LO-ARMS++: IMPROVING LEARNING-ORDER AUTOREGRESSIVE MODELS FOR MOLECULAR STRING GENERATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Autoregressive models (ARMs) have become the workhorse for sequence generation tasks, because of their simplicity and ability to exactly evaluate their log-likelihood. Classical Fixed-Order (FO) ARMs factorize high-dimensional data according to a fixed canonical ordering, framing the task as next-token prediction. While a natural ordering exists for text (left-to-right), canonical orderings are less obvious for many data modalities, such as molecular graphs and sequences. Learning-Order (LO) ARMs address this limitation, but their training relies on the optimization of an Evidence Lower Bound (ELBO), rather than on their exact log-likelihood. Therefore, FO-ARMs tend to remain advantageous. In this paper, we introduce LO-ARMs++, an improved version of LO-ARMs, to address this issue through incorporating several technical improvements. We introduce an improved training method called α - β -ELBO, together with network architectural improvements. On the challenging domain of molecular sequence generation, our methods match or surpass state-of-the-art results of Fixed-Order ARMs on the GuacaMol benchmark, evaluated across key metrics for distribution similarity.

Molecular generation in large chemical spaces has important real-world applications such as in drug discovery and material design. While deep generative models for molecular graphs based on diffusion models (Vignac et al., 2023; Eijkelboom et al., 2024; Wang et al., 2025b) are emerging as a promising solution, SMILES (Simplified Molecular Input Line Entry System) string-based methods (Brown et al., 2019; Irwin et al., 2022; Ross et al., 2022; Schwaller et al., 2019) remain popular in practice. This is because SMILES strings are human-interpretable, lead to computationally efficient algorithms compared to handling graph structures, and yield strong performance on key distributional metrics, such as the Fréchet ChemNet Distance (FCD). Technically, SMILES-based models adopt text-based autoregressive architectures (e.g., Recurrent Neural Networks) and inherit their left-to-right generation ordering. However, unlike text data, for which left-to-right appears to be a natural ordering, SMILES data actually encodes tree-like structures and its natural "canonical" ordering between data dimensions is less obvious. Therefore, it is desirable to consider a variant of ARMs that do not treat the ordering as fixed, but rather as a latent random variable that follows a probability distribution that adapts to the evolving state of the generation process.

To address this issue, Wang et al. (2025b) proposed Learning-Order ARMs (LO-ARMs), an ARM variant which can learn human-interpretable autoregressive orderings for image and graph generation and achieves state-of-the-art results on molecular graph generation for distribution similarity and drug-likeness. However, when applied to molecular sequence generation, despite learning human-interpretable orders for molecular sequence generation, LO-ARMs still lag behind Fixed-Order ARMs (FO-ARMs) on FCD.

We provide evidence that that this performance shortfall arises because the order-policy learned with standard LO-ARMs collapses prematurely to a near-deterministic ordering, causing the overall solution to be suboptimal. Indeed, the Evidence Lower Bound (ELBO) optimization, on which LO-ARM training depends, is often complicated by poor local optima and high variance of gradient estimates. The core technical question we address here is whether we can obtain a more efficient order-policy, yielding better generation performance, through improving the training process.

We introduce LO-ARMs++, which resolve the issues encountered in training standard LO-ARMs, in turn yielding better generation performance (see Figure 1). Our main contributions include:

055

056

060 061 062

063

064 065 066

067 068 069

071

079

081

083

084

085

087

880

090

091

092

094

095

096

098

100

101

102

103

104

105

Figure 1: An example of generating SMILES sample with LO-ARMs++ trained on the GuacaMol dataset. Our model generates SMILES strings step-by-step, commencing with all dimensions masked (in the figures masked dimensions are colored in grey) and adding one token at a time. First, an order-policy selects which dimension to fill, and then a classifier determines its value. In this visualization, for each partially generated SMILES string in the subfigures, we highlight the generated components with different colors in the corresponding 2D molecules. The generation proceeds through four phases: 1) Planning (Step 1 to 15): LO-ARM++ first generates pairs of digits (highlighted in green), which represents ring closures. This step determines the number of rings and estimates their potential connections in the molecule. The digits together with their associated ring-cut bonds in the final sample are highlighted in green in the first molecule. Specifically, in this sample, the 5 pairs of digits correspond to exactly 5 rings in the molecule. Then in Step 14 and 15, it proposes two substructures through generating the corresponding pairs of parentheses. In particular, the blues correspond to the dimensions that are enclosed in a proposed substructure but yet to be infilled with atoms. 2) Infilling atoms to the proposed molecule structure (Step 16 to 37). The unmasked atoms are highlighted either in yellow (belonging to a substructure) or red (on the molecule backbone). 3) Refinement (Step 38): In addition to the substructures proposed in Step 14 and 15, LO-ARM++ generates another pair of parentheses to refine the substructures, yielding a larger substructure highlighted in the dotted blue box in Step 38. In particular, as the benzene ring A (labeled in Step 37 and 38) has now been included into the larger substructure, we change its color from red to yellow. 4) Completion (Step 39 to 46): Finally, LO-ARM++ completes the molecule through generating the rest of the atoms on the backbone (highlighted in red). This learned, interpretable ordering is highly consistent: for valid generations containing rings, 94.5% adhere to this overall generation pattern of planning-execution, i.e., generating digits and small pairs of parentheses first followed up generating atoms. Moreover, 80.6% of them contain at least one refinement step at later stages. The full information of generating this sample, including the outputs of the classifier and the order-policy, is provided in Appendix F. Moreover, we provide a sub-optimal ordering learned without the improvements developed in this paper in Appendix G, which generates the pairs of parentheses after all atoms have been generated without any refinement steps.

- We introduce α - β -ELBO, an improved training loss, which allows for implementing an exploration-exploitation strategy for unsupervised learning. This forms the basis of the LO-ARMs++ model training procedure, yielding improved generation performance.
- We also introduce several improvements of network architecture that, when used in conjunction with α-β-ELBO, further stablize the training of LO-ARMs++.

These improvements can not only yield tighter ELBO on test data, but can also effectively encourage the model to discover more meaningful generation orderings, and consequently achieve better generation performance.

We evaluate our methods against the GuacaMol (Brown et al., 2019) benchmark for molecule generation. Our results, measured by FCD, surpass or match state-of-the-art FO-ARMs relying on a left-to-right generation order. To our best knowledge, this is the first discrete diffusion-style model that achieves this level of performance in an important scientific domain.

The paper is organized as follows: Section 1 reviews LO-ARMs. Section 2 details the proposed improvements: identifying issues (Section 2.1), presenting the improved learning loss α - β -ELBO (Section 2.3), and comprehensive measures to improve molecular string generation (Section 3). Section 4 presents the evaluation against the GuacaMol benchmark, including a detailed ablation analysis (Section 4.3).

1 Background

1.1 SMILES-BASED AUTOREGRESSIVE MOLECULE GENERATION

SMILES (Weininger, 1988) is a formal grammar for describing molecule structures with a string of characters. It is generated by performing a depth-first traversal of the molecule's structure and printing the symbols, with parentheses indicating branching points and numbers to denote ring closures. An example of a SMILES string and its corresponding molecule structure are shown in Figure 1.

The SMILES representation allows researchers to directly apply well-developed sequence modeling algorithms to molecule generation. In particular, methods that use ARMs for modeling SMILES strings remain a popular choice (Brown et al., 2019; Schwaller et al., 2019; Irwin et al., 2022; Ross et al., 2022), due to their simplicity and computational efficiency. Despite the rapid progress in molecule generative models, such methods remain state-of-the-art on a number of key metrics such as FCD (Vignac et al., 2023). Specifically, these methods treat SMILES strings as a sequence of characters $\boldsymbol{x}=(x_1,x_2,\ldots,x_L)$ and define a joint probability distribution over $\boldsymbol{x}\colon p_{\theta}(\boldsymbol{x})=\prod_{i=1}^L p_{\theta}(x_i|\boldsymbol{x}_{< i})$, where $\boldsymbol{x}_{< i}\triangleq(x_1,\ldots,x_{i-1})$ and $p_{\theta}(x_i|\boldsymbol{x}_{< i})$ is the conditional distribution with the convention $p_{\theta}(x_1|\boldsymbol{x}_{< 1})=p_{\theta}(x_1)$. Typically, these conditional distributions are parameterized with deep learning architectures such as LSTMs and Transformers.

1.2 Learning-Order ARMs

LO-ARMs (Wang et al., 2025b) address a fundamental limitation of ARMs associated with the assumption of a fixed generation order, which may not be efficient for complex data types like graphs and images. LO-ARMs introduce latent variables $\boldsymbol{z}=(z_1,...,z_L)$ where z_i represents the order index of token x_i , i.e., \boldsymbol{z} represents a permutation. They also incorporate a trainable probability distribution that dynamically decides the sampling order of the data dimensions. The log-likelihood of one data point \boldsymbol{x} involves marginalizing over L! permutations, i.e. $\log p_{\theta}(\boldsymbol{x}) = \log \sum_{\boldsymbol{z}} p_{\theta}(\boldsymbol{z}, \boldsymbol{x})$, where $p_{\theta}(\boldsymbol{z}, \boldsymbol{x}) = \prod_{i=1}^{L} p_{\theta}(z_i | \boldsymbol{z}_{<i}, \boldsymbol{x}_{\boldsymbol{z}_{<i}}) p_{\theta}(x_{z_i} | \boldsymbol{x}_{\boldsymbol{z}_{<i}})$. Specifically, $p_{\theta}(z_i | \boldsymbol{z}_{<i}, \boldsymbol{x}_{\boldsymbol{z}_{<i}})$ is called the *order-policy* and $p_{\theta}(x_{z_i} | \boldsymbol{x}_{\boldsymbol{z}_{<i}})$ is called the *classifier*, and both factors depend on parameters θ that we want to learn. Since the exact likelihood is intractable (except for very small L), the modeling approach maximizes an ELBO that is obtained by introducing a *variational order-policy* over \boldsymbol{z} that conditions on the full data vector \boldsymbol{x} , and has the general form $q_{\theta}(\boldsymbol{z}|\boldsymbol{x}) = \prod_{i=1}^{L} q_{\theta}(z_i | \boldsymbol{z}_{<i}, \boldsymbol{x})$.

1.3 TRAINING LO-ARMS WITH VARIATIONAL INFERENCE

To train LO-ARMs, Wang et al. (2025b) established the following ELBO on $\log p_{\theta}(x)$:

$$\log p_{\theta}(\boldsymbol{x}) \geq \sum_{\boldsymbol{z}} q_{\theta}(\boldsymbol{z}|\boldsymbol{x}) \log \frac{p_{\theta}(\boldsymbol{z}, \boldsymbol{x})}{q_{\theta}(\boldsymbol{z}|\boldsymbol{x})} = \sum_{\boldsymbol{z}} q_{\theta}(\boldsymbol{z}|\boldsymbol{x}) \sum_{i=1}^{L} \log \frac{p_{\theta}(z_{i}|\boldsymbol{z}_{

$$= \sum_{i=1}^{L} \mathbb{E}_{q_{\theta}(\boldsymbol{z}_{(1)$$$$

and then optimized the ELBO via an unbiased stochastic estimate, which involved sampling one term i uniformly at random in $\{1,...,L\}$ and its corresponding $\mathbf{z}_{< i} \sim q_{\theta}(\mathbf{z}_{< i}|\mathbf{x})$ to obtain the negative ELBO unbiased stochastic estimate

$$\mathcal{L}(\theta) = -LF_{\theta}(\boldsymbol{z}_{< i}, \boldsymbol{x}). \tag{2}$$

Note that, during both training and inference, the generative model p_{θ} is conditioned on the sequence length L (i.e., knowing the sequence length before infilling the dimensions). We explain how both standard LO-ARMs and LO-ARMs++ handle variable sequence lengths in Appendix D.1.

2 Methods

Our core research question is whether, in addition to human-interpretability and consistency, LO-ARM can discover "better" order-policies, that in turn yield better generation performance an improved ELBO close to the exact log-likelihood of FO-ARMs. After presenting some issues we have observed when training standard LO-ARMs in Section 2.1, we propose an improved learning loss, α - β -ELBO, mitigating those issues in Section 2.3. In particular, the improvement is inspired by our understanding of LO-ARMs in the setting of Generalized Next-Token-Predictors (NTPs); see Section 2.2. We detail additional improvements to the training algorithm with α - β -ELBO in Section 3. The resulting improvements to LO-ARMs will be denoted as LO-ARMs++.

2.1 ISSUES OF LEARNING WITH STANDARD LO-ARMS

When modeling the GuacaMol dataset with the standard LO-ARMs, the variational order-policy $q_{\theta}(z_i|z_{< i},x)$ converges quickly to a deterministic policy, e.g., in about 100K out of 1.5M training steps, resulting in a greedy order-policy with extreme maximum and minimum logit outputs (as shown in Figure 3). This is because, during training, q_{θ} has access to the entire unmasked sequence x, yielding faster convergence than the p_{θ} network, which is only conditioned on partially observed data $x_{z_{< i}}$. The rapid collapse of the variational order-policy is ultimately harmful, causing several problems: 1) the learned order may converge to a sub-optimal policy (as we can see from the order-policies in Figure 1 and Figure 9), 2) the training may suffer from instability due to excessively large logits in q_{θ} (see Appendix C.1.1).

We therefore aim to design a variational order-policy that maintains a greater degree of randomness for longer, allowing for more robust classifier learning and better exploration over the order-policy. To motivate our solution, we first reformulate LO-ARMs as generalized Next-Token-Predictors (NTPs), which will prove helpful for the subsequent developments.

2.2 LO-ARMS ARE GENERALIZED NEXT-TOKEN-PREDICTORS

We rewrite the per-step objective F_{θ} defined in Equation (1) as

$$F_{\theta}(\boldsymbol{z}_{< i}, \boldsymbol{x}) = \mathbb{E}_{q_{\theta}(z_{i}|\boldsymbol{z}_{< i}, \boldsymbol{x})} \left[\log \frac{p_{\theta}(z_{i}|\boldsymbol{z}_{< i}, \boldsymbol{x}_{\boldsymbol{z}_{< i}}) p_{\theta}(x_{z_{i}}|\boldsymbol{x}_{\boldsymbol{z}_{< i}})}{q_{\theta}(z_{i}|\boldsymbol{z}_{< i}, \boldsymbol{x})} \right]$$

$$= \mathbb{E}_{q_{\theta}(z_{i}|\boldsymbol{z}_{< i}, \boldsymbol{x})} \left[\log p_{\theta}(x_{z_{i}}|\boldsymbol{x}_{\boldsymbol{z}_{< i}}) \right] - D_{\mathrm{KL}}(q_{\theta}(z_{i}|\boldsymbol{z}_{< i}\boldsymbol{x}) || p_{\theta}(z_{i}|\boldsymbol{z}_{< i}, \boldsymbol{x}_{\boldsymbol{z}_{< i}})). \quad (3)$$

The first term corresponds to the cross-entropy loss optimizing the classifier. Specifically, in the LO-ARM case, $q_{\theta}(z_i|\mathbf{z}_{< i}, \mathbf{x})$ samples the next dimension to generate, and the classifier $\log p_{\theta}(x_{z_i}|\mathbf{x}_{< i})$ predicts the value. From this perspective, $q_{\theta}(z_i|\mathbf{z}_{< i}, \mathbf{x})$ effectively reweights the cross-entropy losses

across the remaining dimensions. Equivalently, we can interpret q_{θ} as a *problem setter* for the classifier, selecting which dimension the classifier must predict next.

The above view unifies FO- and AO-ARMs: 1) in AO-ARMs, $p(z_i|\boldsymbol{x}_{z_{< i}}) = q(z_i|\boldsymbol{z}_{< i}, \boldsymbol{x}) = q(z_i) = \text{Uniform}(\{1 \dots L\} \setminus \boldsymbol{z}_{< i})$, and the classifier must be as general as possible, since it faces a uniform distribution over the remaining dimensions on which it will be required to make a prediction. By contrast 2) in FO-ARMs, $q(z_i) = \delta(z_i = k), k \in \{1 \dots L\} \setminus \boldsymbol{z}_{< i}$, and the classifier needs only to predict a single known dimension at each step. For left-to-right ARMs, k = i. Note that, in both cases, the KL terms zero out, and only the cross-entropy terms are left. LO-ARMs generalize FO-and AO-ARMs by using learnable and context-dependent distributions $q(z_i|\boldsymbol{z}_{< i}, \boldsymbol{x})$ and $p(z_i|\boldsymbol{x}_{< i})$.

2.3 α - β -ELBO

From the perspective of variational inference (i.e., Equation (3)), the FO-ARM can yield the exact log-likelihood, because 1) its KL divergence is always zero, and 2) the variance induced by the degenerate order policy (i.e. $\delta(z_i=k)$) in the cross-entropy term is also zero. In contrast, while the KL term in AO-ARMs is also zero, they maximize the cross-entropy variance by sampling uniformly over all remaining dimensions.

Inspired by these insights, we motivate our improvements to achieve a tighter ELBO from two high-level requirements: 1) to efficiently minimize the KL divergence between $p_{\theta}(z_i|\boldsymbol{x}_{\boldsymbol{z}_{< i}})$ and $q_{\theta}(z_i|\boldsymbol{z}_{< i},\boldsymbol{x})$, and 2) to reduce the variance of gradient estimates incurred by sampling $q_{\theta}(z_i|\boldsymbol{z}_{< i},\boldsymbol{x})$. These yield the following modified objective function with respect to the generalized NTP F_{θ} , which we call α - β -ELBO:

$$F_{\theta} = \underbrace{\mathbb{E}_{q_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x})} \left[\log p_{\theta}(x_{z_{i}}|\boldsymbol{x}_{\boldsymbol{z}_{< i}}) \right]}_{\text{(a)}} \underbrace{-\beta D_{\text{KL}} \left(q_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x}) \| p_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x}_{\boldsymbol{z}_{< i}}) \right)}_{\text{(b)}} + \underbrace{\alpha H \left[q_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x}) \right]}_{\text{(c)}}$$

$$= \mathbb{E}_{q_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x})} \left[\log p_{\theta}(x_{z_{i}}|\boldsymbol{x}_{< i}) \right] + \beta \mathbb{E}_{q_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x})} \log p_{\theta}(z_{i}|\boldsymbol{z}_{< i},\boldsymbol{x}_{\boldsymbol{z}_{< i}}) + (\alpha + \beta) H\left[q_{\theta}\right], \quad (5)$$

where $\beta \geq 1$ and $\alpha \geq 0$, and $H[q_{\theta}(z_i|\mathbf{z}_{\leq i},\mathbf{x})] = H[q_{\theta}] = -\mathbb{E}_{q_{\theta}}[\log q_{\theta}]$ is the entropy of q_{θ} .

We now show how these components address the issues observed in Section 2.1. First, component (c) implements the standard maximum entropy regularization on q_{θ} . Second, setting $\beta \geq 1$ in (b) upweights the KL distillation from q_{θ} to $p_{\theta}(z_i|\boldsymbol{x}_{\boldsymbol{z}_{< i}})$. Moreover, as the KL term already implicitly imposes an entropy regularization on q_{θ} , the total entropy regularization imposed on q_{θ} is controlled by $\alpha + \beta$, see Equation (5). This entropy term is crucial during early stages of training, since it causes the variational order-policy to maintain high entropy when $\alpha + \beta$ is large, preventing premature collapse and presenting a diversity of prediction problems to the classifier. Additionally, the KL term encourages the model order-policy $p_{\theta}(z_i|\boldsymbol{x}_{\boldsymbol{z}_{< i}},\boldsymbol{z}_{< i})$ to imitate the variational order-policy q_{θ} . These dual goals mirror the use of maximum entropy policies in reinforcement learning to balance exploration and exploitation (Mnih et al., 2016; Haarnoja et al., 2017).

Note that, while components (a) and (b) together resemble a β -VAE (Higgins et al., 2017), a key difference here is that we are working with discrete distributions, which may not always cover the full support of data dimensions, resulting in collapsed, deterministic policies. Therefore, we argue that the maximum entropy regularization on q_{θ} is essential. We provide additional ablation for this argument in Section 4.3.

2.3.1 Exploration-Exploitation through annealing α and β

The α - β -ELBO generalizes the standard ELBO defined in Equation (3) in the following ways: 1) when $\alpha=0,\beta=1,$ α - β -ELBO recovers the standard ELBO; 2) $\alpha>0,\beta=1$ corresponds to training with standard maximum entropy regularization on q_{θ} .

We implement an exploration-exploitation optimization strategy, inspired by reinforcement learning, through applying two annealing schedules to α and β respectively, decaying an initial $\alpha>0$ down to 0 and an initial $\beta>1$ down to 1. In the exploration stage, where $\alpha>0$ and $\beta>1$, we want to present the classifier with a diversity of learning problems and explore over model order-policy with a high

entropy variational distribution q_{θ} , while ensuring that $p_{\theta}(z_i|\boldsymbol{x}_{< i}, \boldsymbol{z}_{< i})$ tracks q_{θ} . Since our ultimate objective is to optimize the ELBO, in the exploitation stage we shift α - β -ELBO back to the standard ELBO with $\alpha=0$ and $\beta=1$. During this latter phase, we further optimize the reweighted cross entropy term (i.e., (a) in Equation (4)) with the more stable q_{θ} . We detail the annealing schedules in Appendix D.3.

3 LO-ARMS++ FOR MOLECULAR STRING GENERATION

We apply our framework to molecular string generation, particular to SMILES strings. We first introduce a novel preprocessing scheme in Section 3.1. Then, in Section 3.2 we discuss innovations on network architecture used by LO-ARMs++ that differ from the previous LO-ARMs (Wang et al., 2025b), and finally we describe how to deal with strings of variable length in Section 3.3.

3.1 Preprocessing SMILES strings with Prefix Tokenization

We employ the prefix tokenization to preprocess the SMILES strings. Specifically, instead of parsing individual parentheses as tokens, the prefix tokenization represent matching parenthesis pairs as individual tokens. These pairs are formatted as @N, where N is the size of the parenthesis pair (the number of tokens between the matching parentheses, including the right parenthesis). An example of preprocessed data is provided in Appendix A.1. As this prefix tokenization makes the molecular structure explicit rather than relying on implicit left-to-right parsing, we find that it is more friendly to models that do not assume a fixed left-to-right order. The prefix tokenization only increases the vocabulary size marginally, and we find it improves the generation performance of LO-ARMs and also helps to interpret the learned orderings. We provide addition ablation for the standard tokenization used in the literature (Irwin et al., 2022) and the prefix tokenization in Appendix C.2.

3.2 Network Architectures and Backbone Training Algorithms

We inherit the network architecture introduced in (Wang et al., 2025b). Specifically, collocating the classifier $p_{\theta}(x_{z_i}|\boldsymbol{x}_{< i},\boldsymbol{z}_{< i})$ and the model order-policy $p_{\theta}(z_i|\boldsymbol{x}_{< i},\boldsymbol{z}_{< i})$ through sharing a backbone, and use a separate neural network to implement $q_{\theta}(z_i|\boldsymbol{z}_{< i},\boldsymbol{x})$. Both networks are implemented with a transformer (Vaswani et al., 2017). In particular, the model network consists of 18 attention layers, while the q_{θ} network remains quite lightweight, only consisting of 3 attention layers. We detail the network architectures in Appendix D. Moreover, the training algorithm remains largely the same as in Wang et al. (2025b) besides the changes introduced in this section.

3.3 STABLE GENERALIZATION FOR MODELING SEQUENCES OF VARIABLE LENGTHS

A subtle problem we encountered during development was that the standard attention dropout employed in LO-ARM transformers is disruptive to training (see Appendix C), i.e., directly applying dropout to attention scores Attention(Q, K, V) = Dropout (softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right)$) $\cdot V$, where Q, K, V are the queries, keys and values respectively. We hypothesize that, because LO-ARMs model molecular strings of variable lengths and the padding dimensions are zeroed out in the attention score matrix, if we directly dropout the attention scores, the model will confuse with the dropped out dimensions and the padding dimensions, which are both zeros. We fix this issue by applying dropout on the output of the outer multiplication of the value matrix and the corresponding attention scores, i.e., Attention(Q, K, V) = Dropout(softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right) \cdot V$). This simple yet effective fix yields stable generalization during training and improved generation performance at test time (see the ablation analysis in Section 4.3).

Moreover, we find that when applying the improved dropout to the model network (i.e., p_{θ}), it can also encourage the variational distribution q_{θ} to be more uniform (see Figure 2). Therefore, to simplify the configuration of hyperparameters, we choose to regularize the q_{θ} network only via the global KL and maximum entropy regularization, and apply extra regularization on the p_{θ} network with the improved dropout.

4 RESULTS AND ANALYSIS

4.1 EXPERIMENT SETUP

We evaluate our methods on the GuacaMol benchmark (Brown et al., 2019), which is a standard benchmark to evaluate generative models for drug discovery (Irwin et al., 2022; QIN et al., 2025; Schwaller et al., 2019). We use the standard training/test/validation splits provided in the literature. We choose the GuacaMol benchmark because: 1) SMILES encode 2D molecules with tree structures as flat sequences, and their canonical orderings are less obvious. Therefore, we want to see if LO-ARMs++ can learn human-interpretable and consistent autoregressive orders, recovering the hidden tree structures from flat sequences without any inductive biases. 2) Autoregressive models (ARMs) with a left-to-right sequence are a robust baseline for SMILES synthesis, consistently outperforming other methods on distributional metrics. This implies they also yield a strong log-likelihood evaluation, which acts as a clear target for us to improve LO-ARMs. 3) Practically, we also hope to demonstrate the versatility and usefulness of LO-ARMs++ through enriching the toolkit for real-world applications (e.g., drug discovery).

We evaluate them on two key aspects: 1) Validity and Uniqueness: Assessing chemical correctness and distinctness. 2) Novelty and Frèchet ChemNet Distance (FCD): Novelty is the proportion of generated molecules not found in the training set. A lower value suggests memorization. FCD scores measure the similarity between the distributions of generated and real molecules using ChemNet activations. We run 5 runs, each of which samples 16, 384 molecules, and we report the mean value on each metric. For uniqueness and novelty, we evaluate their proportions in the entire samples including both valid and invalid ones, whereas for FCD, we only consider valid ones, and specifically, we sample 10,000 valid samples in each run. We use the normalized FCD score as defined in the GuacaMol benchmark, where higher scores indicate greater distributional similarity. As a competent generative model should be able to sample new data from the same chemical space of the ground truth data, we use FCD as the proxy to show the effectiveness of our proposed improvements. Moreover, as one molecule may have different SMILES expressions, we follow standard evaluation practice and canonicalize both generated SMILES and ground truth data before evaluating. Hence, we do not include the results in Wang et al. (2025a) as they did not canonicalize SMILES in their evaluation.

4.2 Main results on GuacaMol Benchmark

Table 1: Molecule generation on GuacaMol SMILES dataset. We directly cite other methods results on the following metrics: Validity, Uniqueness, Novelty, FCD and test set negative log-likelihoods (NLLs). V.N. means both valid and unique, and V.U.N. means samples are valid, unique and novel. The metrics are calculated on samples generated by each method. The random sampler uniformly samples the validation set. Bold and underlined numbers indicate the best and second-best results, respectively. An extended result table is provided in Table 3.

Method	V.%↑	V.U.%↑	V.U.N.%↑	FCD↑	Test NLL↓
Random sampler	100.0	99.7	0.0	92.9	-
AAE	82.2	82.2	88.0	52.9	-
VAE	87.0	86.9	84.7	86.3	-
LSTM ARM (Brown et al., 2019)	95.9	95.9	87.5	91.3	-
Our Results					
AO-ARM	63.3	63.2	62.8	72.1	≤ 35.3
Transformer FO-ARM	95.0	94.7	88.3	88.7	≤ 33.7
LO-ARM	92.6	92.6	87.1	79.4	≤ 31.5
LO-ARM++	93.9	93.9	89.2	<u>91.0</u>	≤ 29.0

To evaluate the order policy, we add two baselines to the LSTM-ARMs: 1) a Transformer FO-ARM, to match our Transformer-based LO-ARMs, and 2) AO-ARM (Any-Order) where both the variational (q_{θ}) and model (p_{θ}) order policies are uniform. The test NLLs of FO-ARM and LO-ARMs are not directly comparable, as FO-ARM models padded SMILES while LO-ARMs and LO-ARMs++ generate non-padded sequences, albeit conditioned on length L (see Section 1).

LO-ARM++ significantly outperforms the standard LO-ARM in terms of FCD, yielding a lower NLL. This substantial improvement demonstrates that our enhancements effectively tighten the ELBO. Furthermore, LO-ARM++ achieves better novelty and comparable FCD performance when compared to the LSTM ARMs. This indicates that LO-ARM++ is capable of generating more novel samples that maintain a close similarity to the ground truth data, moving beyond simple memorization of the training set. Such capabilities are especially valuable for real-world applications like drug discovery and material design.

Next, data in Table 1 reveals that both FO-ARMs (either LSTM or Transformer) and LO-ARMs outperform AO-ARM on FCD, emphasizing that an ordering strategy is crucial for generating SMILES sequences. Furthermore, LO-ARM++ outperforms the Transformer FO-ARM in uniqueness, novelty and FCD. This suggests that, with the same architecture, learning a data-dependent generation order from data is more sample efficient than using a fixed one.

Thirdly, LO-ARM++ learns a consistent, human-interpretable generation order without specific inductive biases (Figure 1). The typical learned process is: 1) Estimate the molecular structure (rings and connections) by first generating digit tokens for ring enclosures and cuts and proposing substructures via pairs of parentheses. 2) Infill the structure, prioritizing non-aromatic tokens over aromatic ones. 3) Refine substructures (Step 38 in Figure 1) by enclosing initial proposals from Stage 1 into larger ones. 4) Complete the molecule by infilling the remaining atom dimensions. The interpretability of these learned orderings allows us to verify patterns with simple rules (Appendix C.1). This interpretable ordering shows high consistency: for valid generations containing rings, 94.5% follow this structure-first pattern, and 80.6% of these refine the substructures at least once.

The generation order of LO-ARM++ notably differs from the standard LO-ARMs (Figure 9) in two ways: 1) The improved order-policy proposes substructures at the beginning of the generation process, rather than finalizing them last. 2) It is also able to refine substructures later in the generation. This suggests the improved order policy generalizes better, as it is more dynamic and can utilize local context more efficiently, meeting the primary goals of our development.

Greediness of the learned order policy. Finally, as see in Figure 2, training with α - β -ELBO loss makes the variational order-policy q_{θ} less greedy (i.e., it has larger entropy). We now show that this property transfers to the model order-policy $p_{\theta}(z_i|x_{z_{< i}},z_{< i})$, yielding a less greedy order-policy for generating new samples. To do this, for each sample's generation trajectory, we calculated per-step correlation coefficients between the order policy probabilities and the classifier entropy (our certainty measure) over all masked dimensions. We then performed one-sample t-tests on each sequence to obtain a mean and a significance level. A higher negative mean correlation between the two quantities means the order policy is greedier, as it prioritizes dimensions with higher certainty (i.e., lower classifier entropy). For samples generated with LO-ARM++, we found that only 49.2% (p < 0.05) exhibited a negative mean correlation, compared with 73.1% (p < 0.05) reported for standard LO-ARMs in Wang et al. (2025c). This confirms that the order-policy learned with LO-ARM++ has a less greedy generation strategy than standard LO-ARMs.

4.3 ABLATION ANALYSIS

Figure 2: Ablation analysis on the effectiveness of KL and maximum entropy regularizations and the improved dropout. All the metrics evaluated against the test set.

We ablate each improvement by analyzing the following cases: 1) LO-ARM with improved attention dropout, 2) LO-ARM without improved attention dropout, 3) LO-ARM++ with only maximum

entropy regularization ($\alpha = 0.075, \beta = 1$), 4) LO-ARM++ with only KL regularization ($\alpha = 0, \beta = 1$) 1.075), and 5) LO-ARM++ with full regularization ($\alpha = 0.025, \beta = 1.05$). Cases 3), 4) and 5) all use improved attention dropout. Additionally, we control the total entropy penalization and vary the KL regularization weight (as shown in Equation (5)). To isolate each component's contribution, we set α and β constant without annealing during training in this ablation analysis. First, Figure 2(b) shows that applying attention dropout to the p_{θ} network regularizes q_{θ} . Without improvements, the standard LO-ARM's variational order-policy q_{θ} converges to being deterministic very quickly with the lowest entropy. The entropy of q_{θ} also increases with a larger β , confirming the effectiveness of maximum entropy regularization. Next, (c) shows that KL regularization encouraged lower KL divergence between $q_{\theta}(z_i|z_{< i}, \boldsymbol{x})$ and $p_{\theta}(z_i|\boldsymbol{x}_{z_{< i}})$, suggesting the model order-policy can imitate q_{θ} well. However, KL regularization alone ($\alpha = 0, \beta = 1.075$) does not yield the lowest KL divergence; instead, a combination of both regularization terms (LO-ARM++ with $\alpha = 0.025, \beta = 1.05$) does. This is likely because the effective maximum entropy regularization in LO-ARM++ makes the policy easier for the model to track. Finally, combining all improvements, LO-ARM++ yields the best negative log-likelihood (NLL). We observe the standard LO-ARM's NLL is unstable, spiking at 700k steps. This instability is likely because a deterministic q_{θ} yields extreme logit outputs. To confirm this, we visualize the evolution of the maximum and minimum q_{θ} logits during training in Appendix C.1.1.

5 RELATED WORK

Learning Non-Monotonic Autoregressive Orderings has been studied extensively in recent literature (e.g., Li et al., 2021; Gu et al., 2019; Welleck et al., 2019), and is challenged by the need to find an optimal permutation from a factorial (*L*!) search space, where *L* is the sequence length. Some methods reduce this space with domain-specific assumptions (Welleck et al., 2019; Gu et al., 2019). Specifically, Welleck et al. (2019) proposes a tree-based recursive generation method to learn arbitrary generation orders, and Gu et al. (2019) combines 1) pretraining with prescribed base orderings and 2) fine-tuning those orderings with Searched Adaptive Order (SAO). Moreover, both Variational Order Inference (VOI) (Li et al., 2021) and LO-ARMs (Wang et al., 2025b) learns orderings with a variational policy. The main difference is that SAO uses a policy gradient procedure and requires optimizing a complex variational ordering distribution that has an intractable normalizing constant and requires a Bethe-type approximation. In contrast, the variational distribution in LO-ARMs (Wang et al., 2025b) and LO-ARMs is fully tractable, allowing for fast, exact, and unbiased gradient-based optimization of the ELBO using REINFORCE leave-one-out.

Discrete Diffusion and Its Application to Molecular Graph Generation. Discrete diffusion models (Vignac et al., 2023; QIN et al., 2025) have become a popular alternative to molecular graph generation. LO-ARMs++ also relates to discrete diffusion models based on absorbing or masked diffusion (Austin et al., 2021; Lou et al., 2024; Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024). Similar to masked diffusion, our discrete architecture treats ungenerated dimensions as masked. The key difference is that we learn a non-uniform, data-dependent generation order via a neural order-policy. Masked diffusion and AO-ARMs (Hoogeboom et al., 2022), in contrast, use a completely random order. Additionally, our approach defines only a backward generative model to sample from a fully masked state, learning a variational order distribution (q_{θ}) from the data instead of specifying a forward noising process.

6 CONCLUSION

We have introduced LO-ARMs++, an improved version of LO-ARMs, which allows for learning more data efficient generation orderings in distribution learning. Evaluated on the GuacaMol dataset, with the improved techniques, LO-ARMs++ match or surpass the standard ARMs with fixed generation order. Furthermore, we showed that LO-ARMs++ can still learn human-interpretable and consistent context-dependent generation orders. We found that LO-ARMs++ are particularly useful for data without obvious canonical generation orders, and we will further investigate its practical usefulness in modeling more complex data, e.g., protein sequences.

REFERENCES

- Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing Systems, 2021.
- Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking models for de novo molecular design. *Journal of Chemical Information and Modeling*, 59(3): 1096–1108, 2019. doi: 10.1021/acs.jcim.8b00839. URL https://doi.org/10.1021/acs.jcim.8b00839. PMID: 30887799.
- Floor Eijkelboom, Grigory Bartosh, Christian A. Naesseth, Max Welling, and Jan-Willem van de Meent. Variational flow matching for graph generation. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with automatically inferred generation order. *Transactions of the Association for Computational Linguistics*, 7:661–676, 11 2019. ISSN 2307-387X. doi: 10.1162/tacl_a_00292. URL https://doi.org/10.1162/tacl_a_00292.
- Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-based policies. In *Proceedings of the 34th International Conference on Machine Learning Volume 70*, ICML'17, pp. 1352–1361. JMLR.org, 2017.
- Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational framework. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=Sy2fzU9ql.
- Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim Salimans. Autoregressive diffusion models. In *International Conference on Learning Representations*, 2022.
- Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-trained transformer for computational chemistry. *Machine Learning: Science and Technology*, 3(1): 015022, jan 2022. doi: 10.1088/2632-2153/ac3ffb. URL https://dx.doi.org/10.1088/2632-2153/ac3ffb.
- Xuanlin Li, Brandon Trabucco, Dong Huk Park, Michael Luo, Sheng Shen, Trevor Darrell, and Yang Gao. Discovering non-monotonic autoregressive orderings with variational inference. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=jP1vTH3inC.
- Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios of the data distribution. *International Conference on Machine Learning*, 2024.
- Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/mnihal6.html.
- Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv* preprint arXiv:2406.03736, 2024.
- Yiming QIN, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Defogging discrete flow matching for graph generation, 2025. URL https://openreview.net/forum?id=ZGRRC514rI.
- Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das. Large-scale chemical language representations capture molecular structure and properties. *Nature Machine Intelligence*, 4(12):1256–1264, 2022. doi: 10.1038/s42256-022-00580-7.

- Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. *arXiv preprint arXiv:2406.07524*, 2024.
- Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas Bekas, and Alpha A Lee. Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. *ACS central science*, 5(9):1572–1583, 2019.
- Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized masked diffusion for discrete data. In *Advances in Neural Information Processing Systems*, 2024.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
- Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard. Digress: Discrete denoising diffusion for graph generation. In *International Conference on Learning Representations*, 2023.
- Yishu Wang, Mengyao Guo, Xiaomin Chen, and Dongmei Ai. Screening of multi deep learning-based de novo molecular generation models and their application for specific target molecular generation. *Sci. Rep.*, 15(1):4419, February 2025a.
- Zhe Wang, Jiaxin Shi, Nicolas Heess, Arthur Gretton, and Michalis Titsias. Learning-order autoregressive models with application to molecular graph generation. In *Forty-second International Conference on Machine Learning*, 2025b. URL https://openreview.net/forum?id=EY6pXIDi3G.
- Zhe Wang, Jiaxin Shi, Nicolas Heess, Michalis Titsias, Arthur Gretton, and Yee Whye Teh. Modeling molecular sequences with learning-order autoregressive models. In *ICML 2025 Generative AI and Biology (GenBio) Workshop*, 2025c. URL https://openreview.net/forum?id=quNmcjG334.
- David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36, 1988.
- Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6716–6726. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/welleck19a.html.

A THE GUACAMOL DATASET

A.1 Preprocessing with Prefix Tokenization and Dataset summary

We preprocess SMILES strings in two main steps. First, we apply standard tokenization using a widely adopted regular expression (Irwin et al., 2022; Schwaller et al., 2019). Second, to address the strict paired-parenthesis constraint in SMILES grammar—a challenge for models without fixed left-to-right ordering (like LO-ARM or diffusion-based methods) which contrasts with simpler handling in autoregressive generation—we represent parenthesis pairs as individual tokens. Specifically, these pairs are formatted as @N, where N is the size of the matching pairs (the number of tokens between the brackets, including the right parenthesis). Using these new tokens, we then transform the raw SMILES strings into a prefix notation, where each @N parenthesis token precedes the substructure or branch it encloses. An example of this transformation is provided below. It is important to note that this prefix transformation for parentheses is bijective and lossless, and therefore, we can fully

recover the original SMILES strings from their corresponding prefix notations. We provide an ablation analysis on different tokenization algorithms in Appendix C.2.1. Following this transformation, we filter out low-frequency tokens (fewer than 100 occurrences) and the corresponding samples containing them. The preprocessed dataset is summarized in Table 2.

Raw SMILES: CCOclcc(S(=0)(=0)Nc2cccc2Cl)ccl Converted: CCOclccc@20S@3=O@3=ONc2cccc2Clccl

 Following this transformation, we filter out low-frequency tokens (fewer than 100 occurrences) and the corresponding samples containing them. The preprocessed dataset is summarized in Table 2. After filtering, the vocabulary size is almost halved while the dataset remains the same scale, only fewer than 1000 samples were filtered out.

Table 2: Dataset statistics before and after filtering. Both cases use the augmented vocabulary and transform SMILES strsings with prefix notation described in Section 3.1.

	#training samples	#validation samples	#test samples	Vocabulary size
Raw dataset	1273114	79568	238706	203
Preprocessed	1272277	79506	238538	129

B ADDITIONAL RESULTS

Table 3: Molecule generation on GuacaMol SMILES dataset. We directly cite the results of other methods on the following metrics: Validity, Uniqueness, Novelty, FCD and the negative log-likelihoods (NLLs) evaluated against the test set. The metrics are calculated with the generated samples with the corresponding methods. In particular, the random sampler uniformly samples the validation set.

Method	Class	V.%↑	V.U.% ↑	V.U.N.%↑	FCD↑	Test NLL↓
Random sampler		100.0	99.7	0.0	92.9	-
DeFoG (50 sampling steps)	Graph	91.7	91.7	91.2	57.9	-
DeFoG (500 sampling steps)	Graph	99.0	99.0	97.9	73.8	_
AAE	SMILES	82.2	82.2	88.0	52.9	_
VAE	SMILES	87.0	86.9	84.7	86.3	-
LSTM ARM (Brown et al., 2019)	SMILES	95.9	95.9	87.4	91.3	-
Our Results						
AO-ARM	SMILES	63.3	63.2	62.8	72.1	≤ 35.3
Transformer FO-ARM	SMILES	95.0	94.7	88.3	88.7	≤ 33.7
Standard LO-ARM	SMILES	92.6	92.6	87.1	79.4	≤ 31.5
LO-ARM++ (500K training steps)	SMILES	91.7	91.7	97.6	86.9	≤ 31.4
LO-ARM++ (1M training steps)	SMILES	92.9	92.9	93.6	90.4	≤ 29.8
LO-ARM++	SMILES	93.9	93.9	89.3	91.0	≤ 29.0

We provide an extended table for results in Table 3. Specifically, in addition to the results presented in Table 1, we have added the results of 1) modeling GuacaMol data with molecular graphs, 2) the performance of LO-AMRs+ against these metrics at different training steps.

C ADDITIONAL ANALYSIS

C.1 CONSISTENCY ANALYSIS FOR LEARNED GENERATION ORDERINGS

As the learned orderings with LO-ARMs++ are highlighy human-interpretable, to check the consistency of the learned orderings, we conducted the following steps:

- Step 1: Extract the pattern of each generation trajectory to a sequence of states. Specifically, D stands for digit, A for atom, and P for matching pair of parentheses. An example patten state sequence is DDDDPPAAAAPAAA.
- Step 2: Compress the state squences through removing adjacent duplicates. For instance, for the example above, it is compressed to DPAPA.
- Step 3: Count the matchings of the following two templates: 1) first two states are DP, and 2) at least one P occurs after DPA.

C.1.1 TRAINING INSTABILITY

Figure 3: Minimum (a) and maximum (b) logits outputted by $q_{\theta}(z_i|z_{< i},x)$ and test negative log-likelihoods (NLLs) over the training course. All the metrics evaluated against the test set.

Figure 4: Comparing different dropout methods applied to the generative model p_{θ} . Specifically, 1) standard attention dropout (green), with which entries in attention score matrix are zeroed out directly, 2) improved attention dropout, with which we apply dropout to attention output (organe), and 3) no dropout (blue). All the metrics evaluated against the test set.

We have observed two major issues that caused training instability.

First, we provide additional information about the evolution of the logit outputs of the variational order-policy $q_{\theta}(z_i|\mathbf{z}_{< i}, \mathbf{x})$ along the training course. Specifically, Figure 3 (a) and (b) illustrate the minimum and maximum logit values in the outputs respectively. As we can see, the logits outputted by unregularized standard LO-ARM (blue curves) go to extremes quickly. In addition to the consequence of q_{θ} collapsing to premature orderings, such extrem values may also cause training instability, resulting in spikes in the test NLL (c). To fix this issue, we employed maximum entropy on the variational order-policy q_{θ} , and we can see its effectiveness in Section 4.3.

Second, another major source for training instability occurred when we applied standard attention dropout to the generative model p_{θ} . As we can see in Figure 4, the standard attention dropout (green curves) resulted in large spikes in test NLL. We hypothesize that, because LO-ARMs model molecular strings of variable lengths and the padding dimensions are zeroed out in the attention score matrix, if we directly dropout the attention scores, the model would be confused with the dropped out dimensions and the padding dimensions, which are both zeros. Driven by this consideration, we change

to apply dropout to the attention output, i.e, Attention $(Q,K,V) = \text{Dropout}(\operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) \cdot V)$. This simple yet effective fix yields stable generalization during training and improved generation performance at test time (orange curves).

Finally, one interesting observation is that, the instability occurred in the generative model p_{θ} also affects the variational order-policy q_{θ} , as we can see the fluctuations in the test maximum q logits in the green curve. This is because we are only using one optimizer to optimize these two networks, any instability in either network would be conveyed to the other through gradient backpropagation.

C.2 ADDITIONAL ABLATION ANALYSIS

C.2.1 ABLATION ON TOKENIZATION ALGORITHMS

We conduct an ablation study to compare two tokenization algorithms:

- Standard Tokenization: Parentheses are treated as individual tokens. This results in a vocabulary size of 109 after filtering.
- Augmented Tokenization: Pairs of parentheses are represented as single tokens. This leads to a vocabulary size of 129 after filtering.

For simplicity, we only run this ablation analysis for FO-ARM and LO-ARM (not LO-ARMs++), without incorporating the improvements introduced in this paper.

As shown in Table 4, the FCD results indicate that while FO-ARM demonstrates robustness across both tokenization methods, augmented tokenization substantially improves LO-ARM's performance. Conversely, standard tokenization achieves higher validity scores compared to augmented tokenization. This suggests that a simpler vocabulary may facilitate the generation of valid molecules. The augmented tokenization in FO-ARM also improves its performance in FCD. This is likely because standard tokenization forces the model to track open parentheses, which complicates the prediction task. Generating parentheses as matching pairs, however, allows the model to avoid this issue entirely.

Table 4: Ablation study on the standard and augmented tokenization algorithms

Method	Tokenization	Validity%↑	Uniqueness %↑	Novelty%↑	FCD↑
FO-ARM	Standard	98.3	100.0	81.5	86.4
	Augmented	91.8	100.0	88.3	87.6
LO-ARM	Standard	94.2	99.7	96.0	36.6
	Augmented	92.6	100.0	95.3	79.5

D EXPERIMENT SETUP

D.1 MODELING SMILES STRINGS OF VARIABLE LENGTHS

The generative model p_{θ} and the variational distribution q_{θ} , as shown in Equation (2), are both conditioned on the sequence length L. In practice, for a given SMILES string, the L information is provided to both models via a sequence mask of a fixed maximum length (the maximum length across all ground truth data).

For the ground truth dataset (training, test, and validation sets), these sequence masks are generated directly from the actual data. Before sampling new molecules, however, we first sample the sequence length from a prior distribution, and then construct the corresponding sequence mask. During inference, this sequence mask is fed to p_{θ} to distinguish between padding and the actual sequence dimensions.

D.2 MODEL ARCHITECTURES

The Transformer architecture is adopted from the 11ama2.c project¹. For the FO-ARM model and the generative models p_{θ} in both LO-ARMs and LO-ARMs++, the corresponding Transformers consist of 18 attention layers. The variational order-policies used in LO-ARM and LO-ARMs++ have 3 attention layer. Moreover, We report the hyperparameters in Table 5. All experiments were run until convergence.

Table 5: Hyperparameter setup.

Hyperparameter	ChEMBL/GuacaMol
Optimizer	AdamW
Scheduler	Cosine Annealing
Learning Rate	$5 \cdot 3^{-5}$
Weight Decay	$1 \cdot 1^{-2}$
EMA	0.9999
Attention dropout rate	0.1
Initial α	0.025
Terminating α	0
Initial β	1.05
Terminating β	1
Total training steps	2e6
Exploration steps	1e6

D.3 Annealing schedules for α and β

Our implementation utilizes a two-stage phased training strategy to balance exploration and exploitation:

- Exploration Stage: The KL regularization weight (β) is set to $\beta > 1$, and the maximum entropy weight (α) is set to $\alpha > 0$.
- Exploitation Stage: These weights are fixed at $\beta = 1$ and $\alpha = 0$.

The total training duration is 2×10^6 steps. The Exploration Stage spans the first half of this duration, running for 1×10^6 steps.

Before training begins, the initial values are set to $\alpha=0.025$ and $\beta=1.05$. Throughout the Exploration Stage, both α and β are annealed to their final termination values of $\alpha=0$ and $\beta=1$, respectively.

To ensure sufficient initial exploration, the annealing follows a two-part schedule:

- Persistent Stage: For the first half of the Exploration Stage (500, 000 steps), both α and β are held constant at their initial values.
- Linear Decay: Following the persistent stage, both weights undergo a linear decay, simultaneously reaching their termination values ($\alpha=0$ and $\beta=1$) exactly at the end of the full Exploration Stage.

We simplify hyperparameter configurations though synchronizing the annealings for α and β . We leave the investigation with asynchronized annealing to future work.

We simplified the hyperparameter tuning by synchronizing the annealing schedules for α and β . The investigation of an asynchronized annealing approach is reserved for future work.

Figure 5: Generated molecules with LO-ARMs++.

E GALLERY OF GENERATED MOLECULES

F FULL STEP-WISE OUTPUTS FOR FIGURE 1

For each generation stage presented in Figure 1, we provide its full step-wise outputs in Figure 6 (Planning Stage), Figure 7 (Execution Stage), and Figure 8 (Refinement and Completion Stage). In addition to the partially generated SMILES strings and their corresponding partial 2D molecules (Column (a)), we also provide the outputs of the classifier (Column (b)) and the order-policy (Column (c)).

G AN ILLUSTRATION OF LEARNED SUB-OPTIMAL ORDER-POLICY

Figure 9 shows the process of generating a GuacaMol sample with a sub-optimal order-policy. Specifically, instead of proposing substructures at the initial stage, this generation process delays finalizing substructures to the very end there is no refinement stage with the sub-optimal order-policy. Therefore, this sub-optimal policy would be less generalizable to more complicated data distributions and would also be less tolerant to the generation errors in earlier steps.

¹https://github.com/karpathy/llama2.c

Figure 6: **Full step-wise outputs in the planning stage for Figure 1**. Our model generates SMILES strings step-by-step, commencing with all dimensions masked (in the figures masked dimensions are colored in grey) and adding token at a time. First, an *order-policy* selects which dimension to fill, and then a *classifier* determines its value. Each step is illustrated in the provided figures: Column (a) illustrate the (partially) generated SMILES string and the corresponding unmasked substructures in the final molecule (highlighted in colors). Columns (b) and (c) provide detailed insights: (b) the order-policy's probability distribution over dimensions, and (c) the classifier's prediction at the selected dimension. Note that, we only display the tokens of top 5 probabilities, and the order-policy is zeroed for unmasked dimensions. To facilitate visualization, we group the dimensions of the generated sample with respect to their dimension/token types: 1) digits (e.g., 1, 2), 2) non-aromatic tokens, (e.g., uppercase letters) 3) aromatic tokens (i.e., lowercase letters) and 4) parenthesis pairs. Notably, @N represents a pair of parentheses spanning N dimensions between them.

Figure 7: **Full step-wise outputs in the execution stage for Figure 1**. The legends in the bar plots are the same as those in Figure 6.

Figure 8: Full step-wise outputs in the refinement and completion stage for Figure 1. The legends in the bar plots are the same as those in Figure 6.

Figure 9: An example of generating SMILES sample with a sub-optimal order-policy trained with the standard LO-ARM. The legends in the bar plots are the same as those in Figure 6. The generation proceeds through three phases: 1) Planning (Step 1 to 10): LO-ARM first generates pairs of digits (highlighted in green), which represents ring closures. This step determines the number of rings and estimates their potential connections in the molecule. The digits together with their associated ring-cut atoms in the final sample are highlighted in the first molecule. 2) Execution (Step 13 to 48): The model then infills the molecular structure, characteristically generating non-aromatic tokens (red) before aromatic ones (yellow). 3) Completion (Step 49 to 51): Finally, it generates @N parenthesis tokens (blue) to enclose and finalize substructures.