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Abstract

Privacy-aware multiagent systems must protect
agents’ sensitive data while simultaneously ensur-
ing that agents accomplish their shared objectives.
Towards this goal, we propose a framework to pri-
vatize inter-agent communications in cooperative
multiagent decision-making problems. We study
sequential decision-making problems formulated
as cooperative Markov games with reach-avoid
objectives. We apply a differential privacy mech-
anism to privatize agents’ communicated sym-
bolic state trajectories, and analyze tradeoffs be-
tween the strength of privacy and the team’s perfor-
mance. For a given level of privacy, this tradeoff
is shown to depend critically upon the total corre-
lation among agents’ state-action processes. We
synthesize policies that are robust to privacy by
reducing the value of the total correlation. Numer-
ical experiments demonstrate that the team’s per-
formance under these policies decreases by only 6
percent when comparing private versus non-private
implementations of communication. By contrast,
the team’s performance decreases by 88 percent
when using baseline policies that ignore total cor-
relation and only optimize team performance.

1 INTRODUCTION

In cooperative multiagent systems, a team of decision-
making agents interacts with a shared environment to ac-
complish a common objective [Cao et al., 2013, Parker et al.,
2016]. In these systems, inter-agent communication is of-
ten necessary for the successful coordination of the team;
each agent typically relies on information pertaining to its
teammates while making its own decisions. However, this
communicated information may be sensitive. For example, it
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may be beneficial for autonomous vehicles to share location
data while solving multi-vehicle routing problems. However,
this would reveal the passengers’ sensitive location data.
Smart grids are another example in which households con-
nected to the grid are incentivized to work cooperatively by
sharing the power status of their appliances. However, this
information could reveal the personal habits and schedules
of the tenants [Farokhi and Sandberg, 2017]. Privacy-aware
multiagent systems should protect the agents’ sensitive data
while simultaneously ensuring that the agents are able to
accomplish their common objective.

In this work, we develop such privacy-aware multiagent
systems. In particular, we study sequential multiagent de-
cision problems formulated as cooperative Markov games
with reach-avoid objectives. We assume that a trusted cen-
tral aggregator is used to synthesize a collection of local
policies for the team of agents a priori. In general, the local
policy of a particular agent maps from the state information
of some subset of its teammates, to the agent’s local action
space. However, during policy execution, the agents want
to keep their individual state trajectories private from their
teammates and from potential eavesdroppers (the aggregator
is not involved at run time). When the local policies do not
take privacy into consideration, their performance under pri-
vate communications can decrease dramatically, as shown
by our numerical results. Thus, we develop a framework to
privatize the inter-agent communications required to execute
the policies, and to synthesize policies that are performant
under private communications.

We use differential privacy [Dwork et al., 2014] to develop
a framework providing formal privacy guarantees in multia-
gent systems. In the Markov game, each agent is modeled
by a Markov decision process (MDP), and we are concerned
with privatizing the state trajectories of these MDPs. We
implement differential privacy using the Online Mechanism
for Markov chains presented by Chen et al. [2023]. Un-
der an assumption on the structure of the dependencies of
the agents’ local policies on their teammates’ states, we
show that this mechanism guarantees differential privacy
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for the symbolic state trajectories produced by the MDPs.
The mechanism also provides an efficient method for agents
to generate private states in real-time, and it ensures that
each agent’s private trajectory is feasible with respect to the
underlying dynamics of its MDP. Finally, the strength of the
privacy guarantees can be tuned by each agent.

Our specific contributions in this work are as follows:

1. A framework for differential privacy in multiagent sys-
tems. We propose a framework for differential privacy
in multiagent planning problems. The framework al-
lows for the decentralized execution of local policies
under private inter-agent communications.

2. Theoretical results: Analyzing the tradeoff between
privacy and performance. We bound the team’s success
probability under private communications in terms of
the strength of privacy and total correlation of agents’
state-action processes.

3. Synthesis of policies robust to private communications.
By minimizing this total correlation value we synthe-
size policies for the agents that achieve high perfor-
mance under strong levels of privacy.

Numerical experiments demonstrate the strong performance
of the synthesized policies, even with private communica-
tions. We observe that under private communications: 1)
the proposed minimum-dependency policies are 84 percent
more performant than baseline policies that only optimize
the team’s performance under truthful communications and
that ignore total correlation, 2) as the total correlation de-
creases, the team’s performance increases, and 3) the perfor-
mance of the minimum-dependency policies is robust to the
level of privacy enforced by the privacy mechanism.

Despite the importance of privacy in multiagent sys-
tems [Such et al., 2014], existing algorithms for multiagent
planning and learning typically do not examine the trade-
off between privacy and team performance, and many do
not consider privacy at all. Nissim and Brafman [2014],
Brafman [2015], Tožička et al. [2016], Štolba et al. [2018,
2022] explore the notion of strong privacy in multiagent
planning problem for deterministic environments. Tožička
et al. [2016], Štolba et al. [2018, 2022] focus on the privacy
of the planning process itself, where sensitive information
refers to specific states and actions that are kept hidden from
adversaries while synthesizing a plan. Nissim and Braf-
man [2014], Brafman [2015] develop algorithms that ensure
agents do not share sensitive states or actions when execut-
ing a distributed planning algorithm for deterministic envi-
ronments. Hefner et al. [2022] extends the notion of strong
privacy to stochastic systems and develops a distributed
value iteration algorithm for privacy-preserving planning.
These works are concerned with hiding a private portion of
each agent’s states, and they do not consider mechanisms
in which the agents achieve privacy by altering their shared
information. By contrast, our work studies a differential

privacy mechanism that alters the state trajectories of the
agents during multiagent communication in stochastic en-
vironments. More closely related to our approach, Ye et al.
[2022] uses differential privacy to privatize the local infor-
mation of the agents. However, different from our problem
setting, they consider logistic-like problems modeled with
Graph-STRIPS.

Meanwhile, differential privacy has been studied in the
context of planning and reinforcement learning for MDPs
[Garcelon et al., 2021, Qiao and Wang, 2022, Gohari et al.,
2021]. However, these works study single-agent problems
and they are mainly concerned with privatizing value func-
tions, reward values, or transition probabilities. Our work
instead considers the multiagent setting and we define differ-
ential privacy over symbolic state trajectories. In particular,
we extend the differential privacy mechanism presented by
Chen et al. [2023] to multiagent planning problems, and we
study the impact of privacy on the team’s performance.

Decentralized policy execution has gained attention for
planning and reinforcement learning in multiagent MDPs
[Becker et al., 2003, Rashid et al., 2018, Son et al., 2019,
Oliehoek and Amato, 2016, Karabag et al., 2022]. As a
byproduct of decentralized policy execution, these algo-
rithms may achieve privacy in the sense that agents do not
communicate locally available information. However, these
works do not explicitly consider privacy or give privacy
guarantees. Furthermore, it may not be possible to obtain
high performance under fully decentralized policy execu-
tion. For this reason, we allow for private communications
and use total correlation as a soft decentralization metric,
which enables the synthesis of policies that are performant
under private communications.

2 PRELIMINARIES

2.1 COOPERATIVE MARKOV GAMES

Given a finite collection of N agents indexed by i ∈
{1, 2, . . . , N}, we model the dynamics of agent i with an
MDP Mi. An MDP is a tuple Mi = (Si, siI ,Ai, T i),
where Si is agent i’s finite set of local states, siI ∈ Si is an
initial state, Ai is agent i’s finite set of local actions, and
T i : Si ×Ai → ∆(Si) is a transition probability function,
where ∆(Si) denotes the set of probability distributions
over the state space Si. For brevity, we use T i(si, ai, yi)
to denote the probability of yi given by the distribution
T i(si, ai). A state sij ∈ Si is called a feasible state of an-
other state sik ∈ Si if there exists an action ai ∈ Ai such
that T i(sik, a

i, sij) > 0.

Given such a collection of agents, we formulate the team’s
decision problem as a cooperative Markov game with in-
dependent transitions M. A cooperative Markov game in-
volving N agents, each of which is modeled by an MDP



Mi = (Si, siI ,Ai, T i), is given by the tuple M =
(S, sI ,A,T ). Here, S = S1 × · · · × SN is the joint
state space, sI = (s1I , . . . , s

N
I ) is the joint initial state,

A = A1 × · · · × AN is the joint action space, and
T : S × A → ∆(S) is the joint transition probabil-
ity function. For brevity, we use T (s,a,y) to denote
the probability of y given the distribution T (s,a). T
is defined as T (s,a,y) =

∏N
i=1 T i(si, ai, yi) for all

s = (s1, . . . , sN ) ∈ S, y = (y1, . . . , yN ) ∈ S and
a = (a1, . . . , aN ) ∈ A.

For notational convenience, we use s−i ∈ S−i = S1 ×
. . .×Si−1 ×Si+1× . . .×SN to denote the states of agent
i ’s teammates, excluding agent i itself. Similarly a−i and
A−i denote the actions of agent i ’s teammates and the set
of all possible actions of teammates, respectively.

A (stationary) local policy πi : S → ∆(Ai) of Agent i
is a mapping from a particular joint state to a probability
distribution over actions of Agent i. Given the team is in
joint state s, πi(s, ai) denotes the probability that action ai

is selected by πi for agent i . We define a (stationary) joint
policy π to be a collection of local policies, {πi}Ni=1.

In a truthful communication setting, at each timestep, each
agent i observes its local state sit, and communicates this
information with all of its teammates. Each agent then uses
the state information communicated by its teammates, and
its local policy πi, to sample an action ai ∈ Ai to execute.

In this work, we consider team reach-avoid problems. The
centralized planning problem is to solve for a collection
of local policies {πi}Ni=1 maximizing the probability that
the team reaches a target set ST ⊆ S of states from the
team’s initial joint state sI , while avoiding a set SA ⊆ S of
states. We call this probability value the success probability.
More formally, we say that a state-action trajectory ξ =
s0a0s1a1 . . . successfully reaches the target set ST if there
exists some time M such that sM ∈ ST and for all t < M ,
st ̸∈ SA. While we focus on reach-avoid problems, our
framework can be applied to settings with generic rewards.

We use xs,a to denote the occupancy measure of the state-
action pair (s,a), i.e., the expected number of times that
action a is taken at state s. Similarly, xsi,ai denotes the the
occupancy measure of the state-action pair

(
si, ai

)
for agent

i where xsi,ai =
∑

s−i∈S−i

∑
a−i∈A−i x(si,s−i),(ai,a−i).

Let SD be the states from which the probability of reaching
ST is 0 under any collection of local policies. The following
assumption ensures that every trajectory satisfies or violates
the reachability specification in finite time.

Assumption 1. The total occupancy measure is finite at
states S\(ST ∪SD), i.e.,

∑
s∈S\(ST ∪SD),a∈A xs,a < ∞.

A state-action trajectory ξi of the MDP Mi is a se-
quence ξi = si0a

i
0s

i
1a

i
1 . . . such that for all t = 0, 1, . . . ,

T (sit, a
i
t, s

i
t+1) > 0. We use ξ = s0a0s1 . . . to denote

the joint state-action trajectory of all agents and ξ−i =
s−i
0 a−i

0 s−i
1 a−i

1 . . . to denote joint state-action trajectory
with agent i excluded. We define the effective length of tra-
jectories len(ξ = s0a0 . . .) = min{t+ 1|st ∈ ST ∪SD}.
Let agent i’s state trajectory up to time t be hi

t = si0s
i
1 . . . s

i
t.

We are concerned with the privacy of hi
t so that agents can

execute their policy without revealing sensitive information.

2.2 DIFFERENTIAL PRIVACY

Differential privacy is enforced by a mechanism, which is
a randomized map. We enforce differential privacy on a
per-agent basis, an approach sometimes called “local dif-
ferential privacy" [Duchi et al., 2013]. For nearby local
state trajectories, a mechanism must produce local private
trajectories that are approximately indistinguishable. The
definition of “nearby" is given by an adjacency relation
using the Hamming distance [Schulz and Mihov, 2003]
denoted by d(vi, wi), which is a metric that measures the
minimum number of substitutions that can be applied to a
local trajectory vi of agent i to convert it to wi.

Next, we define the notions of adjacency and local dif-
ferential privacy for the Markov game. Let Dπ,T =
{(s0 . . . sT ) | ∀t, ∃at,T (st,at, st+1)π(st,at) > 0} de-
note a set of all feasible joint state trajectories of M under
a joint policy π.

Definition 1 (Adjacency). Fix a length T ∈ N+ and an
adjacency parameter k ∈ N+. For a Markov game M with
state space S and a joint policy π, the adjacency relation for
agent i is AdjiT,k = {(v,w) ∈ Dπ,T ×Dπ,T | d(vi, wi) ≤
k, and ∀j ̸= i, vj = wj}.

For agent i, two T -length joint trajectories are adjacent
if the Hamming distance between agent i’s corresponding
local trajectories is less than or equal to k, and the local
trajectories of the rest of the team remain the same. We next
introduce the definition of word local differential privacy.

Definition 2 (Word Local Differential Privacy). Fix a prob-
ability space (Ω,F ,P), an adjacency parameter k ∈ N+,
a length T ∈ N+, and a privacy parameter ϵ > 0. For
a Markov game M with state space S and a joint pol-
icy π, a mechanism M : Dπ,T × Ω → ∆((Si)T ) is ϵ-
word local differentially private for agent i if, for all tra-
jectories (v,w) ∈ AdjiT,k and all L ⊆ (Si)T , it satisfies
P[M(v) ∈ L] ≤ eϵP[M(w) ∈ L].

Consider two candidate trajectories for agent i where one of
them is the true local trajectory and the other is an adjacent
local trajectory. Intuitively, word local differential privacy
guarantees that given agent i’s private local trajectory, a ma-
licious agent can not reliably tell which candidate trajectory
is agent i’s true local trajectory, even if the malicious agent
has access to the true trajectories of agent i’s teammates.



Definition 2 is an extension of Definition 2 from Chen et al.
[2023] for the multiagent setting. The privacy parameter
ϵ controls the strength of privacy and a smaller ϵ implies
stronger privacy. In the literature, ϵ typically ranges from
0.01 to 10 [Hsu et al., 2014].

3 PROBLEM FORMULATION AND
ASSUMPTIONS

In this section, we state the problem of privatizing inter-
agent communications in a cooperative Markov game and
introduce the relevant assumptions. We begin with the prob-
lem statements. Consider N agents playing a cooperative
Markov game with a reach-avoid objective as introduced
in §2.1.

Problem 1. Design an online privacy mechanism that pro-
vides ϵ-word local differential privacy (Definition 2) for the
state trajectory hi

t = si1s
i
2 . . . s

i
t of agent i in real time, i.e.,

without knowledge of sit+1, s
i
t+2, . . . at time t.

Problem 2. Define an algorithm for the decentralized exe-
cution of policies {πi}Ni=1 under private communications.

Problem 3. Given a collection of local policies {πi}Ni=1,
provide a bound on the probability of success under private
communications vpr. Use this bound to analyze the tradeoffs
between privacy and performance in the multiagent system.

Problem 4. Synthesize policies for the multiagent system
that achieve high performance under strong levels of privacy,
by taking into account the tradeoffs analyzed in Problem 3.

Privacy Assumptions: We define the information that the
agents provide to the central planner and the information that
they hide. We then illustrate this setting with an example.

We assume that each agent trusts a central planner to design
local policies. Each agent allows the planner to access its in-
dividual MDP, denoted as Mi for each i ∈ [N ]. The planner
also has knowledge of the game’s objective, which can be
specified as reach and avoid sets ST and SA or as a reward
function. The central planner uses this information to pro-
vide each agent with a local policy πi. These local policies
are assumed to be stationary and the action distribution of
each agent is independent of the actions of its teammates
given the joint state. This means that the central planner
will not synthesize policies that compromise privacy: agent
i does not gain knowledge of any other agent’s actions by
sampling its own local policy πi. We additionally assume
that the initial joint state, sI , is public information.

Furthermore, we assume that the local policies synthesized
by the central planner have an acyclic dependency structure.
Let G = ([N ], E) be a directed graph, where E ⊆ [N ] ×
[N ]. We use G to define the dependency structure of the
local policies in the sense that an edge (i, j) ̸∈ E if and

only if πi(s, ai) = πi(y, ai) for all s = (s1, . . . , sN ) ∈ S
and y = (y1, . . . , yN ) ∈ S with sk = yk for all k ̸= j.
In words, (i, j) /∈ E if the local policy of agent i does
not depend on the state of agent j. The assumption on the
acyclic dependency structure of the agents’ policies can then
be defined as follows.

Assumption 2. The directed graph G′ = ([N ], E′) is an
acyclic directed graph where E′ = E \ {(i, i)|i ∈ [N ]}.

While we formulate the problem as a cooperative Markov
game from the point of view of a central planner, we note
that each of the agents only cooperates with its teammates
insofar as it follows the policy provided to it by the planner.
Hence, the agents do not necessarily trust each other. As an
example, the agents in a smart grid might be incentivized to
work cooperatively to improve the overall efficiency of the
grid. However, these agents might still have individual pri-
vacy concerns: adversaries can infer the power-consumption
habits of individuals, e.g., the level of occupancy of a house-
hold, from the data shared with the rest of the grid Farokhi
and Sandberg [2017].

We accordingly assume that the agents do not have access to
each other’s transition probabilities or actions. The agents
also do not observe whether the reach-avoid specification is
satisfied or violated. Each agent only receives a local policy
from the central planner and private state information from
the agents that this policy depends on, as defined by G.

Lastly, we note that the methods presented in this paper can
be applied when each agent has a different privacy level, i.e.,
different values of ϵ. However, for convenience we assume
that each agent has the same privacy parameter ϵ.

Example 1. In this example, the sensitive information is
the location of two drivers, Alice and Bob, who work for a
taxi service. A central planner employed by the taxi service
generates local policies for Alice and Bob to follow. These
local policies dynamically assign each of the drivers to a
passenger based on their location proximity. Alice and Bob
thus need to share their locations with each other in order
to follow their respective policies. However, Alice and Bob
would prefer to keep their locations private. Consequently,
they use privacy mechanisms while communicating their
locations. For example, they randomize their location data
before sharing it so that their true locations are not revealed.

With this private information, Alice and Bob then execute the
local policies synthesized by the central planner. However,
because they are sharing perturbed location data, the local
policies may not be executed as efficiently as they could be
if they had access to each other’s true locations. The central
planner should take the privacy mechanisms into account
while synthesizing local policies in order to balance privacy
and performance.



4 IMPLEMENTING LOCAL POLICIES
WITH PRIVATE COMMUNICATIONS

In this section, we solve Problems 1 and 2. Specifically,
in §4.1, we modify the online mechanism for Markov chains
from Chen et al. [2023] to privatize state trajectories of an
MDP. Then, in §4.2 we detail how each agent can use other
agents’ private state information to execute its local policy.

4.1 IMPLEMENTING DIFFERENTIAL PRIVACY

We enforce privacy on a per-agent basis. That is, we develop
a mechanism for agent i to share its local state trajectory
hi
t = si1s

i
2 . . . s

i
t ∈ (Si)t during policy execution while sat-

isfying word local differential privacy from Definition 3. To
achieve this, agent i will only share a private state trajectory
h̃i
t = s̃i1s̃

i
2 . . . s̃

i
t ∈ (Si)t. To generate h̃i

t in real time, agent
i uses an online mechanism Mhi

t
to generate an individual

private state s̃it at each time step t.

At every time step t, each agent needs to communicate its
private state with the agents corresponding to its predeces-
sors in the acyclic graph G′, to allow them to execute their
local policies. However, the differential privacy guarantee of
Definition 2 holds over the entire T−length state trajectory.
This means that even though agents are communicating at
each time step, we provide privacy to their entire T−length
trajectories. We now define the online privacy mechanism.

Definition 3 (Online Mechanism [Chen et al., 2023]).
Fix a probability space (Ω,F ,P) and an MDP Mi =
(Si, siI ,Ai, T i). Given a state trajectory hi

t = si1s
i
2 . . . s

i
t ∈

(Si)t, with an initial state siI , define the online mechanism
Mhi

t
that generates a private trajectory h̃i

t = s̃i1s̃
i
2 . . . s̃

i
t ∈

(Si)t such that s̃it is sampled from the distribution P[s̃it] =
µi
ϵ(s̃

i
t|sit, s̃it−1) where µi

ϵ is computed by Algorithm 1.

Algorithm 1: Online Mechanism Construction
Input: Probability of true transition τϵ
Output: µi

ϵ

for (sit, s̃
i
t−1, s̃

i
t) ∈ Si × Si × Si do

if sit = s̃it and β(s̃it, s̃
i
t−1) = 1 then

µi
ϵ(s̃

i
t | sit, s̃it−1) = τϵ(s̃

i
t−1).

else if sit ̸= s̃it and β(s̃it, s̃
i
t−1) = 1 then

µi
ϵ(s̃

i
t | sit, s̃it−1) =

1−τϵ(s̃
i
t−1)β(s

i
t,s̃

i
t−1)

ρ(s̃it−1)−β(sit,s̃
i
t−1)

.

else
µi
ϵ(s̃

i
t | sit, s̃it−1) = 0.

In Algorithm 1, the feasibility indicator function β is defined
for all si, yi ∈ Si as

β(si, yi) =

{
1, if ∃ai ∈ Ai s.t. T i(yi, ai, si) > 0,

0, otherwise,

and the out-degree ρ is defined for each state si ∈ S as
ρ(si) = |{yi ∈ Si | ∃ai ∈ Ai s.t. T i(si, ai, yi) > 0}|.

Definition 3 and Algorithm 1 define a privacy mechanism
in the form of a conditional probability distribution µi

ϵ. To
implement the mechanism agent i samples a private output
s̃it from the probability distribution µi

ϵ(·| sit, s̃it−1) at each
time step t. The mechanism is constructed such that the
probability µi

ϵ(s̃
i
t | sit, s̃it−1) is positive if s̃it is feasible from

the most recent private state s̃it−1, and 0 otherwise. This
prevents the mechanism from outputting private trajectories
that are not feasible with respect to the dynamics of Mi.
When the true, sensitive state sit is feasible from the previous
private output s̃it−1, the mechanism outputs sit with proba-
bility τϵ(s̃

i
t−1) and outputs any other feasible state with a

uniform probability whose sum is equal to 1− τϵ(s̃
i
t−1). We

refer to the event of outputting the sensitive state sit at time
t as a “true transition" and τϵ(s̃

i
t−1) as the “probability of

true transition". In §5, we establish a requirement for this
mechanism to achieve word local differential privacy.

4.2 PRIVATE POLICY EXECUTION

In this section, we solve Problem 2 and define an algorithm
for the decentralized execution of local policies {πi}Ni=1

under private communications (Algorithm 2).

Recall that we assume the agents use local policies with an
acyclic dependency structure defined by the directed graph
G′ = ([N ], E′). Let Pred(i) and Succ(i) denote the set of
predecessors and succesors of node i in G′, respectively. Let
s̃Succ
t,i = (s̃jt ) for all j ∈ Succ(i) be the tuple containing

the private states of agent i’s successors. Note that formally,
πi is defined on the joint state space of the entire team.
However, Assumption 2 ensures that the action distribution
defined by πi only depends on (s̃Succ

t,i , sit), the local states
of some subset of the agents. To more readily highlight
the information dependencies in the problem, it is with a
slight abuse of notation that we use (s̃Succ

t,i , sit) to denote
the inputs provided to each local policy πi in Algorithm 2.

Algorithm 2: Privatized Policy Execution

Input for every agent i: Local policy πi

Set s̃i0 = siI for all i ∈ [N ].
for t = 0, 1, . . . every agent i does in parallel

Set ŝt,i = (s̃Succ
t,i , sit).

Sample an action ait ∼ πi(ŝt,i).
Execute ait and transition to sit+1 ∼ T i(sit, a

i
t).

Share s̃it+1 ∼ µi
ϵ(·|sit+1, s̃

i
t) with agents in

Pred(i).

During private policy execution, the agents communicate
potentially false information. To sample actions from their
local policies, each agent must therefore maintain an esti-
mate of the states of its successors in G′. We assume that



each agent constructs this estimate using the privatized in-
formation it receives from its teammates. In detail, agent i
knows its own local state sit and the private state of its succes-
sors, s̃jt for j ∈ Succ(i) at time t. Agent i’s estimate of the
relevant teammate states is thus given by ŝt,i = (s̃Succ

t,i , sit).

Then, agent i samples an action ait for itself from πi using
the estimate ŝt,i. We note that the agents do not communi-
cate during the action selection phase since the local policies
are independent given the joint state. After choosing an ac-
tion ait, agent i executes this action and transitions to a next
state sit+1. In the next time step t + 1, agent i samples a
private state s̃it using µi

ϵ and shares this private state with
the agents corresponding to its predecessors in G′.

5 PRIVACY AND PERFORMANCE
TRADEOFFS

In this section, we address Problem 3 and analyze the trade-
off between performance and privacy when executing a
collection of local policies with private communications.

In the single-agent setting, Chen et al. [2023] showed word
differential privacy of the agents’ state trajectories gener-
ated by the online mechanism. We extend this result to the
multiagent setting using Assumption 2, which ensures that
at time t the future true state trajectory sit+1 . . . of agent i
is statistically independent from its past private state trajec-
tory h̃i

t = s̃i1s̃
i
2 . . . s̃

i
t given hi

t = si1s
i
2 . . . s

i
t. We discuss the

necessity of this independence in the proof of Theorem 1,
which is provided in the supplementary material.

Theorem 1. Fix a length T ∈ N+, an adjacency parameter
k ∈ N+, and a privacy parameter ϵ ≥ 0. Under Assump-
tion 2, the online mechanism (Definition 3) is ϵ-word locally
differentially private (Definition 2) with respect to the Adja-
cency relation AdjiT,k in Definition 1 if τϵ(s̃it−1) satisfies

τϵ(s̃
i
t−1) = 1/((ρ(s̃it−1)− 1)e−

ϵ/k+1).

As privacy strengthens (i.e., as ϵ decreases), τϵ(s̃it−1) ap-
proaches 1/(ρ(s̃it−1)− 1) which implies the privacy mech-
anism will sample the private state s̃it more uniformly from
the set of feasible next states of s̃it−1. Conversely, as privacy
weakens (i.e., as ϵ increases), τϵ(s̃it−1) increases as well,
indicating a larger probability of revealing the true state.

Having established the differential privacy guarantees of
Algorithm 2, we now focus on performance guarantees. In
order to succeed under private communications, the agents’
local policies should be as indifferent as possible to the other
agents’ states. In other words, agents’ behaviors should be
made nearly independent from each other.

The collection of local policies induce a joint policy π =
{πi}Ni=1. To measure the dependencies between the agents,
we use a quantity called the “total correlation" of the joint
policy [Karabag et al., 2022]. Let St be a random variable

denoting the joint state of the agents at time t under the joint
policy π with no privatization, At be a random variable
denoting the joint action of the agents at time t, Si

t be a
random variable denoting the state of Agent i at time t,
and let Ai

t be a random variable denoting the action of
Agent i at time t. The total correlation Cπ of a joint policy
π = {πi}Ni=1 is

Cπ = ΣN
i=1H(Si

0A
i
0 . . . S

i
η)−H(S0A0 . . .Sη) (1)

where H(Y ) := −
∑

y∈Y Pr(Y = y) log(Pr(Y = y)) is
the entropy of a discrete random variable Y with support Y ,
and η denotes the random hitting time to ST ∪SD, i.e., the
effective end of the trajectory in terms of the reach-avoid
specification [Karabag et al., 2022].

The following result relates the success probability under
private communications to the success probability under
truthful communications (i.e., without privacy). The proof
of the theorem is included in the supplementary material.

Theorem 2. Fix a privacy parameter ϵ > 0 and adjacency
parameter k. Given N agents implementing local policies
π = {πi}Ni=1 with private communications according to
Algorithm 2, let vpr be the success probability under private
communications and let vtr be the success probability under
truthful communications (no privacy). Then,

vpr ≥ vtr −
√
1− e−Cπ

(
(ρm − 1)e−ϵ/k + 1

)Nltr
,(2)

where Cπ is defined in (1), ρm = maxi∈[N ],si∈Si ρ(si) is
the max out-degree, ltr = Eξ∼Γtr [len(ξ)] is the expected
joint trajectory length when π is executed with no privacy,
and Γtr is the probability distribution over joint trajectories
induced by the joint policy executed with no privacy.

The term
(
(ρm − 1)e−ϵ/k + 1

)Nltr

in Theorem 2 repre-
sents the probability of the event that the private state trajec-
tories are the same as the true state trajectories. The term
e−Cπ in Theorem 2 is a proxy to account for the event that
the private state trajectories are different from the true state
trajectories. In this event, the agents can still succeed if the
local policies are independent of the other agents’ states. A
lower total correlation implies lower dependencies between
the agents, and that the agents are more likely to succeed.
We note that the equality holds in (2) when agents commu-
nicate truthfully, i.e., ϵ = ∞, and each agent acts totally
independently from other agents, i.e., Cπ = 0.

We remark that given the privacy mechanism and the acyclic
dependency structure described in Assumption 2, one could
formulate the policy synthesis as a decision-making problem
in a partially observable MDP (POMDP). Such a POMDP-
based formulation would yield optimal policies in terms
of team performance under private communications. How-
ever, the synthesis procedure for POMDPs is computation-
ally challenging because the optimal policies are history-
dependent. For this reason, in the next section, we consider



the class of stationary joint policies and avoid the compu-
tational challenges that arise when keeping track of all the
potential histories. We instead use a “soft decentralization”
metric to synthesize policies that make the agents insensitive
to inaccuracies in the communicated information.

6 POLICY SYNTHESIS

In this section, we present an algorithm for the synthesis
of a collection of local policies π = {πi}Ni=1 that remains
performant, even under private communications.

We aim to maximize the reach-avoid probability under pri-
vate communications by minimizing the lower bound on vpr

given in Theorem 2. Since the bound is complex in nature
and it is a monotone function of its variables, we instead
aim to solve the following optimization problem involving
constants δ > 0 and β > 0:

supπv
tr − δltr − βCπ. (3)

In order to solve this optimization problem, we follow the
methodology presented in Karabag et al. [2022]. Using
the stationarity of π, the terms vtr and ltr can be rep-
resented with linear functions of the occupancy measure
variables xs,a of the joint state-action space. The term
−H(S0A0 . . .Sη) in Cπ can be represented with a con-
vex function of the occupancy measure variables. However,
the individual entropy terms H(Si

0A
i
0 . . . S

i
η) in Cπ , which

correspond to the entropies of hidden Markov models, do
not have closed-form expressions. As a proxy, we replace
each of these terms with an upper bound, which is a concave
function of the occupancy measure variables. The set of sta-
tionary joint policies can be represented with affine equality
constraints on the occupancy measure variables. The ob-
jective function of the resulting optimization problem only
contains convex and concave functions of the occupancy
measure variables, and the constraints are affine. We thus
use the convex-concave procedure [Lanckriet and Sriperum-
budur, 2009, Yuille and Rangarajan, 2001] to solve for a
local optimum. We refer interested readers to Karabag et al.
[2022] for more details on the formulation of this optimiza-
tion problem.

After solving for the optimal x∗
s,a of the occupancy measure

variables, we compute the local policies. Recall that in As-
sumption 2, we assumed the policy dependencies between
the agents are acyclic. In order to compute local policies
πi(s, ai) that satisfy Assumption 2, we marginalize the joint
occupancy measure using a desired dependency graph G′ =
([N ], E′). Formally, for every s = (s1, . . . , sN ) ∈ S,

πi(s, ai) =

∑
y∈Yi

s

∑
a−1∈A−1 x∗

y,(ai,a−i)∑
y∈Yi

s

∑
a∈A x∗

y,a

where Yi
s = {(y1, . . . , yN ) ∈ S | ∀(i, j) ∈ E, yj = sj}.

We note that, instead of postprocessing the joint occupancy

variables, one could alternatively enforce this assumption
by including additional bilinear equality constraints in the
policy synthesis optimization problem.

7 NUMERICAL EXPERIMENTS

Numerical experiments demonstrate the robustness to pri-
vate communication enjoyed by the policies synthesized
using the procedure described in §6. In each experiment,
we solve (3) to synthesize minimum-dependency local poli-
cies {πi

MD}Ni=1 for the agents in the team. We use πMD

to denote the joint policy that results from the concurrent
execution of these local policies, described in §4.2.

We compare the performance of πMD to that of a
collection of baseline local policies {πi

base}Ni=1, which
are synthesized by optimizing the team’s performance
under truthful communications without taking the total
correlation value into account. That is, the baseline
policies are constructed by solving (3) with δ and β
set to zero, and subsequently marginalizing the policies
to satisfy Assumption 2 (as described at the end of
§6). We use πbase to refer to the joint policy resulting
from the concurrent execution of {πi

base}Ni=1. Code to
reproduce all experiments and analysis is available at
https://github.com/cyrusneary/differential_privacy_in_mas.

7.1 TWO-AGENT NAVIGATION EXAMPLE

We begin by considering the multiagent navigation example
introduced by Karabag et al. [2022]. Two agents operate
in a common environment, which consists of two large
open areas connected by two separate corridors. Each of the
two agents begins in one of the large open areas and they
must use the corridors to navigate past each other without
colliding, in order to reach their target locations. In addition
to the risk of collisions, the environment is constructed
so that one of the corridors poses a small level of risk: if
an agent uses that corridor, there is a chance they could
transition to a dead state and never reach their target. In such
an environment, jointly navigating the corridors without
colliding necessitates coordination between the agents.

The environment is implemented as a grid of cells, each of
which corresponds to an individual local state. At any given
timestep, each agent can choose to move in any direction or
remain in place. Each agent slips with a small probability
when it takes an action, resulting in the agent moving to one
of its neighboring states instead of its intended target state.

While synthesizing πMD, we set δ = 0.01 and β = 0.4
in (3). We fix an adjacency parameter of k = 3 while con-
structing the privacy mechanisms used in all experiments.
To define the acyclic dependencies between the agents’ local
policies, we use the directed graph G′ with nodes {1, 2} and
with a single edge E′ = {(1, 2)}—the first agent’s local

https://github.com/cyrusneary/differential_privacy_in_mas
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Figure 1: Probability of task success as a function of the
number of iterations of the policy synthesis procedure for
the two-agent navigation experiment.
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Figure 2: Probability of team success under private com-
munications as a function of the total correlation of the
synthesized policies.
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Figure 3: Probability of team success under a variety of
levels of privacy. Smaller values of the privacy parameter ϵ
correspond to a stronger level of privacy.

policy depends on the local state of the second agent, but
not vice versa.

Minimum-dependency policies are 84% more perfor-
mant than the baseline under private communications.
Figure 1 illustrates the probability of success of πMD

throughout the policy synthesis procedure. We plot the suc-
cess probability resulting from both private (ϵ = 1.0) and
truthful implementations of communication. For compar-
ison, we also plot the results of πbase. We estimate the
plotted probability values by simulating 1, 000 rollouts of
the policies at each iteration, and computing the empiri-
cal rate at which the team reaches its target set. While the
baseline policy achieves a success probability of 0.98 under
non-private communication, its success probability drops to
0.10 when communications are privatized. By contrast, even
under private communication, πMD enjoys a probability of
success of 0.94.

Intuitively, πMD is more performant under private com-

0 1 2 3
wait, pr wait, ponb wait, poff

repair, 1 repair, 1 repair, 1

wait, 1− pr wait, 1− ponb wait, 1− poff wait, 1

Figure 4: Local transition dynamics of the SysAdmin ex-
ample. A label (a, p) refers to a transition happening with
probability p under action a.

munications than πbase because it renders the actions of
each agent independent from the states of its teammate. We
observe that πbase results in both agents using the same
corridor to navigate to their respective goals, which requires
the agents to condition their actions on each other’s states
at every timestep. By contrast, πMD results in each agent
using a different corridor to navigate to its goals, regard-
less of the states and actions of its teammate. This joint
behavior is much less likely to result in collisions when
communications are privatized.

Lower total correlation values result in higher success
probabilities under private communications. Figure 2
illustrates the team’s success probability and the total cor-
relation of each of the joint policies obtained throughout
policy synthesis. As the total correlation of πMD decreases
during policy synthesis, the policy’s performance under
private communications significantly increases. This result
provides a strong empirical justification for the use of total
correlation as a regularizer during policy synthesis.

The performance of πMD is robust to the level of privacy
enforced by the differential privacy mechanism. Recall
that the parameter ϵ controls the strength of privacy enforced
by the differential privacy mechanism. Lower values of ϵ
correspond to stronger levels of privacy—the mechanism is
more likely to perturb the state trajectories of the agents. In
Figure 3 we observe that the performance of πMD remains
consistently high, regardless of the value of ϵ. By contrast,
the performance of πbase is highly sensitive to ϵ; it decreases
significantly for moderate to strong levels of privacy.

7.2 FOUR-AGENT SYSADMIN EXAMPLE

We now consider a variant of the multiagent system adminis-
tration example from Guestrin et al. [2003], Choudhury et al.
[2022]. A collection of servers must coordinate to provide a
consistent level of service, while simultaneously performing
necessary maintenance. Each server is modeled as an indi-
vidual agent with four local states: nominal si = 1, in need
of repairs si = 2, in repair si = 0, and offline si = 3. At any
timestep, each agent may choose to continue operation or to
initiate a repair. We assume the local transition dynamics of
the agents, illustrated in Figure 4, to be independent.
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Figure 5: Probability of success in the SysAdmin example
under a variety of initial configurations and privacy levels.

The team’s task is to reach a target joint state in which all of
the servers are operating nominally. However, we impose
the additional constraints that, at any given time during
operation, the team is allowed at most two offline servers
and at most two servers in the repair state. If either of these
constraints is violated, the team fails the task.

In this example, we set pr = 0.9, ponb = 0.1, and poff = 0.1,
we set the values of the policy synthesis coefficients δ and
β to 0.001 and 0.1 respectively, and we use an adjacency
parameter of k = 1 in the differential privacy mechanism.
The acyclic graph G is defined such that the local policy of
the first agent depends only on its own local state, the policy
of the second agent depends on the its own local states as
well as those of the first agent, the third agent depends on
the local states of the first three agents, and so on.

πMD consistently outperforms πbase under a variety of
initial system configurations and privacy levels. Figure
5 compares the probability of success achieved by the pro-
posed minimum-dependency policy πMD, to that achieved
by the baseline πbase. In this example, under truthful com-
munication, it is possible for the team to achieve a success
probability of 1.0 from any initial configuration. However,
when communication is private, πMD consistently outper-
forms πbase. In the considered initial configurations, even
under the strongest level of privacy, πMD achieves a prob-
ability of success of above 97 percent. By contrast, we
observe that under private communications πbase typically
achieves success probabilities of less than 50 percent.

7.3 ADDITIONAL DISCUSSION

In addition to the differences between the values of the
team’s probability of success under πMD and πbase, we
also observe a significant change in the expected length of
the trajectories that result from these policies. Under truthful
communication in the SysAdmin experiments, the expected
length of the trajectories induced by πbase range from 30 to
40 timesteps, depending on the initial configuration of the
system. For πMD these values range from 3 to 6 timesteps.

This observation yields insight into the different qualita-

tive properties of the policies. πbase induces conservative
behavior that maximizes the team’s probability of success
(under truthful communication) by requiring the agents to
wait for specific joint states before taking the repair action.
The actions of each agent are highly dependent on the states
of its teammates. On the other hand, πMD achieves nearly
the same probability of success as πbase, but the agents act
quickly and accept a small level of risk in order to reduce
the dependencies of their actions on their teammates’ states.
More specifically, πMD results in each agent selecting the
repair action with a much higher probability whenever it
is in need of repair, regardless of the communicated states
of its teammates. While this behavior results in the team
occasionally transitioning to a failure state in which three or
more agents are simultaneously under repair, it also signifi-
cantly lowers the dependencies between the agents.

The inclusion of the total correlation as a regularization term
prevents the policy synthesis procedure from making the
agents highly interdependent in order to achieve marginally
higher performance. This tradeoff becomes relevant when
the inter-agent communications are imperfect, which is the
case in privatized multiagent systems.

Finally, we remark that in some settings there may not exist a
collection of highly independent policies that also achieve a
high performance. In such cases, we may not observe a large
of a gap in performance between πMD and πbase under
private communication. However, even in these settings, the
total correlation may act as an indicator that it is infeasible
to achieve strong performance and privacy simultaneously.

8 CONCLUSIONS

This paper presents a framework to privatize inter-agent
communications in cooperative multiagent decision-making
problems. Specifically, we adopt a differential privacy mech-
anism to protect the symbolic state trajectories of agents.
We provide theoretical results to analyze the tradeoff be-
tween the strength of privacy and the team’s performance.
We synthesize robust policies for agents by reducing the to-
tal correlation among them. Numerical results demonstrate
that the minimum-dependency policies achieve high per-
formance under strong levels of privacy, whereas the team
performance of baseline policies that ignore total correlation
decreases dramatically under private communications.
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