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ABSTRACT

Security and robustness are crucial for ensuring stable and fair transactions in
two-sided markets, given the complexity of preferences and uncertain returns
experienced by the participants. In contrast to traditional competing bandits
in two-sided markets that focus on maximum returns, we propose a maximum
probability-driven bandit learning (P-learning) model that emphasizes risk quan-
tification. Since one side of the market lacks prior knowledge about its prefer-
ences for the other, the proposed P-learning algorithm maximizes the probability
of Mean-Volatility statistics lying in a preferred and attainable interval. A scal-
able and stable matching rule was proposed by combining P-learning with the
Gale-Shapley matching algorithm that ensures secure and efficient outcomes. A
detailed exploration-exploitation procedure of the matching algorithm has been
presented with the support of a centralized platform. In both the single-agent set-
ting and the multi-agent setting, our model achieves sublinear regret of O(y/n),
under different conditions. This paper theoretically proves that the P-learning gen-
erates stronger statistical power than classical tests based on normality. Simulation
studies demonstrate the superiority of our algorithm over the existing works.

1 INTRODUCTION

Two-sided markets are crucial in modern economies, spanning sectors like online marketplaces [Shi
et al. (2022), sharing economy platforms [lasevoli et al.| (2018)); [Mittendorf| (2018)), and financial
markets Wright (2004). They involve two distinct participant groups, like Uber drivers and passen-
gers, eBay sellers and buyers, LinkedIn employers and job seekers. Real-world decision-making
introduces scarcity and competition [Liu et al.| (2020), adding uncertainty and complexity. Security
and robustness become pivotal for matching market integrity.

Bandit learning’s integration with two-sided markets, where players and arms express preferences,
was pioneered Das & Kamenical (2005). Bandit algorithms have typically formulated strategies
with the goal of maximizing cumulative rewards for agents, aiming to achieve the highest rewards
(i.e., minimal regret) in various competitive environments. Extensions include diverse preferences
Bistritz & Leshem| (2018)) and self-interested players [Boursier & Perchet (2020). Centralized al-
gorithms |Liu et al.| (2020) blend Explore-then-Commit |Lattimore & Szepesvari| (2020) and Upper
Confidence Bound |Lai et al.| (1985) with Gale-Shapley |Gale & Shapley| (1962). Both two algo-
rithms achieved low stable regret O(log(n)), which is order-optimal. The work in|Liu et al.|(2021)
discussed a decentralized version of the problem. Work such as eliminating irrelevant choices and
conflicting resolutions is further expanded Basu et al.|(2021)); |[Wang et al.|(2022); [ Maheshwari et al.
(2022). However, in competitive markets such as ride-hailing, existing strategies tend to focus solely
on immediate profits, neglecting risk quantification during the matching process. Platform decisions
must consider economic factors and be influenced by the actions of other decision-makers. Issues of
fairness (Graham & Joe (2017); Jia et al.[(2017) have gained attention, as reports show that a small
fraction of drivers earn most of the income, while others earn very little or even incur losses [Zoepf
et al. (2018)).

Recently, scholars explored strategy-driven central limit theorems for the multi-armed bandit prob-
lem|Chen et al.|(2023aib)). Combinatorial multi-armed bandit (CMAB) with nonlinear rewards|Chen
et al.| (2016) was studied. Robust limit theorems Lan & Zhang| (2017)) and dynamic allocation |Co-
hen & Treetanthiploet| (2022) under nonlinear expectations were examined. Chen et al.’s work |(Chen
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et al.| (2023a) contributed strategy-driven limit theorems. In this paper, our research is motivated by a
model for the two-sided market that employs a Multi-Armed Bandit (MAB) approach within a non-
linear expectation framework. We develop models to capture market dynamics, involving agents
(e.g., passengers) and arms (e.g., drivers). Assuming arms have explicit preferences for agents, we
introduce the Maximum Probability-driven Learning (P-learning) algorithm. (i) P-learning al-
gorithm incorporates volatility measures, shifting the focus from maximizing individual rewards to
optimizing the distribution, to ensure the security and robustness of transactions, thereby enabling
the platform to make decisions with greater foresight. (ii) P-learning algorithm aims to maximize
the probability of Mean-Volatility (MV) statistics falling within expected utility [c;, [3;] ranges,
thereby achieving effective risk control. Expected utility is a preferences-based interval that reflects
the range of psychological expectations estimated by the platform based on user needs, leveraging
previous data and operational mechanisms. The specific form of MV statistics is as follows (Chen

et al.| (2022):
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Tﬁj@,n can be seen as a historical statistics that determines the decision rule for the agent p; to
construct the values of statistics under the strategy 13;. The first component of the above equa-
tion denotes average rewards (the first moment), while the second component characterizes average
volatility (the second-moment). Figure [I] visualizes the difference between traditional algorithms
(left) and P-learning algorithms (right). Leveraging the rich market information embedded in the
distribution of MV statistics, we perceive the P-learning algorithm as maximum probability-driven
and suitable for real-world applications. Subsequently, combining the P-learning algorithm with
Gale-Shapley matching |Gale & Shapley| (1962)) achieves stable matching. Furthermore, we intro-
duce the concept of stable regret within the probability framework and demonstrate its application
in both single-agent and multi-agent contexts.

Traditional Target
Our Target

Figure 1: Illustration of comparing P-learning algorithm and traditional algorithms. The blue line
depicts the mean reward of the ETC method, which steadily converges toward the target value as
time progresses. The red line represents the P-learning algorithm, showcasing the fluctuation of its
MYV statistics within the target interval.

Our merits of the proposed secure method of matching two-sided markets in the probabilistic frame-
work are multiple aspects, including:

* This work develops a faster bandit process for matching market than traditional algorithms
of UCB, e-greedy and so on, because the novel bandit learning considers more information
about the volatility of average return.

* Different from classical bandit processes that just pursue maximum average reward, the
proposed bandit learning is adaptive to the attainable goal of one interval by using the
central limit theory of the developed Mean-Volatility statistics.

* Motivated by the responsible artificial intelligence in the significance of safety, this work
firstly balances the controlled risk and average return in a single statistical quantity.
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2 PRELIMINARIES

Agents and arms. Let N' = {p1, ps, ..., p } be the set of agents, and K = {aq, as, ..., ai } be the set
of arms. Each agent p; possesses its own expected utility [, 3;] and each arm a; has predetermined
and known rankings of agents. We denote the notation p; >~ p;s to indicate that arm a; exhibits a
strict preference for agent p; over agent p;;. When the specific arm under consideration is evident

from the context, we simply write a; >; a;, indicating that agent p; prefers arm a; over arm ag.

Stable matching. Given the comprehensive preference rankings of both the arms and the agents, we
employ the Gale-Shapley algorithm to achieve a stable matching. This algorithm operates by having
one side of the market propose repeatedly to the other side until a stable match is found. At each
time step n, the arm successfully matched to agent p; are represented by m., (7). In instances where
multiple agents express a preference for the same arm, a competitive scenario arises, and only one
agent can effectively engage with the arm m,, (¢) at time n. Following a successful match, the agent
p; will receive a stochastic reward X; ,,, which is sampled from a Gaussian distribution.

Centralized bandit. In our study, we focus on a centralized setting in which the players are
able to communicate with a central platform that computes matchings for the entire market.
Agents do not need to communicate with each other. More specifically, at each time step n,
my, = {mp(1),m,(2),...,m,(n)} represents the platform’s computation of a matching vector,
which determines the assignment of agents to arms. It is worth emphasizing that the agents’ se-
lection of arms must rely on their historical rewards since there is no direct information exchange
between the agents and the arms.

Stable regret. We define a notion of stable regret in the framework of probability, which measures
the deviation between an agent’s actual performance and the performance they could have achieved
by making optimal choices. The probability that the MV statistics obtained by any agent falls within
its expected utility is compared to that obtained by playing the agent’s optimal stable match in all
rounds. The n-round individual instantaneous regret for an agent, denoted as R; (n), is defined as
follows:

Ri(n) = sup P (ai <TY < Bi) -P (ai <7, < ﬂi) ; 2
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where 19; represents the set of all strategy choices made by the agent p; over n rounds, © represents

the collection of all possible strategy sets, we employ the parameter ¥}; to capture specific charac-
teristics of interest. The MV statistic Tfn », represents the actual value obtained under the strategy
9); based on historical information in round n. As the time horizon n becomes sufficiently large,
T;?So,oo represents the theoretical value of the MV statistics under the strategy ¢J;. Therefore, the

cumulative regret, denoted as C'R; (n), is defined as follows:

CRi(n) =n sup P (a; < TP . < 6)
9,€0 T
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Here, m represents the current round, and n denotes the horizon length. Our primary objective is to
design a protocol that guides all agents to minimize their single regret.

3 MULTI-AGENT BANDITS WITH A PLATFORM

3.1 P-LEARNING ALGORITHM

In this section, we present an algorithm to formalize the decision problem. In each round, n, an agent
p; chooses an arm a; based on a strategy that maximizes the probability of meeting their expected
utility, which is known as the P-learning algorithm. This process involves a strategic variable 19;
remembering historical information to decide how to integrate current rewards into the previously
summarized statistics. Unlike traditional algorithms that rely on the law of large numbers, our algo-
rithm considers the distribution of prior information, which allows us to fully utilize the statistical
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characteristics and patterns embedded in the historical rewards and maximizes the probability of
MYV statistics within the expected utility.

When agent p; emerges as the winner in the competition and successfully matches with arm m, (4),

they are rewarded with a random variable X ?n To be more specific, we employ the Two-Armed
Bandit (TAB) |[Rothschild|(1974) to describe how agent p; can either match with arm a, (referred to
as the left arm, denoted as L) and receive a reward denoted as WX | or match with arm ay (referred

i,n°
to as the right arm, denoted as R) and receive a reward denoted as WZRn It is important to note
that WX and Wlp;, are generated from distinct probability distributions. This can be expressed as

follows: .
. Wkh | mu(i) =a
Vi _ %,n’ n 1
Xin = { W (i) = as. @
To aggregate these rewards X; and incorporate the defined strategy 9; = {9;1,---,9; 0}, we
propose a bandit inference learning approach that uses MV statistics ngl,n (see Equation [1}). X ;,9 5

represents the reward obtained under strategy 1; at time j. ﬂfi and &fi are the estimated mean and
standard deviation, respectively, for the sequence of observed rewards X; up to time n under the
strategy ;. The mean estimate is defined as:

150 =1 (mn (i) = a1) fiy'p, + 1 (ma (i) = az) f2'g, %)
and the standard deviation estimate is defined as:
68 = \JL(mn(i) = ar) (67%)2 +1(ma(i) = az) (677)%, ©)

where 1%, and 1”7, are the estimated means for the left and right arms, respectively, and 57, and
&:?iR are the estimated standard deviations for the left and right arms, respectively. By utilizing these
statistical measures, we can effectively assess the performance of different strategies. The specific

form of the strategy ¥; ,,, 1 < m < n is as follows:

9 9
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where Tf,ﬁ%l’n denotes the cumulative MV statistics up to m — 1 with a horizon length of n and

the symmetry center ¢; = («; + f3;)/2, which is the center of expected utility [a;, 3;].

The P-learning algorithm, guided by the strategy 1J;, balances exploration and exploitation by lever-

aging the relationship between the MV statistic Tfr’;_l}n and the symmetrical center ¢;. The

decision-making process of agent p; is influenced by the position of the MV statistics 727?;1_1)71

and the symmetrical center c;. When T;?&q,n is belower than ¢; — (1 —

agent p; tends to favor the arm with higher reward.

L9 .9,
m—1 ) “n:—1,L+“7n1—1,R the
n 2 ’

Since the per-step strategy v; ,,, is dependent on the horizon length n, the parameterization of n
enables us to meticulously consider various constraints and limitations, such as resource constraints,
time limitations, or specific rule requirements, during the process of algorithm design and imple-
mentation and provide more feasible solutions.

Next, we present the optimal results of the P-learning algorithm. Assuming a higher average reward
g, for the left arm, according to the central limit theorem for strategies, the probability that the MV
statistics satisfies the expected utility of agent p; is given by the following formula for a;; < 3; € R:

lim P (a <7 < 5)

n—00
(Lr—pp)(Bi—ay)
] e ) e T B - i), ai=1
B (mp—np)(Bi—oy)
(B —pr)—e 2 ®(a; — pr), ¢ =0,

where ¢; = [(a; + 8; > pur + pr) and @ denotes the distribution function of standard normal
distribution. The result is elegant and can be utilized to obtain the theoretical probability value for
any given expected utility.
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P-learning algorithm maximizes the probability of Mean-Volatility statistics lying in a preferred
and attainable interval. Efficient convergence is observed when the expected utility falls within the
range defined by the means of the two arms. However, regret escalates significantly beyond this
range. In Figure[2J] we investigate the convergence rates of regret across varying interval lengths and
symmetric centers. The means of both arms are sampled from Gaussian distributions with means
of 10 and 20, respectively. Our analysis highlights that larger interval lengths contribute to swifter
convergence rates. Additionally, the algorithm demonstrates greater robustness when the expected
utility is closer to the means of the arms.

Regret

Time Time Time

Figure 2: [lustration of single-agent regret under different expected utilities. Greater interval lengths
facilitate faster convergence rates, with the algorithm exhibiting increased robustness particularly
when the expected utility aligns closely with the means of the arms.

3.2 MARKETS WITH COMPETITION

In this section, we introduce market competition by considering the setup involving multiple arms
and agents. Assuming arm preferences are known, we employ the P-learning algorithm to ascertain
the preference ranking of agents. Subsequently, we utilize the Gale-Shapley algorithm to merge
the comprehensive preference rankings of both arms and agents to achieve stable matching. Ad-
ditionally, we compute instantaneous regret values to assess the effectiveness of the performance
evaluation of the algorithm.

Example 1 (2 vs 2) Let N' = {p1,p2} and K = {ay,as} with true preferences in Table [1]in the
Appendix.

Table [T] demonstrates the scenarios of diverse arm preferences when two agents have consistent
expected utility. The different arm preferences lead to varying matching outcomes, which affect the
regrets of agent p; and agent po to different extents.

Regret
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Time Time Time

Figure 3: Illustration of the regret of two agents in the case of agents having consistent expected
utility. When the arm preferences are consistent, agent p; ’s regret always converges to 0, while agent
p2’s regret increases to varying degrees. When the arm preferences are inconsistent, the choices
made by agents mutually influence each other. The regret of ps is also influenced by the symmetric
centers ¢ and cs.

As depicted in Algorithm (I} we employ the P-learning algorithm to ascertain the preference rank-
ing of agents. We specified that the means of arms were drawn from Gaussian distributions with
means of 60 and 70 and a variance of 1. Following 300 replicates, we investigated the convergence
rates of regret across various expected utility and arm preferences over 100 steps. In Figure 3| the
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regrets of two agents are presented. In scenarios where arm preferences are consistent (first row),
agent p; consistently converges to zero regret, while agent p, experiences varying degrees of regret
increment. Interestingly, when ¢, and ¢} are close, within the symmetric interval (Lemma , the
regret of agent py decreases. Conversely, when ¢ and ¢ are further apart, the regret of agent po sig-
nificantly increases. In instances of inconsistent arm preferences (second row), due to the presence
of the matching mechanism, agents engage in continuous strategic interactions, resulting in diverse
outcomes. In conclusion, regret is influenced by the expected utilities and relative positions of the
two agents.

Algorithm 1 P-learning with Competition (2 vs 2)

Input: horizon length n, preferences of arms
Output: regret Ry (n), Ra(n)
Initial MV statistics 713 = 0, T3 & =
while m < n do
Get agent p;’s and po’s preference based on Equation (7) using strategy U1 ,, and ¥z p,
Get My, (1), M., (2) matching with Gale-Shapley algorithm
if m,,, () = a then
Obtain reward X ,,, = me s Xom = me

A01 501 02 A0
Update i)}, 0t fin2, 672

Update Tl’? fosi T;? 2 based on Equation H
else
Vice versa
end if
Compute R;(n), Rz(n) based on Equation
end while

return regret Ry (n), Ra(n)

Example 2 (3 vs 3) Let N = {p1, p2, p3} and K = {ay, as, a3} with true preferences in Table [2]in
the Appendix.

Table [2| demonstrates the scenarios of diverse arm preferences when three agents have inconsistent
expected utility. Our results show that the P-learning algorithm performs well in this larger-scale
scenario. It is worth noting that the MAB and TAB (two-agent bandit) problems discussed in our
paper are consistent in terms of algorithm and theoretical contributions. As outlined in Algorithm[2}
the determination of agents’ preference order involves progressively eliminating the best and worst
choices. Specifically, when there are k arms, we need to group them to determine the preference
order of agents. In each round, after identifying the best and worst arms, we remove these two
arms from the set of candidate arms and continue to find the next best and worst arms among the
remaining ones, and so forth. Furthermore, algorithm [3|demonstrates matching rules with multiple
agents and arms.

We specified that the means of arms were drawn from Gaussian distributions with means of 60, 65
and 70 and a variance of 1. Following 300 replicates, we investigated the convergence rates of regret
across various expected utility and arm preferences over 100 steps. As shown in Figure [ when the
preferences for each arm are consistent, the regret for agent p; consistently tends towards 0, while
the regrets for agents p» and p3 vary in degree (left and middle). However, when arm preferences

T f

l——n

Figure 4: Tllustration of the regret of three agents in the case of agents having different expected
utilities. When the arm preferences are consistent, agent p;’s regret always converges to 0, while
agent po’s and ps’s regret increases to varying degrees. When the arm preferences are inconsistent,
the choices made by agents mutually influence each other.
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are inconsistent, the choices of agents influence each other, leading to higher regret for agent p, due
to the inability to match preferred arms (right).

4  ACHIEVING O(y/n) REGRET WITH TWO DIFFERENT SETTINGS

In this section, we provide two different settings for the cumulative regret bounds. In the single-
agent setting, we achieve a problem-independent sublinear cumulative regret of O(y/n). In the
multi-agent setting, a similar sublinear cumulative regret order of O(/n) persists, where agents’
selections mutually influence each other. However, the upper bound is influenced by factors such as
symmetrical center deviation A, expected utility length d, and the mean and variance of the reward
distributions.

4.1 SINGLE-AGENT REGRET

In a single-agent setting, there is no collision of choices. Therefore, we consider a scenario where
N = {p1} and K = {a1,a2}. The objective of agent p; is to learn a strategy 9J; that observes
the state of the environment and selects actions to maximize the probability of MV statistics in the
expected utility during the interaction with the environment. Subsequently, we will provide the
asymptotic distribution of Tfjm under this setting. The proof of Bandit distribution B(c, 3, ¢) in
Lemma4.T|and its density function are provided in the appendix.

Theorem 4.1. (Instantaneous Regret Bound). Assume that the agent ranks the arms based on
MV statistics and select the top-ranked arm as their preferred match. Then, the expected individual
single-step regret of agent p; is upper bounded by

M
Ri(n) < —, 8
< T ®
where M depends solely on the parameters o, or and o = —(pur, — pr)/2 of the reward distribu-

tion associated with the arms.

Theorem .1 demonstrates that the P-learning algorithm can achieve a problem-independent regret
bound of O(1/+/n) in the single-agent setting. Importantly, this upper bound is independent of the
agents’ expected utility length d. Therefore, the symmetrical center ¢; plays a crucial role, describing
the growth rate of regret values for the shortest interval, determining the unattainability of slower
growth rates. This indicates the wide applicability of the regret bounds we provide. With a focus on
cumulative regret, subsequent theorems provide an upper bound.

Corollary 4.2. (Cumulative Regret Bound). Under the same assumptions as Theorem the
upper bound of the expected cumulative regret for a single agent p; is O(\/n).

If the growth rate of the single-step regret is O(1/+/n), then the cumulative regret growth rate for
the first n steps is bounded. The results indicate that the cumulative regret growth rate for the first n
steps is O(y/n). P-learning algorithm exhibits commendable performance, showcasing convergence
rates comparable to traditional bandit algorithms |Lattimore & Szepesvari|(2020).

4.2 MULTI-AGENT REGRET

In a multi-agent environment, we consider a scenario involving multiple agents. We assume that all
arms are equally desirable to the agents, indicating that there are no inherent preferences for any
specific arm. However, the preferences for arms are consistent across all agents.

Definition 4.3. (Consistent Ranked Arms). For any a;, if p; > po, then all arms prefer agent p;
over agent po; conversely, if pa > p; then all arms prefer agent py over agent p;.

We assume that the agents maintain consistent rankings among the arms. For any given arm a;, the
preference order for agent p; follows a consistent pattern, denoted as p; > po. This ensures that
the competition remains absent for the more favored agent, resulting in outcomes similar to those in
the scenario with a single agent. Conversely, for the other agent, the regret may be substantial. The
lemma [.4] describes this situation in detail.
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Lemma 4.4. (Anti-Strategy Center). Assume that all arms prefer p1 more and let ¢ = (a1 +51)/2,
which leads to a distribution of the MV statistics consisting of the reward information obtained by
agent py with ¢| = p1 + g — 1 as the center of symmetry, also known as the center of the anti
strategy distribution.

Given that the strategy J; ,, is determined based on the symmetry center, a strategy-driven algorithm
ensures that the MV statistics of agent p; are centered around c;. However, the less favored agent
p2 may encounter strategy failures. Lemma [4.4] provides valuable insights by revealing that, in the
worst-case scenario, the reward distribution for agent p, corresponds to the anti-strategy distribution
of agent p;. Consequently, the regret experienced by agent ps is significantly influenced if the values
of ¢5 and ¢ are considerably distant from each other, considering the expected utility interval length
denoted as d.

Theorem 4.5. (Instantaneous Regret Bound). Assume that the agents rank the arms based on their
MV statistics and select the highest-ranked arm as their preferred matching choice, with agent py
being preferred for the arms. In this setting, the expected individual single-step regret of player p;
is upper bounded by
Kln(1/A2
Ri(n) < 2 20/20) ©)
n

where the constant K is depending only on ur, or, ur and or of reward distribution associated
with arms, A,, denotes the maximum probability difference between distributions under different
strategies within the range length of n.

To be more specific, we can define A,, = F,(¢1) — 7, where F,, represents the distribution
under our strategy up to m, P, represents the distribution under the anti-strategy, and v =
min {P, (A, — d/2), P,(A. 4+ d/2)}, with A, = |¢}] — 2| measuring the distance between the
anti-strategy distribution and the ideal distribution. Here, d denotes the length of the expected utility
interval. The constants K in the previous equation depend only on uy,, o1, ug and o g, which is the
reward distribution associated with the arms.

Theorem provides us with an upper bound on the single-step regret, which is O(1/+/n), under
the assumption of consistent arm preferences. This lemma reveals that the upper bound is determined
by the center of symmetry offset A, the length of the interval d, as well as the mean and variance
of the reward distribution.

Corollary 4.6. (Cumulative Regret Bound). Under the same assumptions as in Theorem the
expected multi-agent cumulative regret of player p; is upper bounded by

CR;(n) < y/nKlIn(1/A2). (10)

Corollary provides us with valuable insights into the growth rate of R;(n) as the value of n
increases. It demonstrates that the growth rate of /n surpasses that of n. Consequently, we can
conclude that \/n serves as an upper bound for the growth of R;(n). By expressing the growth
upper bound of R;(n) as O(y/n), we establish a clear understanding of the relationship between the
regret and the number of steps, highlighting the sublinear nature of the regret growth.

5 SIMULATION

In this section, we present our numerical simulations involving two agents and two
arms.Additionally, we provide a detailed hypothesis testing framework in the Appendix
tion A.1)) to validate the statistical significance of our results.

Baseline. We use three baselines with their respective feedback, which are Explore-Then-Commit
(ETC), Upper-Confidence-Bound (UCB), and e-greedy. Each agent submits its preference order to a
centralized platform in each round, and the platform assigns the best match for the agent under this
preference.

Results. We generated random instances to compare the performance of ETC, UCB, e-greedy, and
P-learning under their respective settings with standard deviationoc = 1.1, 0 = 1.3, and o = 1.5 and
reported their regrets in Figure 5] We used the parameter settings mentioned in [Liu et al.| (2020) for
ETC and UCB and set € to 0.1 according to [Sutton & Barto. (1998)) for e-greedy. We selected three
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Figure 5: Illustration of comparing regret. Random instances were generated to compare ETC,
UCB, e-greedy, and P-learning across various standard deviations. The results demonstrate that
P-learning exhibits the fastest convergence rate.

intervals with different lengths d, namely [69,71], [69.5,70.5] and [69.55,70.3], for P-learning. The
means of both arms were drawn from Gaussian distributions with means of 60 and 70, respectively.
To ensure consistency, we simulated all the algorithms on the same 100 sample paths and reported
their normalized means.

Different variances can be used to measure the uncertainty of trading objects in two-sided mar-
kets, which affects trading volume and market price fluctuations. As shown in Figure[3] P-learning
demonstrates the fastest convergence rate among the algorithms. Even when considering the inter-
val [69.55,70.3] and o, = o = 1.5, P-learning performs comparably to UCB and exhibits slightly
superior performance compared to UCB. Furthermore, Table |3|in appendix reports the number of
iterations required for different algorithms to achieve a convergence accuracy of 0.01 for regret
errors.

6 DISCUSSION

The P-learning algorithm effectively balances exploration and exploitation in resource-constrained
market environments by maximizing the probability of meeting the expected utility (interval) for
market participants. In single-agent scenarios, our model consistently achieves a sublinear regret
of O(y/n). In multi-agent settings, agents’ decisions influence each other, we maintain this regret
bound. However, factors such as symmetric center offset and interval length affect the algorithm’s
performance.

The setup of our work is centralized, and agents don’t need to communicate with each other; they
interact directly with the platform. In a decentralized scenario, the potential issue is how to ensure
fairness and efficiency in resource competition among agents in the context of unrestricted commu-
nication. By facilitating more efficient resource allocation and better matching of goods and services
based on market participants’ preferences, this algorithm may enhance overall market efficiency and
consumer welfare.
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A APPENDIX

A.1 HYPOTHESIS TEST

Considering that the data obtained in market matching is sequential, this section introduces sequen-
tial testing within a utility-driven multi-armed bandit framework to more reliably identify the optimal
choice.

The platform takes into account the gap di = |z, — pr| between the optimal and suboptimal arms
when formulating strategies and effectively managing risk. Our goal is to conduct a hypothesis
test to determine whether this gap remains within an acceptable range, ensuring that the disparity
between the best and worst arms in the matching set is not excessively large.

In other words, assuming p.;, > ppr, we would like to conduct the hypothesis test:

Ho:prp —pr >do; Hi:pr —pr <do (1)

Without loss of generality, we assume that the means of the optimal and suboptimal arms, i, and
R, satisfy pur, + ur = d > 0, where d is a constant. This constant d represents our focus on
understanding how the distance between the two arms affects the concentration of information. In
other words, when the total reward of the two arms reaches a certain level, the agent will place more
emphasis on the differences in arm rewards to manage risk. For example, when the total is 7, the
situation with reward distributions of means 1 and 6 differs from the situation with means 4 and 3.
Each corresponds to a left or right margin:

Huo:pur > (d+do) /25 Har:pr < (d+do) /2
HbOZIJR < (d—do)/Q; HbIZ/JR > (d—do)/Q.

The agent can naturally utilize traditional statistical tests based on the normal distribution [Fisher
(1970). However, the test statistic does not consider the strategy or sample performance, nor does it
leverage prior information. This simple approach exhibits lower statistical power and requires more
samples.

Given the challenges of performing statistical inference on sequential data using normal tests, we
provide the corresponding test statistic and its asymptotic distribution based on the objective function
of the utility-driven algorithm:

m m 9, 9,
1 1 X _lj‘te;t,j

9, 9 [2¥)
17, . = = X,%+7E P A ot X (12)
test,i,m,n 1,7 EN )
n n St
i=1 Vin j=1 gj
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where

. d+d d—d
9 0 0
sty = 5 Lma(=ar} + =5 Lma(i)=as}- (13)
Theorem A.1. Let ¢ € C(R) be a continuous function on R with finite limits at +oc, and be

symmetric with centre ¢ € R and monotone on (c,00). The limit distributions of {th” in n} are
Bandit distributed. That is

lim E {w (T,ié nn)} =Ep (n,)]

n—00

di _ vn(di=do)

d
where 1, ~ B (ozn, 5,6) and o, = — % o

When assuming Hy has a true value of y;, — pur = do, the test statistic 7%, in,n follows the spike

distribution B (—%7 %, %) Consequently, we can reject the null hypothesis by the occurrence of

event

where zg is the upper « th of the distribution B (
calculated by

test,i,n.,n 2

T —d’ >z3}, (14)

_do
2

d —doza d
1—a:<13<20—|—z;>—ed°2‘1><20—z;x). (15)

When the distance between the two arms, pi;, — g = di > do, the first parameter

0, 0). The related statistical efficiency can be

an:fﬁfM<,é' (16)
2 20 2

@an>0,=c=0 (B)an<0,B=c=0
Figure 6: The different parameters affecting the density of the bandit distribution.

At this juncture, depicted in Figure[6] as ¢, diminishes, the Bandit distribution undergoes increased
steepness, resulting in heightened concentration of information and thereby enhancing statistical
efficiency.

When H; is true with a value of i, — ur = dy < dy, the associated statistical power is calculated
as follows:

TV

test,i,n,n 5

=1—®(—an+ 2a2) + 2P (—ay, — 24)2) -

When «, is positive, the statistic follows a bimodal distribution, as illustrated in Figure @ which
significantly amplifies the tail probability. This marked reduction in noise interference makes it a

12



Under review as a conference paper at ICLR 2026

more effective option for hypothesis testing compared to the conventional normal test. In the context
of this utility-driven bandit learning framework, hypothesis testing is performed by integrating both
prior information and the adaptive nature of the bandit process, thereby improving the test’s power
and convergence rate.

This paper addresses the challenge of efficiently allocating resources between two distinct agent
sets (e.g., buyers and sellers or drivers and passengers) with differing preferences. The utility-driven
bandit algorithm provides a real-time learning framework that adapts strategies to maximize overall
utility. By introducing sequential hypothesis testing within this framework, we offer a more reliable
method to identify the optimal choice in market matching. This approach improves statistical power,
convergence speed, and risk management, outperforming traditional normal tests by better handling
dynamic data and optimizing decision-making.

A.2 TABLES

Table 1: Illustration of the preferences of agents and arms when agents have consistent expected
utility.

b1 b2 aq az

[64,66] [64,66] D1 = P2 D1 = P2
[64,66] [64,66] p1 > D2 P2 = D1
[69,71] [69,71] P1 = D2 P1 = D2
[69,71] [69,71] D1 = P2 D2 = P1
[62,64] [62,64] Dp1 > D2 p1 > D2
[62,64] [62,64] D1 > P2 D2 = P1

Table 2: Illustration of the preferences of agents and arms when arms have consistent preferences.

b1 D2 ps3 a1 a2 as
[69,71] [64,66] [59,61] P1 = P2 = P3 p1 = P2 = P3 p1 = P2 = P3
[69,71] [68,72] [67,73] P1 = P2 > P3 p1 = P2 > P3 p1 = P2 > P3
[69,71] [64,66] [64,66] P1 > P2 > P3 D3 > p2 > P1 D1 > p3 > P2

Table 3: Illustration of comparing convergence steps of ETC, UCB, and P-learning across various
standard deviations.

P-learning
d=0.75 d=1 d=2

1 142 140 120 54 9
3 150 147 126 57 10
5 156 152 130 61 10

ETC UCB

— ==

SIS
[T

A.3 ASSUMPTION

Assume the preferences of the arms are fixed and known.

Assume that the agent ranks the arms based on MV statistics and selects the highest-ranked as the
preferred matching arm.

Assume that all arms are equally desirable to the agents in a multi-agent setting.
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A.4 PROOF OF REGRET BOUND

Since the regret of the P-learning algorithm is formulated within a probabilistic framework, replacing
probabilities with frequencies can introduce biases when the horizon length is n. Therefore, we
first establish the proof that when the number of simulation iterations .S is sufficiently large, using
frequencies as a substitute for probabilities becomes reliable, ensuring the preservation of stability.

Lemma A.2. (Preservation of Stability.) Ve > 0, we let S denotes the number of simula-

s
Lo, . . 1 .
tion iterations and we have SEIEOOP <| g E X;—P (oei < Tfﬁ,n < ﬂi) |> a) =0, where X; =
Jj=1

I (ai < TV < ﬁi), measuring whether the MV statistic falls in the expected utility.

i,5,m —

PROOF. At time step n, we denote Tf]il, forall j = 1,...,S, as the value of MV statistics ob-

tained from the jth simulation for agent p;. Since the variables T;gj‘ 7 are mutually independent, the
sequence of random variables X7, ..., Xg is i.i.d.. Given the definition of random variable X, it
can only take on the values 0 or 1. Consequently, X; follows a Bernoulli distribution, denoted as

X, ~ B(1, P), where the probability parameter P corresponds to P (ai <TY < 5i). Consid-

i,n,n
ering the formulas for the mean and variance of the binomial distribution, as well as the finiteness of
probabilities, we can easily establish the validity of the conclusion using Chebyshev’s Law of Large
Numbers. The following proofs are constructed on the assumption that S is sufficiently large.

A.4.1 SINGLE-AGENT REGRET

We begin by constructing the proof for the single-step regret bound and subsequently extend it to
the cumulative regret.

PROOF OF THEOREM4.1] Firstly, we acknowledge that the expectation of an indicator function
is equivalent to the probability. Nevertheless, considering the necessary conditions established by
Chen et al.[(2022) concerning the thrice differentiability and boundedness of the function ¢y, we
commence by approximating the indicator function using a trinomial model (Chen et al.| (2023a).
This approximation allows us to subsequently leverage |(Chen et al.|(2022) established proof frame-
work.

Therefore, we continue to use {H;(z)},c o 1) to denote the functions defined in Chen et al.|(2023a)

_, be functions
m=1

with ¢p, and & = —(up, — pr)/2 = g there. And let T; 1, and{ L, »(z)}
defined in Chen et al.| (2022) with {H¢ ()}, ;) here.

We first consider the case that y;, = —pug and let p, is the larger mean of the arms. For agent p;,
let 9; be the strategy defined in Equation (6) and naturally n = Tféo,oo ~ B(pg,0,c) by direct
calculation we obtain
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ales ol

<> |Bp [Ha (T2,,)] - Be [Ha (T2,1,)]|
[ (

= Iin + 2.

The aforementioned inequality will be decomposed into two separate components.

i,m—1n

An application of in Chen et al (2022) implies that Ep [ (m,n,9;)] = Ep [L,m (T i )}
we obtain that

] mnﬂ)]’

n 9 9,
Ly im Xz:n zm fzm
< — E . 2 :
=247 o T ’ n o/ (19)
9 9 3
Xz,m Xz',m - givm
+ +
n ov/n
<"L11+4+4 32 <01
7m:1 2 7L2 a"n,% TL3 % f

where the penultimate inequality is due to the uniform boundness of {X i‘? ;L} and C; depends only

on upper boundary of H;(z) and ¢ within the reward of distribution.
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Further, we obtain that

n

[Lan < 5D [Linn(@) = Huos (2)

m=1 z€R
n Q| 1 .
= Z sup |[Hm-1(x) — Hun(x) — =| Hn (2) |—— Hm ()
z€R S n n n 27?/ n
m=1
= o : m=1 4 a.c .
< ZsupEp {/m’il|a| ’Hm (YS w e ) —Hm(x)‘ds
m:1 xeR po n n
1 %L . m—1 T.0.C .
+7/ a™ (Y o ’)—Hm(x)‘ds] |
2 Jm— n n
(20)
- Ly m—1 z.a.c
< Z sup —Ep sup Ys " - x‘
m=1%€R T se[mt, ]
L
< Z —QEP M +  sup 'BS — Bm-1
n n m—1 m n
m=1 se[mt, ]
laf 1
<Ly | —+4+ —
< Lo ( " + NG
e, o
n  \n
where C and Cs is a constant depending only on «, L and the bound of H, ().
Above all, we obtain that
K1 K2 M
i(n) < —— + =2 < —,
R(n)*n—i_\/ﬁ*\/ﬁ 21
where K, K are constants depending only on o and « = —(uy — pug)/2 within the reward

distribution of the arms.

Then the results asserted for general ;1 and pr are established by applying the preceding special
case to {Yzﬂn in > 1}, where Yl’gn = X;?;’l — (L + pr)/2.

Therefore, Theorem shows us that single-agent P-learning achieves O(1/y/n) problem-
independent regret. The following theorem leads to the upper limit of cumulative regret.

PROOF OF COROLLARY [4.2] This is due to if the growth rate of single step regretis O(1//n),
then the cumulative regret growth in the first n steps is upper-bounded. We can derive this conclusion
by summing up the growth of single-step regrets. The result shows that the growth rate of cumulative
regret in the first n steps is O(y/n). In other words, as the time step n increases, the growth rate of
cumulative regret will remain at the level of O(y/n).

A.4.2 MULTI-AGENT REGRET

PROOF OF LEMMA Since the strategy 1; ,, is formulated based on the symmetry center,
under a strategy-driven algorithm, the distribution of the MV statistics of agent p; should be centered
around c;. Therefore, there exists y1,v2 > 0,s.t.c;1 = y1p41 + Yoo With 1 + 72 = 1. Naturally,
¢y = yap1 + Y1 p2. It follows from the direct calculation that

€1 = V1M1 + Yap2
= (1 =7y2)p + (1 —y1)pe
= p1 + p2 — (Y21 + Y142)
= p1 + p2 — ¢}

(22)
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The unpreferred agent p, will experience strategy failure. Lemma[4.4]tells us that in the worst-case
scenario, the actual reward distribution obtained by agent ps corresponds to the counter-strategy
distribution of agent p;. It can be observed that if there is a significant difference between ¢ and ¢},
taking into account the impact of the expected utility interval length d, this will affect the regret of

p2.
PROOF OF THEOREM.5| The following proof is established under the assumption of consistent

ranked arms. And we let arms prioritize selecting agent p;. Therefore, the agent p; ’s regret regarding
his expected utility will not be affected by the matching. On the contrary, as agent py’s strategy may

be subject to interference, we can denote 1J5 as the actual strategy implemented by agent ps. The
inequality will be decomposed into two separate components.

su%P (ai < T;?;QOO < ﬂl) - P (ai < Ti?,j,n < 61)
;€0

<|sup P (oci <TP o < 51‘) -p (O‘i < T < /BZ) (23)
9,€0 o -

+ ’P (ai < ﬂﬂﬁn < Bi) - P (ai = Tﬁ;n s Bi)

= ISn + I4n-

An application of Lemmaimplies that I3,, = I, < % + % And we let F;, and P,, denote the

distribution function of MV statistics by 1; and ¢J;. Utilizing the Kolmogorov inequality divergence
inequality, we obtain

Iy, < sup |E,(x) — P,(2)|
mel_ai,ﬂi]

1 ldE ) - 4Py (@)
2 1—F,(z)+ P,(x)

+oo (24)
< 1 / |dF, (x) — dP,(z)|
~ 2y/n 1— F,(z) + P,(x)
K3 ! 1
=2 n | —
— ,\/ﬁ A% )
where K3 denotes problem-independent constants and A,, = F},(c;) — - measures the distance be-

tween the anti distribution and the ideal distribution, and v = min { P, (A, — d/2), P, (A. 4+ d/2)}
with A, = |} — cal.

Above all, we obtain that

< Ko K Ka T [K(1/8%)

PROOF OF COROLLARY [{.6] Proof same as in Theroem Therefore, we can express the
growth upper bound of CR;(n) as O(y/n).

Although the growth rate of both single-agent and multi-agent systems is O(y/n), we have demon-
strated that the constant factor limitation in single-agent scenarios is irrelevant to the problem, i.e.,
in terms of the maximum meaningful growth rate. Under the constraint of consistent agents, the
growth rate of multiple agents is also O(y/n), and it is influenced by the mutual interaction A,
among the agents.

A.5 ALGORITHM
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Algorithm 2 P-learning with Competition (1 vs k)

Input: current round m, the current grouping 7 , the set of arms K and the preferences of arms
Initialize the set of alternatives XK' = IC
while » < |(k+1)/2] do
Get agent p;’s preference of best and worst arm a7, a3 in set X’ based on Equation
Reset K’ < K/{af,a’}
r—r+1
end while
Get final preference 1, ,,order with all arms for agent p;

Algorithm 3 P-learning with Competition (k vs k)

Input: horizon length n, current round m, the set of arms K, the set of agents N and the prefer-
ences of arms
Output: regret R;(n)
while m < n do
Get the v, ,,, fot the agent p; based on Algorithm
Get matching vector m,,, matching with Gale-Shapley algorithm
end while
return R;(n) based on Equation
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