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Abstract

Foundation models have recently shown strong potential as web agents, capable of
interpreting high-level instructions and interacting with complex web interfaces.
However, existing training paradigms for these agents often rely on predefined task
datasets and curated demonstrations, limiting their scalability, adaptability, and
capacity for self-improvement. In this work, we introduce Self-guided hierArchical
exploration for Generalist wEb agents (SAGE), a new training framework designed
to support autonomous skill acquisition through self-guided hierarchical explo-
ration. Our method introduces a three-tier exploration strategy: a pre-exploration
phase to build structural understanding of web environments, a top-level explo-
ration strategy to generate a self-evolving curriculum of tasks from easy to hard,
and a low-level exploration mechanism that combines planning-based rollouts
with step-wise learning to improve policy efficiency. Together, these components
form a scalable, supervision-free framework for web agent training. Experimental
results on WebVoyager and WebArena demonstrate that our method significantly
outperforms prior approaches, enabling foundation model agents to learn complex
web tasks with greater generalization and robustness. Our project can be found at
https://yanqval.github.io/SAGE/.

1 Introduction

Foundation models have demonstrated impressive generalization across domains such as natural
language processing, code generation, and multimodal reasoning [1–3]. With their strong capabilities
in understanding and generating structured content, foundation models, particularly vision-language
models (VLMs) have recently shown promise as web agents, capable of interpreting high-level
instructions and interacting with visual user interfaces [4, 5]. These agents have the potential to
automate real-world tasks on the web, such as booking tickets, extracting information, and navigating
software systems, without domain-specific engineering or fine-tuning for each application.

Despite this promise, existing approaches to training foundation model web agents face significant
limitations. Most methods rely on static datasets composed of human-authored tasks and curated
expert demonstrations [6–9], which are expensive to collect and fail to capture the long-tail complexity
of real web interactions. Furthermore, these methods often lack mechanisms for continuous self-
improvement, making it difficult for agents to scale their capabilities beyond the data they were
trained on.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://yanqval.github.io/SAGE/


Figure 1: Framework of SAGE. Left: In the pre-exploration phase, the agent automatically collects
structural information from the environment. Middle: In the top-level exploration phase, the task
generator proposes new tasks based on the agent’s performance in the previous iteration. Right: In
the low-level exploration phase, the agent uses MCTS to explore and solve individual tasks efficiently.
We also provided a case study to show SAGE works in Appendix Section F.

To address these challenges, we propose a new training framework for generalist foundation model
web agents that emphasizes self-guided exploration as the core learning principle. Rather than
depending on fixed task templates or expert demonstrations, our framework enables agents to
autonomously explore real-world websites, generate their own instructional goals, and acquire skills
through structured interaction. At the heart of our framework is a three-stage exploration hierarchy
that supports curriculum-driven learning from the ground up.

As illustrated in Figure. 1, we begin with a pre-exploration phase, in which the agent autonomously
traverses the structure of the website before training begins. This phase allows the agent to construct a
semantic map of the environment, by capture page layouts, interactive elements, and navigation paths,
which serves as the foundation for later skill generation. Next, we introduce a top-level exploration
strategy that governs how instructional tasks are proposed and evolved throughout training. By
analyzing past performance, this component adaptively generates new tasks from easy to hard by
composing or decomposing instruction templates, thus enabling a adaptive learning curriculum.
Finally, we develop a low-level exploration strategy to enhance the efficiency of within-task learning.
Using Monte Carlo Tree Search (MCTS) [10] and a multi-action agent policy, the agent explores
promising action sequences for each task and refines its behavior through structured rollout and
preference-based learning.

Together, these components form an end-to-end system Self-guided hierArchical exploration for
Generalist wEb agents (SAGE), in which agents progressively discover how to interact with and
reason about complex web environments. Our experiments demonstrate that this adaptive exploration
framework leads to stronger generalization and performance compared to prior approaches that rely
on static task definitions or imitation data. By enabling agents to learn from their own interaction
cycles, our method takes a step toward scalable, self-improving web agents grounded in foundation
model capabilities.

Our Contributions are three-fold. (i) We propose a top-level exploration strategy that enables agents
to autonomously generate and adapt instructional tasks from easy to hard, forming a self-evolving
curriculum without relying on predefined task sets. (ii) We introduce a low-level exploration strategy
that combines MCTS-based planning and stepwise learning, allowing agents to efficiently discover
viable action sequences and improve under sparse rewards. (iii) We unify all components into SAGE,
a generalist web agent training framework that leverages multi-level exploration to progressively
acquire skills and generalize across complex, real-world internet environments. As demonstrated
by our empirical results, SAGE achieves state-of-the-art performance on web-based tasks. On
WebArena [11], it outperforms all open-source baselines by 26%, and even surpasses proprietary
models by 11%.
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2 Related Work

Foundation Model Web/GUI Agents. The emergence of Large Language Models (LLMs) and
Vision-Language Models (VLMs) has spurred the development of agents capable of interacting with
structured interfaces such as web pages, software GUIs, and mobile applications [1, 4, 12, 13]. Prior
approaches generally fall into two groups: training-free systems that rely on prompt engineering
and orchestration of frozen models [3, 5, 14], and fine-tuning-based methods that adapt model
parameters using supervised trajectories [6–9]. While training-free systems offer flexibility, they are
often bounded by the static capabilities of the underlying models. On the other hand, supervised
fine-tuning improves task-specific performance but typically depends on curated task datasets and
lacks adaptability. To mitigate this, recent methods introduce automated evaluators that estimate task
completion as a reward signal [15, 16], or propose instruction-based self-supervision [17]. However,
most of these pipelines still rely on static or benchmark-defined instruction pools. In contrast, our
method introduces a structured, hierarchical exploration framework that adaptively generates and
organizes tasks from easy to hard, enabling agents to acquire skills and improve autonomously
without relying on static benchmarks or curated supervision.

Reinforcement Learning for LLMs. Reinforcement learning (RL) has increasingly been applied to
align LLM behaviors with downstream tasks, especially in domains that require sequential decisions
and delayed feedback. While RL was initially used to fine-tune models based on human preferences
or scalar rewards, recent work has shown that it can be extended to environments with interface-level
interactions [13, 18]. Actor-critic methods and policy optimization frameworks such as Proximal
Policy Optimization [19] and Direct Preference Optimization (DPO) [20] have proven effective for
training agents to operate over complex action spaces. However, most existing methods assume a
fixed task distribution and lack a mechanism for adaptively shaping the learning trajectory. Our work
complements this line by introducing a self-adaptive task curriculum that evolves in response to the
agent’s learning progress, enabling continual policy improvement under a changing task landscape.

Instruction Generation and Skill Discovery. Generating training signals autonomously has emerged
as a key mechanism for improving the scalability and generality of foundation model agents. In-
struction generation approaches such as Self-Instruct [21] and Meta-Prompting [22] enable models
to bootstrap themselves by producing and solving their own tasks, while others fine-tune models in
simulated planning environments [23]. Parallel work in unsupervised reinforcement learning has
focused on discovering diverse skills without access to task labels [24, 25], but these approaches
often prioritize behavioral diversity over goal-directed utility. In the domain of web agents, recent
work PAE [26] attempts to train agents via instruction sets either statically defined or updated from
interaction history, but still relies on initial human-written instructions to define the scope of training.
Our method departs from this design by constructing a fully self-evolving task curriculum that
requires no external instruction corpus and enables agents to grow their capabilities from primitive
operations to compound, high-level behaviors through direct interaction.

3 Background

Problem fomulation. We formalize the training of generalist web agents as a contextual Markov
Decision Process (MDP) defined by the tupleM = (S,A, T ,R, H, I), where S is the state space,
A the action space, T the environment dynamics,R the reward function, H the episode horizon, and
I the task instruction space.

At the start of each episode, a task instruction I ∈ I is sampled—typically a natural language
command (e.g., “add the product to the cart”). The agent begins interacting with a web environment
and receives a state st ∈ S at each timestep t ∈ {1, . . . , H}, comprising the current webpage content
and interaction history. Conditioned on st and I , the agent selects an action at ∈ A, such as clicking
or typing. The environment transitions to st+1 ∼ T (st+1 | st, at), and the process continues.

The agent follows a policy πθ(at | st, I), parameterized by θ, and receives a scalar reward at the end
of the episode indicating task success. Crucially, the true instruction distribution I is unknown during
training, and the agent must learn from proxy tasks or self-generated curricula. The objective is to
maximize expected return over task and trajectory distributions:
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max
θ

EI∼I, (s1,a1,...,sH)∼πθ

[
H∑
t=1

r(st, at, I)

]
.

Multimodal Environments. To enable lightweight and efficient training for interactive web agents,
we build upon the web environment developed in PAE [17], which integrates both visual and structural
information. In the original PAE setup, agents receive a screenshot of the current webpage annotated
with set-of-marks that help the agent precisely identify interactive elements. Each marked element is
paired with a textual description to provide semantic grounding for action decisions.

We further extend this environment by incorporating the webpage’s accessibility tree as an additional
input modality. The accessibility tree captures the full structure of all interactive elements in a
hierarchical form, including those not explicitly annotated in the screenshot. To bridge the visual
and structural modalities, we establish a one-to-one alignment between the set-of-marks labels and
corresponding nodes in the accessibility tree. This alignment allows the agent to use consistent
numerical identifiers to reference web elements across both visual and semantic representations,
enabling seamless cross-modal reasoning and interaction. We provided a more detailed setting of our
environment in Appendix Section B.

4 Method

In this section, we propose SAGE, a new training framework for developing generalist foundation
model-based web agents that can adaptively explore and interact with real-world Internet environ-
ments, while continuously self-improving in a self-guided manner. Our objective is to enable agents
not only to complete individual tasks but also to continually acquire new skills through experi-
ence—starting from simple goals and gradually advancing to more complex, real-world objectives.
At the core of our method is a hierachical exploration framework where the agent is self-guided in
understanding its environment, generating meaningful tasks for practice, and discovering effective
strategies for solving them.

To support this process, we introduce three levels of exploration, each operating at a different func-
tional scope: (1) a pre-exploration strategy, which enables the agent to build an initial understanding
of the workspace and identify the interactive structure of the environment; (2) a top-level exploration
strategy, which helps the agent discover and organize tasks from easy to hard, establishing a structured
path for learning and skill acquisition; and (3) a low-level exploration strategy, which allows the agent
to efficiently explore fine-grained actions within a specific task, thereby enhancing its ability to solve
concrete objectives. Finally, we conclude this section with an overview of how these components
integrate into a unified framework for scalable skill learning and generalization. The entire framework
of SAGE is illustrated in Figure 1. We also provided additional algorithm details in Appendix
Section A.

4.1 Pre-Exploration Strategy

To enable the agent to develop an initial understanding of a website’s structure and functionality prior
to training, we introduce a pre-exploration phase. The goal of this phase is to allow the agent to
autonomously investigate the interactive landscape of the environment—identifying key UI elements,
navigation paths, and potential functionality—so that it may later generate and reason about feasible
tasks relevant to the site.

In this stage, the agent receives only the URL of the website’s homepage as input. Without any
task-specific instruction or supervision, the agent begins exploring the site from this entry point using
a Breadth-First Search (BFS) strategy. We maintain a queue of states, where each state corresponds
to a unique URL discovered during the exploration. Initially, the queue contains only the homepage
URL. At each step, the agent dequeues a state and decides whether the page warrants further action,
especially if it has been previously visited. If so, the agent selects up to k actions that are likely to
lead to unexplored or semantically distinct pages. These actions are executed, and the resulting new
URLs are enqueued as candidate states for further exploration. The process continues until the queue
is empty or a predefined limit on the total number of states is reached.
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Throughout this exploration, the agent logs detailed information about the discovered environment.
Specifically, it records: (1) the screenshot of each visited state; (2) structural transitions between states,
described in a textual format such as “page A transitions to page B via action click [Search]”;
and (3) page-specific textual metadata, such as product categories on commercial sites or section
labels on documentation pages. These collected data form a knowledge base of the environment,
which will be used by subsequent modules to generate tasks and guide agent learning.

4.2 Top-Level Exploration Strategy

To guide the agent toward learning complex tasks in a structured and feasible manner, we introduce
a top-level exploration strategy that selects and adapts tasks dynamically across training iterations.
This module is composed of a self-adaptive task generator and a task replay buffer, working together
to provide an evolving curriculum that matches the agent’s current capabilities.

During the initial training iteration, the task generator relies exclusively on the knowledge acquired
in the pre-exploration phase. It samples tasks grounded in the observed website structure and content,
such as retrieving product information, locating links, or filling out forms. In subsequent iterations,
the generator is conditioned not only on the pre-exploration information but also on the agent’s
past execution trajectories, particularly their success and failure patterns. Based on this history, the
generator proposes new tasks using three complementary strategies.

First, similar to the initial iteration, the generator continues to introduce new tasks derived from the
structural information collected during pre-exploration, expanding the task space beyond previously
attempted goals. Second, the generator identifies tasks with low success rates, typically those
that the agent struggles to complete and produces simplified variants to help the agent learn more
incrementally. For example, a complex instruction like “What is the price of the table which I bought
yesterday?” may be decomposed into subtasks such as “What is the table I bought yesterday?” and
“What is the price of this given item?”. In other cases, the generator may relax constraints from a
difficult task to form a more tractable one. For instance, simplifying “Find a recipe of apple pie which
needs less than 30 minutes, has more than 4 stars, and at least 50 likes” to “Find a recipe of apple pie
which needs less than 30 minutes and at least 50 likes.” Third, for tasks that the agent consistently
solves correctly, the generator increases difficulty by proposing more challenging variants. These
may be constructed by composing simpler instructions into a compound task, or by tightening the
conditions in the original query, thereby advancing the curriculum.

Task Buffer. To store and manage the generated tasks across iterations, we employ a double-buffer
replay system. The first buffer contains only tasks proposed during the initial iteration, preserving
a stable sample of the original task distribution. The second buffer stores tasks generated in later
iterations as part of the self-adaptive curriculum. At training time, tasks are sampled from both
buffers: a portion is drawn from the initial buffer to retain exposure to foundational skills, while
the remainder is drawn from the adaptive buffer to promote progressive learning. As new tasks are
generated, they randomly replace entries in the second buffer, ensuring freshness while bounding the
total number of tasks considered in any given iteration.

This replay mechanism balances the agent’s exposure to both early-stage and evolving tasks, ensuring
that its foundational abilities are retained while new capabilities are continually acquired. By
dynamically adjusting task difficulty based on performance feedback, this top-level exploration
strategy enables the agent to follow a self-paced learning trajectory, from mastering basic interactions
to solving complex, real-world tasks.

4.3 Low-Level Exploration Strategy

To enable efficient decision-making during the execution of individual tasks, we introduce a low-level
exploration strategy based on Monte Carlo Tree Search (MCTS) [10]. This component improves the
agent’s ability to explore diverse action sequences, reason over possible outcomes, and prioritize
high-potential decisions, which is particularly important in sparse-reward environments with long
task horizons.

Instead of rolling out trajectories linearly from the initial state to the end of an episode, the agent
performs structured exploration using MCTS. Each search begins with a root node representing the
task’s starting state, which is typically defined by the entry URL. At each iteration, the agent traverses
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the tree by selecting child nodes estimated to maximize the likelihood of task success, continuing
until a leaf node is reached. This leaf is then expanded using up to k candidate actions proposed by
the agent, resulting in k new states. Based on the estimated success probability, the most promising
of thes is selected to grow the tree. From the final candidate node, the agent conducts a standard
rollout using the remaining step budget of the episode. The outcome of this rollout (success or failure)
is recorded and backpropagated through the tree to refine future selection decisions. This iterative
process enables the agent to concentrate exploration on high-potential trajectories, improving task
success rates while reducing inefficient exploration.

Multi-Action Agent Policy. To support both tree-based planning and linear rollouts, we design a
multi-action agent policy. Given a single state, the policy outputs up to k candidate actions, each
associated with a confidence score. These candidates are used differently depending on context.
During MCTS-based rollout, all candidate actions are treated equally, regardless of their confidence,
to encourage broader exploration. During standard execution (i.e., non-tree rollout), the agent selects
a single action according to the highest-confidence prediction. This dual-mode usage enables the
policy to be both exploratory and decisive, depending on the operational stage.

Training-Based Outcome Evaluator. We adopt a sparse reward structure in which the agent
receives a binary reward only at the end of a trajectory, indicating whether the task was successfully
completed. To evaluate this outcome reliably, we introduce a learned outcome evaluator. Similar to
prior approaches [17, 15], the evaluator takes as input the task instruction, the agent’s final output, and
the history of the last three steps leading to the final state. This condensed representation captures the
agent’s recent reasoning and actions. The evaluator is trained using both model-generated trajectories
and a limited number of human-annotated examples, allowing it to generalize effectively across a
wide range of task formats. A well-trained evaluator improves the accuracy of success detection and
serves as a reliable signal for downstream learning.

Stepwise Learning Strategy. To update the agent’s policy based on observed success and failure
cases, we adopt a learning approach inspired by the stepwise variant of Direct Preference Optimization
(Step-DPO) [20, 27]. Given a pair of trajectories, one successful and one failed, we identify the
divergence point at state sk, where the two trajectories share a common prefix up to sk−1. The
policy is then trained to prefer the successful continuation from that point onward. Our use of MCTS
facilitates the collection of diverse trajectory pairs by sampling multiple decision paths during tree
expansion and rollout. This provides ample training signal for the Step-DPO objective and enables
the agent to improve policy performance through fine-grained, localized credit assignment.

Together, the low-level MCTS planner, the multi-action policy, the outcome evaluator, and the
preference-based learning strategy form a coherent execution framework. These components enable
the agent to efficiently explore within-task decisions, accurately evaluate outcomes, and learn from
partial successes and failures, thereby accelerating the acquisition of robust web-interaction skills.

4.4 Overall Framework

Inspired by prior work such as PAE [17], we adopt a modular training pipeline that integrates the
components described above into a unified system. While PAE establishes a general iterative self-
training structure, it relies on a static instruction distribution without mechanisms for adapting task
difficulty or exploration strategy. Building upon this paradigm, our framework introduces two key
modifications. First, we explicitly incorporate a pre-exploration phase before training begins, allowing
the agent to construct a structured understanding of the website environment. Second, we build a
self-guided learning loop that interleaves curriculum-driven task generation, efficient planning-based
execution, and preference-based policy updates, enabling continuous adaptation and improvement.

Each training iteration proceeds as follows. We begin by using the top-level exploration strategy to
propose new tasks based on the agent’s current performance and the structural knowledge obtained
from the pre-exploration phase. These tasks are added to the replay buffer, which maintains a mix
of early-stage and adaptively generated goals. Next, a batch of tasks is sampled from the replay
buffer, and the agent executes them using the low-level exploration strategy. This execution involves
MCTS-based planning guided by the multi-action policy, as well as evaluation using the learned
outcome model. Finally, the collected trajectories from these rollouts are used to update the policy
via a stepwise learning algorithm inspired by Step-DPO. This cycle is repeated across iterations,
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Allrecipes Amazon Apple ArXiv GitHub ESPN Coursera

Proprietary Claude 3.5 Sonnet 50.0 68.3 60.4 46.5 58.5 27.3 78.6

Open-source

Qwen2.5VL-7B 0.0 2.3 4.5 2.3 0.0 0.0 2.3
Qwen2.5VL-32B 2.3 18.4 17.5 6.2 4.7 0.0 7.4

LLaVa-7B 0 0 0 0 0 0 0.0
LLaVa-34B 0 0 2.3 0 2.4 0 0.0

LLaVa-7B PAE 14.3 37.5 17.5 19.0 14.6 0.0 33.3
LLaVa-7B SAGE 16.6 32.9 22.5 21.2 15.3 6.3 36.2
LLaVa-34B PAE 22.7 53.7 38.5 25.6 14.6 13.6 42.9

LLaVa-34B SAGE 28.4 57.9 42.7 29.3 18.2 18.7 46.1
Qwen2.5VL-7B PAE 28.7 37.2 19.9 25.3 17.9 9.0 37.5

Qwen2.5VL-7B SAGE 34.5 40.8 24.7 28.9 20.4 12.2 40.3
Qwen2.5VL-32B PAE 40.2 59.5 45.1 30.3 39.8 16.4 49.7

Fine-Tuning

Qwen2.5VL-32B SAGE 43.6 64.7 51.8 35.0 56.2 18.2 62.4
Cambridge Dictionary BBC News Google Maps Google Search HuggingFace Wolfram Alpha Average

Proprietary Claude 3.5 Sonnet 86.0 36.6 58.5 30.2 44.2 66.7 50.5

Open-source

Qwen2.5VL-7B 7.3 0.0 0.0 2.4 0.0 4.8 1.9
Qwen2.5VL-32B 48.3 4.6 14.2 8.3 4.6 12.6 11.3

LLaVa-7B 0 0 0 0 0 0 0.0
LLaVa-34B 0 2.3 0 2.3 2.3 0 0.9

LLaVa-7B PAE 52.4 18.6 22.5 23.3 19.0 24.4 22.3
LLaVa-7B SAGE 68.0 24.3 24.3 25.0 21.5 24.4 26.0
LLaVa-34B PAE 74.4 39.0 22.0 18.6 25.6 42.9 33.0

LLaVa-34B SAGE 80.5 41.7 28.9 30.7 28.4 48.6 37.6
Qwen2.5VL-7B PAE 71.3 16.3 12.9 4.5 16.3 38.3 25.0

Qwen2.5VL-7B SAGE 75.2 22.8 20.6 12.7 22.1 45.4 30.1
Qwen2.5VL-32B PAE 77.4 37.5 30.1 26.4 30.9 55.8 40.8

Fine-Tuning

Qwen2.5VL-32B SAGE 83.6 42.8 34.1 37.1 34.8 64.5 47.5

Table 1: Results on WebVoyager. Success rates reported in the table reflect full task completion
rather than individual step accuracy. Each row corresponds to a specific website, and the Average
column indicates the overall success rate across all tasks. The results demonstrate that SAGE
consistently improves agent performance across diverse open-internet web environments.

enabling the agent to continuously refine its skills, explore new tasks, and improve performance in a
self-guided manner.

5 Experiments

We design a series of experiments to evaluate the effectiveness of our adaptive exploration framework
for training generalist foundation model web agents. Specifically, we aim to answer the following
key questions: (1) Can the agent acquire meaningful web interaction skills from scratch, without
any human-annotated demonstrations or task supervision? (2) How effectively can the agent solve
complex, multi-step tasks that require conditional reasoning? (3) What is the contribution of each
component in our framework to the overall performance? (4) How does the hierarchical exploration
strategy—comprising pre-exploration, top-level task generation, and low-level rollout—impact the
agent’s ability to learn and generalize web tasks? We leave some additional experiments in Appendix
Section C.

5.1 Environments

We evaluate on two realistic web-based benchmarks: WebVoyager [5] and WebArena [11].

WebVoyager consists of 643 instructional tasks spanning 15 real-world websites, including plat-
forms such as Amazon and GitHub. Following the setup in PAE [17], we exclude two domains
Google Flights and Google Bookings due to major structural changes that render the original tasks
unachievable. As a result, we evaluate on the remaining 13 websites, comprising a total of 557 tasks.

WebArena is a closed-domain benchmark hosted on internal servers, featuring five realistic web
environments: OpenStreetMap (Map), Reddit, GitLab, a content management system (CMS) for an
online store, and OneStopShop (OSS). While WebArena originally included 812 tasks, many are
unsuitable for training autonomous web agents due to execution constraints. For a fair comparison,
we follow existing practice and adopt a combined task set drawn from WebArena-Easy [17] and
WebArena-Lite [28] as our evaluation suite.

5.2 Baseline Comparisons

In this paper, we compare our method against two major categories of baseline models: (1) pro-
prietary VLMs and (2) state-of-the-art open-source VLMs. For the first category, we use Claude
3.5 Sonnet [29] as a representative proprietary model. It is prompted using the same setup as prior
work [5], including set-of-marks augmented screenshots and chain-of-thought action outputs.
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For the open-source category, we evaluate several strong VLMs, including LLaVa-7B/34B,
Qwen2.5VL-7B/32B [30, 31]. Within this category, we include three training variants: (1) SFT-
based models, which are fine-tuned on trajectories generated by Claude 3 Sonnet over tasks proposed
in PAE [17]; (2) models trained using the PAE framework [17]; and (3) models trained with our
proposed method, which introduces multi-level adaptive exploration and self-supervised learning
without relying on pre-defined instruction sets. This comparison allows us to assess the contributions
of our exploration-driven framework relative to imitation-based and instruction-guided baselines
across both closed- and open-domain web interaction tasks.

5.3 Main Results

As shown in the main experimental results presented in Tables 1 and 2, our method consistently
outperforms strong baselines across both WebVoyager and WebArena. On WebVoyager, SAGE
achieves a notable performance improvement of 8%–17% over PAE when using the same underlying
vision-language model, demonstrating the benefit of our adaptive exploration framework in open-
domain, real-world websites. In WebArena—featuring server-hosted, closed-domain environments
with more structured and rigid interfaces—SAGE continues to deliver strong gains, outperforming
PAE by 19%–256% across multiple model backbones.

Map Reddit OSS Gitlab CMS Avg

Proprietary Claude 3.5 Sonnet 40.1 46.9 42.0 24.2 25.1 35.6

Open-source

LLaVa-7B 0.0 0.0 0.0 0.0 0.0 0.0
LLaVa-34B 1.3 0.0 0.0 0.0 0.0 0.6

Qwen 2.5VL-7B 0.9 10.2 20.2 8.3 7.4 9.4
Qwen 2.5VL-32B 13.4 18.4 26.4 11.6 8.3 15.6

Qwen 2.5VL-7B PAE 23.8 24.6 37.4 15.3 12.4 22.7
Qwen 2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1
Qwen 2.5VL-32B PAE 34.5 35.9 41.0 24.1 22.0 31.5Fine-Tuning

Qwen 2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 2: Results on WebArena. Success rates indicate full task
completion across five sandboxed, server-hosted environments.
Each column represents a distinct website domain, and the Avg
column reports the weighted average success rate based on the num-
ber of tasks per domain. The results show that SAGE significantly
improves performance across all model variants.

In addition to outperforming PAE, we
observe that SAGE consistently im-
proves the performance of base mod-
els relative to their original, untrained
versions. Notably, Qwen2VL-72B
trained under our framework matches
or even exceeds the performance of
the proprietary Claude 3.5 Sonnet
model in several benchmark scenar-
ios. This finding underscores the po-
tential of large open-source VLMs
when coupled with structured, self-
supervised training pipelines such as
ours—highlighting the scalability and
accessibility of our approach across
different model sizes and training setups.

To further analyze model behavior across varying levels of task complexity, we categorize the tasks in
WebArena into three difficulty levels based on the minimum number of steps required for completion,
as determined by human annotators. Specifically, tasks requiring fewer than 7 steps are labeled Easy
(25% of all tasks), those requiring between 7 and 15 steps are labeled Medium (54%), and those with
more than 15 steps are categorized as Hard (21%). We evaluate model performance separately within
each bucket to assess their ability to generalize to long-horizon tasks.

Easy Medium Hard Avg

Proprietary Claude 3.5 Sonnet 65.0 30.0 15.0 35.6
Qwen2.5VL-7B PAE 40.0 21.6 5.0 22.7

Qwen2.5VL-7B SAGE 42.0 27.2 9.0 27.1
Qwen2.5VL-32B PAE 48.0 32.6 9.0 31.5Fine-Tuning

Qwen2.5VL-32B SAGE 52.0 43.6 15.0 39.7

Table 3: Success rate comparisons by task difficulty. Tasks
are grouped into Easy (<7 steps), Medium (7–15 steps), and
Hard (>15 steps), covering 25%, 54%, and 21% of the We-
bArena task set, respectively. SAGE consistently improves
performance across all difficulty levels, with especially strong
gains on harder, long-horizon tasks.

As shown in Table 3, performance gener-
ally declines as task complexity increases
across all models. However, the relative
improvement of SAGE over baselines be-
comes more pronounced on harder tasks.
For instance, Qwen2.5VL-32B trained with
our method achieves comparable perfor-
mance to Claude 3.5 Sonnet on Hard tasks
and significantly outperforms other base-
lines. These findings highlight the effec-
tiveness of our hierarchical exploration
framework, particularly the curriculum-
aware task proposer and MCTS-guided
low-level strategy—in enabling agents to handle complex, multi-step reasoning tasks that are typically
beyond the reach of imitation-based fine-tuning.
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5.4 Ablation Studies

In this section, we conduct several ablation studies to show the effectiveness of different components
of our SAGE .

Impact of the Top-Level Exploration Strategy. To assess the importance of our self-adaptive task
proposer, we conduct an ablation study in which it is replaced by a static task proposer that samples
from a fixed distribution derived solely from the pre-exploration phase. In this setting, the agent
receives tasks drawn from the same initial distribution across all training iterations, without any
adjustment based on its evolving performance. While this ablated version still benefits from task
diversity due to the breadth of information collected during pre-exploration, it lacks the ability to
gradually increase task complexity or respond to the agent’s learning progress.

Model Map Reddit OSS Gitlab CMS Avg

Qwen 2.5VL-7B SAGE w/o top 25.6 25.3 40.1 17.5 14.2 24.5
Qwen 2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1

Qwen 2.5VL-32B SAGE w/o top 40.5 37.1 42.9 28.6 28.4 35.5
Qwen 2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 4: Ablation study on the top-level exploration strategy.
We compare performance with and without the self-adaptive task
proposer on WebArena. The results show that removing top-level
exploration—i.e., replacing the adaptive task curriculum with a
static task distribution—leads to a consistent drop in performance
across all domains and model sizes. This highlights the importance
of self-adaptive task generation in driving skill acquisition.

As shown in Table 4 , removing the
self-adaptive mechanism results in a
substantial drop in performance. This
highlights the importance of dynamic
task generation in driving curriculum
progression. The ability to promote
simpler tasks when the agent strug-
gles and introduce more challenging
ones as it improves proves essential
for effective skill acquisition in com-
plex web environments.

Impact of the Low-Level Explo-
ration Strategy. We further evaluate
the contribution of our low-level exploration strategy by replacing both the MCTS-based rollout
and the step-wise learning algorithm with a conventional learning pipeline. In this ablation, the
agent samples task instructions uniformly from the task set and performs standard rollouts without
search-based planning. The collected trajectories are then filtered based on task success, and a
behavior cloning objective is applied to fine-tune the agent using only successful trajectories.

Model Map Reddit OSS Gitlab CMS Avg

Qwen 2.5VL-7B SAGE w/o low 27.3 26.3 42.5 15.2 14.6 25.2
Qwen 2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1

Qwen 2.5VL-32B SAGE w/o low 41.0 42.3 44.8 27.1 29.3 36.9
Qwen 2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 5: Ablation study on the low-level exploration strategy.
Removing the MCTS-based rollout and step-wise learning leads
to consistent performance drops, highlighting their importance for
efficient planning and long-horizon reasoning.

As shown in Table 5, removing the
low-level exploration module leads to
a clear drop in both sample efficiency
and final task success rate. This result
underscores the importance of plan-
ning and structured trajectory selec-
tion in sparse-reward environments.
The MCTS-guided rollout encourages
the agent to actively search for viable
action sequences, whereas the normal rollout strategy often causes the agent to get stuck repeating
incorrect behaviors. By enabling targeted exploration and better credit assignment, the low-level
exploration module substantially enhances performance, particularly on long-horizon and more
complex tasks.

Accuracy of the Training-Based Evaluator. To evaluate the effectiveness of our learned outcome
evaluator, we compare the evaluation accuracy across different models before and after training.
We first collect a set of trajectories by rolling out Qwen2.5VL-32B SAGE on held-out tasks, and
then manually annotate the success or failure of each trajectory using human judgment. These
human-annotated outcomes serve as ground-truth labels for evaluating different evaluator models.
In our setup, we fine-tune Qwen2.5VL-7B to serve as the learned evaluator, trained using both
model-generated and human-verified supervision signals.

As shown in Table 6, we observe that proprietary models initially outperform open-source models
in evaluator accuracy. However, after training, our Qwen2.5VL-7B evaluator achieves the highest
accuracy overall. Notably, the trained evaluator is significantly more precise in handling challenging
cases, such as recognizing task infeasibility, which are critical for providing reliable supervision
during agent training. These results highlight the importance of a robust, adaptive evaluator in
enabling self-supervised learning.

5.5 Error Analysis
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Figure 2: Error type distribution across models. Each donut chart illustrates the proportions of different
error types and success cases on WebVoyager tasks, annotated for each model variant. SAGE effectively
reduces both low-level and high-level error rates across model sizes. For Qwen2.5VL-7B, we also include an
intermediate checkpoint (“mid”) which shows a significant reduction in low-level errors early in training. As
training progresses, high-level reasoning errors also diminish, suggesting that SAGE enables agents to first
master simple skills before tackling harder reasoning challenges. On Qwen2.5VL-32B, SAGE achieves the
lowest error rates and highest success rate, demonstrating its robustness at scale.

Claude 3.5 Sonnet Qwen 2.5VL-7B SAGE

Accuracy 82% 75% 90%

Table 6: Evaluator accuracy comparison. Accu-
racy measured against human labels. We fine-tune
Qwen2.5VL-7B as the learned evaluator.

To better understand how SAGE facilitates skill
acquisition from easy to hard tasks, we conduct
a detailed error analysis on the WebVoyager [5]
benchmark. We randomly sample 200 tasks
from the test set and evaluate multiple models,
and then manually annotate the resulting trajec-
tories based on failure modes.

Following the error types introduced in prior work [17], we categorize each failure into six distinct
types:

• Low-level execution errors: The agent has a plausible plan but fails to interact correctly
with the interface, such as clicking the wrong element or failing to navigate to the intended
page.

• High-level reasoning or planning errors: The agent fails to formulate an effective strategy
or to reason correctly through the interface in order to solve the task.

• Visual hallucinations: The agent fabricates answers that are not supported by the visible
content, e.g., referencing information that is not present or misidentifying page content.

• Timeouts: The agent is on the correct path but exceeds the maximum number of interaction
steps before completing the task.

• Technical issues: Errors resulting from environment-level problems such as broken links,
loading failures, or website outages, not attributable to the agent itself.

• Other: Miscellaneous cases that do not fall into the above categories, including fundamen-
tally infeasible tasks.

6 Conclusion

We present a new self-guided training framework for generalist foundation model web agents, centered
around a multi-level hierachical exploration strategy. By decomposing the learning process into
three functional phases: pre-exploration for environment understanding, top-level exploration for
curriculum-driven task generation, and low-level exploration for efficient interaction—the agent is
able to autonomously acquire and refine skills directly through interaction with real-world websites.
Our framework eliminates the need for static task datasets or expert demonstrations, instead allowing
the agent to generate its own tasks, evaluate its progress, and improve over time. Empirical results
demonstrate that this self-guided training approach leads to more scalable and robust skill acquisition,
enabling agents to solve complex web tasks with stronger generalization and higher efficiency. We
hope this work takes a meaningful step toward the development of foundation model agents that learn
from experience and adapt to diverse digital environments autonomously.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. We claimed in Sec 1. that we devloped a new framework of training
foundation model web agents achieveing state-of-the-ard performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes. We discussed the limitations in the supplementary materials.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We didn’t make any theory assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. we provided all the details in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We are not allowed to release data and code. We will release the code and data
upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. We listed all the details in Section 5. and the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments take too much computational resources so that we cannot run
it too many times to get the error bar. Also, typically in LLM research, people don’t care too
much about the error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes. We provided this in the supplemantary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe we followed the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes. We discussed this in the supplementary materials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method is not designed for generation.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the works we used in our work, including data and code from
[17].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We didn’t create new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes. we have described all the usage of LLMs in our paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm Details

In this section, we provide additional details on the core algorithmic components of SAGE. We first
present the Monte Carlo Tree Search (MCTS) rollout procedure used during low-level exploration,
followed by the evaluator training setup that enables robust supervision without relying on ground-
truth rewards.

A.1 MCTS Rollout Procedure

Our MCTS-based rollout strategy is inspired by prior work on structured decision-making and
planning [32, 33], with key adaptations for the web-based setting and multimodal agent interaction.
The search tree is initialized with a single root node representing the starting state of the task, typically
corresponding to the homepage URL.

Trainable and fixed components. During training, the task generator and evaluator models
remain fixed and only adjust their contextual inputs dynamically based on the agent’s recent per-
formance. The agent model is the only component optimized with gradient-based updates, while
MCTS functions purely as a planning and sampling mechanism to collect high-quality trajectories
and is not directly optimized. This design ensures stable and reproducible learning while allowing
adaptive task progression.

Training objective. Since only the agent is trainable, we use a step-level Direct Preference Opti-
mization objective. Given a task prompt x and two trajectories τwin and τlose sharing the same prefix
(s1, . . . , sk), where one succeeds and the other fails, the loss is:

L(θ) = −E(x,s1:k,τwin,τlose)∼D

[
log σ

(
β
[
log

πθ(τwin | x, s1:k)
πref(τwin | x, s1:k)

− log
πθ(τlose | x, s1:k)
πref(τlose | x, s1:k)

])]
,

where πθ denotes the agent policy, πref a frozen reference model, and β a temperature coefficient.
This objective encourages the agent to prefer trajectories leading to successful completions.

Training procedure. Before the first epoch, we conduct a pre-exploration phase to map website
structures and collect structural affordances. In each epoch, the task generator produces a batch of
tasks conditioned on these structures. The agent performs MCTS-guided rollouts to explore both
successful and failed trajectories. After collecting sufficient data, the agent policy is updated via the
step-level DPO loss above. Task-level success statistics are then fed back into the task generator
context, allowing adaptive adjustment of task difficulty for the next epoch.

MCTS rollout. Each MCTS iteration proceeds through four phases: selection, expansion, simula-
tion, and backpropagation.

Selection. Starting from the root, the agent traverses the tree using the Upper Confidence Bound
(UCB) score [34]:

UCB(u) = vu + ϵ

√
lnnparent

nu
,

where vu is the value estimate of node u, nu its visit count, and nparent the visit count of its parent
node. The coefficient ϵ balances exploration and exploitation.

Expansion. Upon reaching a leaf node, the agent expands it by sampling multiple candidate actions
from πθ(Q, s), each producing a new child state. The value of each child vs′ is initialized using the
evaluator to estimate task success likelihood, providing a prior for downstream planning.

Simulation. From the most promising child node, a rollout is performed up to a fixed depth L. At
each step, the agent greedily selects the top-confidence action. The trajectory terminates upon task
completion or reaching the step limit.

Backpropagation. After the rollout, a binary success reward is propagated upward to update value
estimates and visit counts. The MCTS process continues for a fixed number of iterations.
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Algorithm 1 Low-Level Exploration via MCTS
Input: Task Q, agent policy π, initial page p0, value model V , max iterations N , episode length L
Initialize: T ← InitializeTree(p0)

1: for i = 1 to N do
2: s← Root(T )
3: while s is not a leaf node do
4: s← argmaxs′

(
vs′ + ϵ

√
logns

ns′

)
5: end while
6: if s is not terminal then
7: a1:k ← π(Q, s)
8: s′1:k ← ApplyActions(s, a1:k)
9: vs′j ← V (s′j) for all j

10: s′ ← argmaxj vs′j
11: r ← RolloutFrom(s′, depth = L− depth(s′))
12: UpdateNode(s′, reward = r)
13: end if
14: BackPropagate(s)
15: end for

Low-level exploration pseudocode. For clarity, we summarize the low-level MCTS exploration
procedure below.

This integration of MCTS planning with gradient-based DPO training enables SAGE to explore
promising trajectories more efficiently and improve success rates across complex, long-horizon web
tasks.

A.2 Confidence Prediction Training.

The agent policy πθ is augmented with a scalar confidence head that outputs c ∈ [0, 1] for each action.
For initialization, we prompt the proprietary model Claude Sonnet 3.5 to generate demonstration
trajectories where each action is annotated with a self-estimated confidence score. These annotated
trajectories are used during supervised fine-tuning to initialize the confidence prediction capability of
our base model.

During the subsequent SAGE training phase, the agent’s confidence estimates are further refined
within the step-level DPO framework. Since the MCTS-based sampling process does not always
follow the action with the highest predicted confidence, a realignment step is applied to calibrate
confidence with actual success outcomes. Specifically, in successful trajectories, the executed action
is assigned a confidence value of 1, ensuring that the model learns to associate high confidence with
decisions that lead to successful task completion. This refinement improves the calibration between
model certainty and real-world decision reliability, yielding more stable long-horizon exploration.

A.3 Evaluator Training

To enable reliable supervision without access to ground-truth reward functions, we train a task
outcome evaluator using the open-source model Qwen2.5VL-7B [35]. The evaluator is designed
to predict task success or failure based on evidence collected during agent interaction. Its input
consists of: (1) the task instruction, (2) the final answer generated by the agent, (3) the full interaction
trajectory, and (4) multimodal evidence composed of the final three screenshots and their associated
accessibility tree. The output is a binary success label, optionally accompanied by a natural language
explanation.

We construct the training dataset in two stages. First, we bootstrap the evaluator using over 10,000
evaluation traces generated by Claude 3.5 Sonnet [29], treating its responses as pseudo-labels. These
include both reasoning and binary outcome labels. This initial phase enables the evaluator to inherit
strong generalization capabilities from the proprietary model.
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In the second stage, we refine the evaluator using a smaller, high-quality human-annotated dataset.
Specifically, we randomly sample 1,200 trajectories from the initial dataset and manually annotate
their ground-truth success labels. Among these, we identify approximately 400 instances where
Claude’s predictions disagree with human judgment. For each of these error cases, we provide a
corrected binary label and, when relevant, a brief explanation describing the evaluation mistake. The
format remains consistent with the initial dataset, enabling seamless fine-tuning. This two-stage
process enhances the evaluator’s precision and robustness, particularly for nuanced or failure-prone
cases.

B Environment Details

In this section, we describe the multimodal web environments used in our experiments, including
implementation details, observation formatting, and action space definitions.

Environment Overview. Our environment is implemented using a combination of Selenium1

and Playwright2, and wrapped into a standardized Gym interface to support reinforcement learning
workflows. In addition to basic functionalities required for agent-environment interaction, we extend
the framework with support for saving and restoring environment states at arbitrary time steps. This
feature is critical for enabling tree-based search strategies such as MCTS, which require repeated
rollouts from intermediate checkpoints.

Observation Details. As illustrated in Figure 3, each observation consists of two aligned modal-
ities: a rendered screenshot with overlaid set-of-marks, and a structured accessibility tree. In our
implementation, we first extract the set-of-marks and the accessibility tree independently. We then
compute a matching between elements in the two modalities and align the numeric labels in the
set-of-marks with the corresponding nodes in the accessibility tree. This alignment ensures that
agents can refer to web elements consistently across visual and structural representations.

Action Space. Following the setup in PAE [17], we define a discrete action space that includes the
following interaction types:

• Click: Click on a labeled element such as a button or link.
• Type: Enter text into an input field.
• Scroll: Scroll a scrollable container or the entire page.
• Return: Navigate back to the previous page in browser history.
• Answer: Return the final answer.

C Additional Experiments

In this section, we present supplementary experimental results to further analyze the effectiveness of
individual components in our framework.

C.1 Ablation Study: Pre-Exploration Strategy

To evaluate the impact of the pre-exploration strategy, we conduct an ablation experiment where this
phase is removed. In this variant, the task generator only receives the base URL of the website along
with trajectories collected from previous training iterations. Without the structured understanding
provided by pre-exploration, the generator lacks information about the page layout and interaction
flow.

As shown in Table 7, removing pre-exploration leads to a noticeable degradation in performance.
The task generator in this setting frequently proposes irrelevant or infeasible tasks due to its limited
knowledge of website structure, demonstrating the importance of pre-exploration in grounding
curriculum design.

1https://pypi.org/project/selenium/
2https://playwright.dev/
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[333] link 'Skip to content'
[360] alert 'Announcement'

[0] link 'Learn more'
[1] button 'Close'

[387] heading 'Navigation Menu'
[2] link 'Homepage'
[434] navigation 'Global'

[3] button 'Product'
[4] button 'Solutions'
[5] button 'Resources'
[6] button 'Open Source'
[7] button 'Enterprise'
[8] link 'Pricing'

[9] button 'Search or jump to...'
[10] link 'Sign in'
[11] link 'Sign up'

Figure 3: Multimodal environment input. Left: Screenshot of a rendered webpage with set-of-
marks. Right: Accessibility tree snippet showing the hierarchical structure of interactive elements.
This multimodal input enables agents to understand both visual and structural content for accurate
interaction. The agent can find buttons both from the vision input and the text input.

C.2 Ablation Study: Evaluator

Model Map Reddit OSS Gitlab CMS Avg

Qwen 2.5VL-7B SAGE w/o pre 20.3 12.4 26.6 9.3 8.8 15.3
Qwen 2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1

Qwen 2.5VL-32B SAGE w/o pre 40.3 24.1 32.0 18.3 20.8 27.1
Qwen 2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 7: Ablation study on the pre-exploration strategy.
We evaluate the impact of removing the pre-exploration phase,
where the task generator receives no structural information
about the website beforehand. Without this step, the task gen-
erator becomes less grounded and often infeasible, resulting
in a significant performance drop across all categories. These
results demonstrate the importance of pre-exploration for un-
derstanding environment structure and supporting meaningful
task generation.

We conduct an ablation study to assess the
importance of the training-based evaluator
in our framework. Specifically, we replace
the learned evaluator with alternative mod-
els—Claude 3.5 Sonnet and Qwen2.5VL-
32B—and use their raw outputs to super-
vise agent training. As shown in Table 8,
our training-based evaluator leads to better
task success rates than both baselines, de-
spite being based on a smaller open-source
model. This highlights the benefit of tar-
geted evaluator fine-tuning on trajectory
outcomes, which enhances the quality and
reliability of training supervision.

Model Map Reddit OSS Gitlab CMS Avg

Qwen 2.5VL-7B SAGE Claude 24.3 25.3 38.4 16.3 14.2 23.0
Qwen 2.5VL-7B SAGE Qwen 23.2 26.3 36.2 16.0 14.6 22.7

Qwen 2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1
Qwen 2.5VL-32B SAGE Claude 41.7 40.8 41.3 29.6 32.4 36.4
Qwen 2.5VL-32B SAGE Qwen 39.9 40.7 41.6.0 25.8 30.2 34.5

Qwen 2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 8: Ablation study on the evaluator module. We
compare our training-based evaluator against two alternatives:
Claude 3.5 Sonnet and Qwen2.5VL-32B, both used as fixed
evaluators without additional fine-tuning. Despite its smaller
scale, our trained evaluator consistently yields higher task suc-
cess rates, demonstrating the importance of domain-adapted
supervision for reliable reward estimation.

We present a detailed error breakdown in
Figure 2 to examine how SAGE facilitates
progressive skill acquisition across training
stages and model scales. Across all mod-
els, we find that SAGE significantly im-
proves task performance by reducing two
major sources of failure: low-level execu-
tion errors and high-level planning errors.
Notably, in the Qwen2.5VL-7B model, we
analyze an intermediate checkpoint after
5 training iterations and observe a marked
decrease in low-level failures—indicating
that the agent learns precise actions early
on in the training process, largely through
practicing easier tasks. As training progresses, the proportion of high-level planning errors decreases
as well, reflecting the agent’s transition to mastering more complex tasks. This learning trajectory
aligns with the curriculum induced by our top-level exploration strategy. Furthermore, on the larger
Qwen2.5VL-32B model, SAGE consistently reduces both types of errors and achieves the highest
success rate among all variants, highlighting its scalability and effectiveness even with stronger
backbones.
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C.3 Evaluator Fine-tuning and Cross-Framework Comparison

Model Map Reddit OSS Gitlab CMS Avg

Qwen2.5VL-7B PAE 23.8 24.6 37.4 15.3 12.4 22.7
Qwen2.5VL-7B PAE + SAGE ’s Eval 24.1 24.4 37.6 14.9 12.9 22.9

Qwen2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1
Qwen2.5VL-32B PAE 34.5 35.9 41.0 24.1 22.0 31.5

Qwen2.5VL-32B PAE + SAGE ’s Eval 35.8 36.2 43.1 26.4 23.2 33.0
Qwen2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 9: Evaluator fine-tuning and cross-framework com-
parison. We compare PAE and SAGE under identical evalua-
tors to isolate the effect of evaluator quality. Even when using
the same trained evaluator, SAGE substantially outperforms
PAE, confirming that the main performance gain arises from
our hierarchical exploration and curriculum mechanism rather
than evaluator differences.

We further analyze the role of limited hu-
man annotations in SAGE. Only a small
amount of human-labeled data (less than
eight hours of effort by one author) is used
for fine-tuning the outcome evaluator in
the final stage, while all other components
are trained fully autonomously. This small
supervision improves the evaluator’s ac-
curacy but has minimal effect on overall
system performance—SAGE’s main gains
stem from its adaptive curriculum and ex-
ploration strategies. The comparison in
Table 9 also shows that even when PAE
adopts the same trained evaluator, the performance gap remains large, underscoring that SAGE
effectively leverages stronger evaluators through its hierarchical design.

C.4 Efficiency of Low-Level Exploration

Model # Successful Trajectories (10k Samples)

Qwen2.5VL-7B + Normal 1937
Qwen2.5VL-7B + Low-level Exploration 2102
Qwen2.5VL-32B + Normal 2578
Qwen2.5VL-32B + Low-level Exploration 2895

Table 10: Sample efficiency of low-level exploration. We
compare the number of successful trajectories collected under
identical sampling budgets. The proposed low-level MCTS-
based exploration consistently yields more successful rollouts
than standard rollouts, confirming its superior sample effi-
ciency and stronger training signal.

To quantify the efficiency of our low-level
exploration strategy, we compare the num-
ber of successful trajectories generated un-
der the same sampling budget of 10k trajec-
tories per model. As shown in Table 10, the
low-level exploration consistently produces
a higher proportion of successful rollouts,
demonstrating improved sample efficiency
and faster policy improvement over stan-
dard rollouts.

C.5 SFT Baseline Comparison

Model Map Reddit OSS Gitlab CMS Avg

Qwen2.5VL-7B SFT 16.5 21.3 32.6 13.7 10.1 19.4
Qwen2.5VL-7B PAE 23.8 24.6 37.4 15.3 12.4 22.7

Qwen2.5VL-7B SAGE 28.1 29.7 43.2 18.9 15.6 27.1
Qwen2.5VL-32B SFT 27.3 27.8 38.0 18.2 14.7 25.7
Qwen2.5VL-32B PAE 34.5 35.9 41.0 24.1 22.0 31.5

Qwen2.5VL-32B SAGE 42.3 43.7 46.1 31.4 35.2 39.7

Table 11: Comparison with SFT baselines. We report
results of the supervised fine-tuned (SFT) models for com-
pleteness. SAGE consistently outperforms both SFT and PAE
across all environments and model scales, confirming the ben-
efit of hierarchical exploration over static imitation learning.

For completeness, we report the perfor-
mance of the supervised fine-tuned (SFT)
baselines that serve as initialization for
both PAE and SAGE. As shown in Ta-
ble 11, SAGE consistently achieves higher
success rates than both SFT and PAE
across all benchmarks, further validating
the effectiveness of our hierarchical train-
ing paradigm.

D Hyperparameters

We include the hyperparameters that we
have used in Table 12.

E Prompts

We include all prompting templates used throughout our framework. In particular, Figures 5 and
6 show the prompt used during the pre-exploration phase, where the agent is instructed to explore
and describe the structure and functionality of a given website starting from its homepage. Figures 7
and 8 provide the prompt template used in the top-level exploration phase, where the task generator
proposes new instructional tasks based on previous trajectories and structural understanding of the
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Hyperparameter Value
number of actions 10
maximum exploration step 100
number of tasks pre-generated 10, 000
number of tasks generated in iteration 2, 000
number of iterations in MCTS 25
number of trajectories 2, 048
actor update epochs per iteration 4
batch size 8
DPO β 0.45

Table 12: Hyperparameters used for SAGE.

Figure 4: An example showing how SAGE facilitates skill acquisition through hierarchical exploration.
The agent initially fails to complete the task “Find the most recently updated Web Agent project
and list its contributors.” In subsequent iterations, the task generator offers simpler subtasks with
the top-level exploration. The agent learns to solve each subtask individually through the low-level
exploration, ultimately enabling it to succeed on the original, more complex task. The blue line shows
a trajectory the agent generated during the inference phase.

environment. All prompts are designed to be general and domain-agnostic, ensuring compatibility
across both open-source and proprietary models.

F A Case Study of SAGE

We provide a case study that illustrates how SAGE enables an agent to acquire complex skills through
structured, hierarchical exploration. We examine a challenging task from the GitHub website: “Find
the most recently updated Web Agent project and list its contributors.” As shown in Figure 4, prior to
training, the agent consistently fails to initiate the correct actions, struggling even to identify how to
search for relevant projects.

Through the top-level exploration module, SAGE’s self-guided task generator decomposes the difficult
instruction into three simpler subtasks: (1) locating a Web Agent project, (2) identifying the most
recently updated entry, and (3) retrieving its contributors. These tasks are short-horizon and require
only a few well-defined interactions, allowing the agent to explore and acquire each skill individually
via low-level exploration.

Once the agent demonstrates competence on the subtasks, the task generator reintroduces the original
complex task, allowing the agent to practice solving it end-to-end. Empowered by prior experience
and learned sub-skills, the agent successfully completes the original instruction—demonstrating the
effectiveness of SAGE in enabling curriculum-driven skill composition and long-horizon reasoning.
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G Limitations and Future Work

While SAGE achieves strong performance across diverse web environments, it is not without limita-
tions. First, our framework assumes access to a stable and scriptable browser environment, which
may not hold in fully open-web scenarios that include CAPTCHAs, login requirements, or highly
dynamic JavaScript content. Although we use Playwright wrappers to store and reload webpage
states—enabling reproducible resets similar to prior works [17? ]—this assumption limits the applica-
bility of our MCTS-based exploration in real-world settings where actions may be irreversible or pages
non-deterministic. Future extensions may incorporate conservative planning, safe policy filtering, or
human-in-the-loop oversight to enable safer deployment in uncontrolled web environments.

Second, SAGE introduces several environment-specific augmentations—such as leveraging webpage
accessibility trees, BFS-based initial trajectory collection, and full environment resets—that simplify
training in standardized benchmarks but may not generalize to arbitrary or uninstrumented websites.
Improving robustness under weaker assumptions (e.g., partial observability or limited environment
control) remains an important avenue for future research.

Third, our current experiments are conducted in standardized, resettable environments that require
substantial computational resources for large-scale MCTS rollouts and high-fidelity webpage render-
ing. This high barrier to replication may hinder broader community adoption or re-implementation
without comparable infrastructure. We plan to mitigate this by releasing lightweight simulation setups
and environment wrappers to facilitate partial reproduction under modest compute budgets.

Finally, although SAGE is designed for research and sandboxed environments, applying it directly to
live websites may raise privacy concerns, as agents could unintentionally access or leak user-sensitive
information during open-ended exploration. Ensuring privacy-safe deployment and extending our
approach beyond web navigation—e.g., to desktop or mobile human-computer interaction—represent
key directions for future work.

H Broader Impact

This work aims to advance the development of autonomous web agents that can interact with websites
using vision-language foundation models. Such systems have the potential to automate a wide range
of digital tasks—ranging from information retrieval to workflow assistance—thereby improving
accessibility and efficiency for users. At the same time, their interaction with real-world websites
introduces important safety and ethical considerations.

Controlled research setting. All experiments in SAGE are conducted within strictly controlled
environments. WebArena is a fully sandboxed simulator, and WebVoyager provides access only to
publicly available webpages without user authentication or private data. All web interactions are
executed inside a secure, firewall-protected network that monitors and blocks potentially unsafe
requests. The agent is never provided with personal information, and all tasks involving user accounts
or sensitive data are explicitly excluded. These measures ensure that SAGE operates entirely within a
research context and cannot cause real-world effects.

Safety and misuse considerations. We recognize that autonomous web agents raise broader safety
risks, including unintended interactions with real systems, information leakage, or malicious misuse.
Although such risks are absent in our current setup, future large-scale deployments will require robust
safeguards, such as: (1) decoupling policy outputs from execution through a controlled intermediary
layer with safety filters, (2) adding dedicated safety-monitor models to detect and block risky actions,
(3) enforcing rate limiting, permission gating, and anomaly detection, and (4) maintaining human-in-
the-loop oversight during execution. We emphasize that our work focuses on algorithmic capability
under safe, offline environments, but we strongly support the establishment of community standards
for safe deployment of web agents.

Ethical and privacy implications. Interactions with real-world websites can raise privacy or data
protection concerns. While our experiments do not involve any private or user-generated content,
future work must ensure that autonomous web agents respect consent boundaries and data-use
policies. We also acknowledge potential social risks, such as unintended automation of sensitive or
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economically impactful tasks. These issues call for broader interdisciplinary research that combines
technical safeguards with ethical and policy frameworks to ensure responsible deployment.

Outlook. Our primary goal is to improve the technical understanding and safe design of autonomous
web agents. We believe that future progress in this field must go hand in hand with advances in safety,
interpretability, and accountability mechanisms. We are committed to contributing to the development
of transparent, privacy-conscious, and human-aligned web agent systems that can benefit society
while minimizing risk.

I Ethical and Safety Considerations

This work develops SAGE as a research framework for studying autonomous web agents in controlled
environments. All experiments are conducted entirely within WebArena and WebVoyager, following
prior work [17]. WebArena is a fully synthetic sandbox that simulates websites locally without
any network connection or real data. WebVoyager contains only a small set of manually curated,
static webpages from publicly accessible domains (e.g., Google Maps, Wikipedia), without user
authentication, private data, or executable operations. Agent activities occur behind a firewall, and
all interactions are logged for analysis and accountability. Consequently, SAGE does not access or
collect any sensitive or personalized information.

We acknowledge the broader ethical and security concerns associated with deploying fully au-
tonomous agents on the open web. Although SAGE poses no privacy or misuse risk in its current
form, future applications should incorporate additional safeguards such as restricted execution priv-
ileges, rate limiting, security monitoring, and human-in-the-loop approval before critical actions.
Detailed action logs and auditing mechanisms should also be used to ensure accountability and
prevent unintended behaviors.

Finally, no crowd-sourced or external annotation was used in this project. All labeled examples
for evaluator calibration were created internally by the authors. We oppose any unauthorized or
adversarial use of this system and encourage future research to adhere to responsible, transparent,
and privacy-preserving development practices.
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Task Generator Prompt for SAGE (Part A)
{"web_name": "Amazon",
"web": "https://www.amazon.com/",
"structure_info": ["Homepage includes sections such as ’Electronics’, ’Books’, and ’Deals’.", "Prod-
uct pages contain price, reviews, delivery info, and variants.", "Search results are filterable by price,
rating, and brand."],
"previous_trajectories": [
{"instruction": "Search for headphones under $50 with at least 4 stars.", "success rate": 0.32},
{"instruction": "Compare features between AirPods Pro and Galaxy Buds.", "success rate": 0.00},
{"instruction": "Find a gift card worth exactly $100.", "success rate": 0.90}
]}
We are training a web agent that learns to complete real-world tasks by interacting with web interfaces.
Your job is to generate high-quality, instructional tasks that help the agent improve over time. The
agent has already explored this website and attempted previous tasks. Based on this prior experience
and structural understanding of the site, you must generate a new batch of 25 training instructions.
Step 1: Reasoning Instructions
Before listing your output, write your reasoning on how you adapted your tasks. Your strategy must
consider the following:

• Simplify low-success tasks: For instructions with low success (e.g., below 40%), generate
1–2 simpler variants by relaxing filters or breaking down subtasks.

• Harder from high-success tasks: For instructions with high success (e.g., above 80%),
generate harder variants by adding filters or composing with other subtasks.

Figure 5: Task Generator Prompt Part A.

Task Generator Prompt for SAGE (Part B)

• Structure-aware task design: Use the provided structure_info to ensure realism.

• Curriculum balance: Ensure a mix of easy, medium, and hard tasks.

Step 2: Output Format

• Output exactly 25 instructions in JSONL format.

• Each line must be a valid JSON object with a single field "instruction".

Rules and Constraints

• Do not require login, user data, or current time.

• Ensure task is verifiable via screenshots.

• Completion should require 2–8 steps.

In-Context Examples:

• Simplified: {"instruction": "Search for headphones under $50."}

• Harder: {"instruction": "Compare Galaxy Buds and AirPods, then find a cheaper rated
alternative."}

Figure 6: Task Generator Prompt Part B.
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Pre-Exploration Prompt (Part A)
You are an intelligent web browsing agent designed to explore and understand new websites before
learning specific tasks. In this phase, you will only receive the homepage of a new website, and your
goal is to discover and record meaningful pages and their functions. This phase is unguided—you are
not solving any tasks.
In each step:

• You will observe a screenshot, accessibility tree, and numerical element labels.

• Recall visited pages to avoid redundant navigation.

• Propose up to 10 distinct actions that could lead to semantically different states.

• Record what the page reveals (e.g., filters, product listings, FAQs).

Figure 7: Pre-Exploration Prompt Part A: Instructions for agent behavior and high-level goals.

Pre-Exploration Prompt (Part B)
Output Format per step:

• Thought: Reason about the state and exploration plan.

• Top-10 Actions: Propose 10 diverse actions (e.g., Click [3], Scroll WINDOW; down).

• Summary: Describe the page’s purpose or findings.

Exploration Guidelines:

• Avoid login, signup, or non-navigational elements.

• Maximize diversity—explore filters, categories, products, help pages, etc.

• Use accessibility tree to guide semantic understanding.

• Avoid repeated or redundant actions.

Example Output:
Thought: The homepage includes categories and a search bar. I haven’t explored “Books” or filtered
search results yet.
Top-k Actions:

• Click [3]

• Click [4]

• Scroll WINDOW; down

• Type [10]; "usb-c hub"

• ...

Summary: This is the homepage with links to major categories and a search bar. I begin mapping
product pages and filter paths.

Figure 8: Pre-Exploration Prompt Part B: Format, examples, and behavior guidelines for site
exploration.
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