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ABSTRACT

Multi-dataset training is a key strategy for improving the versatility and robustness
of deep models, but its effectiveness is often hindered by unaligned and contra-
dictory dataset taxonomies. These inconsistencies introduce training noise and
prevent effective knowledge sharing. To address this, we propose SLAMDUNKS,
a framework for simultaneous multi-dataset training and label alignment. Its core
is a shared feature extractor trained with two competing heads: a gating head that
determines which dataset-specific classes should be shared, and a classification
head that maps samples to the emerging shared taxonomy. To rigorously eval-
uate alignment quality, we introduce a synthetic benchmark where ground-truth
relations are modeled as bipartite graphs. Our method demonstrates remarkable
precision, perfectly recovering the true taxonomy (a Graph Edit Distance of 0)
for same-domain datasets. Across more challenging cross-domain pairs, SLAM-
DUNKS achieves an Average Precision of 0.8, outperforming the state-of-the-art
by 0.1 to 0.2 and validating its superior alignment capabilities.

1 INTRODUCTION

Machine learning has driven remarkable progress in domains such as natural language processing
DeepSeek-All (2025), medicine |Schmidt et al.| (2024), and climate science Eyring et al.| (2024). A
key driver of this success is labeled data, which connects raw samples to meaningful applications.
However, even within the same domain, datasets often reflect different labeling perspectives. For
example, an animal can be classified by species, diet, or reproductive strategy. A platypus may there-
fore be grouped with mammals (e.g., lions), carnivores (e.g., venus flytraps), or egg-laying species
(e.g., birds). This diversity produces specialized datasets with overlapping content that could, in
principle, be combined for better training Zhou et al.[(2022); [Bevandic et al.|(2024). Yet combining
datasets requires mapping samples into a common taxonomy, a process that is rarely straightfor-
ward: labeling policies may be inherited Kreso et al.| (2018]), redesigned |[Lambert et al.| (2020), or
left ambiguous, and automation remains difficult.

Vision—language models offer partial solutions by aligning classes through names or descriptions
Li et al|(2022), or dynamically relabeling into new taxonomies with foundation models |Sun et al.
(2025)). However, these approaches often require human intervention or rely on manually defined
taxonomies, and purely language-based alignment is prone to inconsistencies. For example, in
COCO [Lin et al| (2014), tie is a separate class, while in ADE20K [Zhou et al.| (2017) it belongs
to person [Bevandi¢ & Segvid| (2022). Both datasets also include carpet and floor, but differ in how
carpeted floors are annotated |Uijlings et al.| (2022). Even recent open-vocabulary methods employ
ad hoc class renamings (Ghiasi et al.| (2022); |Xu et al.| (2023)), which may improve performance but
are rarely systematic or sufficiently discussed. Such inconsistencies undermine rigorous evaluation
by obscuring the semantic relation between training and test data.

Language can nonetheless provide a useful signal for discovering class relations, but models must
also observe dataset samples directly. Prior work shows that unified taxonomies can be constructed
if class mappings are known Bevandi¢ et al.| (2022)), or recovered when relationships are specified
Bevandi¢ & Segvid| (2022). We consider two classes related if they share at least one underlying
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Figure 1: Overview of our proposed approach. Given a dataset pair, we start from the assumption
that all the classes may be related to each other or to an additional rest of the world class. Our model
has two competing heads on top of a shared feature extractor. Our custom loss results in a model
which finds the correct semantic relations and is able to reason into a recovered shared taxonomy.

concept—for instance, mammals and egg-laying species are linked by the platypus, and the shared
concept of an egg-laying mammal can itself be treated as a standalone class.

We propose SLAMDUNKS (Synchronising Labels Across Multiple Datasets for UNinterrupted
Knowledge Sharing), a model that simultaneously discovers semantic relations and trains a classi-
fier in the unified taxonomy. Starting with two datasets with only dataset-specific labels, we assume
each class may relate to any class in the other dataset or remain standalone. Each potential relation
defines a candidate in the universal taxonomy, establishing an upper bound on trainable categories.
Training proceeds over all candidates, and only valid concepts remain active. The resulting model
classifies samples into the unified taxonomy while revealing class relations (Figure|[T).

Evaluating such methods is equally important. Standard metrics based on single-dataset perfor-
mance [Lambert et al.| (2020); Bevandi¢ & gegvié (2022) can be misleading, as improvements may
simply reflect model capacity rather than genuine alignment Rong et al.| (2024). To address this, we
propose an evaluation framework with controlled ground-truth relations. By constructing custom
taxonomies from existing datasets, we test alignment quality directly. We measure relation discov-
ery with average precision (AP) and graph edit distance (GED), and report accuracy on the unified
taxonomy to assess multi-dataset training.

Our contributions are as follows:

* We formalize relation discovery as a standalone task, introducing synthetic dataset collec-
tions with controllable ground-truth relations and evaluation via AP and GED.

* We present SLAMDUNKS, a model that simultaneously aligns taxonomies and trains clas-
sifiers across datasets.

* We validate SLAMDUNKS extensively, showing that it outperforms existing methods and
uniquely handles standalone classes.

2 RELATED WORK

We discuss the two tasks performed by SLAMDUNKS: multi-dataset training and semantic relation
discorvery in dataset collections.

2.1 MULTI-DATASET TRAINING

Multi-dataset training continues to be a powerful paradigm for improving generalization and mitigat-
ing dataset-specific biases. Initial strategies either used dataset-specific prediction heads on shared
backbones Kalluri et al.|(2019), or merged datasets without resolving label inconsistencies Masaki
et al.| (2021). Subsequent refinement introduced cross-logit interaction [Fourure et al.| (2017) and
open-set recognition techniques to detect unknown or novel classes (Chan et al.| (2021)); Biase et al.
(2021);|[Uhlemeyer et al.[(2022), treating non-primary datasets as anomaly or negative domains Tian
et al.[|(2021)).
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Label taxonomy alignment has also evolved. Approaches using hierarchical structures [Liang et al.
(2018)); Meletis & Dubbelman| (2018) often required complex pipelines, while manual relabeling
collapsed labels at the expense of specificity [Lambert et al. (2020); Zendel et al.[(2022). A more
scalable approach constructs a universal taxonomy, representing dataset-specific labels as unions
of universal classes—supporting consistent multi-dataset training without altering annotations Be-
vandiC et al.| (2024)); |Cour et al.|(2011).

Recent works have further advanced the field: DaTaSeg |Gu et al.| (2023) and LMSeg [Zhou et al.
(2023)) leverage modular architectures and language-driven objectives for cross-dataset alignment.
LMSeg, in particular, employs textual supervision (e.g., CLIP) to link heterogeneous annotations
dynamically. HTTS [Meletis & Dubbelman| (2023)) integrates a taxonomy-aware transformer archi-
tecture, exploiting hierarchical label priors via network design. MultiTalent (Ulrich et al.| (2023))
demonstrates improved results by co-training across varied medical segmentation datasets. TMT-
VIS |Zheng et al.| (2023) applies taxonomy-aware joint training within video instance segmentation.
Plain-Det |Shi et al.| (2024)) delivers competitive performance through architectural simplicity and
carefully designed multi-dataset training strategies.

2.2 AUTOMATED CROSS-DATASET CLASS RELATION DISCOVERY

Manual label alignment becomes increasingly impractical at scale. Semantic text embeddings (e.g.,
CLIP-based) offer automation |Li1 et al.| (2022); Yin et al. (2022), but are unreliable due to label
ambiguity |Uijlings et al.|(2022). Visual cues, in contrast, often yield more accurate alignments.

One line of work uses post-hoc optimization (e.g., linear programming) on output logits to match
classes, yet these methods assume one-to-one class correspondence and fail to handle hierarchi-
cal relations—leading to competition and reduced performance |Zhou et al.| (2022); |Bevandic et al.
(2022).

Newer, more flexible approaches include: DynAlign |Sun et al.| (2025) performs dynamic, unsuper-
vised alignment during training using foundation model priors—allowing detection of fine-grained
and overlapping categories via joint optimization HTTS |Meletis & Dubbelman|(2023) enforces hier-
archical consistency through its taxonomy-aware transformer architecture. AutoUniSeg Rong et al.
(2024) employs graph neural networks to infer cross-dataset class relations by jointly considering
semantic and visual feature spaces. RESI|Zhangli et al. (2024) targets inconsistencies in label se-
mantics through structured, task-specific label alignment.

Variants of language-vision approaches continue to emerge. LMSeg |Zhou et al.| (2023) integrates
text-based label representations into training, replacing hard labels with text-guided supervision and
enabling seamless adaptation across datasets and tasks.

Our work differentiates itself by embedding taxonomy discovery directly into the training loop,
jointly optimizing segmentation performance and label alignment within a universal taxonomy. This
unified, data-driven process supports taxonomic overlap, label granularity variation, and semantic
inconsistency—without relying on manual mappings or fixed label embeddings.

3 METHOD

We introduce SLAMDUNKS, a model designed for simultaneous multi-dataset training and se-
mantic relation discovery between class taxonomies. The key idea is to embed the discovery of
cross-dataset relations directly into the training loop. After training, the model can classify objects
according to the induced universal taxonomy, without requiring any additional post-processing or
manual label mappings.

3.1 PRELIMINARIES

We assume that two classes are related if they share at least one common visual concept. For
example, the classes Vistas-car and ADE-van are related because both include pickup trucks.

We represent such inter-dataset class relations in two equivalent ways:



Under review as a conference paper at ICLR 2026

Gating head
o logits z " probsC Non
standalone prediction ¢ sigmoid cosperation
]
B Feature
H extractor Classification head
5]
] Universal classes u = {s, d}
- shared classes s logits Ls probs S
E j o0 D non-shared classes d } logits Ld sofimex probs D chotee
(a) Relations representations (b) Model

Figure 2: Method

1. Bipartite Graph. Vertices correspond to dataset-specific classes, and we introduce an ad-
ditional dummy vertex for each dataset to represent the rest of the world (RoW)—concepts
outside the given taxonomy. Edges connect related classes. If a class has no valid relation
to the other dataset, it connects to its dataset’s RoW vertex, marking it as a standalone
class.

2. Universal Class Decomposition. Alternatively, we can define a set of primitive visual
concepts (universal classes) that appear across datasets, and express dataset-specific classes
as unions of these universal classes. The two views are interchangeable, since each bipartite
edge encodes a potential universal class.

When relating two datasets D; and D, we make no assumptions about prior alignments. Initially,
any class in D; may be related to any class in Ds—including the dummy RoW class. Multiple
relations per class are permitted, except for RoW connections, which indicate that the class is entirely
standalone. This setup defines an upper bound on the number of recoverable universal classes:

(ID1] + 1)(|D2| + 1) — 1.

Figure [2a) illustrates this framework. Green edges denote potential inter-class relations, red edges
connect classes to the RoW vertex (standalone classes), and purple gates indicate the model’s choice
between shared and standalone assignments. The bipartite graph can also be represented as a matrix
of universal classes, where each dataset-specific class corresponds to a union of rows or columns in
the matrix.

3.2 SLAMDUNKS

Our model builds on a shared feature extractor with two task-specific heads that jointly determine
class relations and classify samples in the universal taxonomy.

Gating Head. The first head produces | D1 |+ | D2| logits, denoted by z, with a sigmoid applied to
each. This head can be interpreted as a collection of binary classifiers, one per dataset-specific class,
that predicts whether the class is shared with the other dataset or standalone. These predictions
correspond to the purple gates in Figure [2a]

1
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Classification Head. The second head outputs (|D1| 4+ 1)(|D2| + 1) — 1 logits, followed by a
softmax. This head assigns each sample to one of the universal classes, covering all theoretically
possible relations. Specifically: - |D;||Ds] logits I represent all candidate shared classes, and -
|D1| + | D3| logits 4 represent all possible standalone classes.
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3.3 TRAINING OBJECTIVE

The two heads of SLAMDUNKS interact to define the posterior probability of each dataset-specific
class. Intuitively, the cooperation (gating) head decides whether a class is shared or standalone,
while the classification head provides the distribution over all candidate universal classes.

Shared classes. If a dataset-specific class y is shared, its posterior probability equals the product
of (i) the probability that it is not standalone, and (ii) the probability mass assigned to the set of
related universal classes:

PY=yl|zs) =P(Cy,=0]x) Z P(S=5"|). 4)

s'ems, (y)

Standalone classes. If y is not shared, the posterior is given by the product of (i) the probability
that it is standalone, and (ii) the probability of its associated standalone universal class:

PY =y|z,ns)=P(Cy=1|2)P(D=dy,| ). )
The two remaining combinations of outputs are invalid and ignored.

Total posterior. The overall posterior probability of class y is obtained by summing the two valid
cases:

PY=y|z)=P(Cy=0]2) Z P(S=¢|2)+P(Cy=1|2)P(D=d,|z). (6

s’ems, (v)

Expanding this expression highlights the role of the cooperation logits z:

ZS'ETYLsd(y) exp(ly — zy) + exp(lg,)
(1 + exp(—zy)) (Zses exp(ls) + ZdeD eXp(ld)) '

P(Y =y |a) = )

This formulation shows that z, dampens shared logits [ whenever the model favors a standalone
interpretation, allowing the standalone logit /4, to dominate. Without this mechanism, standalone
logits would not be learnable, as they always co-occur with shared ones—an issue observed in
weakly supervised settings |Cour et al.|(2011); Bevandic et al.|(2024).

Loss function. We train SLAMDUNKS by minimizing the negative log-likelihood of the dataset-
specific posterior, augmented with a bias toward the standalone prediction:

L(z,y|ms,)=—-IPY =y|z)—-AInP(C, =1]z). (8)

This objective creates a competition between the two heads: the cooperation head pushes classes
toward standalone assignments, while the classification head pulls them toward shared relations
when evidence supports it. If two classes are easily distinguishable, the bias toward standalone
wins; if they are visually similar, the classification head overrides this bias to link them.

Inference. At test time, we discard the cooperation head and use only the classification head to
predict labels in the universal taxonomy.

4 EXPERIMENTS

We evaluate SLAMDUNKS on the task of semantic relation discovery across datasets. To this end,
we describe our experimental setup, the construction of synthetic dataset collections, evaluation
metrics, baselines, and implementation details.
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4.1 EXPERIMENTAL SETUP

Most prior work has concentrated on semantic segmentation benchmarks. While realistic, these
require very large models and long training cycles, making systematic evaluation difficult. To enable
controlled and reproducible experiments, we instead focus on the image classification setting.

Specifically, we create synthetic dataset collections by splitting and re-labeling existing classifica-
tion datasets. This approach has two advantages: (i) it allows us to define ground-truth relations
between classes explicitly, and (ii) it provides a corresponding universal taxonomy against which
recovered relations can be validated.

With ground truth available, we can move beyond the common—but potentially misleading—metric
of per-dataset accuracy. Instead, we directly evaluate (i) the correctness of extracted relations and (ii)
performance in the unified label space, which better reflects the objectives of multi-dataset training.

4.2 DATASETS

We create 5 synthetic dataset pairs with MNIST |Deng| (2012), CIFAR-10 |[Krizhevsky| (2009) and
SVHN Netzer et al.|(2011). All of these datasets have 10 classes in the original label space. For four
of the five pairs we create two custom taxonomies by merging some classes and omitting others. We
present the two splits by listing the concepts represented by their indices in the original label space.
Dataset 1 has six classes: {0}, {1, 2}, {3}, {4}, {5, 6, 7} and {8}. Dataset 2 has eight classes: {1},
{2, 3}, {4}, {5}, {6}, {7}, {8}, {9}. These splits cover all interesting scenarios between classes:
equality between classes, subset-superset relation, overlapping classes and not related classes. We
denote the custom taxonomy with the extension ”-C” in the pairs name

MNIST-C and CIFAR-C are made by splitting MNIST and CIFAR10 into two subsets of equal size.
These datasets represent the simplest experimental setting, as the dataset pairs share the domain.

MNIST-SVHN uses MNIST and SVHN as the dataset pair. These datasets share a taxonomy (dig-
its), which means that the only relation that exists between classes is equality. Still, this setup is
challenging, as there is a significant domain shift between the two datasets.

Finally, MNIST-SVHN-C and SVHN-MNIST-C apply the custom taxonomies to MNIST and
SVHN, where the ordering indicates which dataset has taxonomy 1, and which taxonomy 2. This
experimental setup is the most challenging as there is both a domain shift and complex relations
between classes

4.3 METRICS

A common way to evaluate multi-dataset training is to report performance on each individual dataset.
However, this can be misleading: a large model may simply memorize and separate datasets without
truly sharing knowledge or discovering meaningful relations.

Since our synthetic dataset collections provide ground-truth relations and a known universal taxon-
omy, we evaluate relation discovery directly as a standalone task, alongside classification perfor-
mance in the shared label space.

Relation discovery as classification. As described in Subsection inter-dataset relations can
be represented as a bipartite graph connecting classes across datasets. The total number of candidate
relations is (| D1|+1)(|D2|+1)—1. Thus, relation discovery can be viewed as a binary classification
problem, where the model must decide whether each potential relation is valid. If a method outputs
continuous confidence scores for relations, we measure performance using Average Precision (AP),
which evaluates the precision—recall tradeoff without requiring a threshold.

Graph-based evaluation. If a method instead outputs a discrete set of relations, we compare
the resulting bipartite graph to the ground truth using Graph Edit Distance (GED). We count the
number of edge additions and deletions required to transform the predicted graph into the true one.
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Method MNIST-C CIFAR-10-C ~ MNIST-SVHN MNIST-SVHN-C SVHN-MNIST-C
AP AP AP AP AP
Missing link 0.8 £0.0 0.8 £0.0 0.6 £0.1 0.6 £0.1 05+0.1
SLAMDUNKS 1.0£0.0 1.0£0.0 1.0+ 0.0 0.7+£0.1 0.7+£0.1
Method MNIST-C CIFAR-10-C ~ MNIST-SVHN  MNIST-SVHN-C SVHN-MNIST-C
GED GED GED GED GED

AUT 54+£1.0 42+04 46+78 62+4.0 70+£27
SLAMDUNKS 0.0£0.0 04+0.8 40+£22 88£13 144 £26

Table 1: Quantitative results of relation discovery on custom classification dataset pairs. We measure
average precision in the top part of the table to compare our approach to Missing link, and graph
edit distance to compare our approach to Automatic Universal Taxonomies.

Classification accuracy. Finally, because SLAMDUNKS simultaneously learns to classify sam-
ples into the universal taxonomy, we also report accuracy in the shared label space. This provides
an additional measure of how well the recovered relations support effective multi-dataset training.

4.4 BASELINES

We compare SLAMDUNKS against two existing approaches, adapted from semantic segmentation
to the image classification setting: (i) Missing Link Uijlings et al.| (2022), and (ii) Automatic
Universal Taxonomies (AUT) Bevandi¢ & Segvic|(2022).

Missing Link. This method trains a model on dataset A and applies it to dataset B to estimate
correlations between predictions and ground-truth labels. We extend the approach to open-set recog-
nition by using max-softmax to detect outliers. Repeating this procedure in both directions yields
two correlation matrices, which can be interpreted as weighted bipartite graphs. The final graph is
obtained by merging edges and taking the larger of the two weights. Since this method does not
output a conclusive relation graph, we evaluate it using Average Precision (AP) only.

Automatic Universal Taxonomies (AUT). AUT trains a model whose output label space is
formed by concatenating the classes from both datasets. Two co-occurrence matrices are then com-
puted, one for dataset A and one for dataset B. We adapt the approach to include open-set prediction
via max-softmax. Only the strongest connections are retained, followed by pruning of contradictory
edges that degrade individual dataset performance. Because this method outputs only a discrete set
of accepted relations, we evaluate it using Graph Edit Distance (GED).

4.5 IMPLEMENTATION DETAILS

We use a ResNet-18 backbone |He et al.[ (2016) initialized with ImageNet pretraining. Each head
consists of a single linear layer with weights and biases initialized to zero. Training is performed
with mini-batches corresponding to 0.5% of the training set (but never fewer than 10 samples). Each
batch is balanced to contain an equal number of samples from both datasets. To further stabilize
training, we applied weighted sampling that favors rarer classes within each dataset. For MNIST
and CIFAR experiments, we train for 5 epochs with a learning rate of 1 x 10~* with Adam optimizer.
For MNIST-SVHN experiments, we train for 20 epochs with a learning rate of 5 x 10~* and resize
the images to 32 x 32 pixels. We do not apply weight decay. The coefficient A in Equation [§] is
selected via a simple linear search in [0, 1]. All reported results are the mean and variance over five
independent runs. Experiments are conducted on a single NVIDIA GTX 1080 GPU.

5 RESULTS

We organize our results into three parts. First, we evaluate the relation discovery ability of SLAM-
DUNKS by comparing it with baseline methods. Second, we present ablation studies that assess
the impact of key design choices. Finally, we analyze the feature spaces learned by different multi-
dataset training methods.
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pretrain zero weighted MNIST-C CIFAR-10-C MNIST-SVHN
init  sampling AP GED AP GED AP GED
0.6+02 7.6+£43 03+0.1 134+27 0.1 +£0.0 26.6+2.1
v 04+0.1 114+38 03+0.1 12.8+32 0.1£00 28.8+2.0
v 08+00 4.0=£0.0 0.8+0.1 6.0+£0.0 06+02 16.6+3.1
v v 1.0£00 0.0+0.0 08+02 20+24 0.8+£0.1 11.0+3.0
v 0.7+£0.1 56+£27 0.6£0.3 10.0%6.1 02+0.1 258421
v v 05+02 108+2.8 02£0.1 16.6+22 0.1 £0.1 28.8+2.1
v v 07+01 40+£00 0700 6.0+£0.0 0.6+02 122+6.0
v v v 1.0+00 0.0+00 1.0+00 04+£08 1.0£00 40+22

Table 2: Quantitative results on custom classification dataset pairs

5.1 RELATION RECOVERY

Our first set of experiments compares the proposed SLAMDUNKS with two baselines: (i) Missing
Link Uijlings et al.| (2022)), and (ii) Automatic Universal Taxonomies Bevandi¢ & Segvi¢|(2022).

For Missing Link, we report only AP, since producing a conclusive relation graph would require
thresholding its outputs. For AUT, we report only GED, as the method does not yield confidence
scores for relations. Table [ll summarizes the results.

SLAMDUNKS clearly outperforms Missing Link across all dataset pairs. Missing Link relies on
training two separate models, each of which tends to overfit to its respective dataset. This limits
cross-dataset generalization and produces inferior correlation matrices for relation discovery.

On same-domain dataset pairs, SLAMDUNKS also surpasses AUT. AUT frequently introduces spu-
rious relations for outlier classes, despite having a pruning step to mitigate them. On cross-domain
dataset pairs, results are more mixed: while AUT continues to suffer from spurious connections,
SLAMDUNKS sometimes separates classes that should be connected. This behavior stems from
the gating head, which more readily favors standalone assignments under domain shift.

5.2 ABLATION STUDIES

We next investigate how different design choices affect the performance of SLAMDUNKS. Our
analysis covers initialization strategies, sampling, pretraining, parameter A, and dataset size.

Two considerations are particularly important: (i) initializing the weights and biases of both heads
to zero, and (ii) applying weighted sampling across classes. Zero initialization avoids unintended
bias at the start of training: in the classification head, all potential relations are equally likely, and in
the gating head, each class is equally likely to be shared or standalone. Weighted sampling reduces
the natural tendency of the gating head to default to predicting frequent classes as standalone.

We also study the effect of initializing the backbone with pretrained ImageNet features. Pretraining
provides limited benefit on its own, but it improves performance when combined with zero ini-
tialization and weighted sampling. This suggests that pretrained features alone do not capture the
semantics required for aligning heterogeneous datasets.

Our approach combines two losses [§| and balanced by the parameter A. Figure [3| shows the effect
of varying A in terms of AP, GED, and classification accuracy. For same-domain datasets, higher
values of A yield the best results, as strong visual similarity makes it easy for the model to connect
classes. For cross-domain datasets, lower A performs better, as domain shift makes it easier for the

(a) Average precision (b) Graph edit distance (c) Accuracy on correct taxonomy

Figure 3: Impact of lambda on taxonomy construction quality
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Figure 5: Visualization of feature spaces for SVHN and MNIST sammple embeddings for different
models

gating head to treat each class as standalone. Interestingly, classification accuracy does not always
correspond to GED, indicating incorrect relations may affect relatively few samples in practice.

Finally, we analyze how dataset size influences performance (Figure ). Larger datasets consis-
tently improve relation discovery, but even with only 25% of the training data, the model already
achieves strong results. This suggests that reliable relation discovery can be obtained using subsets
of available data, offering a path toward more efficient training.

5.3 MULTI-DATASET TRAINING

We next analyze how different training strategies affect the latent space learned by the feature extrac-
tor. We compare SLAMDUNKS against: (i) a pretrained model, (ii) training with dataset-specific

heads [Kalluri et al| (2019), and (iii) the NLL+ loss [Bevandi¢ et al.| (2024). All experiments are

conducted on MNIST and SVHN, and the resulting feature spaces are visualized in Figure 3}

Using a pretrained ResNet-18 backbone without further adaptation produces feature spaces that
clearly separate MNIST from SVHN, with no semantic alignment between related classes. Train-
ing with NLL+ in the known universal label space achieves stronger alignment: universal classes
are cleanly separated, and samples from both datasets are well mixed within each class. Our ap-
proach seems to further improve representation quality. It aligns semantically related classes across
datasets, while at the same time preserving a distinction between domains. This demonstrates that
SLAMDUNKS simultaneously supports cross-dataset semantic consistency and domain awareness.

6 CONCLUSION

We addressed multi-dataset training and relation discovery in settings where datasets share concepts
but have unaligned taxonomies. Our proposed SLAMDUNKS learns both classification and class
relations through two competing heads on a shared backbone: one predicting whether classes are
standalone, and the other mapping samples into a universal taxonomy. This design enables discovery
of shared concepts while preserving standalone categories.

Using synthetic dataset pairs with controllable ground-truth relations, we showed that our method
outperforms prior approaches, particularly in handling standalone classes, and yields more informa-
tive feature spaces. Future work will extend this framework to more complex tasks.
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