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Abstract. Accurate segmentation of cancer lesions in whole-body CT
scans is essential for diagnosis and treatment planning. However, this
task is challenging due to the diversity of lesion appearances and sizes,
as well as the prevalence of partially labeled datasets. To address these
challenges, Task 1 of the FLARE 2024 challenge was launched to encour-
age researchers to develop algorithms capable of generalized pan-cancer
segmentation from a large, partially labeled dataset. In this paper, we
describe our contribution to this challenge, utilizing nnU-Net with large
batch size training and inference optimizations for efficient segmentation.
Our best method achieved an average Dice Similarity Coefficient (DSC)
of 15.6% and an average Normalized Surface Dice (NSD) of 17.3% on the
validation set, with a mean inference time of 71.8 seconds and an area
under the VRAM-time curve of 427,572 MB. Our second-best method
achieved an average DSC of 13.5% and an average NSD of 13.8%, with a
mean inference time of 44.9 seconds and an area under the VRAM-time
curve of 224,872 MB. These results highlight the significant challenges
inherent in pan-cancer lesion segmentation from partially labeled data
under resource constraints, and underscore the need for further research
in this area.
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1 Introduction

Accurate organ and lesion segmentation in medical imaging is crucial to improve
diagnostic accuracy, treatment planning, and monitoring the progression of dis-
eases. Recent segmentation challenges in medical imaging have driven significant
advancements in algorithm development, particularly for abdominal cancer seg-
mentation; however, whole-body cancer segmentation presents unique challenges
due to the wide variety of cancer types, lesion sizes, and anatomical regions in
3D CT scans.

Task 1 of the FLARE 2024 challenge builds on these developments, focus-
ing on pan-cancer segmentation of primary as well as metastatic lesions. The
provided dataset spans over 10,000 CT scans; approximately half of these have
annotations for primary tumors only, while the rest have no annotations. The
difficulty in this task mainly arises from handling missing labels in the partially
labeled and unlabeled data splits, as well as the diversity of lesion appearance
across different organs and cancer types.

Moreover, strict constraints on inference VRAM usage and time limit the pos-
sible network architectures, forcing careful trade-offs among model complexity,
ensembling strategies, and test-time augmentations. This necessitates efficient
models that can achieve high segmentation accuracy while remaining within
resource limitations.

Learning from partially labeled data is an active area of research. A recent
publication [7] approached this problem by introducing a partial loss formu-
lation, which includes an ignore class for unlabeled parts of the image. This
allows easy integration into state-of-the-art segmentation frameworks like nnU-
Net [12]. However, this method requires partial labels for all classes—not only
the foreground class—and is therefore not directly suitable in this setting.

Another promising strategy for handling missing labels is pseudo-label gen-
eration, which creates inferred labels for unlabeled data points based on the
model’s current predictions. This technique has been widely adopted in semi-
supervised learning tasks, particularly for large unlabeled datasets. Notably,
it was successfully implemented by the winners of the 2022 FLARE challenge
[11,18], who employed pseudo-labeling to maximize performance on unlabeled
datasets. The same method could be applied in this challenge to “fill in” missing
labels in partially annotated scans.

This manuscript describes our approach for whole-body pan-cancer lesion
segmentation from partially labeled training data in Task 1 of the FLARE 2024
challenge. We employ nnU-Net [12] with modifications for more efficient inference
to adhere to VRAM and time constraints. Instead of specialized methods for
handling partially labeled data during training, we rely on nnU-Net’s foreground
oversampling and a large batch size during training to effectively learn from the
partial labels. We do not utilize the unlabeled subset for method development
or training.
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2 Method

Our contribution builds upon the state-of-the-art nnU-Net framework [12]. Due
to the time and memory constraints imposed during inference, we cannot make
use of the new ResEncL configuration [13] and even the smaller ResEncM con-
figuration, similar in size to the default U-Net configuration, does not reliably
adhere to the time limit. We therefore use the default nnU-Net configuration
and only increase the batch size during training to account for the large dataset
size and the difficulty of the task.

2.1 Proposed Method

Preprocessing All images are resampled to the median spacing of [Imm, 0.8mm, 0.8mm)
and normalized according to nnU-Net’s CT-Normalization, i.e. intensity clipping
to [—900, 619] followed by subtracting —52.2 and dividing by 268.8.

Training: nnU-Net generates a default configuration with a patch size of 96 x160x 160,
a batch size of 2, and a U-Net with 6 resolution stages. We use this default con-
figuration but increase the batch size to 4 and 8 for two respective trainings.

This larger batch size helps reduce false positive predictions and should make

the training more stable against missing annotations in the partially labeled
dataset. Figure 1 shows a schematic overview of the generated network archite-

ture.

Inference: nnU-Net’s inference pipeline is not optimized for single image infer-
ence as required in this challenge. We therefore make several small adjustments
to the default pipeline to minimize resource usage and prediction time. First, we
disable all test time augmentations, and calculate the argmax directly on the raw
logits instead of the softmax probabilities. Second, we swap the default skim-
age-based resampling function for the much faster torch resampling, significantly
speeding up segmentation export in exchange for a slight loss in performance.

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset was cu-
rated from more than 50 medical centers under license permissions, including
datasets such as TCIA [3], LiTS [2], MSD [23], KiTS [8,10,9], autoPET [6,5], To-
talSegmentator [24], AbdomenCT-1K [20], FLARE 2023 [19], DeepLesion [26],
COVID-19-CT-Seg-Benchmark [17], COVID-19-20 [22], CHOS [14], LNDB [21],
and LIDC [1]. The training set includes 4000 abdomen CT scans where 2200 CT
scans have partial labels and 1800 CT have no labels. The validation and testing
sets include 100 and 400 CT scans, respectively, which cover various abdominal
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Fig. 1. Schematic network architecture of the U-Net created by nnU-Net’s default
configuration.
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cancer types, such as liver cancer, kidney cancer, pancreas cancer, colon cancer,
gastric cancer, and so on. The lesion annotation process used ITK-SNAP [27],
nnU-Net [12], MedSAM [15], and Slicer Plugins [4,16].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the VRAM-time curve. These metrics
collectively contribute to the ranking computation. Furthermore, the running
time and VRAM consumption are considered within tolerances of 45 seconds
and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04

CPU AMD Ryzen 9 3900X processor

RAM 64GB DDR4-3600 RAM

GPU (number and type) One NVIDIA RTX3090 GPU with 24GB VRAM
CUDA version 12.1

Programming language Python 3.11
Deep learning framework torch 2.4.0

Training protocols We train our models only on the partially labeled subset
of the provided dataset, treating the partial labels as full labels. We rely on
the large patch size and foreground oversampling to stabilize the training de-
spite potentially conflicting signals. We use the default nnU-Net pipeline of data
augmentations, consisting of spatial - i.e. rotations, mirroring - and intensity
transformations, without further modifications. The final models were selected
by expected inference times and performance on the public validation set. As
all models predicted a significant amount of false positives on healthy patients,
we neglect these for model selection and rely solely on best performance on
pathological cases.

3.3 Test Set Submission

Task 1 of the FLARE challenge allowed for two submissions to the final test
set. We therefore submitted a single model trained with a batch size of 8, which
showed decent performance and efficiency on the public validation set (see Tables
3, 4). The second submission is an ensemble of two models trained with batch size
4 and 8, respectively. This provides better performance on the public validation
set, but also increases inference time significantly (see Tables 3, 5).
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Table 2. Training protocols.

Network initialization random

Batch size 4/8

Patch size 96x160x160

Total epochs 1000

Optimizer SGD

Initial learning rate (Ir) le-2

Lr decay schedule PolyLR Scheduler

Loss function Soft Dice loss + Cross Entropy loss

Number of model parameters 101.94M

4 Results and Discussion

4.1 Quantitative results on validation set

The results of the two methods submitted to the final test set on the public
validation set are shown in Table 3. The ensemble of models trained with batch
sizes of 4 and 8, respectively, improves by more than 2 dice points and 3.5 points
in NSD upon the single model submission. Both submissions especially struggle
on the LNDB cases in the public validation set with many false positive and
false negative predictions, affecting the performance. This is also evident in the
qualitative results presented in Section 4.2.

Table 3. Quantitative evaluation results of the two submitted methods on the public
validation set. Results are further split into the two subsets, consisting of the FLARE
part and the LNDB part.

Public Validation Public Validation FLARE|Public Validation LNDB

Methods—5 o (%) NSD (%) | DSC (%) NSD (%) | DSC (%) NSD (%)

BS8 |13.5+£24.7 13.8+21.4|39.7+35.2 29.7£26.5 | 7.8+17.1 10.3+184

BS 4+8(15.6 £ 25.7 17.3 + 22.9|40.8 £ 35.1 30.5+26.3 (10.1 +£19.1 14.5 +21.0

4.2 Qualitative results on validation set

Figure 2 shows qualitative results of the submitted methods on four cases from
the public validation set. The methods generally perform well on lesions in the
abdominal region and sometimes on lung lesions. However, they are generally
prone to errors on lung scans, predicting both false positives and false negatives
in the majority of cases.
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Image Ground Truth Prediction Ablation

FLARE 0007 - 76 LNDb 0067 - 183 FLARE 0053 - 28

LNDb 0270 - 239

Fig. 2. Qualitative results of the two submitted methods on four example cases. Pre-
diction denotes the prediction from the ensembled models, Ablation the single model
prediction). The upper two rows show cases, where the models perform well, the lower
down rows show examples of false positive and false negative predictions, respectively.
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4.3 Segmentation efficiency results on validation set

Tables 4 and 5 show running time and VRAM utilization of both submissions
on 8 selected cases from the public validation set. The single model submission
exceeds the time limit only on one particularly large case, while the ensemble
submission exceeds the limit on 6 out of the 8 cases. Despite its better perfor-
mance (Table 3), the ensemble method will likely get a worse score on the final
test set due to the penalty for exceeding the time limit.

Table 4. Evaluation of segmentation efficiency of the single model in terms of the
running time and VRAM consumption of the single model submission. Total GPU de-
notes the area under VRAM-Time curve. Evaluation GPU platform: NVIDIA RTX3090
(24G).

Case ID  Image Size Running Time (s) Max GPU (MB) Total GPU (MB)

0001 (512, 512, 55) 23.2 6678 120077
0017 (512, 512, 150) 42.0 6493 227860
0019 (512, 512, 215) 34.5 5762 150141
0029 (512, 512, 554) 73.8 6836 388930
0048 (512, 512, 499) 55.0 6945 257061
0051 (512, 512, 100) 42.8 6227 222682
0063 (512, 512, 448) 47.7 6738 233245
0099 (512, 512, 334) 40.3 6564 198982

Table 5. Evaluation of segmentations efficiency of the ensembled models in terms of
the running them and VRAM consumption of the ensemble model submission. Total
GPU denotes the area under VRAM-Time curve. Evaluation GPU platform: NVIDIA
RTX3090 (24G).

Case ID  Image Size Running Time (s) Max GPU (MB) Total GPU (MB)

0001 (512, 512, 55) 39.0 5553 166657
0017 (512, 512, 150) 71.8 7136 404718
0019 (512, 512, 215) 48.8 6132 249758
0029 (512, 512, 554) 117.8 8894 813064
0048 (512, 512, 499) 81.3 8178 518122
0051 (512, 512, 100) 73.8 8177 507171
0063 (512, 512, 448) 75.7 8269 487778
0099 (512, 512, 334) 65.8 8219 423306

4.4 Results on final testing set

Tables 6 and 7 show the final results for segmentation performance and efficiency
on the test set, respectively. As expected from the results on the validation set,
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Table 6. Segmentation performance on the test set.

DSC (%) NSD (%)
Avgerage Median Avgerage Median
BS 8 |31.94 £ 32.96 18.93 (0.22,62.69)(22.23 4 25.41 13.07 (0.00, 42.32)
BS 4+8|32.62 £ 33.57 18.00 (0.03, 65.28)(23.02 4 26.41 12.22 (0.00, 43.67)

Methods

Table 7. Segmentation efficiency on the test set.

Runtime (s) GPU (GB)
Avgerage Median Avgerage Median
BS 8 [44.71 £17.20 39.25(31.70,57.56)| 92.77 £ 40.24  84.20 (63.77,114.20)
BS 4+8(60.43 £ 19.93 56.20 (45.89, 75.26) [157.07 & 69.90 144.83 (109.31, 183.75)

Methods

performance for the ensemble model improves, but comes at the cost of longer
runtime and higher VRAM consumption.

4.5 Limitation and future work

The main limitation of our work is the treatment of the partially labeled data.
Large batch sizes and foreground oversampling alone do not seem to sufficiently
stabilize the training but lead to subpar performance. Instead, it may make
more sense to generate pseudo-labels based on initial training to retrain on the
combined set of true labels and pseudo-labels. However, this approach introduces
many false positive predictions, especially in regions like the lungs, as observed in
the results sections. Therefore, additional steps would be required to ensure that
the pseudo-labels actually improve performance rather than introducing noise. A
better approach might be to build a genuinely partially labeled dataset that in-
cludes labels for definite background voxels. This could be achieved by exploiting
additional information such as anatomical regions and involving pseudo-labels
with appropriate post-processing.

Another approach to better utilize the partial labels without introducing con-
flicting signals for model training could be pretraining with a promptable model.
We briefly experimented with such an approach, which showed very promising
performance. However, transferring the pretrained weights to a non-promptable
model version, and fine-tuning this model introduces further difficulties beyond
the scope of this challenge. We therefore did not further pursue this idea.

5 Conclusion

In this paper, we addressed the challenge of resource-efficient pan-cancer lesion
segmentation from partially labeled data in the context of Task 1 of the FLARE
2024 challenge. Our approach relied on training a default nnU-Net configuration
with a large batch size to stabilize training. We submitted a method using only a
single model with a batch size of 8 and a method employing an ensemble of two
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models with batch sizes 8 and 4, respectively. The ensembling method increases
performance notably but also leads to a significantly longer inference time, mak-
ing it less competitive in this challenge. Despite the performance improvements
from ensembling, both submissions still struggle with the correct segmentation
of lesions, especially on lung CTs.
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