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ABSTRACT

Autoregressive models (ARMs) have become the workhorse for sequence gen-
eration tasks, because of their simplicity and ability to exactly evaluate their
log-likelihood. Classical Fixed-Order (FO) ARMs factorize high-dimensional data
according to a fixed canonical ordering, framing the task as next-token prediction.
While a natural ordering exists for text (left-to-right), canonical orderings are
less obvious for many data modalities, such as molecular graphs and sequences.
Learning-Order (LO) ARMs address this limitation, but their training relies on
the optimization of an Evidence Lower Bound (ELBO), rather than on their exact
log-likelihood. Therefore, FO-ARMs tend to remain advantageous. In this paper,
we introduce LO-ARMs++, an improved version of LO-ARMs, to address this
issue through incorporating several technical improvements. We introduce an
improved training method called a-5-ELBO, together with network architectural
improvements. On the challenging domain of molecular sequence generation, our
methods match or surpass state-of-the-art results of Fixed-Order ARMs on the
GuacaMol benchmark, evaluated across key metrics for distribution similarity.

Molecular generation in large chemical spaces has important real-world applications such as in
drug discovery and material design. While deep generative models for molecular graphs based on
diffusion models (Vignac et al., 2023} [Eijkelboom et al., 2024; Wang et al., |2025b) are emerging
as a promising solution, SMILES (Simplified Molecular Input Line Entry System) string-based
methods (Brown et al.l 2019; Irwin et al.| [2022; [Ross et al., [2022; |Schwaller et al., [2019) remain
popular in practice. This is because SMILES strings are human-interpretable, lead to computationally
efficient algorithms compared to handling graph structures, and yield strong performance on key
distributional metrics, such as the Fréchet ChemNet Distance (FCD). Technically, SMILES-based
models adopt text-based autoregressive architectures (e.g., Recurrent Neural Networks) and inherit
their left-to-right generation ordering. However, unlike text data, for which left-to-right appears to
be a natural ordering, SMILES data actually encodes tree-like structures and its natural “canonical”
ordering between data dimensions is less obvious. Therefore, it is desirable to consider a variant of
ARMs that do not treat the ordering as fixed, but rather as a latent random variable that follows a
probability distribution that adapts to the evolving state of the generation process.

To address this issue, Wang et al.| (2025b)) proposed Learning-Order ARMs (LO-ARMs), an ARM
variant which can learn human-interpretable autoregressive orderings for image and graph generation
and achieves state-of-the-art results on molecular graph generation for distribution similarity and
drug-likeness. However, when applied to molecular sequence generation, despite learning human-
interpretable orders for molecular sequence generation, LO-ARMs still lag behind Fixed-Order
ARMs (FO-ARMs) on FCD.

We provide evidence that that this performance shortfall arises because the order-policy learned
with standard LO-ARMs collapses prematurely to a near-deterministic ordering, causing the overall
solution to be suboptimal. Indeed, the Evidence Lower Bound (ELBO) optimization, on which
LO-ARM training depends, is often complicated by poor local optima and high variance of gradient
estimates. The core technical question we address here is whether we can obtain a more efficient
order-policy, yielding better generation performance, through improving the training process.

We introduce LO-ARMs++, which resolve the issues encountered in training standard LO-ARMs, in
turn yielding better generation performance (see Figure[I). Our main contributions include:
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Figure 1: An example of generating SMILES sample with LO-ARMs++ trained on the Gua-
caMol dataset. Our model generates SMILES strings step-by-step, commencing with all dimensions
masked (in the figures masked dimensions are colored in grey) and adding one token at a time.
First, an order-policy selects which dimension to fill, and then a classifier determines its value. In
this visualization, for each partially generated SMILES string in the subfigures, we highlight the
generated components with different colors in the corresponding 2D molecules. The generation
proceeds through four phases: 1) Planning (Step 1 to 15): LO-ARM-++ first generates pairs of digits
(highlighted in green), which represents ring closures. This step determines the number of rings
and estimates their potential connections in the molecule. The digits together with their associated
ring-cut bonds in the final sample are highlighted in green in the first molecule. Specifically, in
this sample, the 5 pairs of digits correspond to exactly 5 rings in the molecule. Then in Step 14
and 15, it proposes two substructures through generating the corresponding pairs of parentheses.
In particular, the blues correspond to the dimensions that are enclosed in a proposed substructure
but yet to be infilled with atoms. 2) Infilling atoms to the proposed molecule structure (Step 16
to 37). The unmasked atoms are highlighted either in yellow (belonging to a substructure) or red
(on the molecule backbone). 3) Refinement (Step 38): In addition to the substructures proposed
in Step 14 and 15, LO-ARM++ generates another pair of parentheses to refine the substructures,
yielding a larger substructure highlighted in the dotted blue box in Step 38. In particular, as the
benzene ring A (labeled in Step 37 and 38) has now been included into the larger substructure, we
change its color from red to yellow. 4) Completion (Step 39 to 46): Finally, LO-ARM-++ completes
the molecule through generating the rest of the atoms on the backbone (highlighted in red). This
learned, interpretable ordering is highly consistent: for valid generations containing rings, 94.5%
adhere to this overall generation pattern of planning-execution, i.e., generating digits and small pairs
of parentheses first followed up generating atoms. Moreover, 80.6% of them contain at least one
refinement step at later stages. The full information of generating this sample, including the outputs
of the classifier and the order-policy, is provided in Appendix [} Moreover, we provide a sub-optimal
ordering learned without the improvements developed in this paper in Appendix [G} which generates
the pairs of parentheses after all atoms have been generated without any refinement steps.
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¢ We introduce «-$-ELBO, an improved training loss, which allows for implementing an
exploration-exploitation strategy for unsupervised learning. This forms the basis of the LO-
ARMs++ model training procedure, yielding improved generation performance.

* We also introduce several improvements of network architecture that, when used in conjunction
with a-8-ELBO, further stablize the training of LO-ARMs++.

These improvements can not only yield tighter ELBO on test data, but can also effectively encourage
the model to discover more meaningful generation orderings, and consequently achieve better
generation performance.

We evaluate our methods against the GuacaMol (Brown et al., 2019) benchmark for molecule
generation. Our results, measured by FCD, surpass or match state-of-the-art FO-ARMs relying on a
left-to-right generation order. To our best knowledge, this is the first discrete diffusion-style model
that achieves this level of performance in an important scientific domain.

The paper is organized as follows: Sectioneviews LO-ARMs. Section |2| details the proposed
improvements: identifying issues (Section [2.1)), presenting the improved learning loss a-3-ELBO
(Section [2.3), and comprehensive measures to improve molecular string generation (Section [3)).
Section 4 presents the evaluation against the GuacaMol benchmark, including a detailed ablation
analysis (Section[4.3).

1 BACKGROUND

1.1 SMILES-BASED AUTOREGRESSIVE MOLECULE GENERATION

SMILES (Weininger} |1988)) is a formal grammar for describing molecule structures with a string of
characters. It is generated by performing a depth-first traversal of the molecule’s structure and printing
the symbols, with parentheses indicating branching points and numbers to denote ring closures. An
example of a SMILES string and its corresponding molecule structure are shown in Figure [T}

The SMILES representation allows researchers to directly apply well-developed sequence modeling
algorithms to molecule generation. In particular, methods that use ARMs for modeling SMILES
strings remain a popular choice (Brown et al., |2019; Schwaller et al., [2019; [rwin et al., [2022;
Ross et al.,|2022)), due to their simplicity and computational efficiency. Despite the rapid progress
in molecule generative models, such methods remain state-of-the-art on a number of key metrics
such as FCD (Vignac et al., 2023)). Specifically, these methods treat SMILES strings as a sequence
of characters * = (x1,x2,...,2r) and define a joint probability distribution over x: py(x) =
Hle po(zi|T<;), where x; 2 (x1,...,2;_1) and pp(x;|x~;) is the conditional distribution with
the convention py(x1|x<1) = pe(x1). Typically, these conditional distributions are parameterized
with deep learning architectures such as LSTMs and Transformers.

1.2 LEARNING-ORDER ARMS

LO-ARMs (Wang et al., [2025b) address a fundamental limitation of ARMs associated with the
assumption of a fixed generation order, which may not be efficient for complex data types like graphs
and images. LO-ARMs introduce latent variables z = (z1, ..., z1,) where z; represents the order
index of token z;, i.e., z represents a permutation. They also incorporate a trainable probability
distribution that dynamically decides the sampling order of the data dimensions. The log-likelihood
of one data point 2 involves marginalizing over L! permutations, i.e. log pg(x) = log ), pe(z, ),
where py(z,x) = Hle Po(zi|Z<is®_,)po(x2,|x=_,). Specifically, po(zi|2<;, T ~_,) is called the
order-policy and pg(z,,|x._,) is called the classifier, and both factors depend on parameters 6 that
we want to learn. Since the exact likelihood is intractable (except for very small L), the modeling
approach maximizes an ELBO that is obtained by introducing a variational order-policy over z that

conditions on the full data vector &, and has the general form gy (z|x) = Hf:l qo(zi|z<i, ).
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1.3 TRAINING LO-ARMS WITH VARIATIONAL INFERENCE

To train LO-ARMSs, [Wang et al [(2025b) established the following ELBO on log pg():

p9 Zl‘z<lamz<7)p9(xzm‘mz<z)
log po(x) > go(z|z)lo qo(z|x lo
5] Z z|z) g Z z| Z g @0 (2| 2<i, @)

L

L
Po (Zi|z<i’mz i)pe(‘rzilwz i
=D E lle(z<z\w>[ g0 (i 1<, m){log = <J = Eyy(aciia) [Folz<i,®)] (1)

= o (zilz<i, @) —

and then optimized the ELBO via an unbiased stochastic estimate, which involved sampling one term
i uniformly at random in {1, ..., L} and its corresponding z«; ~ ¢g(z<;|x) to obtain the negative
ELBO unbiased stochastic estimate

L() = ~LFy(z<i, ). @)

Note that, during both training and inference, the generative model py is conditioned on the sequence
length L (i.e., knowing the sequence length before infilling the dimensions). We explain how both
standard LO-ARMs and LO-ARMs++ handle variable sequence lengths in Appendix [D.1]

2 METHODS

Our core research question is whether, in addition to human-interpretability and consistency, LO-ARM
can discover “better” order-policies, that in turn yield better generation performance an improved
ELBO close to the exact log-likelihood of FO-ARMs. After presenting some issues we have observed
when training standard LO-ARMs in Section we propose an improved learning loss, a-3-ELBO,
mitigating those issues in Section[2.3] In particular, the improvement is inspired by our understanding
of LO-ARMs in the setting of Generalized Next-Token-Predictors (NTPs); see Section [2;2} We
detail additional improvements to the training algorithm with «-3-ELBO in Section [3| The resulting
improvements to LO-ARMs will be denoted as LO-ARMs++.

2.1 ISSUES OF LEARNING WITH STANDARD LO-ARMS

When modeling the GuacaMol dataset with the standard LO-ARMs, the variational order-policy
qo(zi|z<i, &) converges quickly to a deterministic policy, e.g., in about 100K out of 1.5M training
steps, resulting in a greedy order-policy with extreme maximum and minimum logit outputs (as
shown in Figure[3). This is because, during training, gy has access to the entire unmasked sequence
x, yielding faster convergence than the py network, which is only conditioned on partially observed
data x, _,. The rapid collapse of the variational order-policy is ultimately harmful, causing several
problems 1) the learned order may converge to a sub-optimal policy (as we can see from the order-
policies in Figure[I]and Figure[9), 2) the training may suffer from instability due to excessively large

logits in gg (see Appendix [C.1.1).

We therefore aim to design a variational order-policy that maintains a greater degree of randomness
for longer, allowing for more robust classifier learning and better exploration over the order-policy. To
motivate our solution, we first reformulate LO-ARMs as generalized Next-Token-Predictors (NTPs),
which will prove helpful for the subsequent developments.

2.2 LO-ARMS ARE GENERALIZED NEXT-TOKEN-PREDICTORS

We rewrite the per-step objective Fy defined in Equation (1)) as
pg(Zi ‘z<i, Lzi )p9 (xzi CCZ<7:)-|
q0(2ilz<i, ) J
©z;)] = Dx(go(zilz<im) [po(zil 2<i, 22,)). (3)

FO(Z<Z'7 :B) :qu(zi|z<,;,m) log

= qu(z,;\Z<,;,z) [logpg (xzi

The first term corresponds to the cross-entropy loss optimizing the classifier. Specifically, in the LO-
ARM case, gy (z;|z<i, x) samples the next dimension to generate, and the classifier log pg (2., | <;)
predicts the value. From this perspective, gg(z;|z<;, @) effectively reweights the cross-entropy losses
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across the remaining dimensions. Equivalently, we can interpret o as a problem setter for the
classifier, selecting which dimension the classifier must predict next.

The above view unifies FO- and AO-ARMs: 1) in AO-ARMs, p(z;|@._,) = q(2i|z<i, ) = q(2z;) =
Uniform({1...L} \ 2<;), and the classifier must be as general as possible, since it faces a uniform
distribution over the remaining dimensions on which it will be required to make a prediction. By
contrast 2) in FO-ARMs, ¢(z;) = 6(z; = k), k € {1...L} \ z<;, and the classifier needs only to
predict a single known dimension at each step. For left-to-right ARMs, k£ = 7. Note that, in both
cases, the KL terms zero out, and only the cross-entropy terms are left. LO-ARMs generalize FO-
and AO-ARMs by using learnable and context-dependent distributions ¢(z;|z<;, @) and p(z;|x._, ).

2.3 a-B-ELBO

From the perspective of variational inference (i.e., Equation ), the FO-ARM can yield the exact
log-likelihood, because 1) its KL divergence is always zero, and 2) the variance induced by the
degenerate order policy (i.e. 0(z; = k)) in the cross-entropy term is also zero. In contrast, while the
KL term in AO-ARMs is also zero, they maximize the cross-entropy variance by sampling uniformly
over all remaining dimensions.

Inspired by these insights, we motivate our improvements to achieve a tighter ELBO from two
high-level requirements: 1) to efficiently minimize the KL divergence between py(z;|z_,) and
qo(z;|z<4, @), and 2) to reduce the variance of gradient estimates incurred by sampling gq (2;|z<;, ).
These yield the following modified objective function with respect to the generalized NTP Fy, which
we call a--ELBO:

F9 :qu(z,;\z<,;,:1:) Unge(iUzi w2<i)] _BDKL(q0(2i|z<i7w)||p0(zi|z<ia $z<i))+OéH [QO(ZHZQ‘@)]
(a) (b) (c)

“)
= Eqgy(zi)2i,2) 108 Do (22, | <i)] + BEgy (222 ,2) l0g Po(2i|2<iy @) + (o + B)H [qo] ,  (5)

where 8 > 1 and o > 0, and H [go(2i|2<;, )] = H|qs] = —E,, [log go] is the entropy of gp.

We now show how these components address the issues observed in Section [2.1] First, component
(c) implements the standard maximum entropy regularization on gy. Second, setting 5 > 1 in (b)
upweights the KL distillation from gy to pg(2;|~_,). Moreover, as the KL term already implicitly
imposes an entropy regularization on gy, the total entropy regularization imposed on gy is controlled
by o+ f3, see Equation (5). This entropy term is crucial during early stages of training, since it causes
the variational order-policy to maintain high entropy when « + 3 is large, preventing premature
collapse and presenting a diversity of prediction problems to the classifier. Additionally, the KL
term encourages the model order-policy pg(2;|_,, z<;) to imitate the variational order-policy gy.
These dual goals mirror the use of maximum entropy policies in reinforcement learning to balance
exploration and exploitation (Mnih et al., 2016, |[Haarnoja et al., 2017)).

Note that, while components (a) and (b) together resemble a 5-VAE (Higgins et al., 2017), a key
difference here is that we are working with discrete distributions, which may not always cover the
full support of data dimensions, resulting in collapsed, deterministic policies. Therefore, we argue
that the maximum entropy regularization on gy is essential. We provide additional ablation for this
argument in Section[4.3]

2.3.1 EXPLORATION-EXPLOITATION THROUGH ANNEALING & AND (3

The a-5-ELBO generalizes the standard ELBO defined in Equation (3)) in the following ways: 1)
when o = 0,8 = 1, a-B-ELBO recovers the standard ELBO; 2) @ > 0,3 = 1 corresponds to
training with standard maximum entropy regularization on gg.

We implement an exploration-exploitation optimization strategy, inspired by reinforcement learning,
through applying two annealing schedules to « and /3 respectively, decaying an initial « > 0 down to
0 and an initial 5 > 1 down to 1. In the exploration stage, where « > 0 and 8 > 1, we want to present
the classifier with a diversity of learning problems and explore over model order-policy with a high
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entropy variational distribution gy, while ensuring that pg(z;|@<;, z<;) tracks gy. Since our ultimate
objective is to optimize the ELBO, in the exploitation stage we shift a-3-ELBO back to the standard
ELBO with o = 0 and 5 = 1. During this latter phase, we further optimize the reweighted cross
entropy term (i.e., (a) in Equation () with the more stable gg. We detail the annealing schedules in

Appendix

3 LO-ARMS++ FOR MOLECULAR STRING GENERATION

We apply our framework to molecular string generation, particular to SMILES strings. We first
introduce a novel preprocessing scheme in Section [3.1] Then, in Section[3.2] we discuss innovations
on network architecture used by LO-ARMs++ that differ from the previous LO-ARMs (Wang et al.|
2025b), and finally we describe how to deal with strings of variable length in Section[3.3]

3.1 PREPROCESSING SMILES STRINGS WITH PREFIX TOKENIZATION

We employ the prefix tokenization to preprocess the SMILES strings. Specifically, instead of parsing
individual parentheses as tokens, the prefix tokenization represent matching parenthesis pairs as
individual tokens. These pairs are formatted as @N, where [V is the size of the parenthesis pair (the
number of tokens between the matching parentheses, including the right parenthesis). An example
of preprocessed data is provided in Appendix As this prefix tokenization makes the molecular
structure explicit rather than relying on implicit left-to-right parsing, we find that it is more friendly
to models that do not assume a fixed left-to-right order. The prefix tokenization only increases the
vocabulary size marginally, and we find it improves the generation performance of LO-ARMs and also
helps to interpret the learned orderings. We provide addition ablation for the standard tokenization
used in the literature (Irwin et al.l 2022)) and the prefix tokenization in Appendix @}

3.2 NETWORK ARCHITECTURES AND BACKBONE TRAINING ALGORITHMS

We inherit the network architecture introduced in (Wang et al., [2025b)). Specifically, collocating the
classifier pg (., |T<;, z<;) and the model order-policy pg(z;|®<;, z<;) through sharing a backbone,
and use a separate neural network to implement gg(z;|2<;, ). Both networks are implemented with
a transformer (Vaswani et al., 2017). In particular, the model network consists of 18 attention layers,
while the gg network remains quite lightweight, only consisting of 3 attention layers. We detail the
network architectures in Appendix [D} Moreover, the training algorithm remains largely the same as
in|Wang et al.|(2025b)) besides the changes introduced in this section.

3.3 STABLE GENERALIZATION FOR MODELING SEQUENCES OF VARIABLE LENGTHS

A subtle problem we encountered during development was that the standard attention dropout
employed in LO-ARM transformers is disruptive to training (see Appendix [C), i.e., directly applying

dropout to attention scores Attention(®, K, V') = Dropout (softmax (%)) -V, where Q, K,V

are the queries, keys and values respectively. We hypothesize that, because LO-ARMs model
molecular strings of variable lengths and the padding dimensions are zeroed out in the attention
score matrix, if we directly dropout the attention scores, the model will confuse with the dropped out
dimensions and the padding dimensions, which are both zeros. We fix this issue by applying dropout
on the output of the outer multiplication of the value matrix and the corresponding attention scores,

i.e., Attention(Q, K, V') = Dropout(softmax (%) - V). This simple yet effective fix yields stable

generalization during training and improved generation performance at test time (see the ablation
analysis in Section[4.3).

Moreover, we find that when applying the improved dropout to the model network (i.e., pg), it can also
encourage the variational distribution g¢ to be more uniform (see Figure[2)). Therefore, to simplify
the configuration of hyperparameters, we choose to regularize the ¢y network only via the global
KL and maximum entropy regularization, and apply extra regularization on the py network with the
improved dropout.
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4 RESULTS AND ANALYSIS

4.1 EXPERIMENT SETUP

We evaluate our methods on the GuacaMol benchmark (Brown et al., 2019), which is a standard
benchmark to evaluate generative models for drug discovery (Irwin et al., 2022 |QIN et al., 2025}
Schwaller et al.,[2019). We use the standard training/test/validation splits provided in the literature.
We choose the GuacaMol benchmark because: 1) SMILES encode 2D molecules with tree structures
as flat sequences, and their canonical orderings are less obvious. Therefore, we want to see if
LO-ARMs++ can learn human-interpretable and consistent autoregressive orders, recovering the
hidden tree structures from flat sequences without any inductive biases. 2) Autoregressive models
(ARMs) with a left-to-right sequence are a robust baseline for SMILES synthesis, consistently
outperforming other methods on distributional metrics. This implies they also yield a strong log-
likelihood evaluation, which acts as a clear target for us to improve LO-ARMs. 3) Practically, we
also hope to demonstrate the versatility and usefulness of LO-ARMs++ through enriching the toolkit
for real-world applications (e.g., drug discovery).

We evaluate them on two key aspects: 1) Validity and Uniqueness: Assessing chemical correctness
and distinctness. 2) Novelty and Fréchet ChemNet Distance (FCD): Novelty is the proportion of
generated molecules not found in the training set. A lower value suggests memorization. FCD scores
measure the similarity between the distributions of generated and real molecules using ChemNet
activations. We run 5 runs, each of which samples 16, 384 molecules, and we report the mean value
on each metric. For uniqueness and novelty, we evaluate their proportions in the entire samples
including both valid and invalid ones, whereas for FCD, we only consider valid ones, and specifically,
we sample 10, 000 valid samples in each run. We use the normalized FCD score as defined in the
GuacaMol benchmark, where higher scores indicate greater distributional similarity. As a competent
generative model should be able to sample new data from the same chemical space of the ground truth
data, we use FCD as the proxy to show the effectiveness of our proposed improvements. Moreover,
as one molecule may have different SMILES expressions, we follow standard evaluation practice
and canonicalize both generated SMILES and ground truth data before evaluating. Hence, we do not
include the results inWang et al.|(2025a)) as they did not canonicalize SMILES in their |evaluation.

4.2 MAIN RESULTS ON GUACAMOL BENCHMARK

Table 1: Molecule generation on GuacaMol SMILES dataset. We directly cite other methods results
on the following metrics: Validity, Uniqueness, Novelty, FCD and test set negative log-likelihoods
(NLLs). V.N. means both valid and unique, and V.U.N. means samples are valid, unique and novel.
The metrics are calculated on samples generated by each method. The random sampler uniformly
samples the validation set. Bold and underlined numbers indicate the best and second-best results,
respectively. An extended result table is provided in Table[3]

Method V.%1 V.U.%1T V.UN.%1 FCDT TestNLL]
Random sampler 100.0  99.7 0.0 929 -

AAE 82.2 82.2 88.0 52.9 -

VAE 87.0 86.9 84.7 86.3 -

LSTM ARM (Brown et al..[2019) 95.9 95.9 87.5 91.3 -

Our Results

AO-ARM 63.3 63.2 62.8 72.1 <353
Transformer FO-ARM 95.0 94.7 88.3 88.7 <337
LO-ARM 92.6 92.6 87.1 79.4 <315
LO-ARM++ 93.9 93.9 89.2 91.0 <29.0

To evaluate the order policy, we add two baselines to the LSTM-ARMs: 1) a Transformer FO-ARM,
to match our Transformer-based LO-ARMs, and 2) AO-ARM (Any-Order) where both the variational
(g9) and model (py) order policies are uniform. The test NLLs of FO-ARM and LO-ARMs are
not directly comparable, as FO-ARM models padded SMILES while LO-ARMs and LO-ARMs++
generate non-padded sequences, albeit conditioned on length L (see Section ).


https://github.com/Yswangustb/T5MolGe-drug-generation/blob/main/utils.py#L242
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LO-ARM++ significantly outperforms the standard LO-ARM in terms of FCD, yielding a lower NLL.
This substantial improvement demonstrates that our enhancements effectively tighten the ELBO.
Furthermore, LO-ARM++ achieves better novelty and comparable FCD performance when compared
to the LSTM ARMs. This indicates that LO-ARM++ is capable of generating more novel samples
that maintain a close similarity to the ground truth data, moving beyond simple memorization of the
training set. Such capabilities are especially valuable for real-world applications like drug discovery
and material design.

Next, data in Table [I| reveals that both FO-ARMs (either LSTM or Transformer) and LO-ARMs
outperform AO-ARM on FCD, emphasizing that an ordering strategy is crucial for generating
SMILES sequences. Furthermore, LO-ARM-++ outperforms the Transformer FO-ARM in uniqueness,
novelty and FCD. This suggests that, with the same architecture, learning a data-dependent generation
order from data is more sample efficient than using a fixed one.

Thirdly, LO-ARM++ learns a consistent, human-interpretable generation order without specific
inductive biases (Figure [I). The typical learned process is: 1) Estimate the molecular structure
(rings and connections) by first generating digit tokens for ring enclosures and cuts and proposing
substructures via pairs of parentheses. 2) Infill the structure, prioritizing non-aromatic tokens over
aromatic ones. 3) Refine substructures (Step 38 in Figure [1)) by enclosing initial proposals from
Stage 1 into larger ones. 4) Complete the molecule by infilling the remaining atom dimensions. The
interpretability of these learned orderings allows us to verify patterns with simple rules (Appendix|[C.I].
This interpretable ordering shows high consistency: for valid generations containing rings, 94.5%
follow this structure-first pattern, and 80.6% of these refine the substructures at least once.

The generation order of LO-ARM++ notably differs from the standard LO-ARMs (Figure J) in two
ways: 1) The improved order-policy proposes substructures at the beginning of the generation process,
rather than finalizing them last. 2) It is also able to refine substructures later in the generation. This
suggests the improved order policy generalizes better, as it is more dynamic and can utilize local
context more efficiently, meeting the primary goals of our development.

Greediness of the learned order policy. Finally, as see in Figure[2] training with a-3-ELBO loss
makes the variational order-policy gy less greedy (i.e., it has larger entropy). We now show that this
property transfers to the model order-policy pg(z;|@~_,, 2<;), yielding a less greedy order-policy for
generating new samples. To do this, for each sample’s generation trajectory, we calculated per-step
correlation coefficients between the order policy probabilities and the classifier entropy (our certainty
measure) over all masked dimensions. We then performed one-sample t-tests on each sequence to
obtain a mean and a significance level. A higher negative mean correlation between the two quantities
means the order policy is greedier, as it prioritizes dimensions with higher certainty (i.e., lower
classifier entropy). For samples generated with LO-ARM++, we found that only 49.2% (p < 0.05)
exhibited a negative mean correlation, compared with 73.1% (p < 0.05) reported for standard LO-
ARMs in|Wang et al.[(2025c). This confirms that the order-policy learned with LO-ARM++ has a
less greedy generation strategy than standard LO-ARMs.

4.3 ABLATION ANALYSIS
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Figure 2: Ablation analysis on the effectiveness of KL. and maximum entropy regularizations
and the improved dropout. All the metrics evaluated against the test set.

We ablate each improvement by analyzing the following cases: 1) LO-ARM with improved attention
dropout, 2) LO-ARM without improved attention dropout, 3) LO-ARM++ with only maximum
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entropy regularization (o« = 0.075, 5 = 1), 4) LO-ARM++ with only KL regularization (o« = 0, 8 =
1.075), and 5) LO-ARM-++ with full regularization (o = 0.025, 5 = 1.05). Cases 3), 4) and 5) all
use improved attention dropout. Additionally, we control the total entropy penalization and vary the
KL regularization weight (as shown in Equation (3)). To isolate each component’s contribution, we
set & and /3 constant without annealing during training in this ablation analysis. First, Figure 2b)
shows that applying attention dropout to the py network regularizes qy. Without improvements, the
standard LO-ARM’s variational order-policy gy converges to being deterministic very quickly with
the lowest entropy. The entropy of gy also increases with a larger 3, confirming the effectiveness
of maximum entropy regularization. Next, (c) shows that KL regularization encouraged lower KL
divergence between gq(2;|2<;, ) and pg(z;|._,), suggesting the model order-policy can imitate go
well. However, KL regularization alone (o« = 0, 8 = 1.075) does not yield the lowest KL divergence;
instead, a combination of both regularization terms (LO-ARM++ with « = 0.025, 8 = 1.05) does.
This is likely because the effective maximum entropy regularization in LO-ARM++ makes the policy
easier for the model to track. Finally, combining all improvements, LO-ARM++ yields the best
negative log-likelihood (NLL). We observe the standard LO-ARM’s NLL is unstable, spiking at
700k steps. This instability is likely because a deterministic gy yields extreme logit outputs. To
confirm this, we visualize the evolution of the maximum and minimum gy logits during training

in Appendix [C.1.T]

5 RELATED WORK

Learning Non-Monotonic Autoregressive Orderings has been studied extensively in recent
literature (e.g., [Li et al., 2021} |Gu et al., 2019; Welleck et al.|[2019), and is challenged by the need to
find an optimal permutation from a factorial (L!) search space, where L is the sequence length. Some
methods reduce this space with domain-specific assumptions (Welleck et al.l 2019} |Gu et al.,|2019).
Specifically, [Welleck et al.|(2019) proposes a tree-based recursive generation method to learn arbitrary
generation orders, and |Gu et al.|(2019) combines 1) pretraining with prescribed base orderings and
2) fine-tuning those orderings with Searched Adaptive Order (SAO). Moreover, both Variational
Order Inference (VOI) (Li et al.| |2021) and LO-ARMs (Wang et al.| 2025b) learns orderings with a
variational policy. The main difference is that SAO uses a policy gradient procedure and requires
optimizing a complex variational ordering distribution that has an intractable normalizing constant
and requires a Bethe-type approximation. In contrast, the variational distribution in LO-ARMs (Wang
et al.,[2025b) and LO-ARMs is fully tractable, allowing for fast, exact, and unbiased gradient-based
optimization of the ELBO using REINFORCE leave-one-out.

Discrete Diffusion and Its Application to Molecular Graph Generation. Discrete diffusion
models (Vignac et al.;[2023; |QIN et al.,2025) have become a popular alternative to molecular graph
generation. LO-ARMs++ also relates to discrete diffusion models based on absorbing or masked
diffusion (Austin et al., 2021 |Lou et al., 2024} Shi et al., [2024; |Sahoo et al., 2024; |Ou et al., 2024).
Similar to masked diffusion, our discrete architecture treats ungenerated dimensions as masked. The
key difference is that we learn a non-uniform, data-dependent generation order via a neural order-
policy. Masked diffusion and AO-ARMs (Hoogeboom et al., [2022)), in contrast, use a completely
random order. Additionally, our approach defines only a backward generative model to sample from
a fully masked state, learning a variational order distribution (gg) from the data instead of specifying
a forward noising process.

6 CONCLUSION

We have introduced LO-ARMs++, an improved version of LO-ARMs, which allows for learning more
data efficient generation orderings in distribution learning. Evaluated on the GuacaMol dataset, with
the improved techniques, LO-ARMs++ match or surpass the standard ARMs with fixed generation
order. Furthermore, we showed that LO-ARMSs++ can still learn human-interpretable and consistent
context-dependent generation orders. We found that LO-ARMs++ are particularly useful for data
without obvious canonical generation orders, and we will further investigate its practical usefulness
in modeling more complex data, e.g., protein sequences.
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A THE GUACAMOL DATASET

A.1 PREPROCESSING WITH PREFIX TOKENIZATION AND DATASET SUMMARY

We preprocess SMILES strings in two main steps. First, we apply standard tokenization using a
widely adopted regular expression (Irwin et al., [2022; |Schwaller et al.,|[2019)). Second, to address the
strict paired-parenthesis constraint in SMILES grammar— a challenge for models without fixed left-
to-right ordering (like LO-ARM or diffusion-based methods) which contrasts with simpler handling
in autoregressive generation—we represent parenthesis pairs as individual tokens. Specifically, these
pairs are formatted as @N, where NV is the size of the matching pairs (the number of tokens between
the brackets, including the right parenthesis). Using these new tokens, we then transform the raw
SMILES strings into a prefix notation, where each @N parenthesis token precedes the substructure
or branch it encloses. An example of this transformation is provided below. It is important to note
that this prefix transformation for parentheses is bijective and lossless, and therefore, we can fully
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recover the original SMILES strings from their corresponding prefix notations.We provide an ablation
analysis on different tokenization algorithms in Appendix Following this transformation,
we filter out low-frequency tokens (fewer than 100 occurrences) and the corresponding samples
containing them. The preprocessed dataset is summarized in Table 2]

Raw SMILES: CCOclccc (S (=0) (=0)Nc2cccecc2Cl) ccl
Converted: CCOclccc@20S@3=0@3=0Nc2ccccc2Clccl

Following this transformation, we filter out low-frequency tokens (fewer than 100 occurrences) and
the corresponding samples containing them. The preprocessed dataset is summarized in Table
After filtering, the vocabulary size is almost halved while the dataset remains the same scale, only
fewer than 1000 samples were filtered out.

Table 2: Dataset statistics before and after filtering. Both cases use the augmented vocabulary and
transform SMILES strsings with prefix notation described in Section [3.1]

#training samples  #validation samples #test samples Vocabulary size

Raw dataset 1273114 79568 238706 203
Preprocessed 1272277 79506 238538 129

B ADDITIONAL RESULTS

Table 3: Molecule generation on GuacaMol SMILES dataset. We directly cite the results of other meth-
ods on the following metrics: Validity, Uniqueness, Novelty, FCD and the negative log-likelihoods
(NLLs) evaluated against the test set. The metrics are calculated with the generated samples with the
corresponding methods. In particular, the random sampler uniformly samples the validation set.

Method Class V%1 V.U.%?T V.UN.%T FCDt TestNLL]
Random sampler 100.0  99.7 0.0 92.9 -
DeFoG (50 sampling steps) Graph 91.7 91.7 91.2 57.9 -
DeFoG (500 sampling steps) Graph 99.0 99.0 97.9 73.8 -

AAE SMILES 822 82.2 88.0 529 -

VAE SMILES 87.0 86.9 84.7 86.3 -
LSTM ARM (Brown et al.,2019) ~ SMILES  95.9 95.9 87.4 91.3 -

Our Results

AO-ARM SMILES 63.3 63.2 62.8 72.1 <353
Transformer FO-ARM SMILES 95.0 94.7 88.3 88.7 < 33.7
Standard LO-ARM SMILES 92.6 92.6 87.1 79.4 <315
LO-ARM++ (500K training steps) SMILES  91.7 91.7 97.6 86.9 <314
LO-ARM++ (1M training steps) SMILES 929 92.9 93.6 90.4 <29.8
LO-ARM++ SMILES 939 93.9 89.3 91.0 <29.0

We provide an extended table for results in Table 3] Specifically, in addition to the results presented
in Table[I} we have added the results of 1) modeling GuacaMol data with molecular graphs, 2) the
performance of LO-AMRs+ against these metrics at different training steps.

C ADDITIONAL ANALYSIS

C.1 CONSISTENCY ANALYSIS FOR LEARNED GENERATION ORDERINGS

As the learned orderings with LO-ARMs++ are highlighy human-interpretable, to check the consis-
tency of the learned orderings, we conducted the following steps:

12
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 Step 1: Extract the pattern of each generation trajectory to a sequence of states. Specifically,
D stands for digit, A for atom, and P for matching pair of parentheses. An example patten
state sequence is DDDDPPAAAAPAAA.

» Step 2: Compress the state squences through removing adjacent duplicates. For instance,
for the example above, it is compressed to DPAPA.

 Step 3: Count the matchings of the following two templates: 1) first two states are DP, and
2) at least one P occurs after DPA.

C.1.1 TRAINING INSTABILITY
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Figure 3: Minimum (a) and maximum (b) logits outputted by gy (z;|2;, ) and test negative
log-likelihoods (NLLs) over the training course. All the metrics evaluated against the test set.
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Figure 4: Comparing different dropout methods applied to the generative model py.. Specifically,
1) standard attention dropout (green), with which entries in attention score matrix are zeroed out
directly, 2) improved attention dropout, with which we apply dropout to attention output (organe),
and 3) no dropout (blue). All the metrics evaluated against the test set.

We have observed two major issues that caused training instability.

First, we provide additional information about the evolution of the logit outputs of the variational
order-policy ¢p(z;|z<;, ) along the training course. Specifically, Figure |3| (a) and (b) illusrate
the minimum and maximum logit values in the outputs respectively. As we can see, the logits
outputted by unregularized standard LO-ARM (blue curves) go to extremes quickly. In addition to
the consequence of gy collapsing to premature orderings, such extrem values may also cause training
instability, resulting in spikes in the test NLL (c). To fix this issue, we employed maximum entropy
on the variational order-policy gy, and we can see its effectiveness in Section[4.3]

Second, another major source for training instability occurred when we applied standard attention
dropout to the generative model py. As we can see in Figure[d] the standard attention dropout (green
curves) resulted in large spikes in test NLL. We hypothesize that, because LO-ARMs model molecular
strings of variable lengths and the padding dimensions are zeroed out in the attention score matrix, if
we directly dropout the attention scores, the model would be confused with the dropped out dimen-
sions and the padding dimensions, which are both zeros. Driven by this consideration, we change
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to apply dropout to the attention output, i.e, Attention(Q, K, V') = Dropout(softmax (Q—\/%T) V).

This simple yet effective fix yields stable generalization during training and improved generation
performance at test time (orange curves).

Finally, one interesting observation is that, the instability occurred in the generative model py also
affects the variational order-policy gy, as we can see the fluctuations in the test maximum ¢ logits in
the green curve. This is because we are only using one optimizer to optimize these two networks, any
instability in either network would be conveyed to the other through gradient backpropagation.

C.2 ADDITIONAL ABLATION ANALYSIS

C.2.1 ABLATION ON TOKENIZATION ALGORITHMS

We conduct an ablation study to compare two tokenization algorithms:

e Standard Tokenization: Parentheses are treated as individual tokens. This results in a
vocabulary size of 109 after filtering.

* Augmented Tokenization: Pairs of parentheses are represented as single tokens. This leads
to a vocabulary size of 129 after filtering.

For simplicity, we only run this ablation analysis for FO-ARM and LO-ARM (not LO-ARMs++),
without incorporating the improvements introduced in this paper.

As shown in Table ] the FCD results indicate that while FO-ARM demonstrates robustness across
both tokenization methods, augmented tokenization substantially improves LO-ARM’s performance.
Conversely, standard tokenization achieves higher validity scores compared to augmented tokeniza-
tion. This suggests that a simpler vocabulary may facilitate the generation of valid molecules. The
augmented tokenization in FO-ARM also improves its performance in FCD. This is likely because
standard tokenization forces the model to track open parentheses, which complicates the prediction
task. Generating parentheses as matching pairs, however, allows the model to avoid this issue entirely.

Table 4: Ablation study on the standard and augmented tokenization algorithms

Method Tokenization Validity%1 Uniqueness%1 Novelty%1 FCD?T

FO-ARM  Standard 98.3 100.0 81.5 86.4
Augmented 91.8 100.0 88.3 87.6
LO-ARM  Standard 94.2 99.7 96.0 36.6
Augmented 92.6 100.0 95.3 79.5

D EXPERIMENT SETUP

D.1 MODELING SMILES STRINGS OF VARIABLE LENGTHS

The generative model py and the variational distribution gy, as shown in Equation @I) are both
conditioned on the sequence length L. In practice, for a given SMILES string, the L information
is provided to both models via a sequence mask of a fixed maximum length (the maximum length
across all ground truth data).

For the ground truth dataset (training, test, and validation sets), these sequence masks are generated
directly from the actual data. Before sampling new molecules, however, we first sample the sequence
length from a prior distribution, and then construct the corresponding sequence mask. During
inference, this sequence mask is fed to py to distinguish between padding and the actual sequence
dimensions.
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D.2 MODEL ARCHITECTURES

The Transformer architecture is adopted from the 11ama2.c projecﬂ For the FO-ARM model
and the generative models py in both LO-ARMs and LO-ARMs++, the corresponding Transformers
consist of 18 attention layers. The variational order-policies used in LO-ARM and LO-ARMs++
have 3 attention layer. Moreover, We report the hyperparameters in Table[5] All experiments were
run until convergence.

Table 5: Hyperparameter setup.

Hyperparameter ChEMBL/GuacaMol
Optimizer AdamW
Scheduler Cosine Annealing
Learning Rate 5.375

Weight Decay 1-172

EMA 0.9999

Attention dropout rate 0.1

Initial v 0.025
Terminating o 0

Initial g3 1.05

Terminating 3 1

Total training steps 2e6

Exploration steps le6

D.3 ANNEALING SCHEDULES FOR a AND [

Our implementation utilizes a two-stage phased training strategy to balance exploration and exploita-
tion:

» Exploration Stage: The KL regularization weight () is set to 5 > 1, and the maximum
entropy weight () is set to o > 0.

 Exploitation Stage: These weights are fixed at 5 = 1 and a = 0.

The total training duration is 2 x 10 steps. The Exploration Stage spans the first half of this duration,
running for 1 x 106 steps.

Before training begins, the initial values are set to a = 0.025 and § = 1.05. Throughout the
Exploration Stage, both « and (3 are annealed to their final termination values of « = 0 and 8 = 1,
respectively.

To ensure sufficient initial exploration, the annealing follows a two-part schedule:

* Persistent Stage: For the first half of the Exploration Stage (500, 000 steps), both o and 3
are held constant at their initial values.

* Linear Decay: Following the persistent stage, both weights undergo a linear decay, simulta-
neously reaching their termination values (v = 0 and 8 = 1) exactly at the end of the full
Exploration Stage.

We simplify hyperparameter configurations though synchronizing the annealings for « and 5. We
leave the investigation with asynchronized annealing to future work.

We simplified the hyperparameter tuning by synchronizing the annealing schedules for « and 3. The
investigation of an asynchronized annealing approach is reserved for future work.
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Figure 5: Generated molecules with LO-ARMSs++.

E GALLERY OF GENERATED MOLECULES

F FULL STEP-WISE OUTPUTS FOR FIGURE(]]

For each generation stage presented in Figure[I] we provide its full step-wise outputs in Figure[6]
(Planning Stage), Figure [/| (Execution Stage), and Figure 8| (Refinement and Completion Stage). In
addition to the partially generated SMILES strings and their corresponding partial 2D molecules
(Column (a)), we also provide the outputs of the classifier (Column (b)) and the order-policy (Column

(©)).

G AN ILLUSTRATION OF LEARNED SUB-OPTIMAL ORDER-POLICY

Figure [9] shows the process of generating a GuacaMol

sample with a sub-optimal order-policy.

Specifically, instead of proposing substructures at the initial stage, this generation process delays

finalizing substructures to the very end there is no refinement stage with the sub-optimal order-policy.

Therefore, this sub-optimal policy would be less generalizable to more complicated data distributions
and would also be less tolerant to the generation errors in earlier steps.

"https://github.com/karpathy/llama2.c
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Figure 6: Full step-wise outputs in the planning stage for Figure[I] Our model generates SMILES
strings step-by-step, commencing with all dimensions masked (in the figures masked dimensions are
colored in grey) and adding token at a time. First, an order-policy selects which dimension to fill,
and then a classifier determines its value. Each step is illustrated in the provided figures: Column
(a) illustrate the (partially) generated SMILES string and the corresponding unmasked substructures
in the final molecule (highlighted in colors). Columns (b) and (c) provide detailed insights: (b)
the order-policy’s probability distribution over dimensions, and (c) the classifier’s prediction at the
selected dimension. Note that, we only display the tokens of top 5 probabilities, and the order-policy
is zeroed for unmasked dimensions. To facilitate visualization, we group the dimensions of the
generated sample with respect to their dimension/token types: 1) digits (e.g., 1, 2), 2) non-aromatic
tokens, (e.g., uppercase letters) 3) aromatic tokens (i.e., lowercase letters) and 4) parenthesis pairs.
Notably, @N represents a pair of parentheses spanning /N dimensions between them.
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Figure 7: Full step-wise outputs in the execution stage for Figure[] The legends in the bar plots
are the same as those in Figure [6]
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Figure 8: Full step-wise outputs in the refinement and completion stage for Figure[l] The legends
in the bar plots are the same as those in Figure[6]
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(a) Generated SMILES at sampling step t (b) Order policy distribution over masked dimensions at step t (c) Top 5 token probabilities
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Figure 9: An example of generating SMILES sample with a sub-optimal order-policy trained
with the standard LO-ARM. The legends in the bar plots are the same as those in Figure[6] The
generation proceeds through three phases: 1) Planning (Step 1 to 10): LO-ARM first generates pairs
of digits (highlighted in green), which represents ring closures. This step determines the number
of rings and estimates their potential connections in the molecule. The digits together with their
associated ring-cut atoms in the final sample are highlighted in the first molecule. 2) Execution (Step
13 to 48): The model then infills the molecular structure, characteristically generating non-aromatic
tokens (red) before aromatic ones (yellow). 3) Completion (Step 49 to 51): Finally, it generates @N
parenthesis tokens (blue) to enclose and finalize substructures.
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