
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LO-ARMS++: IMPROVING LEARNING-ORDER
AUTOREGRESSIVE MODELS FOR MOLECULAR STRING
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models (ARMs) have become the workhorse for sequence gen-
eration tasks, because of their simplicity and ability to exactly evaluate their
log-likelihood. Classical Fixed-Order (FO) ARMs factorize high-dimensional data
according to a fixed canonical ordering, framing the task as next-token prediction.
While a natural ordering exists for text (left-to-right), canonical orderings are
less obvious for many data modalities, such as molecular graphs and sequences.
Learning-Order (LO) ARMs address this limitation, but their training relies on
the optimization of an Evidence Lower Bound (ELBO), rather than on their exact
log-likelihood. Therefore, FO-ARMs tend to remain advantageous. In this paper,
we introduce LO-ARMs++, an improved version of LO-ARMs, to address this
issue through incorporating several technical improvements. We introduce an
improved training method called α-β-ELBO, together with network architectural
improvements. On the challenging domain of molecular sequence generation, our
methods match or surpass state-of-the-art results of Fixed-Order ARMs on the
GuacaMol benchmark, evaluated across key metrics for distribution similarity.

Molecular generation in large chemical spaces has important real-world applications such as in
drug discovery and material design. While deep generative models for molecular graphs based on
diffusion models (Vignac et al., 2023; Eijkelboom et al., 2024; Wang et al., 2025b) are emerging
as a promising solution, SMILES (Simplified Molecular Input Line Entry System) string-based
methods (Brown et al., 2019; Irwin et al., 2022; Ross et al., 2022; Schwaller et al., 2019) remain
popular in practice. This is because SMILES strings are human-interpretable, lead to computationally
efficient algorithms compared to handling graph structures, and yield strong performance on key
distributional metrics, such as the Fréchet ChemNet Distance (FCD). Technically, SMILES-based
models adopt text-based autoregressive architectures (e.g., Recurrent Neural Networks) and inherit
their left-to-right generation ordering. However, unlike text data, for which left-to-right appears to
be a natural ordering, SMILES data actually encodes tree-like structures and its natural “canonical”
ordering between data dimensions is less obvious. Therefore, it is desirable to consider a variant of
ARMs that do not treat the ordering as fixed, but rather as a latent random variable that follows a
probability distribution that adapts to the evolving state of the generation process.

To address this issue, Wang et al. (2025b) proposed Learning-Order ARMs (LO-ARMs), an ARM
variant which can learn human-interpretable autoregressive orderings for image and graph generation
and achieves state-of-the-art results on molecular graph generation for distribution similarity and
drug-likeness. However, when applied to molecular sequence generation, despite learning human-
interpretable orders for molecular sequence generation, LO-ARMs still lag behind Fixed-Order
ARMs (FO-ARMs) on FCD.

We provide evidence that that this performance shortfall arises because the order-policy learned
with standard LO-ARMs collapses prematurely to a near-deterministic ordering, causing the overall
solution to be suboptimal. Indeed, the Evidence Lower Bound (ELBO) optimization, on which
LO-ARM training depends, is often complicated by poor local optima and high variance of gradient
estimates. The core technical question we address here is whether we can obtain a more efficient
order-policy, yielding better generation performance, through improving the training process.

We introduce LO-ARMs++, which resolve the issues encountered in training standard LO-ARMs, in
turn yielding better generation performance (see Figure 1). Our main contributions include:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1 O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1 O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1 O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1 O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1 O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1 O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 1 - 10 Step 14 Step 15

Step 16 Step 29 Step 37

Step 38 Step 39 Step 46

Pl
an

ni
ng

 S
ta

ge
Ex

ec
ut

io
n

St
ag

e
Re

fin
em

en
t a

nd

C
om

pl
et

io
n

St
ag

e

A

A

Generating the ring-cut digits, the cut-off bonds associated with
the digit pairs are highlighted in green.

Generating a pair of parentheses
to propose a empty substructure. Proposing another empty substructure.

Generating atoms to infill the proposed molecule structure.
In particular, the atoms infilling the proposed substructures are highlighted in yellow, and the rest are highlighted in red.

Refining the substructure
through enclosing the generated atoms into a larger one. Generating the rest of the atoms to complete the molecule.

Figure 1: An example of generating SMILES sample with LO-ARMs++ trained on the Gua-
caMol dataset. Our model generates SMILES strings step-by-step, commencing with all dimensions
masked (in the figures masked dimensions are colored in grey) and adding one token at a time.
First, an order-policy selects which dimension to fill, and then a classifier determines its value. In
this visualization, for each partially generated SMILES string in the subfigures, we highlight the
generated components with different colors in the corresponding 2D molecules. The generation
proceeds through four phases: 1) Planning (Step 1 to 15): LO-ARM++ first generates pairs of digits
(highlighted in green), which represents ring closures. This step determines the number of rings
and estimates their potential connections in the molecule. The digits together with their associated
ring-cut bonds in the final sample are highlighted in green in the first molecule. Specifically, in
this sample, the 5 pairs of digits correspond to exactly 5 rings in the molecule. Then in Step 14
and 15, it proposes two substructures through generating the corresponding pairs of parentheses.
In particular, the blues correspond to the dimensions that are enclosed in a proposed substructure
but yet to be infilled with atoms. 2) Infilling atoms to the proposed molecule structure (Step 16
to 37). The unmasked atoms are highlighted either in yellow (belonging to a substructure) or red
(on the molecule backbone). 3) Refinement (Step 38): In addition to the substructures proposed
in Step 14 and 15, LO-ARM++ generates another pair of parentheses to refine the substructures,
yielding a larger substructure highlighted in the dotted blue box in Step 38. In particular, as the
benzene ring A (labeled in Step 37 and 38) has now been included into the larger substructure, we
change its color from red to yellow. 4) Completion (Step 39 to 46): Finally, LO-ARM++ completes
the molecule through generating the rest of the atoms on the backbone (highlighted in red). This
learned, interpretable ordering is highly consistent: for valid generations containing rings, 94.5%
adhere to this overall generation pattern of planning-execution, i.e., generating digits and small pairs
of parentheses first followed up generating atoms. Moreover, 80.6% of them contain at least one
refinement step at later stages. The full information of generating this sample, including the outputs
of the classifier and the order-policy, is provided in Appendix F. Moreover, we provide a sub-optimal
ordering learned without the improvements developed in this paper in Appendix G, which generates
the pairs of parentheses after all atoms have been generated without any refinement steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We introduce α-β-ELBO, an improved training loss, which allows for implementing an
exploration-exploitation strategy for unsupervised learning. This forms the basis of the LO-
ARMs++ model training procedure, yielding improved generation performance.

• We also introduce several improvements of network architecture that, when used in conjunction
with α-β-ELBO, further stablize the training of LO-ARMs++.

These improvements can not only yield tighter ELBO on test data, but can also effectively encourage
the model to discover more meaningful generation orderings, and consequently achieve better
generation performance.

We evaluate our methods against the GuacaMol (Brown et al., 2019) benchmark for molecule
generation. Our results, measured by FCD, surpass or match state-of-the-art FO-ARMs relying on a
left-to-right generation order. To our best knowledge, this is the first discrete diffusion-style model
that achieves this level of performance in an important scientific domain.

The paper is organized as follows: Section 1 reviews LO-ARMs. Section 2 details the proposed
improvements: identifying issues (Section 2.1), presenting the improved learning loss α-β-ELBO
(Section 2.3), and comprehensive measures to improve molecular string generation (Section 3).
Section 4 presents the evaluation against the GuacaMol benchmark, including a detailed ablation
analysis (Section 4.3).

1 BACKGROUND

1.1 SMILES-BASED AUTOREGRESSIVE MOLECULE GENERATION

SMILES (Weininger, 1988) is a formal grammar for describing molecule structures with a string of
characters. It is generated by performing a depth-first traversal of the molecule’s structure and printing
the symbols, with parentheses indicating branching points and numbers to denote ring closures. An
example of a SMILES string and its corresponding molecule structure are shown in Figure 1.

The SMILES representation allows researchers to directly apply well-developed sequence modeling
algorithms to molecule generation. In particular, methods that use ARMs for modeling SMILES
strings remain a popular choice (Brown et al., 2019; Schwaller et al., 2019; Irwin et al., 2022;
Ross et al., 2022), due to their simplicity and computational efficiency. Despite the rapid progress
in molecule generative models, such methods remain state-of-the-art on a number of key metrics
such as FCD (Vignac et al., 2023). Specifically, these methods treat SMILES strings as a sequence
of characters x = (x1, x2, . . . , xL) and define a joint probability distribution over x: pθ(x) =∏L

i=1 pθ(xi|x<i), where x<i ≜ (x1, . . . , xi−1) and pθ(xi|x<i) is the conditional distribution with
the convention pθ(x1|x<1) = pθ(x1). Typically, these conditional distributions are parameterized
with deep learning architectures such as LSTMs and Transformers.

1.2 LEARNING-ORDER ARMS

LO-ARMs (Wang et al., 2025b) address a fundamental limitation of ARMs associated with the
assumption of a fixed generation order, which may not be efficient for complex data types like graphs
and images. LO-ARMs introduce latent variables z = (z1, ..., zL) where zi represents the order
index of token xi, i.e., z represents a permutation. They also incorporate a trainable probability
distribution that dynamically decides the sampling order of the data dimensions. The log-likelihood
of one data point x involves marginalizing over L! permutations, i.e. log pθ(x) = log

∑
z pθ(z,x),

where pθ(z,x) =
∏L

i=1 pθ(zi|z<i,xz<i
)pθ(xzi |xz<i

). Specifically, pθ(zi|z<i,xz<i
) is called the

order-policy and pθ(xzi |xz<i
) is called the classifier, and both factors depend on parameters θ that

we want to learn. Since the exact likelihood is intractable (except for very small L), the modeling
approach maximizes an ELBO that is obtained by introducing a variational order-policy over z that
conditions on the full data vector x, and has the general form qθ(z|x) =

∏L
i=1 qθ(zi|z<i,x).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1.3 TRAINING LO-ARMS WITH VARIATIONAL INFERENCE

To train LO-ARMs, Wang et al. (2025b) established the following ELBO on log pθ(x):

log pθ(x) ≥
∑
z

qθ(z|x) log
pθ(z,x)

qθ(z|x)
=

∑
z

qθ(z|x)
L∑

i=1

log
pθ(zi|z<i,xz<i)pθ(xzi |xz<i)

qθ(zi|z<i,x)

=

L∑
i=1

Eqθ(z<i|x)

[
Eqθ(zi|z<i,x)

[
log

pθ(zi|z<i,xz<i)pθ(xzi |xz<i)

qθ(zi|z<i,x)

]]
=

L∑
i=1

Eqθ(z<i|x) [Fθ(z<i,x)] (1)

and then optimized the ELBO via an unbiased stochastic estimate, which involved sampling one term
i uniformly at random in {1, ..., L} and its corresponding z<i ∼ qθ(z<i|x) to obtain the negative
ELBO unbiased stochastic estimate

L(θ) = −LFθ(z<i,x). (2)

Note that, during both training and inference, the generative model pθ is conditioned on the sequence
length L (i.e., knowing the sequence length before infilling the dimensions). We explain how both
standard LO-ARMs and LO-ARMs++ handle variable sequence lengths in Appendix D.1.

2 METHODS

Our core research question is whether, in addition to human-interpretability and consistency, LO-ARM
can discover “better” order-policies, that in turn yield better generation performance an improved
ELBO close to the exact log-likelihood of FO-ARMs. After presenting some issues we have observed
when training standard LO-ARMs in Section 2.1, we propose an improved learning loss, α-β-ELBO,
mitigating those issues in Section 2.3. In particular, the improvement is inspired by our understanding
of LO-ARMs in the setting of Generalized Next-Token-Predictors (NTPs); see Section 2.2. We
detail additional improvements to the training algorithm with α-β-ELBO in Section 3. The resulting
improvements to LO-ARMs will be denoted as LO-ARMs++.

2.1 ISSUES OF LEARNING WITH STANDARD LO-ARMS

When modeling the GuacaMol dataset with the standard LO-ARMs, the variational order-policy
qθ(zi|z<i,x) converges quickly to a deterministic policy, e.g., in about 100K out of 1.5M training
steps, resulting in a greedy order-policy with extreme maximum and minimum logit outputs (as
shown in Figure 3). This is because, during training, qθ has access to the entire unmasked sequence
x, yielding faster convergence than the pθ network, which is only conditioned on partially observed
data xz<i

. The rapid collapse of the variational order-policy is ultimately harmful, causing several
problems: 1) the learned order may converge to a sub-optimal policy (as we can see from the order-
policies in Figure 1 and Figure 9), 2) the training may suffer from instability due to excessively large
logits in qθ (see Appendix C.1.1).

We therefore aim to design a variational order-policy that maintains a greater degree of randomness
for longer, allowing for more robust classifier learning and better exploration over the order-policy. To
motivate our solution, we first reformulate LO-ARMs as generalized Next-Token-Predictors (NTPs),
which will prove helpful for the subsequent developments.

2.2 LO-ARMS ARE GENERALIZED NEXT-TOKEN-PREDICTORS

We rewrite the per-step objective Fθ defined in Equation (1) as

Fθ(z<i,x) =Eqθ(zi|z<i,x)

[
log

pθ(zi|z<i,xz<i
)pθ(xzi |xz<i

)

qθ(zi|z<i,x)

]
= Eqθ(zi|z<i,x) [log pθ(xzi |xz<i)]−DKL(qθ(zi|z<ix)∥pθ(zi|z<i,xz<i)). (3)

The first term corresponds to the cross-entropy loss optimizing the classifier. Specifically, in the LO-
ARM case, qθ(zi|z<i,x) samples the next dimension to generate, and the classifier log pθ(xzi |x<i)
predicts the value. From this perspective, qθ(zi|z<i,x) effectively reweights the cross-entropy losses

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

across the remaining dimensions. Equivalently, we can interpret qθ as a problem setter for the
classifier, selecting which dimension the classifier must predict next.

The above view unifies FO- and AO-ARMs: 1) in AO-ARMs, p(zi|xz<i) = q(zi|z<i,x) = q(zi) =
Uniform({1 . . . L} \ z<i), and the classifier must be as general as possible, since it faces a uniform
distribution over the remaining dimensions on which it will be required to make a prediction. By
contrast 2) in FO-ARMs, q(zi) = δ(zi = k), k ∈ {1 . . . L} \ z<i, and the classifier needs only to
predict a single known dimension at each step. For left-to-right ARMs, k = i. Note that, in both
cases, the KL terms zero out, and only the cross-entropy terms are left. LO-ARMs generalize FO-
and AO-ARMs by using learnable and context-dependent distributions q(zi|z<i,x) and p(zi|xz<i

).

2.3 α-β-ELBO

From the perspective of variational inference (i.e., Equation (3)), the FO-ARM can yield the exact
log-likelihood, because 1) its KL divergence is always zero, and 2) the variance induced by the
degenerate order policy (i.e. δ(zi = k)) in the cross-entropy term is also zero. In contrast, while the
KL term in AO-ARMs is also zero, they maximize the cross-entropy variance by sampling uniformly
over all remaining dimensions.

Inspired by these insights, we motivate our improvements to achieve a tighter ELBO from two
high-level requirements: 1) to efficiently minimize the KL divergence between pθ(zi|xz<i) and
qθ(zi|z<i,x), and 2) to reduce the variance of gradient estimates incurred by sampling qθ(zi|z<i,x).
These yield the following modified objective function with respect to the generalized NTP Fθ, which
we call α-β-ELBO:

Fθ=Eqθ(zi|z<i,x) [log pθ(xzi |xz<i)]︸ ︷︷ ︸
(a)

−βDKL(qθ(zi|z<i,x)∥pθ(zi|z<i,xz<i))︸ ︷︷ ︸
(b)

+αH [qθ(zi|z<i,x)]︸ ︷︷ ︸
(c)

(4)
= Eqθ(zi|z<i,x) [log pθ(xzi |x<i)] + βEqθ(zi|z<i,x) log pθ(zi|z<i,xz<i) + (α+ β)H [qθ] , (5)

where β ≥ 1 and α ≥ 0, and H [qθ(zi|z<i,x)] = H[qθ] = −Eqθ [log qθ] is the entropy of qθ.

We now show how these components address the issues observed in Section 2.1. First, component
(c) implements the standard maximum entropy regularization on qθ. Second, setting β ≥ 1 in (b)
upweights the KL distillation from qθ to pθ(zi|xz<i). Moreover, as the KL term already implicitly
imposes an entropy regularization on qθ, the total entropy regularization imposed on qθ is controlled
by α+β, see Equation (5). This entropy term is crucial during early stages of training, since it causes
the variational order-policy to maintain high entropy when α + β is large, preventing premature
collapse and presenting a diversity of prediction problems to the classifier. Additionally, the KL
term encourages the model order-policy pθ(zi|xz<i

, z<i) to imitate the variational order-policy qθ.
These dual goals mirror the use of maximum entropy policies in reinforcement learning to balance
exploration and exploitation (Mnih et al., 2016; Haarnoja et al., 2017).

Note that, while components (a) and (b) together resemble a β-VAE (Higgins et al., 2017), a key
difference here is that we are working with discrete distributions, which may not always cover the
full support of data dimensions, resulting in collapsed, deterministic policies. Therefore, we argue
that the maximum entropy regularization on qθ is essential. We provide additional ablation for this
argument in Section 4.3.

2.3.1 EXPLORATION-EXPLOITATION THROUGH ANNEALING α AND β

The α-β-ELBO generalizes the standard ELBO defined in Equation (3) in the following ways: 1)
when α = 0, β = 1, α-β-ELBO recovers the standard ELBO; 2) α > 0, β = 1 corresponds to
training with standard maximum entropy regularization on qθ.

We implement an exploration-exploitation optimization strategy, inspired by reinforcement learning,
through applying two annealing schedules to α and β respectively, decaying an initial α > 0 down to
0 and an initial β > 1 down to 1. In the exploration stage, where α > 0 and β > 1, we want to present
the classifier with a diversity of learning problems and explore over model order-policy with a high

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

entropy variational distribution qθ, while ensuring that pθ(zi|x<i, z<i) tracks qθ. Since our ultimate
objective is to optimize the ELBO, in the exploitation stage we shift α-β-ELBO back to the standard
ELBO with α = 0 and β = 1. During this latter phase, we further optimize the reweighted cross
entropy term (i.e., (a) in Equation (4)) with the more stable qθ. We detail the annealing schedules in
Appendix D.3.

3 LO-ARMS++ FOR MOLECULAR STRING GENERATION

We apply our framework to molecular string generation, particular to SMILES strings. We first
introduce a novel preprocessing scheme in Section 3.1. Then, in Section 3.2 we discuss innovations
on network architecture used by LO-ARMs++ that differ from the previous LO-ARMs (Wang et al.,
2025b), and finally we describe how to deal with strings of variable length in Section 3.3.

3.1 PREPROCESSING SMILES STRINGS WITH PREFIX TOKENIZATION

We employ the prefix tokenization to preprocess the SMILES strings. Specifically, instead of parsing
individual parentheses as tokens, the prefix tokenization represent matching parenthesis pairs as
individual tokens. These pairs are formatted as @N, where N is the size of the parenthesis pair (the
number of tokens between the matching parentheses, including the right parenthesis). An example
of preprocessed data is provided in Appendix A.1. As this prefix tokenization makes the molecular
structure explicit rather than relying on implicit left-to-right parsing, we find that it is more friendly
to models that do not assume a fixed left-to-right order. The prefix tokenization only increases the
vocabulary size marginally, and we find it improves the generation performance of LO-ARMs and also
helps to interpret the learned orderings. We provide addition ablation for the standard tokenization
used in the literature (Irwin et al., 2022) and the prefix tokenization in Appendix C.2.

3.2 NETWORK ARCHITECTURES AND BACKBONE TRAINING ALGORITHMS

We inherit the network architecture introduced in (Wang et al., 2025b). Specifically, collocating the
classifier pθ(xzi |x<i, z<i) and the model order-policy pθ(zi|x<i, z<i) through sharing a backbone,
and use a separate neural network to implement qθ(zi|z<i,x). Both networks are implemented with
a transformer (Vaswani et al., 2017). In particular, the model network consists of 18 attention layers,
while the qθ network remains quite lightweight, only consisting of 3 attention layers. We detail the
network architectures in Appendix D. Moreover, the training algorithm remains largely the same as
in Wang et al. (2025b) besides the changes introduced in this section.

3.3 STABLE GENERALIZATION FOR MODELING SEQUENCES OF VARIABLE LENGTHS

A subtle problem we encountered during development was that the standard attention dropout
employed in LO-ARM transformers is disruptive to training (see Appendix C), i.e., directly applying
dropout to attention scores Attention(Q,K, V) = Dropout

(
softmax

(
QKT

√
dk

))
· V , where Q,K, V

are the queries, keys and values respectively. We hypothesize that, because LO-ARMs model
molecular strings of variable lengths and the padding dimensions are zeroed out in the attention
score matrix, if we directly dropout the attention scores, the model will confuse with the dropped out
dimensions and the padding dimensions, which are both zeros. We fix this issue by applying dropout
on the output of the outer multiplication of the value matrix and the corresponding attention scores,
i.e., Attention(Q,K, V) = Dropout(softmax

(
QKT

√
dk

)
·V). This simple yet effective fix yields stable

generalization during training and improved generation performance at test time (see the ablation
analysis in Section 4.3).

Moreover, we find that when applying the improved dropout to the model network (i.e., pθ), it can also
encourage the variational distribution qθ to be more uniform (see Figure 2). Therefore, to simplify
the configuration of hyperparameters, we choose to regularize the qθ network only via the global
KL and maximum entropy regularization, and apply extra regularization on the pθ network with the
improved dropout.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 RESULTS AND ANALYSIS

4.1 EXPERIMENT SETUP

We evaluate our methods on the GuacaMol benchmark (Brown et al., 2019), which is a standard
benchmark to evaluate generative models for drug discovery (Irwin et al., 2022; QIN et al., 2025;
Schwaller et al., 2019). We use the standard training/test/validation splits provided in the literature.
We choose the GuacaMol benchmark because: 1) SMILES encode 2D molecules with tree structures
as flat sequences, and their canonical orderings are less obvious. Therefore, we want to see if
LO-ARMs++ can learn human-interpretable and consistent autoregressive orders, recovering the
hidden tree structures from flat sequences without any inductive biases. 2) Autoregressive models
(ARMs) with a left-to-right sequence are a robust baseline for SMILES synthesis, consistently
outperforming other methods on distributional metrics. This implies they also yield a strong log-
likelihood evaluation, which acts as a clear target for us to improve LO-ARMs. 3) Practically, we
also hope to demonstrate the versatility and usefulness of LO-ARMs++ through enriching the toolkit
for real-world applications (e.g., drug discovery).

We evaluate them on two key aspects: 1) Validity and Uniqueness: Assessing chemical correctness
and distinctness. 2) Novelty and Frèchet ChemNet Distance (FCD): Novelty is the proportion of
generated molecules not found in the training set. A lower value suggests memorization. FCD scores
measure the similarity between the distributions of generated and real molecules using ChemNet
activations. We run 5 runs, each of which samples 16, 384 molecules, and we report the mean value
on each metric. For uniqueness and novelty, we evaluate their proportions in the entire samples
including both valid and invalid ones, whereas for FCD, we only consider valid ones, and specifically,
we sample 10, 000 valid samples in each run. We use the normalized FCD score as defined in the
GuacaMol benchmark, where higher scores indicate greater distributional similarity. As a competent
generative model should be able to sample new data from the same chemical space of the ground truth
data, we use FCD as the proxy to show the effectiveness of our proposed improvements. Moreover,
as one molecule may have different SMILES expressions, we follow standard evaluation practice
and canonicalize both generated SMILES and ground truth data before evaluating. Hence, we do not
include the results in Wang et al. (2025a) as they did not canonicalize SMILES in their evaluation.

4.2 MAIN RESULTS ON GUACAMOL BENCHMARK

Table 1: Molecule generation on GuacaMol SMILES dataset. We directly cite other methods results
on the following metrics: Validity, Uniqueness, Novelty, FCD and test set negative log-likelihoods
(NLLs). V.N. means both valid and unique, and V.U.N. means samples are valid, unique and novel.
The metrics are calculated on samples generated by each method. The random sampler uniformly
samples the validation set. Bold and underlined numbers indicate the best and second-best results,
respectively. An extended result table is provided in Table 3.

Method V.%↑ V.U.%↑ V.U.N.%↑ FCD↑ Test NLL↓
Random sampler 100.0 99.7 0.0 92.9 -

AAE 82.2 82.2 88.0 52.9 -
VAE 87.0 86.9 84.7 86.3 -
LSTM ARM (Brown et al., 2019) 95.9 95.9 87.5 91.3 -

Our Results

AO-ARM 63.3 63.2 62.8 72.1 ≤ 35.3
Transformer FO-ARM 95.0 94.7 88.3 88.7 ≤ 33.7
LO-ARM 92.6 92.6 87.1 79.4 ≤ 31.5
LO-ARM++ 93.9 93.9 89.2 91.0 ≤ 29.0

To evaluate the order policy, we add two baselines to the LSTM-ARMs: 1) a Transformer FO-ARM,
to match our Transformer-based LO-ARMs, and 2) AO-ARM (Any-Order) where both the variational
(qθ) and model (pθ) order policies are uniform. The test NLLs of FO-ARM and LO-ARMs are
not directly comparable, as FO-ARM models padded SMILES while LO-ARMs and LO-ARMs++
generate non-padded sequences, albeit conditioned on length L (see Section 1).

7

https://github.com/Yswangustb/T5MolGe-drug-generation/blob/main/utils.py#L242

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LO-ARM++ significantly outperforms the standard LO-ARM in terms of FCD, yielding a lower NLL.
This substantial improvement demonstrates that our enhancements effectively tighten the ELBO.
Furthermore, LO-ARM++ achieves better novelty and comparable FCD performance when compared
to the LSTM ARMs. This indicates that LO-ARM++ is capable of generating more novel samples
that maintain a close similarity to the ground truth data, moving beyond simple memorization of the
training set. Such capabilities are especially valuable for real-world applications like drug discovery
and material design.

Next, data in Table 1 reveals that both FO-ARMs (either LSTM or Transformer) and LO-ARMs
outperform AO-ARM on FCD, emphasizing that an ordering strategy is crucial for generating
SMILES sequences. Furthermore, LO-ARM++ outperforms the Transformer FO-ARM in uniqueness,
novelty and FCD. This suggests that, with the same architecture, learning a data-dependent generation
order from data is more sample efficient than using a fixed one.

Thirdly, LO-ARM++ learns a consistent, human-interpretable generation order without specific
inductive biases (Figure 1). The typical learned process is: 1) Estimate the molecular structure
(rings and connections) by first generating digit tokens for ring enclosures and cuts and proposing
substructures via pairs of parentheses. 2) Infill the structure, prioritizing non-aromatic tokens over
aromatic ones. 3) Refine substructures (Step 38 in Figure 1) by enclosing initial proposals from
Stage 1 into larger ones. 4) Complete the molecule by infilling the remaining atom dimensions. The
interpretability of these learned orderings allows us to verify patterns with simple rules (Appendix C.1).
This interpretable ordering shows high consistency: for valid generations containing rings, 94.5%
follow this structure-first pattern, and 80.6% of these refine the substructures at least once.

The generation order of LO-ARM++ notably differs from the standard LO-ARMs (Figure 9) in two
ways: 1) The improved order-policy proposes substructures at the beginning of the generation process,
rather than finalizing them last. 2) It is also able to refine substructures later in the generation. This
suggests the improved order policy generalizes better, as it is more dynamic and can utilize local
context more efficiently, meeting the primary goals of our development.

Greediness of the learned order policy. Finally, as see in Figure 2, training with α-β-ELBO loss
makes the variational order-policy qθ less greedy (i.e., it has larger entropy). We now show that this
property transfers to the model order-policy pθ(zi|xz<i

, z<i), yielding a less greedy order-policy for
generating new samples. To do this, for each sample’s generation trajectory, we calculated per-step
correlation coefficients between the order policy probabilities and the classifier entropy (our certainty
measure) over all masked dimensions. We then performed one-sample t-tests on each sequence to
obtain a mean and a significance level. A higher negative mean correlation between the two quantities
means the order policy is greedier, as it prioritizes dimensions with higher certainty (i.e., lower
classifier entropy). For samples generated with LO-ARM++, we found that only 49.2% (p < 0.05)
exhibited a negative mean correlation, compared with 73.1% (p < 0.05) reported for standard LO-
ARMs in Wang et al. (2025c). This confirms that the order-policy learned with LO-ARM++ has a
less greedy generation strategy than standard LO-ARMs.

4.3 ABLATION ANALYSIS

Figure 2: Ablation analysis on the effectiveness of KL and maximum entropy regularizations
and the improved dropout. All the metrics evaluated against the test set.

We ablate each improvement by analyzing the following cases: 1) LO-ARM with improved attention
dropout, 2) LO-ARM without improved attention dropout, 3) LO-ARM++ with only maximum

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

entropy regularization (α = 0.075, β = 1), 4) LO-ARM++ with only KL regularization (α = 0, β =
1.075), and 5) LO-ARM++ with full regularization (α = 0.025, β = 1.05). Cases 3), 4) and 5) all
use improved attention dropout. Additionally, we control the total entropy penalization and vary the
KL regularization weight (as shown in Equation (5)). To isolate each component’s contribution, we
set α and β constant without annealing during training in this ablation analysis. First, Figure 2(b)
shows that applying attention dropout to the pθ network regularizes qθ. Without improvements, the
standard LO-ARM’s variational order-policy qθ converges to being deterministic very quickly with
the lowest entropy. The entropy of qθ also increases with a larger β, confirming the effectiveness
of maximum entropy regularization. Next, (c) shows that KL regularization encouraged lower KL
divergence between qθ(zi|z<i,x) and pθ(zi|xz<i), suggesting the model order-policy can imitate qθ
well. However, KL regularization alone (α = 0, β = 1.075) does not yield the lowest KL divergence;
instead, a combination of both regularization terms (LO-ARM++ with α = 0.025, β = 1.05) does.
This is likely because the effective maximum entropy regularization in LO-ARM++ makes the policy
easier for the model to track. Finally, combining all improvements, LO-ARM++ yields the best
negative log-likelihood (NLL). We observe the standard LO-ARM’s NLL is unstable, spiking at
700k steps. This instability is likely because a deterministic qθ yields extreme logit outputs. To
confirm this, we visualize the evolution of the maximum and minimum qθ logits during training
in Appendix C.1.1.

5 RELATED WORK

Learning Non-Monotonic Autoregressive Orderings has been studied extensively in recent
literature (e.g., Li et al., 2021; Gu et al., 2019; Welleck et al., 2019), and is challenged by the need to
find an optimal permutation from a factorial (L!) search space, where L is the sequence length. Some
methods reduce this space with domain-specific assumptions (Welleck et al., 2019; Gu et al., 2019).
Specifically, Welleck et al. (2019) proposes a tree-based recursive generation method to learn arbitrary
generation orders, and Gu et al. (2019) combines 1) pretraining with prescribed base orderings and
2) fine-tuning those orderings with Searched Adaptive Order (SAO). Moreover, both Variational
Order Inference (VOI) (Li et al., 2021) and LO-ARMs (Wang et al., 2025b) learns orderings with a
variational policy. The main difference is that SAO uses a policy gradient procedure and requires
optimizing a complex variational ordering distribution that has an intractable normalizing constant
and requires a Bethe-type approximation. In contrast, the variational distribution in LO-ARMs (Wang
et al., 2025b) and LO-ARMs is fully tractable, allowing for fast, exact, and unbiased gradient-based
optimization of the ELBO using REINFORCE leave-one-out.

Discrete Diffusion and Its Application to Molecular Graph Generation. Discrete diffusion
models (Vignac et al., 2023; QIN et al., 2025) have become a popular alternative to molecular graph
generation. LO-ARMs++ also relates to discrete diffusion models based on absorbing or masked
diffusion (Austin et al., 2021; Lou et al., 2024; Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024).
Similar to masked diffusion, our discrete architecture treats ungenerated dimensions as masked. The
key difference is that we learn a non-uniform, data-dependent generation order via a neural order-
policy. Masked diffusion and AO-ARMs (Hoogeboom et al., 2022), in contrast, use a completely
random order. Additionally, our approach defines only a backward generative model to sample from
a fully masked state, learning a variational order distribution (qθ) from the data instead of specifying
a forward noising process.

6 CONCLUSION

We have introduced LO-ARMs++, an improved version of LO-ARMs, which allows for learning more
data efficient generation orderings in distribution learning. Evaluated on the GuacaMol dataset, with
the improved techniques, LO-ARMs++ match or surpass the standard ARMs with fixed generation
order. Furthermore, we showed that LO-ARMs++ can still learn human-interpretable and consistent
context-dependent generation orders. We found that LO-ARMs++ are particularly useful for data
without obvious canonical generation orders, and we will further investigate its practical usefulness
in modeling more complex data, e.g., protein sequences.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems, 2021.

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):
1096–1108, 2019. doi: 10.1021/acs.jcim.8b00839. URL https://doi.org/10.1021/acs.
jcim.8b00839. PMID: 30887799.

Floor Eijkelboom, Grigory Bartosh, Christian A. Naesseth, Max Welling, and Jan-Willem van de
Meent. Variational flow matching for graph generation. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with automatically inferred
generation order. Transactions of the Association for Computational Linguistics, 7:661–676, 11
2019. ISSN 2307-387X. doi: 10.1162/tacl a 00292. URL https://doi.org/10.1162/
tacl_a_00292.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, pp. 1352–1361. JMLR.org, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=Sy2fzU9gl.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. In International Conference on Learning
Representations, 2022.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-trained
transformer for computational chemistry. Machine Learning: Science and Technology, 3(1):
015022, jan 2022. doi: 10.1088/2632-2153/ac3ffb. URL https://dx.doi.org/10.1088/
2632-2153/ac3ffb.

Xuanlin Li, Brandon Trabucco, Dong Huk Park, Michael Luo, Sheng Shen, Trevor Darrell, and
Yang Gao. Discovering non-monotonic autoregressive orderings with variational inference. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=jP1vTH3inC.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. International Conference on Machine Learning, 2024.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v48/mniha16.html.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

Yiming QIN, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Defogging discrete
flow matching for graph generation, 2025. URL https://openreview.net/forum?id=
ZGRRC514rI.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das.
Large-scale chemical language representations capture molecular structure and properties. Nature
Machine Intelligence, 4(12):1256–1264, 2022. doi: 10.1038/s42256-022-00580-7.

10

https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1162/tacl_a_00292
https://doi.org/10.1162/tacl_a_00292
https://openreview.net/forum?id=Sy2fzU9gl
https://dx.doi.org/10.1088/2632-2153/ac3ffb
https://dx.doi.org/10.1088/2632-2153/ac3ffb
https://openreview.net/forum?id=jP1vTH3inC
https://openreview.net/forum?id=jP1vTH3inC
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://openreview.net/forum?id=ZGRRC514rI
https://openreview.net/forum?id=ZGRRC514rI

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
Bekas, and Alpha A Lee. Molecular transformer: A model for uncertainty-calibrated chemical
reaction prediction. ACS central science, 5(9):1572–1583, 2019.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. In Advances in Neural Information Processing Systems, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In International Conference on
Learning Representations, 2023.

Yishu Wang, Mengyao Guo, Xiaomin Chen, and Dongmei Ai. Screening of multi deep learning-based
de novo molecular generation models and their application for specific target molecular generation.
Sci. Rep., 15(1):4419, February 2025a.

Zhe Wang, Jiaxin Shi, Nicolas Heess, Arthur Gretton, and Michalis Titsias. Learning-order autore-
gressive models with application to molecular graph generation. In Forty-second International
Conference on Machine Learning, 2025b. URL https://openreview.net/forum?id=
EY6pXIDi3G.

Zhe Wang, Jiaxin Shi, Nicolas Heess, Michalis Titsias, Arthur Gretton, and Yee Whye Teh. Modeling
molecular sequences with learning-order autoregressive models. In ICML 2025 Generative AI
and Biology (GenBio) Workshop, 2025c. URL https://openreview.net/forum?id=
quNmcjG334.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential
text generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 6716–6726. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/welleck19a.html.

A THE GUACAMOL DATASET

A.1 PREPROCESSING WITH PREFIX TOKENIZATION AND DATASET SUMMARY

We preprocess SMILES strings in two main steps. First, we apply standard tokenization using a
widely adopted regular expression (Irwin et al., 2022; Schwaller et al., 2019). Second, to address the
strict paired-parenthesis constraint in SMILES grammar— a challenge for models without fixed left-
to-right ordering (like LO-ARM or diffusion-based methods) which contrasts with simpler handling
in autoregressive generation—we represent parenthesis pairs as individual tokens. Specifically, these
pairs are formatted as @N, where N is the size of the matching pairs (the number of tokens between
the brackets, including the right parenthesis). Using these new tokens, we then transform the raw
SMILES strings into a prefix notation, where each @N parenthesis token precedes the substructure
or branch it encloses. An example of this transformation is provided below. It is important to note
that this prefix transformation for parentheses is bijective and lossless, and therefore, we can fully

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=EY6pXIDi3G
https://openreview.net/forum?id=EY6pXIDi3G
https://openreview.net/forum?id=quNmcjG334
https://openreview.net/forum?id=quNmcjG334
https://proceedings.mlr.press/v97/welleck19a.html
https://proceedings.mlr.press/v97/welleck19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

recover the original SMILES strings from their corresponding prefix notations.We provide an ablation
analysis on different tokenization algorithms in Appendix C.2.1. Following this transformation,
we filter out low-frequency tokens (fewer than 100 occurrences) and the corresponding samples
containing them. The preprocessed dataset is summarized in Table 2.

Raw SMILES: CCOc1ccc(S(=O)(=O)Nc2ccccc2Cl)cc1
Converted: CCOc1ccc@20S@3=O@3=ONc2ccccc2Clcc1

Following this transformation, we filter out low-frequency tokens (fewer than 100 occurrences) and
the corresponding samples containing them. The preprocessed dataset is summarized in Table 2.
After filtering, the vocabulary size is almost halved while the dataset remains the same scale, only
fewer than 1000 samples were filtered out.

Table 2: Dataset statistics before and after filtering. Both cases use the augmented vocabulary and
transform SMILES strsings with prefix notation described in Section 3.1.

#training samples #validation samples #test samples Vocabulary size

Raw dataset 1273114 79568 238706 203
Preprocessed 1272277 79506 238538 129

B ADDITIONAL RESULTS

Table 3: Molecule generation on GuacaMol SMILES dataset. We directly cite the results of other meth-
ods on the following metrics: Validity, Uniqueness, Novelty, FCD and the negative log-likelihoods
(NLLs) evaluated against the test set. The metrics are calculated with the generated samples with the
corresponding methods. In particular, the random sampler uniformly samples the validation set.

Method Class V.%↑ V.U.%↑ V.U.N.%↑ FCD↑ Test NLL↓
Random sampler 100.0 99.7 0.0 92.9 -

DeFoG (50 sampling steps) Graph 91.7 91.7 91.2 57.9 -
DeFoG (500 sampling steps) Graph 99.0 99.0 97.9 73.8 -
AAE SMILES 82.2 82.2 88.0 52.9 -
VAE SMILES 87.0 86.9 84.7 86.3 -
LSTM ARM (Brown et al., 2019) SMILES 95.9 95.9 87.4 91.3 -

Our Results

AO-ARM SMILES 63.3 63.2 62.8 72.1 ≤ 35.3
Transformer FO-ARM SMILES 95.0 94.7 88.3 88.7 ≤ 33.7
Standard LO-ARM SMILES 92.6 92.6 87.1 79.4 ≤ 31.5
LO-ARM++ (500K training steps) SMILES 91.7 91.7 97.6 86.9 ≤ 31.4
LO-ARM++ (1M training steps) SMILES 92.9 92.9 93.6 90.4 ≤ 29.8
LO-ARM++ SMILES 93.9 93.9 89.3 91.0 ≤ 29.0

We provide an extended table for results in Table 3. Specifically, in addition to the results presented
in Table 1, we have added the results of 1) modeling GuacaMol data with molecular graphs, 2) the
performance of LO-AMRs+ against these metrics at different training steps.

C ADDITIONAL ANALYSIS

C.1 CONSISTENCY ANALYSIS FOR LEARNED GENERATION ORDERINGS

As the learned orderings with LO-ARMs++ are highlighy human-interpretable, to check the consis-
tency of the learned orderings, we conducted the following steps:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Step 1: Extract the pattern of each generation trajectory to a sequence of states. Specifically,
D stands for digit, A for atom, and P for matching pair of parentheses. An example patten
state sequence is DDDDPPAAAAPAAA.

• Step 2: Compress the state squences through removing adjacent duplicates. For instance,
for the example above, it is compressed to DPAPA.

• Step 3: Count the matchings of the following two templates: 1) first two states are DP, and
2) at least one P occurs after DPA.

C.1.1 TRAINING INSTABILITY

Figure 3: Minimum (a) and maximum (b) logits outputted by qθ(zi|z<i,x) and test negative
log-likelihoods (NLLs) over the training course. All the metrics evaluated against the test set.

Figure 4: Comparing different dropout methods applied to the generative model pθ.. Specifically,
1) standard attention dropout (green), with which entries in attention score matrix are zeroed out
directly, 2) improved attention dropout, with which we apply dropout to attention output (organe),
and 3) no dropout (blue). All the metrics evaluated against the test set.

We have observed two major issues that caused training instability.

First, we provide additional information about the evolution of the logit outputs of the variational
order-policy qθ(zi|z<i,x) along the training course. Specifically, Figure 3 (a) and (b) illusrate
the minimum and maximum logit values in the outputs respectively. As we can see, the logits
outputted by unregularized standard LO-ARM (blue curves) go to extremes quickly. In addition to
the consequence of qθ collapsing to premature orderings, such extrem values may also cause training
instability, resulting in spikes in the test NLL (c). To fix this issue, we employed maximum entropy
on the variational order-policy qθ, and we can see its effectiveness in Section 4.3.

Second, another major source for training instability occurred when we applied standard attention
dropout to the generative model pθ. As we can see in Figure 4, the standard attention dropout (green
curves) resulted in large spikes in test NLL. We hypothesize that, because LO-ARMs model molecular
strings of variable lengths and the padding dimensions are zeroed out in the attention score matrix, if
we directly dropout the attention scores, the model would be confused with the dropped out dimen-
sions and the padding dimensions, which are both zeros. Driven by this consideration, we change

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

to apply dropout to the attention output, i.e, Attention(Q,K, V) = Dropout(softmax
(

QKT

√
dk

)
· V).

This simple yet effective fix yields stable generalization during training and improved generation
performance at test time (orange curves).

Finally, one interesting observation is that, the instability occurred in the generative model pθ also
affects the variational order-policy qθ, as we can see the fluctuations in the test maximum q logits in
the green curve. This is because we are only using one optimizer to optimize these two networks, any
instability in either network would be conveyed to the other through gradient backpropagation.

C.2 ADDITIONAL ABLATION ANALYSIS

C.2.1 ABLATION ON TOKENIZATION ALGORITHMS

We conduct an ablation study to compare two tokenization algorithms:

• Standard Tokenization: Parentheses are treated as individual tokens. This results in a
vocabulary size of 109 after filtering.

• Augmented Tokenization: Pairs of parentheses are represented as single tokens. This leads
to a vocabulary size of 129 after filtering.

For simplicity, we only run this ablation analysis for FO-ARM and LO-ARM (not LO-ARMs++),
without incorporating the improvements introduced in this paper.

As shown in Table 4, the FCD results indicate that while FO-ARM demonstrates robustness across
both tokenization methods, augmented tokenization substantially improves LO-ARM’s performance.
Conversely, standard tokenization achieves higher validity scores compared to augmented tokeniza-
tion. This suggests that a simpler vocabulary may facilitate the generation of valid molecules. The
augmented tokenization in FO-ARM also improves its performance in FCD. This is likely because
standard tokenization forces the model to track open parentheses, which complicates the prediction
task. Generating parentheses as matching pairs, however, allows the model to avoid this issue entirely.

Table 4: Ablation study on the standard and augmented tokenization algorithms
.

Method Tokenization Validity%↑ Uniqueness%↑ Novelty%↑ FCD↑
FO-ARM Standard 98.3 100.0 81.5 86.4

Augmented 91.8 100.0 88.3 87.6

LO-ARM Standard 94.2 99.7 96.0 36.6
Augmented 92.6 100.0 95.3 79.5

D EXPERIMENT SETUP

D.1 MODELING SMILES STRINGS OF VARIABLE LENGTHS

The generative model pθ and the variational distribution qθ, as shown in Equation (2), are both
conditioned on the sequence length L. In practice, for a given SMILES string, the L information
is provided to both models via a sequence mask of a fixed maximum length (the maximum length
across all ground truth data).

For the ground truth dataset (training, test, and validation sets), these sequence masks are generated
directly from the actual data. Before sampling new molecules, however, we first sample the sequence
length from a prior distribution, and then construct the corresponding sequence mask. During
inference, this sequence mask is fed to pθ to distinguish between padding and the actual sequence
dimensions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.2 MODEL ARCHITECTURES

The Transformer architecture is adopted from the llama2.c project1. For the FO-ARM model
and the generative models pθ in both LO-ARMs and LO-ARMs++, the corresponding Transformers
consist of 18 attention layers. The variational order-policies used in LO-ARM and LO-ARMs++
have 3 attention layer. Moreover, We report the hyperparameters in Table 5. All experiments were
run until convergence.

Table 5: Hyperparameter setup.

Hyperparameter ChEMBL/GuacaMol

Optimizer AdamW
Scheduler Cosine Annealing
Learning Rate 5 · 3−5

Weight Decay 1 · 1−2

EMA 0.9999
Attention dropout rate 0.1
Initial α 0.025
Terminating α 0
Initial β 1.05
Terminating β 1
Total training steps 2e6
Exploration steps 1e6

D.3 ANNEALING SCHEDULES FOR α AND β

Our implementation utilizes a two-stage phased training strategy to balance exploration and exploita-
tion:

• Exploration Stage: The KL regularization weight (β) is set to β > 1, and the maximum
entropy weight (α) is set to α > 0.

• Exploitation Stage: These weights are fixed at β = 1 and α = 0.

The total training duration is 2× 106 steps. The Exploration Stage spans the first half of this duration,
running for 1× 106 steps.

Before training begins, the initial values are set to α = 0.025 and β = 1.05. Throughout the
Exploration Stage, both α and β are annealed to their final termination values of α = 0 and β = 1,
respectively.

To ensure sufficient initial exploration, the annealing follows a two-part schedule:

• Persistent Stage: For the first half of the Exploration Stage (500, 000 steps), both α and β
are held constant at their initial values.

• Linear Decay: Following the persistent stage, both weights undergo a linear decay, simulta-
neously reaching their termination values (α = 0 and β = 1) exactly at the end of the full
Exploration Stage.

We simplify hyperparameter configurations though synchronizing the annealings for α and β. We
leave the investigation with asynchronized annealing to future work.

We simplified the hyperparameter tuning by synchronizing the annealing schedules for α and β. The
investigation of an asynchronized annealing approach is reserved for future work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Generated molecules with LO-ARMs++.

E GALLERY OF GENERATED MOLECULES

F FULL STEP-WISE OUTPUTS FOR FIGURE 1

For each generation stage presented in Figure 1, we provide its full step-wise outputs in Figure 6
(Planning Stage), Figure 7 (Execution Stage), and Figure 8 (Refinement and Completion Stage). In
addition to the partially generated SMILES strings and their corresponding partial 2D molecules
(Column (a)), we also provide the outputs of the classifier (Column (b)) and the order-policy (Column
(c)).

G AN ILLUSTRATION OF LEARNED SUB-OPTIMAL ORDER-POLICY

Figure 9 shows the process of generating a GuacaMol sample with a sub-optimal order-policy.
Specifically, instead of proposing substructures at the initial stage, this generation process delays
finalizing substructures to the very end there is no refinement stage with the sub-optimal order-policy.
Therefore, this sub-optimal policy would be less generalizable to more complicated data distributions
and would also be less tolerant to the generation errors in earlier steps.

1https://github.com/karpathy/llama2.c

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 1 - 10

Step 1

Step 2

Step 10

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 14

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 15

(a) Generated SMILES at sampling step t (b) Order policy distribution over masked dimensions at step t (c) Top 5 token probabilities

Figure 6: Full step-wise outputs in the planning stage for Figure 1. Our model generates SMILES
strings step-by-step, commencing with all dimensions masked (in the figures masked dimensions are
colored in grey) and adding token at a time. First, an order-policy selects which dimension to fill,
and then a classifier determines its value. Each step is illustrated in the provided figures: Column
(a) illustrate the (partially) generated SMILES string and the corresponding unmasked substructures
in the final molecule (highlighted in colors). Columns (b) and (c) provide detailed insights: (b)
the order-policy’s probability distribution over dimensions, and (c) the classifier’s prediction at the
selected dimension. Note that, we only display the tokens of top 5 probabilities, and the order-policy
is zeroed for unmasked dimensions. To facilitate visualization, we group the dimensions of the
generated sample with respect to their dimension/token types: 1) digits (e.g., 1, 2), 2) non-aromatic
tokens, (e.g., uppercase letters) 3) aromatic tokens (i.e., lowercase letters) and 4) parenthesis pairs.
Notably, @N represents a pair of parentheses spanning N dimensions between them.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 16

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 29

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 37

A

(a) Generated SMILES at sampling step t (b) Order policy distribution over masked dimensions at step t (c) Top 5 token probabilities

Figure 7: Full step-wise outputs in the execution stage for Figure 1. The legends in the bar plots
are the same as those in Figure 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 38
A

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 39

O=C(c1ccc(Br)s1)N1Cc2cnnc(-c3cccc(-c4cccc(F)c4)c3)c2C1

Step 46

(a) Generated SMILES at sampling step t (b) Order policy distribution over masked dimensions at step t (c) Top 5 token probabilities

Figure 8: Full step-wise outputs in the refinement and completion stage for Figure 1. The legends
in the bar plots are the same as those in Figure 6.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

COc1ccc(CN2CCN(C(=S)c3cc(-c4ccc(Br)cc4)nc4ccccc34)CC2)cc1

Pl
an

ni
ng

 S
ta

ge
Ex

ec
ut

io
n

St
ag

e
C

om
pl

et
io

n
St

ag
e

In
fil

l n
on

-a
ro

m
at

ic
 to

ke
ns

In
fil

l a
ro

m
at

ic
 a

to
m

s

Step 1 & 10

Step 13

Step 26

Step 27

Step 48

Step 49

Step 50

Step 51

(a) Generated SMILES at sampling step t (b) Order policy distribution over masked dimensions at step t (c) Top 5 token probabilities

St
ep

 1
St

ep
 1

0

1

2

3

4

4

Figure 9: An example of generating SMILES sample with a sub-optimal order-policy trained
with the standard LO-ARM. The legends in the bar plots are the same as those in Figure 6. The
generation proceeds through three phases: 1) Planning (Step 1 to 10): LO-ARM first generates pairs
of digits (highlighted in green), which represents ring closures. This step determines the number
of rings and estimates their potential connections in the molecule. The digits together with their
associated ring-cut atoms in the final sample are highlighted in the first molecule. 2) Execution (Step
13 to 48): The model then infills the molecular structure, characteristically generating non-aromatic
tokens (red) before aromatic ones (yellow). 3) Completion (Step 49 to 51): Finally, it generates @N
parenthesis tokens (blue) to enclose and finalize substructures.

20

	Background
	SMILES-based Autoregressive Molecule Generation
	Learning-Order ARMs
	Training LO-ARMs with Variational Inference

	Methods
	Issues of Learning with Standard LO-ARMs
	LO-ARMs are Generalized Next-Token-Predictors
	–ELBO
	Exploration-Exploitation through annealing and

	 LO-ARMs++ for molecular string generation
	Preprocessing SMILES strings with Prefix Tokenization
	Network Architectures and Backbone Training Algorithms
	Stable Generalization for Modeling Sequences of Variable Lengths

	Results and Analysis
	Experiment Setup
	Main results on GuacaMol Benchmark
	Ablation Analysis

	Related Work
	Conclusion
	The GuacaMol Dataset
	Preprocessing with Prefix Tokenization and Dataset summary

	Additional Results
	Additional Analysis
	Consistency Analysis for Learned Generation Orderings
	Training Instability

	Additional Ablation Analysis
	Ablation on Tokenization Algorithms

	Experiment Setup
	Modeling SMILES strings of variable lengths
	Model Architectures
	Annealing schedules for and

	Gallery of Generated Molecules
	Full step-wise outputs for fig:molgen
	An Illustration of Learned Sub-optimal Order-Policy

