07) 5.08(±2.90) 18.57(±12.41) 28.81(±10.19)
β-TCVAE 78.50(±7.93) 79.87(±5.80) 26.00(±9.06) 35.04(±4.07) 7.31(±0.61) 7.70(±1.63) 41.80(±8.55) 47.83(±5.01)
CLG-VAE 79.06(±6.83) 81.80(±3.17) 23.40(±7.89) 36.34(±5.55) 7.37(±0.96) 8.03(±0.83) 37.68(±7.83) 44.73(±5.11)

3D Shapes
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIET original MIET original MIET original MIET

β-VAE 71.76(±12.26) 75.19(±8.16) 37.33(±22.34) 47.37(±10.13) 7.48(±4.12) 9.20(±2.44) 52.07(±17.92) 54.95(±8.99)
β-TCVAE 76.62(±10.23) 80.59(±8.57) 52.93(±20.5) 54.49(±9.44) 10.64(±5.93) 11.58(±3.32) 65.32(±11.37) 66.22(±7.32)
CLG-VAE 77.04(±8.22) 80.17(±8.43) 49.74(±8.18) 53.87(±7.41) 9.20(±2.44) 12.83(±3.01) 57.70(±8.60) 60.74(±7.77)

3D Cars
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIET original MIET original MIET original MIET

β-VAE 89.48(±5.22) 88.95(±5.94) 6.90(±2.70) 7.27(±1.99) 1.30(±0.48) 1.88(±1.12) 19.85(±4.87) 18.90(±4.49)
β-TCVAE 95.84(±3.40) 96.43(±2.42) 11.87(±2.90) 10.80(±1.22) 1.55(±0.38) 1.88(±1.12) 27.91(±4.31) 26.08(±2.47)
CLG-VAE 86.11(±7.12) 91.06(±5.09) 6.19(±2.42) 8.51(±2.11) 2.06(±0.60) 1.99(±0.93) 16.91(±4.01) 18.31(±2.83)

Table 1: Performance (mean± std) of four metrics on dSprites, 3D Shapes, and 3D Cars. The α = 1
and γ = 1 of β-TCVAE as Chen et al. (2018).

p-value VAEs CLG-VAE β-TCVAEs
FVM MIG SAP DCI FVM MIG SAP DCI FVM MIG SAP DCI

dSprites 0.000 0.000 0.000 0.000 0.030 0.000 0.005 0.000 0.281 0.000 0.170 0.009
3D Shapes 0.080 0.007 0.016 0.191 0.085 0.029 0.000 0.088 0.111 0.383 0.277 0.390
3D Cars 0.659 0.250 0.003 0.583 0.003 0.000 0.630 0.071 0.278 0.923 0.119 0.933

Table 2: p-value of t-test for original vs MIET results of Table 1, which are averaged over models
(bold: positive and significant, italic: positive but insignificant, normal: lower performance).

In practice, however, there are uncertain and undefinable conditions to derive the total probability
of preserving all existing equivariance. For example, probability distribution P (·) varies by training
settings, so Proposition 3 holds with only uniform or equal distributions determined by training
settings for ψEM (·) and ψES (·). Additionally, the area of GL\GS and its probability are uncertain
and depend on I2L transformation functions such as encoders of VAEs. We empirically validate the
impact of equivariance with the uncertain P (·) to disentanglement in Section 5.1.

Independence of Latent Variables In addition to invertible and equivariant properties, our IE-
transformation also guarantees zero Hessian matrix, which enhances disentanglement without
any additional loss of Peebles et al. (2020). Hessian matrix of the transformation ∇2

zψ(z) =

∇z(∇ze
Mz) = 0 because of the irrelevance of M to z. By this property, ψ(·) leads that indepen-

dently factorizes each dimension (Peebles et al., 2020), and it injects group theory based inductive
bias simultaneously. This is because the group decomposition of z space G = G1 ×G2 × · · · ×Gk
corresponds to group decomposition of the transformed latent vector ẑ space G′ = G′

1×G′
2×· · ·×

G′
k such that each G′

i is fixed by the action of all the Gj for j ̸= i (Yang et al., 2021; Higgins et al.,
2018b). This correspondence of decomposition is expected to transfer the independence between
dimensions of z to the space of ẑ (Higgins et al., 2018a).

3.2 EXPONENTIAL FAMILY CONVERSION

The generated latent variables by IE-transformation may not follow a Gaussian distribution generally
used for the training of VAEs in a non-parametric perspective. As a solution, we present a training
procedure for VAEs to build an exponential family distribution from a latent variable of an arbitrary
distribution. Then, we introduce training losses obtained from the unit IE-transformation function
and EF-conversion, and more details of each procedure are in Appendix B.

Posterior Approximation As an Exponential Family The procedure represents a posterior dis-
tribution in the exponential family by adopting the following form:

p(θ|X, ξ,ν) ∝ exp(θ⊺(

N∑
n=1

T (xn) + νξ)−A(θ)), (1)

where sufficient statistics T (·) and log-normalizer, A(·) are known functions, samples X =
{x1,x2, . . . ,xn} from distribution, and natural parameter of posterior θ and of prior ξ (Bishop,
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dataset Metrics
FVM IMG SAP DCI

dSprites

Table 3: Impact of the number of MIE-transformation function on the β-TCVAE and β-VAE with
dSprites, 3D Shapes, and 3D Cars datasets in terms of the four metrics. The blue and red box plots
represent each model’s single and multiple IE-transformation cases, respectively. (A-n: MIET-β-
TCVAE (4), B-n: MIET-β-TCVAE (6), C-n: MIET-β-VAE, n: the number of MIE-transformation)

2006). The functions T (·), and A(·) are deterministic functions to maximize posterior distribution.
The evidence is implemented as learnable parameters ν ∈ Rn×n. The natural parameter is generated
by a multi-layer perceptron as Charpentier et al. (2022a). This general form approximating an ex-
ponential family distribution with learnable parameters can extend VAEs to use a wider distribution
for latent variables by simply matching X to generated latent variables. After IE-transformation, we
can apply the form by using the ẑm, θẑm , and θϵ̂m for X, θ, and ξ, respectively. More details of
the background, conjugate prior, posterior, and assumptions are in Appendix B.3.

EF similarity Loss We added a loss to converge the unrestricted distributions of ẑ to the power
density function of the exponential family by constraining the posterior maximization as:

maximize log p(θẑm |ẑm,θϵ̂m ,νm) s.t. DKL(fx(x|θẑm)||fx(x|θϵ̂m)) ≥ 0 (2)

⇒ Ls(ẑm, ϵ̂m) = log p(θẑm |ẑm,θϵ̂m ,νm) + λmDKL(fx(x|θẑm)||fx(x|θϵ̂m)) (3)

⇒ Lel := ||∇ẑm,ϵ̂m,λmLs||
2
2 = 0. (4)

This provides EF similarity loss in Eq. 9. The notation θk is a generated natural parameter by a given
k ∈ {ẑ, θ̂}, and fx(x|θ) is a power density function of the exponential family. Moreover, λm is a
trainable parameter for optimizing the Lagrange multiplier, and DKL(fx(x|θẑm)||fx(x|θϵ̂m)) is a
KL divergence of the exponential family to guarantee KL divergence of the transformed distribution
always being positive. More details of Eq. 4 are in Appendix B.3.

KL Divergence for Evidence of Lower Bound The KL divergence of Gaussian distribu-
tion (Kingma & Welling, 2013) is computed using mean and variance, which are the parameters
of a Gaussian distribution. To introduce a loss as the KL divergence of Gaussian distribution, we
compute KL divergence of the exponential family in Eq. 1 using the learnable parameter T (·) and
A(·) with given natural parameter θẑ and θϵ̂, expressed as:

Lkl := DKL(fx(x|θẑm)||fx(x|θϵ̂m)) = A(θϵ̂)−A(θẑ)+θ⊺
ẑ∇θẑA(θẑ)−θ⊺

ϵ̂∇θϵ̂A(θϵ̂). (5)

More details of Eq. 5 are in Appendix B.2.

KL divergence calibration loss To reduce the error between the approximation and true matrix
for the matrix exponential2 (Bader et al., 2019), we add a loss to minimize the difference of their KL
divergence measured by mean squared error (MSE) as:

Lcali = MSE(DKL(qϕ(z|x)||pθ(z)), DKL(fx(x|θẑm)||fx(x|θϵ̂m))), (6)

which is the KL divergence calibration loss (Lcali).

Sparse log-normalizer We propose sparse log-normalizer to improve disentanglement learning.
We apply mask matrixMwhich consists of 0 or 1 element to log-normalizer to prevent less effective
weight flow as:

Mij =

{
1 if |Wij | ≥ µ|Wij | − λσ|Wij |
0 otherwise

, (7)

2https://pytorch.org/docs/1.10/generated/torch.matrix exp.html#torch.matrix exp
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whereW is the weight of log-normalizer, λ is a hyper-parameter, µ|Wij |, and σ|Wij | are the mean,
and standard deviation of weight respectively. Previous work (Yang et al., 2020) utilizes a semantic
mask in input space directly, but we inject the semantic mask implicitly on the latent space.

3.3 INTEGRATION FOR MULTIPLE IE-TRANSFORMATION AND EF-CONVERSION

We mathematically extend IE-transformation to MIE-transformation, which is the equivalent pro-
cess of β-VAE to enhance disentanglement. The equivalence is proven in Appendix B.1. Each
IE-transformation function operates independently, then pθ(x|ẑ1, ẑ2, · · · , ẑk) =

∏k
i=1 pθ(x|ẑi).

Therefore, the reconstruction error term (Lrec) for given all ẑi in Eq. 9 is

Lrec :=
k∑
i=1

[∫
qi(ẑi|x) log pθ(x|ẑi)dẑi

k∏
j=1,j ̸=i

∫
qj(ẑj |x)dẑj

]
=

k∑
i=1

E
qϕ,ψi

(z|x) log pθ(x|ψi(z)),

(8)

where ẑi = ψi(z).However, according to the following Eq. 8, k samples are generated, and each
sample is disentangled for different factors. We implement the output as the average of the sum
of the k samples to obtain a single sample with a superposition effect of disentanglement from k
samples, as shown in Fig. 1. More derivation details of Eq. 8 are in Appendix B.1.

The VAEs equipped with MIE-transformation (MIET-VAEs) can be trained with the following loss:

L(ϕ, θ, ψi∈[1,k];x) =
1

k
Lrec − Lkl − Lel − Lcali. (9)

More derivation details of our proposed evidence of lower bound (ELBO) in Appendix B.

4 EXPERIMENT SETTINGS

Models As baseline models, we select VAE, β-VAE, β-TCVAE, and CLG-VAE. These models are
compared to their extension to adopt MIET, abbreviated by adding the MIET prefix. We apply the
proposed method to β-TCVAE only with the EF similarity loss term because β-TCVAE penalizes
the divided KL divergence terms. We set the same encoder and decoder architecture in each model to
exclude the overlapped effects. More details of model architecture are in Table 8-9, and Appendix D.

Datasets We use following datasets: dSprites (Matthey et al., 2017), 3D Shapes (Burgess & Kim,
2018), and 3D cars (Reed et al., 2015). More information of datasets are in Appendix E.

Training We set 256 mini-batch size in the datasets (dSprites, 3D Shapes, and 3D Cars), Adam
optimizer with learning rate 4 × 10−4, β1 = 0.9, and β2 = 0.999 as a common setting for all the
comparative methods. For the comparison, we follow training and inference on the whole dataset.
We train each model for 30, 67, and 200 epochs on the dSprites, 3D Shapes, and 3D Cars, respec-
tively, as introduced in Kim & Mnih (2018); Ren et al. (2022). More details of the setting are in
Appendix D.

Evaluation We evaluate four disentanglement metrics for a less biased understanding of the actual
states of disentanglement. The used metrics include FactorVAE metric (FVM) (Kim & Mnih, 2018),
MIG metric (Chen et al., 2018), SAP metric (Kumar et al., 2018), and DCI metric (Eastwood &
Williams, 2018). More details of the evaluation metric are in Appendix F.

5 RESULTS AND DISCUSSION

5.1 QUANTITATIVE ANALYSIS

Disentanglement Metrics We set the number of IE-transformation functions to be equal to bal-
ancing hyper-parameter β on β-VAE because of Eq. 9. The number of IE-transform functions of
β-TCVAE is 3. However, in the case of CLG-VAE, we set it to 1 because its approach is based on
the group theory, not directly controlling a KL divergence term such as β-VAE. We average each
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3D Cars
β-VAE β-TCVAE

MIET MIET
(w/o E)

MIET
(w/o EF) MIET MIET

(w/o E)
MIET

(w/o EF)
FVM ↑ 88.95(±5.94) 82.09(±11.33) 45.23(±6.39) 96.43(±2.42) 91.34(±4.75) 91.43(±4.86)
MIG ↑ 7.27(±1.99) 6.77(±2.41) 0.04(±0.02) 10.80(±1.22) 9.79(±1.07) 9.81(±1.10)
SAP ↑ 1.88(±1.12) 1.76(±1.06) 0.18(±0.12) 1.88(±1.12) 1.35(±0.30) 1.35(±0.30)
DCI ↑ 18.90(±4.49) 17.21(±5.57) 1.67(±1.26) 26.08(±2.47) 25.12(±3.72) 25.16(±3.82)

Table 4: Ablation study for the equivariant property (w/o E), and EF-conversion (w/o EF). Each
metric is averaged over 40 and 20 settings of β-VAE and β-TCVAE, respectively.

mask β-VAE (1) CLG-VAE (0.5)
ratio FVM ↑ MIG ↑ SAP ↑ DCI ↑ FVM ↑ MIG ↑ SAP ↑ DIC ↑
0.0 90.46(±6.50) 4.84(±2.32) 1.29(±0.81) 16.76(±4.68) 90.06(±4.44) 9.28(±2.09) 1.82(±0.82) 19.12(±3.41)
0.5 91.35(±5.52) 5.37(±2.74) 1.17(±0.67) 16.65(±3.76) 88.69(±4.78) 6.90(±1.96) 1.85(±0.67) 17.52(±3.16)
1.0 91.78(±6.20) 4.99(±2.27) 1.36(±0.81) 16.50(±2.53) 83.60(±11.48) 8.12(±3.66) 2.37(±1.50) 17.07(±3.89)
1.5 90.04(±5.88) 7.22(±2.87) 1.36(±0.48) 18.23(±2.84) 84.76(±6.86) 7.70(±2.11) 2.05(±0.73) 17.06(±2.77)
2.0 87.79(±8.88) 4.75(±2.49) 1.01(±0.99) 16.64(±3.75) 85.78(±4.18) 7.83(±1.79) 1.91(±0.96) 17.26(±2.07)
∞ 89.43(±11.72) 3.74(±2.32) 0.77(±0.39) 15.45(±4.59) 82.96(±11.84) 8.07(±2.52) 2.32(±1.02) 17.46(±4.07)

Table 5: Impact of the mask (mean±std.) and its ratio λ in Eq. 7 on 3D Cars. (∞: no masking case,
gray box: the best setting over all metrics, bold text: the best in each metric.) Each model runs with
ten random seeds.

model performance value with 40, 20, and 30 cases in VAEs, β-TCVAEs, and Commutative Lie
Group VAE (CLG-VAEs) respectively.

As shown in Table 1, MIET-VAEs disentanglement performance is broadly improved with four
metrics on each dataset. In particular, most FVM results significantly affect the model performance
and stability on all datasets. Therefore, our proposed method obtains a specific dimension that
corresponds to a specific single factor. These results imply that applied to MIE-transformation
functions on VAEs elaborate disentangled representation learning.

We additionally estimate the p-value of each metrics over models in Table 2. Previous work shows
the average case of each models (Yang et al., 2021).

We divide each case into four categories: 1) Positive & Significant, 2) Positive & Insignificant, 3)
Negative & Insignificant, and 4) Negative & Significant, where positive is when the mean value is
higher than baseline and significant is statistically significant. We estimate the probability of each
category: 1) 50%, 2) 36.11%, and 3) 13.89%. As shown in Table 2 and the results, half of the cases
are statistically significant, and 86.11% of cases are improved model performance. Even though
our method shows a lower value than the baseline, it is not significantly decreased (13.89%). In
addition, averaged results show that our method impacts to model itself without hyper-parameter
tuning. β-TCVAEs is partially using our method (paragraph Models in Section 4), so it does not
show the whole effect of MIET, but it improves model performance in many cases.

Sensitivity to the Number of IE-transformation and EF-conversion We investigate the impact
of the MIE-transformation function. As presented in Table. 3, MIE-transformation is better than IE-
transformation for disentanglement learning on each dataset. Indeed, MIET-β-VAEs results more
clearly show the impact of the MIE-transfomation function. Our derivation in Section 3.3 and Ap-
pendix B clearly explains MIE-transformation impact. This result shows the impact of the multiple
uses of IE-transformation and EF-conversion. More details are in Appendix H.

dSprites 3D Shapes 3D Cars
0.58 0.56 0.67

Table 6: The ratio of seeds to show
better performance with symmetric
matrix

Ablation Study We conduct an ablation study to evalu-
ate the separate impact of equivariant property and the EF-
conversion. We have already presented the impact of the
multiple uses of IE-transform and EF-conversion in the pre-
vious paragraph. We evaluate the impact of the other prop-
erties by setting MIE-transformation 1) without equivariant
(w/o E), which is implemented as an asymmetric matrix, and
2) without EF-conversion (w/o EF). To exclude group theory interference with other methods, we
select β-VAE and β-TCVAE. As the results are shown in Table 4, most of the results show that
MIET-VAEs performance is better than other cases. In particular, MIET (w/o EF) results are lower
than MIET (w/o E) results and are clearly shown in all cases. More details are in Appendix I.
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Figure 3: dSprites

Figure 4: Qualitative results on dSprites. The left-side grids are input images and their variants by
changing activations of each dimension of latent vectors. The first row shows input images. The
right-side table shows matching pre-defined factors of the dataset (red: MIET, blue: no MIET).

Impact of Symmetric Matrix Exponential We empirically show the benefit of using a symmetric
matrix for ψ. Table 6 shows the ratio of runs with a symmetric matrix, which shows better perfor-
mance than unrestricted matrices, to the total 240 (60 models× 4 metrics) runs for each dataset. All
results are higher than 0.5, which implies that the constraint enhances I2L equivariance even with
uncertain factors.

Impact of Sparse Log-normalizer We set masking hyper-parameter λ from
{0.0, 0.5, · · · , 2.0,∞}, and each model has different λ for best case. In Table 5, VAE and
CLG-VAE with masked log-normalizer show better and well-balanced results than the models
without masking, which implies improvement of disentanglement.

5.2 QUALITATIVE ANALYSIS

We randomly sample an image for each dimension of the latent vector space and creates 10 variants
of its generated latent vector by selecting values from {-2, 2} with 10 intervals for the dimension,
then generate their corresponding output images. For the generation, we select β-TCVAE (6), which
shows the best FVM scores in dSprites dataset. Thereafter, we evaluate the semantic roles of each
dimension before and after applying MIE-transformation function.

In Fig. 3, β-TCVAE struggles with y-position and rotation, as shown on the 6th row, and with
scale and shape represented on the 7th row. On the contrary, MIET-β-TCVAE separates y-position
and rotation factor (10th, and 7th rows), also the activated dimensions of MIET-β-TCVAE are not
overlapped with each factor. Applied our method on β-TCVAE shows better disentangled represen-
tation on dSprites dataset. These results also show that our proposed method improves disentangled
representation learning. More results are in Appendix K.

6 CONCLUSION

In this paper, we address the problem of injecting inductive bias for learning unsupervised disentan-
gled representations. To build the bias in VAE frameworks, we propose MIE-transformation com-
posed of 1) IE-transformation for the benefits of invertibility and equivariance in disentanglement,
2) a training loss and module to adapt unrestricted prior and posterior to an approximated exponen-
tial family, and 3) integration of multiple units of IE-transformation function and EF-conversion for
more expressive bias. The method is easily equipped on state-of-the-art VAEs for disentanglement
learning and shows significant improvement on dSprites, 3D Shapes, and 3D Cars datasets. We ex-
pect that our method can be applied to more VAEs, and extended to downstream applications. Our
work is limited to holding potential equivariance of I2L transformation, so more direct methods to
induce it can be integrated in the future.
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7 REPRODUCIBILITY STATEMENT

In this section, we summarize detail contents for reproducing our theoretical and empirical results.

• Equations for MIET Method Implementation

1. Objective function: Equation 9, Appendix B.1.
2. EF family equation: Equation 1, Appendix B.3.
3. EF similarity loss: Equation 2-4.
4. KL Divergence of EF family: Equation 5, Appendix B.2.
5. Reconstruction loss: Equation 8, Appendix 9.

• Motivation Proofs

1. Proposition 1-3 : Appendix C.

• Experiment setting details

1. Hyper-parameters: Appendix D.1.
2. Training procedure and model configuration: Appendix D.2.
3. Datasets: Appendix E.
4. Quantitative analysis setting: Appendix F.
5. Code description for running experiments: Supplementary material.
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rior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions. In International
Conference on Learning Representations, 2022b.

Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentan-
glement in variational autoencoders. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
1ee3dfcd8a0645a25a35977997223d22-Paper.pdf.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/
file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf.

10

https://www.mdpi.com/2227-7390/7/12/1174
https://openreview.net/forum?id=rWPxhfz2_S
https://proceedings.neurips.cc/paper/2020/hash/0eac690d7059a8de4b48e90f14510391-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0eac690d7059a8de4b48e90f14510391-Abstract.html
https://openreview.net/forum?id=tV3N0DWMxCg
https://openreview.net/forum?id=tV3N0DWMxCg
https://proceedings.neurips.cc/paper/2018/file/1ee3dfcd8a0645a25a35977997223d22-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1ee3dfcd8a0645a25a35977997223d22-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf


Under review as a conference paper at ICLR 2023

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak. Hyperspherical varia-
tional auto-encoders. 34th Conference on Uncertainty in Artificial Intelligence (UAI-18), 2018.

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai Arulku-
maran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational autoen-
coders. CoRR, abs/1611.02648, 2016. URL http://dblp.uni-trier.de/db/journals/corr/
corr1611.html#DilokthanakulMG16.

Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of disentan-
gled representations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=By-7dz-AZ.

Robert M. Guralnick and Geoffrey R. Robinson. On the commuting probability in finite groups. Journal of Al-
gebra, 300(2):509–528, 2006. ISSN 0021-8693. doi: https://doi.org/10.1016/j.jalgebra.2005.09.044. URL
https://www.sciencedirect.com/science/article/pii/S0021869305007179. Spe-
cial issue celebrating the 70th birthday of Bernd Fischer.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In ICLR, 2017.
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A NOTATION

z Latent vector from encoder ψ(·) Invertible function

ẑm Transformed latent vector by ψm(·) ϵ̂m Transformed prior samples by
ψm(·)

θẑm Natural Parameter of posterior θϵ̂m Natural Parameter of prior

T Sufficient Statistics A Log-Normalizer

ν Evidence DKL(·||·) Kullback-Leibler divergence

fx(·) Power Density Function Mn(R) A set of n× n real matrix

Symn(R) A set of n × n symmetric real ma-
trix

EM {eM |M ∈Mn(R)}

ES {eS |S ∈ Symn(R)} GS GS : (eS , ∗)
GI Group of input space for symme-

tries
GL Group of latent space for symme-

tries (equivariant to GI )

ψM (·) ψM (·) ∈Mn(R) ψEM (·) ψEM (·) ∈ EM
ψES (·) ψES (·) ∈ ES 0 zero vector

0n,n n by n zero matrix X Input space

Z Latent vector space Ẑ Transformed latent vector space

Ξ GI ×GL → GL Γ GL ×GT → GT

B OBJECTIVE FUNCTION

B.1 EVIDENCE OF LOWER BOUND (ELBO)

The log likelihood of p(x) can be derived as follows:

log pθ(x) =

∫
q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x) log pθ(x)dẑ′ (10)

=

∫
q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x) log

pθ(x, ẑ1, ẑ2, · · · , ẑk)
pθ(ẑ1, ẑ2, · · · , ẑk|x)

dẑ′ (11)

=

∫
q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x)·[

log
pθ(x, ẑ1, ẑ2, · · · , ẑk)
q(ẑ1, ẑ2, · · · , ẑk|x)

− log
pθ(ẑ1, ẑ2, · · · , ẑk|x)
q(ẑ1, ẑ2, · · · , ẑk|x)

]
dẑ′

(12)

≧
∫
q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x) log

pθ(x, ẑ1, ẑ2, · · · , ẑk)
q(ẑ1, ẑ2, · · · , ẑk|x)

dẑ′ (13)

=

∫
q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x)·[

log pθ(x|ẑ1, ẑ2, · · · , ẑk) + log
p(ẑ1, ẑ2, · · · , ẑk)
q(ẑ1, ẑ2, · · · , ẑk|x)

]
dẑ′,

(14)

where dẑ′ = dẑ1dẑ2 · · · dẑk. Each IE-transformation function operates independently, then

pθ(x|ẑ1, ẑ2, · · · , ẑk) =
k∏
i=1

pθ(x|ẑi).

14
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log pθ(x) ≥
1

k

k∑
i=1

[∫
qi(ẑi|x) log pθ(x|ẑi)dẑi

k∏
j=1,j ̸=i

∫
qj(ẑj |x)dẑj

]

−
∫
q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x) log

q1(ẑ1|x)q2(ẑ2|x) · · · qk(ẑk|x)
p(ẑ1)p(ẑ2) · · · p(zk)

dẑ′

(15)

=
1

k

k∑
i=1

E
q(ẑi|x)

log pθ(x|ẑi)−
k∑
i=1

[
DKL(qϕ(ẑi|x)||p(ẑi))

k∏
j=1,j ̸=i

∫
qj(ẑj |x)dẑj

]
(16)

=
1

k

k∑
i=1

E
qϕ(ẑi|x)

log pθ(x|ẑi)−
k∑
i=1

DKL(qϕ(ẑi|x)||p(zi)) (17)

=
1

k

k∑
i=1

E
qϕ,ψi (z|x) log pθ(x|ψi(z))−

k∑
i=1

DKL(qϕ,ψi(z|x)||pψi(z)). (18)

Therefore, we define ELBO as:

L′(ϕ, θ, ψi∈[1,k];x) =
1

k

k∑
i=1

E
qϕ,ψi

(zi|x) log pθ(x|ψi(z))︸ ︷︷ ︸
1 reconstruction loss

−
k∑
i=1

DKL(qϕ,ψi(z|x)||pψi(z))︸ ︷︷ ︸
2 KL divergence

.
(19)

However, following Eq. 19, k samples are generated, and each sample is disentangled for different
factors. We implement the output as the average of the sum of the k samples to obtain a single
sample with a superposition effect from k samples. Moreover, the KL divergence term in Eq. 19
represents that increasing number of MIE-transformation is equal to increasing β hyper-parameter
in β-VAE (Higgins et al., 2017).

B.2 EXPONENTIAL FAMILY KULLBACK-LEIBLER DIVERGENCE

The second term of Eq. 19 is equal to DKL(fx(x|θẑ)||fx(x|θϵ̂)) because power density function
of posterior and prior are fx(x|θẑ) and fx(x|θϵ̂), respectively.

DKL(fx(x|θẑ)||fx(x|θϵ̂)) =
∫ ∞

−∞
fx(x|θẑ) log fx(x|θẑ)dx−

∫ ∞

−∞
fx(x|θẑ) log fx(x|θϵ̂)dx.

(20)
We designed sufficient statistics as matrix multiplication (multi-layer perceptron).∫ ∞

−∞
fx(x|θẑ) log fx(x|θẑ)dx =

∫ ∞

−∞
fx(x|θẑ)[θ

⊺
ẑT(x)−A(θẑ) +B(x)]dx (21)

= −A(θẑ)��������:1∫ ∞

−∞
fx(x|θẑ)dx+

∫ ∞

−∞
fx(x|θẑ)[θ

⊺
ẑT(x) +B(x)]dx

(22)

= −A(θẑ) + θ⊺
ẑ

∫ ∞

−∞
T (x)fx(x|θẑ)dx+

∫ ∞

−∞
B(x)fx(x|θẑ)dx,

(23)

and∫ ∞

−∞
fx(x|θẑ) log fx(x|θϵ̂)dx = −A(θϵ̂) + θ⊺

ϵ̂

∫ ∞

−∞
T (x)fx(x|θϵ̂)dx+

∫ ∞

−∞
B(x)fx(x|θϵ̂)dx.

(24)

∴ DKL(fx(x|θẑ)||fx(x|θϵ̂)) = A(θϵ̂)−A(θẑ) + θẑ

∫ ∞

−∞
T (x)fx(x|θẑ)dx

− θϵ̂

∫ ∞

−∞
T (x)fx(x|θϵ̂)dx.

(25)
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The mean of the sufficient statistic is followed as:∫ ∞

−∞
T (x)fx(x|θ)dx =

∂A∗(θ)

∂θ
≈ ∂A(θ)

∂θ
∵ A∗(θ) = θ⊺A∗, (26)

where A∗(·) is a true log-partition function of the exponential family (ideal case of A(·)). How-
ever, estimating A∗ is difficult, and there is no direct method without random samplings, such as
mini-batch weighted sampling or mini-batch stratified sampling (Chen et al., 2018). Then, we ap-
proximate A∗ to A, and train A to be close to A∗. Consequently, we obtain KL divergence of the
exponential family as:∫ ∞

−∞
fx(x|θẑ) log fx(x|θẑ) = −A(θẑ) + θ⊺

ẑ
∂A(θẑ)

∂θẑ
+

∫ ∞

−∞
fx(x|θẑ)B(x)dx, (27)

∫ ∞

−∞
fx(x|θẑ) log fx(x|θϵ̂) = −Z(θϵ̂) + θ⊺

ϵ̂
∂A(θϵ̂)

∂θϵ̂
+

∫ ∞

−∞
fx(x|θẑ)B(x)dx. (28)

Therefore, the final Kullback-Leibler divergence of exponential family is followed as:

DKL(fx(x|θẑ)||fx(x|θϵ̂)) = A(θϵ̂)−A(θẑ) + θ⊺
ẑ
∂A(θẑ)

∂θẑ
− θ⊺

ϵ̂
∂A(θϵ̂)

∂θϵ̂
. (29)

B.3 BACKGROUD OF EXPONENTIAL FAMILY

Power density function of the exponential family (PDF) generalized formulation:

fx(x|θ) = h(x)exp(θ⊺T (x)−A(θ))
= exp(θ⊺T (x)−A(θ) +B(x)),

(30)

where sufficient statistics T (·), log-normalizer A(·), and carrier or base measure B(·) are known
functions, samples x from distribution, and natural parameter θ. However, we set T (·), A(·), and
B(·) are deterministic functions by maximizing conjugate prior for parameter ξ. To determine the
natural parameter of posterior and prior θẑm , and ϵ̂m, we use a natural parameter generator (NPG)
designed by multi-layer perceptron (Charpentier et al., 2022a). As introduced in Bishop (2006);
Charpentier et al. (2022a), we assume exponential family always admits a conjugate prior:

q(θ|ξ,ν) = exp(νθ⊺ξ − νA(θ) +B′(ξ,ν)), (31)

where B′(·) is a normalize coefficient and ν is evidence, and it is expressed by prior natu-
ral parameter ξ. However, generated natural parameter θẑm is not guaranteed as the appropri-
ate parameter of the exponential family corresponds to conjugate prior. To satisfy this condi-
tion, we assume observation is a set of independent identically distributed, then Eq. 30 is mod-
ified: p(X|θ) =

∏N
n=1 h(xn)exp(θ⊺ ∑N

n=1 T (xn) − A(θ)) (Bishop, 2006), where observation
X = {x1, · · ·xN}. In the next, we multiply the modified formation by the prior Eq. 31 to obtain the
posterior distribution (Bishop, 2006) as Eq. 1.

C PROOF

C.1 EM ̸⊂ ES

All elements of ES are symmetric because of the matrix exponential property that eM
⊺
= (eM )⊺.

If M is a symmetric matrix then eM
⊺
= eM = (eM )⊺. Therefore, if M is symmetric then

the exponential of M is also symmetric. We show a counter example to EM ⊂ ES . When M =
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[
1 1
0 1

]
,

eM =

∞∑
k=0

1

k!
Mk

= I +

[
1 1
0 1

]
+

1

2!

[
1 1
0 1

]2
+ · · ·+ 1

(n− 1)!

[
1 1
0 1

](n−1)

+ · · ·

= I +

[
1 1
0 1

]
+

1

2!

[
1 2
0 1

]
+ . . .+

1

(n− 1)!

[
1 n− 1
0 1

]
+ · · ·

= I +

[∑∞
n=0

1
n! 1 +

∑∞
n=0

1
(n−1)!

0
∑∞
n=0

1
n!

]
=

[
1 +

∑∞
n=0

1
n! 1 +

∑∞
n=0

1
(n−1)!

0 1 +
∑∞
n=0

1
n!

]
=

[
1 + e 1 + e
0 1 + e

]
.

(32)

The matrix eM is asymmetric and not in ES . Therefore EM ̸⊂ ES .

C.2 TRANSITIVITY OF EQUIVARIANCE

Figure 5: Equivariant map: X , Z ,
and Ẑ are input space, latent vec-
tor space, and transformed latent
vector space by L2L transfomra-
tion function ψ(·) : Rn → Rn. re-
spectively. x ∈ X , z ∈ Z , and
ẑ ∈ Ẑ .

We show that ψGS preserves equivariance between group el-
ements of latent space in a and input space. If there ex-
ists equivariance between input and latent vector space, there
should be a group GL for a latent space and its correspond-
ing group GI in an input space by definition of equivariance
(qϕ(gIx) = gLqϕ(x)).

Let gaL be a group element in a , and gaI is a group element in
GI corresponding to a , and gaT is a group element where cor-
responding to a on the latent vector space transformed from
the original latent vector space. Then, group element gaT is
equal to gaL:
ẑ1 = ψGS (z1), and (33)
ẑ2 = ψGS (z2) = ψGS (g

a
Lz1) = gaLψGS (z1) (∵ Proposition 1),

(34)

then gaLψGS (z1) = gaTψGS (z1) (∵ ẑ2 = gaT ẑ1) (35)
⇒ (gaL − gaT )ψGS (z1) = 0, (36)

where 0 is a zero vector. Eq. 35 is defined when ∀z ∈ Z by the equivariance definition. In other
words, Eq. 35 is satisfied only if the kernel (linear algebra) of gaL − gaT , notated as ker(gaL − gaT ),
includes the basis of Rn vector space. If the standard basis of Rn vector space is in ker(gaL − gaT ),
then (gaL − gaT ) = 0n,n, where 0n,n is an n by n zero matrix. Other bases of Rn vector space are
expressed by the standard basis. Therefore gaL − gaT = 0n,n.

Then, ψGS (g
a
Lz1) = gaLψGS (z1) = gaTψGS (z1). The encoder is an equivariant function over

input space X as qϕ(gaIx1) = gaLqϕ(x1). Mixing two equivarience property, we can derive another
equivariance relation gaTψGS (qϕ(x1)) = ψGS (qϕ(g

a
Ix1)) This result implies that the equivariance

between input space and a latent space is preserved for a if the latent vector z is transformed by
ψGS .

D MODEL AND TRAINING PROCEDURE DETAILS

D.1 HYPER-PARAMETERS

We set 256 mini-batch size in the datasets (dSprites, 3D Shapes, and 3D Cars), Adam optimizer with
learning rate 4× 10−4, β1 = 0.9, β2 = 0.999, and epochs from {30, 67, 200} as a common setting
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models hyper-parameters values

common

batch size 256
epoch {30, 200}
optim Adam

lr 4e-4
lr for MIET 4e-4

weight decay 1e-4
latent dim 10

β-VAE # of IE and EF {1, 2, 4, 10}

β-TCVAE
β {4, 6}

# of IE and EF {1, 3}
α, γ 1.0

commut-VAE

λdecomp 40
λhessian 40

forward group 0.2
group reconst {0.2, 0.5, 0.7}

(a) dSprites and 3D Cars: epochs for dSprites and
3D cars are 30 and 200, respectively.

models hyper-parameters values

common

batch size 256
epoch 67
optim Adam

lr 4e-4
lr for MIET 4e-4

β-VAE
# of IE and EF {1, 2, 4, 10}

weight decay 0.0
latent dim 6

β-TCVAE

β {4, 6}
# of IE and EF {1, 3}

α, γ 1.0
weight decay 1e-4

latent dim 6

commut-VAE

λdecomp 40
λhessian 40

forward group 0.2
group reconst {0.2, 0.5, 0.7}
weight decay 0.0

latent dim 10

(b) 3D Shapes

Table 7: Notation commut-VAE is CLG-VAEs, lr is learning rate, latent dim is dimension size of
latent vector, group reconst is group reconstrunction, and forward group is forward group pass.

for all the comparative methods. For the comparison, we follow training and inference on the whole
dataset. We train each model for 30, 67, and 200 epochs on the dSprites, 3D Shapes, and 3D Cars,
respectively, as introduced in Kim & Mnih (2018); Ren et al. (2022). We tune β from {1, 2, 4, 10}
and {4, 6} for β-VAE and β-TCVAE, respectively. We set the dimension size of the latent vectors
from {6, 10} for 10 on dSprites and 3D Cars datasets and 6 for 3D Shapes, but we set 10 for CLG-
VAE because it sets 10 dimensions size on 3D Shapes in Zhu et al. (2021). Regarding the CLG-
VAE, we fix λdecomp, λhessian, and forward group features as 40, 20, and 0.2, respectively. Because
the hyper-parameters showed the best result in Zhu et al. (2021). We set group reconstruction from
{0.2, 0.5, 0.7}. In addition, we set masking ratio λ from {0.0, 0.5, . . . 2.0,∞}. To check the impact
of MIE-transformation, we do not consider the Groupified VAE because the latter is implemented
with an extended decoder (different capacity).

D.2 TRAINING PROCEDURE AND MODEL

We present the model architecture for each dataset in Table 8 and 9. For MIET architecture re-
production, Algorithm 2 to Algorithm 4. To estimate EF similarity loss, we directly implement
∇ẑ,ϵ̂,λmp(θ|X,X ,ν) + λmDKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)), instead of implementing posterior, in our
supplement materials. More details of this algorithm are in ie transformation.py file.

Encoder Decoder
Input 64× 64 binary image input ∈ R10

4× 4 conv. 32 ReLU. stride 2 FC. 128 ReLU.
4× 4 conv. 32 ReLU. stride 2 FC. 4× 4× 64 ReLU.
4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 64 ReLU. stride 2.
4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 32 ReLU. stride 2.

FC. 128. FC. 2× 10 4× 4 upconv. 32 ReLU. stride 2.
4× 4 upconv. 1. stride 2

Table 8: VAE architecture for dSprites dataset.
Algorithm 1 Unit Invertible and Equivariant Transformation Function (UIET-function)

Input: matrices M1, and M2

Output: Invertible and Equivariant Transformation Function ψ(·)
M1, M2← 1

2 (M1 +M⊺
1 ),

1
2 (M2 +M⊺

2 )
ψ(·)←M⊺

1 M2
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Encoder Decoder
Input 64× 64× 3 RGB image input ∈ R6 (3D Shapes), R10 (3D Cars)
4× 4 conv. 32 ReLU. stride 2 FC. 256 ReLU.
4× 4 conv. 32 ReLU. stride 2 FC. 4× 4× 64 ReLU.
4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 64 ReLU. stride 2.
4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 32 ReLU. stride 2.

FC. 256. FC. 2× 10 4× 4 upconv. 32 ReLU. stride 2.
4× 4 upconv. 3. stride 2

Table 9: VAE architecture for 3D Shapes, and 3D Cars datasets. For exceptional case, CLG-VAE,
we ues ten dimension size on 3D Shapes dataset (Zhu et al., 2021).

Figure 6: The overall architecture of our proposed MIET-VAE. KLD is the KL divergence of Gaus-
sian Distribution in Kingma & Welling (2013). ∇ẑm,ϵ̂m,λm is in Eq. 4, and MSE is a mean squared
error. More details of our proposed method are introduced in Section 3.

Algorithm 2 IE-Transformation

Input: latent vector z, and samples from prior ϵ
Output: transformed latent vector ẑ, and transformed normal Guassian distribution samples ϵ̂
ψ(·)← UIET-function (M1, M2)
ẑ, ϵ̂← ψ(z), ψ(ϵ)

Algorithm 3 KL Divergence & Posterior Estimator

Input: latent vector ẑm, prior samples ϵ̂m,
Natural Parameter Generator Ω1(·), Ω2(·)
log-normalizer A, sufficient statistics T , and evidence ν.

Output: KL divergence DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)), and posterior p(θ|X,X ,ν)
θẑ , θϵ̂ ← Ω1(ẑ), Ω2(ϵ̂)
A← sparse log-normalizer(A) ▷ Equation 7
p(θ|X,X ,ν)← exp

[
θẑ(

∑B
i=1 T (ẑi) + νθϵ̂)−A(θẑ)

]
▷ Equation 1

DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂))← A(θϵ̂)−A(θẑ) + θ⊺
ẑ
∂A(θẑ)

∂θẑ
− θ⊺

ϵ̂
∂A(θϵ̂)
∂θϵ̂

▷ Equation 5

Algorithm 4 EF-Conversion Loss

Input: KL divergence DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)), posterior p(θ|X,X ,ν), µ,σ
Output: Regularization Lreg
Lel ← p(θ|X,X ,ν) + λmDKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂))
Lel ← ||∇ẑm,ϵ̂m,λmLel||

2
2

DKL(qϕ(z|x)||p(z))← 0.5
∑D
d=1(1 + 2 log σj − µ2

j − σ2
j ) ▷ Reference (Kingma & Welling,

2013)
Lcali←MSE(DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)), DKL(qϕ(z|x)||p(z))) ▷ Equation 6
L← Lel + Lcali ▷ Equation 9
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E DATASET DETAILS

We compare well-known VAEs to CHIC-VAEs: VAE, β-VAE, β-TCVAE, and CLG-VAE on the
following data sets with 1) dSprites (Matthey et al., 2017) which consists of 737,280 binary 64 ×
64 images of dSprites with five independent ground truth factors(number of values), i.e. shape(3),
orientation(40), scale(6), x-position(32), and y-position(32). 2) 3D Shapes (Burgess & Kim, 2018)
which consists of 480,000 RGB 64×64×3 images of 3D Shapes with six independent ground truth
factors: shape(4) orientation(15), scale(8), wall color(10), floor color(10), and object color(10). 3)
3D Cars (Reed et al., 2015) which consists of 17,568 RGB 64 × 64 × 3 images of 3D Shapes with
three independent ground truth factors: car models(183), azimuth directions(24), and elevations(4).

F QUANTITATIVE ANALYSIS SETTING

We conduct experiments on NVIDIA A100, RTX 2080 Ti, and RTX 3090. We set 100 samples
to evaluate global empirical variance in each dimension and run it a total of 800 times to estimate
the FVM score introduced in Kim & Mnih (2018). For the other metrics, we follow default val-
ues introduced in Michlo (2021), training and evaluation 100 and 50 times with 100 mini-batches,
respectively.

G QUANTITATIVE ANALYSIS WITH MORE BASELINES AND DATASETS

We investigate more baseline and dataset. We add Factor-VAE (Kim & Mnih, 2018) and Control-
VAE (Shao et al., 2020) model, and smallNORB (LeCun et al., 2004) dataset. We represent ad-
ditional results in Table 10. The proposed method improves the disentanglement performance on
Control-VAE, and Factor-VAE. Also, in the large-scale task, smallNORB (96 × 96), our method
shows better results than the original cases.

dSprites
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIET original MIET original MIET original MIET

Factor-VAE 59.28(±6.93) 59.55(±5.62) 3.30(±1.97) 3.64(±1.42) 1.09(±0.84) 0.92(±0.56) 10.46(±2.76) 11.49(±3.15)
Control-VAE 62.36(±8.62) 67.71(±6.41) 4.36(±2.86) 7.34(±4.10) 2.11(±1.88) 1.93(±1.63) 10.40(±3.42) 15.18(±4.61)

3D Shapes
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIET original MIET original MIET original MIET

Factor-VAE 41.86(±6.90) 49.22(±10.58) 2.47(±1.88) 7.47(±9.48) 1.18(±0.97) 2.04(±1.96) 10.40(±4.20) 13.08(±10.24)
Control-VAE 71.05(±14.35) 71.89(±8.33) 24.88(±13.68) 32.28(±10.74) 6.60(±3.59) 7.14(±2.09) 40.08(±13.45) 43.06(±8.68)

3D Cars
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIET original MIET original MIET original MIET

Factor-VAE 82.81(±8.32) 84.84(±9.30) 1.22(±0.68) 2.00(±1.40) 0.68(±0.52) 0.85(±0.68) 11.67(±4.74) 9.63(±2.72)
control-VAE 88.76(±7.66) 89.10(±6.90) 4.68(±2.67) 5.08(±2.68) 1.16(±0.74) 1.45(±0.86) 14.70(±3.84) 15.22(±4.15)

smallNORB
Disentanglement Metric

96×96
FVM ↑ MIG ↑ SAP ↑ DCI ↑

original MIET original MIET original MIET original MIET
CLG-VAE 32.01(±4.72) 32.71(±5.59) 17.30(±0.75) 16.75(±2.57) 8.82(±0.60) 9.26(±1.39) 11.92(±1.75) 13.26(±2.03)

Control-VAE 34.41(±7.17) 34.46(±8.64) 17.37(±1.74) 17.42(±1.92) 9.28(±1.02) 9.74(±1.20) 16.73(±2.70) 17.76(±2.84)

Table 10: The smallNORB 64 × 64 represents the centered cropped version of smallNORB. We
set the hyper-parameter γ of Factor-VAE from {5, 10, 15}, and run total 30 seeds. And we set the
maximum KL divergence value of Control-VAE from {10, 12, 14, 16, 18, 20}, and run total 60
seeds.

G.1 ADDITIONAL DATASET

The smallNORB (LeCun et al., 2004) dataset consists of total 96×96 24,300 grayscale images with
five factors, which are category(5), elevation(9), azimuth(18), light(6), right-left(2).

H SENSITIVITY TO THE NUMBER OF IE-TRANSFORMATION

We present the sensitivity of the number of IE-transformation results of 3D Shapes and 3D Cars
in Table 11. These results also show that the disentanglement performance of multiple units of
IE-transformation is higher than a single unit.
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dataset Metrics
FVM IMG SAP DCI

3D Shapes

3D Cars

Table 11: Impact of the number of MIE-transformation function on the β-TCVAE and β-VAE with
dSprites, 3D Shapes, and 3D Cars datasets in terms of the four metrics. The blue and red box plots
represent each model’s single and multiple IE-transformation cases, respectively. (A-n: MIET-β-
TCVAE (4), B-n: MIET-β-TCVAE (6), C-n: MIET-β-VAE, n: the number of MIE-transformation)

I ABLATION STUDY

Ablation studies with dSprites and 3D Shapes datasets are presented in Table 12.

dSprites
β-VAE β-TCVAE

MIET MIET
(w/o E)

MIET
(w/o EF) MIET MIET

(w/o E)
MIET

(w/o EF)
FVM 74.19(±5.62) 71.54(±8.66) 25.83(±1.16) 79.87(±5.80) 76.39(±7.44) 77.44(±7.15)
MIG 19.72(±11.37) 19.29(±11.79) 0.02(±0.01) 35.04(±4.07) 33.83(±8.06) 21.88(±8.42)
SAP 5.08(±2.90) 4.91(±3.25) 0.21(±0.10) 7.70(±1.63) 7.64(±2.03) 6.84(±1.87)
DCI 28.81(±10.19) 27.51(±11.49) 1.81(±0.08) 47.83(±5.01) 45.10(±6.92) 37.84(±8.85)

3D Shapes
β-VAE β-TCVAE

MIET MIET
(w/o E)

MIET
(w/o EF) MIET MIET

(w/o E)
MIET

(w/o EF)
FVM 75.19(±8.16) 74.91(±10.46) 22.27(±1.29) 80.59(±8.57) 77.90(±8.66) 66.38(±7.57)
MIG 47.37(±10.13) 47.45(±8.98) 0.28(±0.09) 54.49(±9.44) 51.37(±11.54) 36.08(±17.42)
SAP 9.20(±2.44) 9.43(±2.59) 0.26(±0.07) 11.58(±3.32) 10.23(±3.13) 7.13(±3.09)
DCI 54.95(±8.99) 54.23(±9.05) 0.10(±0.02) 66.22(±7.32) 61.18(±8.87) 56.85(±11.72)

Table 12: Ablation study of the impact of the equivariant property (w/o E), and EF-conversion (w/o
EF). We conduct 40 β-VAE models and 20 β-TCVAE with different hyper-parameters on the four
disentanglement metrics.

J ADDITIONAL EXPERIMENT OF COMPUTING COMPLEXITY

# of IE Complexity
0 × 1.00
1 × 0.75
3 × 0.50
4 × 0.33

Table 13: Train-
ing computing com-
plexity.

We additionally estimate the computing complexity depending on the number
of IE-transformation. The results are in Table 13 and represent the training
time complexity compare to baselines (when the number of IE is equal to 0).

K QUALITATIVE ANALYSIS

We represent more qualitative analysis with all datasets in Fig 7-11.

L ADDITIONAL INDUCTIVE BIAS

There are several inductive biases to learning unsupervised disentanglement,
such as group theory based and sequential order. In this section, we briefly
discuss sequential order inductive bias even though its method is considered in different domains
such as text and video frames. To individualize the static (time-invariant) and dynamic (time-
variant), Li & Mandt (2018); Bai et al. (2021) proposed the latent variables one (f ) is only de-
pendent on the given times series datasets x1:T , and the other (z1:T ) is dependent on the x1:T and
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Figure 7: Qualitative analysis result of β-VAE and MIET-β-VAE. As shown in the figure, β-VAE
struggles with rotation and scale factors in 4thdimension. Also, it struggles with x-position and scale
factors in 8th dimension, and x-position and rotation factors in 9th dimension. However, MIET-β-
VAE only struggles with rotation and shape factors in 5th dimension.

Figure 8: Qualitative analysis result of CLG-VAE (0.2) and MIET-CLG-VAE (0.2) with dSprites.
As shown in the results, CLG-VAE struggles with rotation and shape factors in 2nd dimension, and
shape and scale factors in 7th dimension. However, MIET-CLG-VAE separates rotation and shape
factors in 10th, and 1st dimensions respectively.

f . Moreover Bai et al. (2021) propose the novel ELBO with maximizing mutual information be-
tween the input and the latent vectors. These works empirically show that sequential order which
includes separated latent vectors improves unsupervised disentanglement learning with diverse qual-
itative analysis. Differently in group theory based approaches, the proposed methods consider the
equivariant function between the input and latent vector space.
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Figure 9: The Shape is object shape, Orien is an orientation of object, Scale is a scale factor of
object, Wall is wall color factor, Floor is floor color, and Object is object color factors. As shown
in the results, beta-VAE struggles with all factors, and only the object color factor is divided in
6th dimension. However, this factor is still activated with scale factor in 3rd dimension. Although
MIET-β-VAE struggles with reconstruction, it is less struggle with than β-VAE.

Figure 10: Shape is object shape, Orien is an orientation of object, Scale is scale factor of object,
Wall is wall color factor, Floor is floor color, and Object is object color factor. As shown in the
result, CLG-VAE struggles with shape and wall color factors in 4th dimension, and shape and object
color factors in 7th dimension. In particular, it struggles with tree factors in 9th dimension. On the
other hand, MIET-CLG-VAE separates shape, wall, and object color factors.

Figure 11: 3D Cars: On the left side is the β-TCVAE result, and it struggles with body, and azimuth
factors shown in the 7th row. However, MIET-β-TCVAE separates azimuth (6th row) and body
(1st row). In particular, MIET-β-TCVAE learns color factor (3rd row) which does not exist on β-
TCVAE.
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