

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SCALE CONTRASTIVE LEARNING WITH SELECTIVE ATTENTIONS FOR BLIND IMAGE QUALITY ASSESSMENT

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Human visual perception naturally evaluates image quality across multiple scales,
014 a hierarchical process that existing blind image quality assessment (BIQA) algo-
015 rithms struggle to replicate effectively. This limitation stems from a fundamen-
016 tal misunderstanding: current multi-scale approaches fail to recognize that qual-
017 ity perception varies dramatically between scales—what appears degraded when
018 viewed closely may look acceptable from a distance. This inconsistency not only
019 creates misleading “visual illusions” during feature fusion but also introduces sub-
020 stantial redundant information that dilutes quality-critical features and leads to
021 imprecise assessments. Our CSFIQA framework advances multi-scale BIQA via
022 two key innovations: (1) a selective focus attention mechanism that mimics human
023 visual attention by filtering out redundant cross-scale information that would oth-
024 erwise mask subtle quality indicators, and (2) a scale contrastive learning strategy
025 that explicitly learns to distinguish quality variations both across and within scales.
026 By incorporating an adaptive noise sample matching mechanism, CSFIQA effec-
027 tively identifies perceptual quality discrepancies in the same content viewed at
028 different scales. Experiments demonstrate substantial improvements over state-of-
029 the-art methods across seven datasets, achieving up to 8.8% SRCC improvement
030 on challenging real-world distortions, confirming CSFIQA’s superior alignment
031 with human quality perception.

032 1 INTRODUCTION

033 Image Quality Assessment (IQA) aims to model the human visual system’s ability to perceive image
034 quality Yang et al. (2022); Zhang et al. (2022b). It has been widely applied in fields such as image
035 restoration Zhang et al. (2022a), compression Liu et al. (2022), and generation Wang et al. (2023b),
036 with the goal of enhancing human visual experience. Based on whether distortion-free reference
037 images are required, IQA can be classified into three types: full-reference, reduced-reference, and
038 no-reference (or blind) IQA Liu et al. (2024); Chahine et al. (2023); Zhang et al. (2023). Among
039 these, Blind Image Quality Assessment (BIQA) methods have received increasing attention due to
040 their broad applicability.

041 However, BIQA faces a fundamental yet largely overlooked challenge: the dramatic variation in
042 quality perception across different scales of the same image. While humans effortlessly integrate
043 these multi-scale impressions Chen et al. (2024), current BIQA algorithms struggle with this inherent
044 complexity, creating a significant gap between algorithmic assessments and human judgment. This
045 perceptual discrepancy severely limits the effectiveness of BIQA in critical applications ranging
046 from image compression and restoration to content generation systems. Current multi-scale BIQA
047 methods, whether operating at the image level through direct resizing (Fig. 2(b)) or at the feature
048 level through pyramid structures (Fig. 2(c)), encounter two critical bottlenecks that fundamentally
049 undermine their performance:

050 First, the “visual illusions” problem presents a severe limitation in existing approaches. Traditional
051 methods erroneously assume that image regions maintain consistent quality characteristics regard-
052 less of scale—a fundamentally flawed assumption illustrated in Fig. 2(a). In reality, quality percep-
053 tion varies dramatically across scales: compression artifacts that dominate perception at a large scale

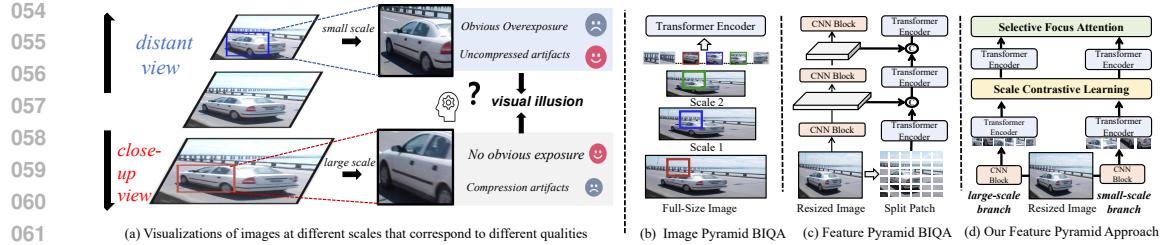


Figure 2: (a) The same image under different patch perspectives can lead to varying quality judgments, and simply combining information from different viewpoints is prone to causing visual hallucinations. (b-d) Comparison of mainstream multi-scale paradigms with our approach, which uses scale contrastive learning to distinguish quality differences in (a). The designed selective focus attention can remove redundant semantic information and enhance attention related to perceptual quality.

(close-up view) may become imperceptible at smaller scales (distant view), while global distortions like overexposure might dominate at smaller scales but remain unnoticed in large-scale patches. When algorithms naively combine features from multiple scales, they generate misleading quality representations where high-quality and low-quality signals from different scales incorrectly neutralize each other. This creates a perceptual distortion we term the “visual illusions” effect—where the algorithm perceives uniform quality across an image despite significant scale-dependent variations—leading to assessments that fundamentally contradict human perception.

To support this claim, Fig.1 presents the Mean Opinion Score (MOS) distributions of the LiveFB dataset at different scales, clearly demonstrating the existence of scale-sensitive perceptual differences. Building upon this observation, Tab.7 further shows that neglecting such scale-specific variations during training—by assigning uniform quality labels across scales—can degrade model performance, thereby highlighting the necessity of incorporating scale-aware modeling in IQA. In addition, our analysis of feature activation maps (Fig. 6) provides a more intuitive visualization of how this illusion effect manifests in practice: current models tend to focus on undistorted regions while neglecting areas that are more indicative of actual image quality degradation.

Second, the “information dilution” problem significantly impairs quality detection sensitivity. Unlike human vision, which selectively focuses on quality-relevant features while filtering redundant information, current multi-scale methods indiscriminately process all cross-scale information. This approach not only wastes computational resources but, more critically, creates a signal-to-noise problem where quality-critical features become overwhelmed by redundant semantic content shared across scales. As demonstrated in our visualization results (Fig. 6), this dilution effect causes quality indicators—particularly subtle artifacts and distortions—to be masked by dominant semantic features that remain consistent across scales but contribute little to quality assessment. This effect is especially pronounced in authentic distortion datasets where quality variations are complex and multifaceted.

To address these fundamental limitations, we propose CSFIQA (Contrast-Constrained Scale-Focused Image Quality Assessment), a novel framework specifically designed to accurately model scale-dependent quality perception. Our approach introduces two complementary innovations:

The first innovation directly tackles the “information dilution” problem through a Selective Focus Attention (SFA) mechanism. This mechanism intelligently identifies and filters redundant cross-scale information by preserving only the most relevant attention values through an adaptive filtering selector. It then amplifies quality-discriminative features through an information concentrator module, effectively mimicking the human visual system’s ability to focus attention on perceptually important regions while suppress-

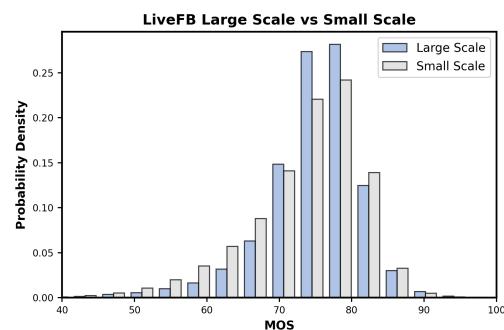


Figure 1: The MOS distribution of LiveFB in large scale (40% of the original image size) and small scale (20% of the original image size).

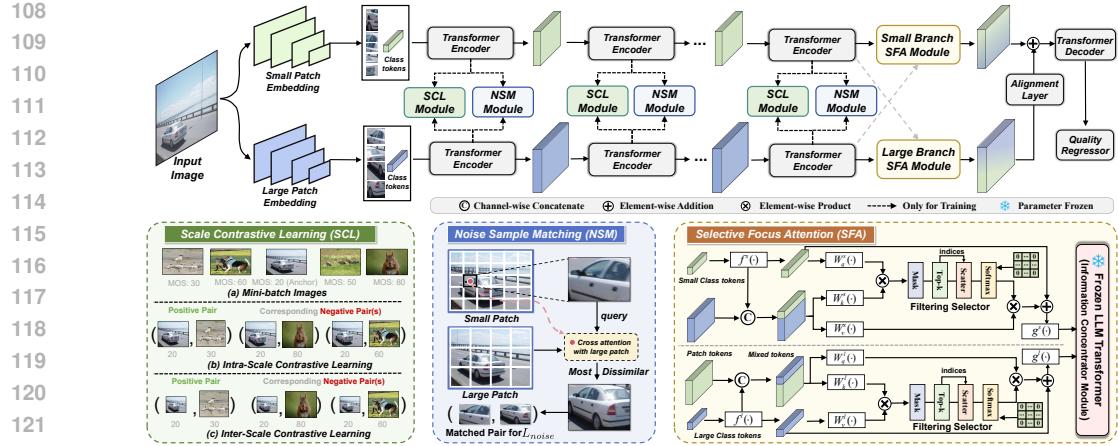


Figure 3: In our CSFIQA framework, a Transformer Encoder extracts multi-scale image features (F_a^l). These are input to the SCL module (Sec. 3.2), which uses inter- and intra-scale contrastive learning to enhance quality discrimination. The NSM module (Sec. 3.2) mitigates the “visual illusions” effect (see Fig. 2(a)) by distinguishing subtle regional quality variations. Subsequently, features from the final layer (F_a^L) enter the SFA module (Sec. 3.3), where an Adaptive Filtering Selector (AFS) and Information Concentrator Module (ICM) create quality-aware features. Finally, a decoder predicts the quality score \hat{Y} (see Algorithm 1 for details).

ing irrelevant information. This approach significantly enhances the model’s ability to isolate and emphasize quality-critical features that would otherwise be overwhelmed by redundant semantic content.

The second innovation addresses the “visual illusions” problem through a comprehensive Scale Contrastive Learning (SCL) framework with an adaptive Noise Sample Matching (NSM) mechanism. This approach explicitly teaches the model to distinguish between different quality characteristics at both inter-scale (across different scales) and intra-scale (within the same scale) levels. Crucially, the NSM mechanism specifically targets regions with inconsistent quality information across scales within the same image, enabling the model to accurately represent scale-dependent quality variations rather than incorrectly averaging them. This explicit modeling of scale-quality relationships effectively prevents the visual illusion effect that plagues traditional multi-scale approaches.

Our comprehensive evaluation on seven benchmark datasets demonstrates that CSFIQA consistently outperforms state-of-the-art methods, with particularly significant improvements on challenging real-world datasets: 8.8% SRCC improvement on LIVEFB and 1.6% on LIVEC. These results confirm that by accurately addressing the fundamental limitations of scale-dependent quality perception, our approach successfully bridges the gap between algorithmic assessment and human perception of image quality.

2 RELATED WORK

2.1 MULTI-SCALE AND CONTRASTIVE LEARNING IN BIQA

Deep learning has significantly advanced Blind Image Quality Assessment (BIQA), with models evolving from Convolutional Neural Networks (CNNs) to Vision Transformers (ViTs). While CNNs excel at extracting local features (Bosse et al., 2017), they struggle to capture long-range dependencies. ViTs and hybrid architectures (Qin et al., 2023; Golestaneh et al., 2022b) overcome this using self-attention but can introduce parameter redundancy or over-emphasize global semantics at the expense of sensitivity to local distortions. To address these limitations, multi-scale architectures have become central to BIQA, mimicking the human ability to integrate fine details with global context (Su et al., 2020b; Chen et al., 2024). Despite their progress, these methods often fail to effectively model complex, scale-sensitive quality discrepancies and can introduce redundant in-

162 formation, highlighting the need for a more refined mechanism to balance local fidelity and global
163 context.

164 Alongside architectural evolution, contrastive learning has emerged as a powerful paradigm for
165 learning robust quality representations (Zhao et al., 2023; Li et al., 2024). Seminal works like CON-
166 TRIQUE (Madhusudana et al., 2022) and Re-IQA (Saha et al., 2023) demonstrated its effectiveness.
167 However, these methods typically rely on distortion types or levels as supervisory signals, rather
168 than ground-truth quality scores. They also tend to treat any two images with different content as
169 a negative pair, overlooking the nuanced quality relationships that might exist between them. Our
170 work addresses these gaps by introducing scale contrastive learning, which directly models the rela-
171 tionship between quality at different resolutions and the overall perceptual score.
172 el the relationship between different quality regions and the overall image quality.

174 3 PROPOSED METHOD

175 3.1 OVERALL PIPELINE

176 We proposed CSFIQA, which is designed to precisely model the relationship between image scale
177 and overall quality. As illustrated in Fig. 3, CSFIQA integrates three primary modules: the Scale
178 Contrastive Learning module (**SCL**), the Noise Sample Matching module (**NSM**), and the Selective
179 Focus Attention module (**SFA**). Initially, the input image I is segmented into patches of varying
180 scales, which are independently processed through distinct L layers of the Transformer encoder to
181 extract scale-level features F_a^l ($a \in \{\text{small, large}\}$) at the l -th layer. The scale-level features are
182 subsequently forwarded to the SCL (Sec. 3.2) to derive positive and negative samples, denoted as P
183 and N . They are utilized to compute their respective InfoNCE loss. Simultaneously, through NSM
184 module (Sec. 3.2), we calculate the similarity between image patches with the largest quality gap
185 within the same image as a loss to distinguish them. The output of the final encoder layer is passed to
186 the SFA (Sec. 3.3) to filter redundant features and amplify quality features. Finally, we obtain multi-
187 scale quality features, refined via an alignment layer and Transformer decoder to yield predicted
188 quality scores (see Algorithm 1).

189 3.2 SCALE CONTRASTIVE LEARNING

190 To enhance the model’s perception of scale-dependent quality, we introduce Intra- and Inter-Scale
191 contrastive learning. This approach ensures that representations for images of similar quality are
192 consistent across different scales, while representations for images of dissimilar quality are pushed
193 apart. Consequently, the model can better integrate fine-scale features, which are sensitive to local
194 distortions like noise and artifacts, with coarse-scale features that capture global distortions like
195 overexposure and blur.

196 As shown in the SCL module (Fig. 3c), we use Mean Opinion Score (MOS) similarity to select pos-
197 itive and negative sample pairs, aligning feature representations with perceptual quality. Specifically,
198 for a given query patch i and another patch j in a mini-batch of size B , we start with their MOS
199 vector $y \in \mathbb{R}^B$. We then compute a pairwise score distance matrix $Y_d \in \mathbb{R}^{B \times B}$ using the Manhattan
200 distance. Let Y_d^{ij} be the distance between the scores of i and j , and let $Y_d^{i,\max} = \max_k Y_d^{ik}$ be the
201 maximum distance in the query’s row. Using two threshold coefficients, γ_1 and γ_2 , we define the
202 sample classifier as:

$$203 \text{Classifier}(i, j) \in \begin{cases} P, & \text{if } Y_d^{ij} \leq \gamma_1 * Y_d^i, \\ N, & \text{if } Y_d^{ij} > (1 - \gamma_2) * Y_d^i. \end{cases} \quad (1)$$

204 Therefore, given a patch with feature $F_a^l \in P$, we define scale-level contrastive loss as follows:

$$205 \mathcal{L}_{scale} = \sum_{l=1}^L \sum_{a \in \{s, l\}} \frac{1}{|P|} \sum_{F^+ \in P} \mathcal{L}(F_a^l, F^+), \quad (2)$$

206 where

$$207 \mathcal{L}(F_a^l, F^+) = \log \frac{-\exp(\frac{F_a^l \cdot F^+}{\tau})}{\exp(\frac{F_a^l \cdot F^+}{\tau}) + \sum_{F^- \in N} \exp(\frac{F_a^l \cdot F^-}{\tau})}. \quad (3)$$

216 **Algorithm 1** Pseudocode for proposed CSFIQA

```

217
218 1: Input: Mini-batch Images  $I = \{X_i, Y_i\}_{i=1}^B$ ;
219 2: Variables:  $B$ : Batch size;  $F_a^l$ : Image feature;  $P$ : Positive pairs;  $N$ : Negative pairs;  $M$ : Small patch regions
220   by NSM;  $K'$ : Neighbouring large patch regions.
221 3: Output: Predicted quality score  $\{Y\}_{i=1}^B$ 
222 4: for  $l$ , blk in enumerate(blocks) do
223   5: //Transformer encoder
224   6: for  $i = 1$  to  $B$  do
225     7: //Calculate the  $P$  and  $N$  pairs by Eq.3
226     8:  $\mathcal{L}(F_a^l, F^+) = \log \frac{-\exp(\frac{F_a^l \cdot F^+}{\tau})}{\exp(\frac{F_a^l \cdot F^+}{\tau}) + \sum_{F^- \in N} \exp(\frac{F_a^l \cdot F^-}{\tau})}$ 
227     9:  $\mathcal{L}_{scale} += \mathcal{L}(F_a^l, F^+)$ 
228    10: for  $m = 1$  to  $M$  do
229      11:  $K' = \text{neighbouring}(m)$ 
230      12: for  $k = 1$  to  $K'$  do
231        13:  $Sim(G_{small}^m, G_{large}^k) = \frac{G_{small}^m \cdot G_{large}^k}{\|G_{small}^m\| \|G_{large}^k\|}$ 
232        14:  $\mathcal{L}_{noise} += \frac{1}{\exp(Sim(G_{small}^m, G_{large}^k))}$ 
233      15: end for
234    16: end for
235  17: end for
236  18: //Selective Focus Attention
237  19:  $F_a = SFA(F_a^B)$ 
238 20: end for
239 21: //Obtain  $F$  from  $F_a$  through the Alignment Layer
240 22:  $\hat{Y} = \text{Decoder}(F)$  //Transformer decoder
241 23:  $\mathcal{L}' = \left( \|\hat{Y} - Y\|_1 + \lambda (\mathcal{L}_{scale} + \mathcal{L}_{noise}) \right)$ 
242

```

243 Here, τ denotes the temperature hyperparameter and F_a^l represents the features of patch at any scale
244 in layer l of the encoder. Empirically, we set γ_1 to 0.2, γ_2 to 0.7, and τ to 0.3. Ablation studies on
245 hyperparameter settings are presented in Tab. 6 and Tab. 5. Analysis and discussion of computational
246 costs can be found in the **Appendix**.

247 **Noise Sample Matching (NSM).** We propose a simple but effective adaptive noise sample match-
248 ing mechanism to further distinguish samples with inconsistent quality information across different
249 scales of the same image. We identify the sample in the neighbouring region at scale s with the least
250 similar quality information as a negative sample for contrastive learning for a given image at scale l .

251 First, we divide the feature maps into regions for different scales. We obtain features with $G_a \in$
252 $\mathbb{R}^{N_a \times D_a}$ from the patch embedding in the ViT encoder and reorganize these patches into a feature
253 map $\hat{G}_a \in \mathbb{R}^{H_a \times W_a \times D_a}$ with equal height and width. We then apply a sliding window function
254 $W_a \in \mathbb{R}^{H'_a \times W'_a}$ to further partition these patches into regions. Simultaneously, based on spatial
255 coordinates, we record the large patch regions that encompass each small patch region, designating
256 them as neighboring regions corresponding to each small patch region. We define M blocks obtained
257 by partitioning at the *small* patch and K blocks obtained by partitioning at the *large* patch, wherein
258 the number of neighboring large patch regions for each small patch is K' ($K' \leq K$). For each region
259 G_{small}^m at *small* patch, we compute its cosine similarity with each neighboring region G_{large}^k at
260 *large* patch:

$$Sim(G_{small}^m, G_{large}^k) = \frac{G_{small}^m \cdot G_{large}^k}{\|G_{small}^m\| \|G_{large}^k\|}. \quad (4)$$

261 We compute the loss across all neighboring regions in the small patch feature map, as shown in
262 Eq. (5). This approach enables us to amplify the distance between samples with inconsistent qual-
263 ity information at different scales within the same image, thereby more effectively differentiating
264 between them.

$$\mathcal{L}_{noise} = \sum_{m=1}^M \sum_{k=1}^{K'} \frac{1}{\exp(Sim(G_{small}^m, G_{large}^k))}. \quad (5)$$

270 **Overall Loss.** Let \hat{Y} and Y respectively denote the predicted scores and the ground truth scores for
 271 the image I . Given λ represent the hyperparameters. The notation $\|\cdot\|_1$ signifies the ℓ_1 regression
 272 loss. The total loss is defined as:

$$273 \quad \mathcal{L} = \sum_I \left(\left\| \hat{Y} - Y \right\|_1 + \lambda (\mathcal{L}_{scale} + \mathcal{L}_{noise}) \right). \quad (6)$$

276 3.3 SELECTIVE FOCUS ATTENTION

279 **Preliminaries.** Traditional multi-scale Image Quality Assessment (IQA) methods often suffer from
 280 information redundancy, causing them to overlook critical quality-related features. To address this,
 281 we propose the **Selective Focus Attention (SFA)** module. The SFA consists of two sequential com-
 282 ponents: an **Adaptive Filtering Selector (AFS)** and an **Information Concentrator Module (ICM)**.
 283 The AFS first employs a filtering attention mechanism to select the most salient cross-scale infor-
 284 mation. Subsequently, the ICM, which combines a learnable linear layer with a frozen large language
 285 model, refines these selected features to pinpoint quality-specific content, thus reducing redundancy
 286 in the process. We begin by examining the cross-attention mechanism commonly used in multi-scale
 287 models. For different branches labeled as large and small, the class token from the large branch is
 288 concatenated with the patch token from the small branch:

$$288 \quad x' = \left[x_{cls}^{large}, x_{patch}^{small} \right], \\ 289 \quad 290 \quad CrossAtt(x') = \text{softmax} \left(\frac{QK^T}{\sqrt{C/h}} \right) V. \quad (7)$$

293 Here, C represents the number of channels, and h denotes the number of heads. Given $Q = x'_{cls}W_q$,
 294 $K = x'W_k$, and $V = x'W_v$, this enables the fusion of cross-scale features.

295 **Adaptive Filtering Selector (AFS).** The core of our approach is the AFS mechanism, which en-
 296 hances the standard attention computation from Eq. 7. Instead of using the full attention matrix,
 297 AFS implements an **adaptive top-k filtering** strategy by applying a learnable masking operator,
 298 \mathcal{M} , to the raw attention scores. For each query, this operator dynamically selects the top- k most
 299 relevant key-value pairs. The value of k is not fixed but is determined by a learnable parameter con-
 300 strained to a fractional range $[\alpha, \beta]$ of the total tokens. This allows the model to adaptively decide
 301 how much information to prune. Attention scores not within the top- k are masked with $-\infty$ before
 302 the softmax function, effectively nullifying their contribution. The filtering mechanism is formally
 303 defined as:

$$304 \quad \text{SelectAtt}(Q, K, V) = \text{softmax} \left(\mathcal{M} \left(\frac{QK^T}{\sqrt{d}} \right) \right) V. \quad (8)$$

306 Here, \mathcal{M} is the top-k operator, with $[\alpha, \beta] = [1/3, 3/4]$.

307 **Information Concentrator Module (ICM).** Recent work (Pang et al., 2023) has shown that frozen
 308 LLM encoders can discern information-rich visual tokens and further enhance their contributions to
 309 latent representations. In our approach, we have implemented the filtering of features at the scale
 310 level before inputting them into the frozen LLM layer. As a result, the frozen LLM layer functions
 311 as a scale information amplifier, exhibiting a stronger focus on the feature content that we consider
 312 essential. The specific structure of the Information Concentrator and the visualization results of the
 313 SFA will be presented in the **Appendix**.

314 4 EXPERIMENTS

315 4.1 DATASETS AND EVALUATION PROTOCOLS

316 We evaluated our model on eight public Image Quality Assessment (IQA) datasets. Four datasets
 317 feature authentic distortions: LIVEC (Ghadiyaram & Bovik, 2015), KonIQ-10k (Hosu et al., 2020),
 318 LIVEFB (Ying et al., 2020), and SPAQ (Fang et al., 2020). The other four contain synthetic distor-
 319 tions: LIVE (Sheikh et al., 2006), CSIQ (Larson & Chandler, 2010), TID2013 (Ponomarenko et al.,
 320 2015), and KADID (Lin et al., 2019). These datasets vary significantly in scale and content, from
 321 hundreds of images with a few distortion types to nearly 40,000 images with diverse artifacts. To

324
325
326
Table 1: Performance comparison based on average SRCC and PLCC. Bold values denote the best
327 and second-best results.
328

Method	LIVE			CSIQ			TID2013			LIVEFB			SPAQ		
	PLCC	SRCC	PLCC												
BRISQUE (Mittal et al., 2012)	0.944	0.929	0.748	0.812	0.571	0.626	0.629	0.629	0.685	0.681	0.341	0.303	0.817	0.809	
ILNIQE (Zhang et al., 2015)	0.906	0.902	0.865	0.822	0.648	0.521	0.508	0.508	0.537	0.523	0.332	0.294	0.712	0.713	
BIECON (Kim & Lee, 2016)	0.961	0.958	0.823	0.815	0.762	0.717	0.613	0.613	0.654	0.651	0.428	0.407	-	-	
MEON (Ma et al., 2017)	0.955	0.951	0.864	0.852	0.824	0.808	0.710	0.697	0.628	0.611	0.394	0.365	-	-	
DBCNN (Zhang et al., 2018)	0.971	0.968	0.959	0.946	0.865	0.816	0.869	0.851	0.884	0.875	0.551	0.545	0.915	0.911	
MetaIQA (Zhu et al., 2020)	0.959	0.960	0.908	0.899	0.868	0.856	0.802	0.835	0.856	0.887	0.507	0.54	-	-	
P2P-BM (Ying et al., 2020)	0.958	0.959	0.902	0.899	0.856	0.862	0.842	0.844	0.885	0.872	0.598	0.526	-	-	
HyperIQA (Su et al., 2020a)	0.966	0.962	0.942	0.923	0.858	0.840	0.882	0.859	0.917	0.906	0.602	0.544	0.915	0.911	
MUSIC (Ke et al., 2021)	0.911	0.940	0.893	0.871	0.815	0.773	0.828	0.785	0.928	0.916	0.661	0.566	0.921	0.918	
TReS (Golestaneh et al., 2022a)	0.968	0.969	0.942	0.922	0.883	0.863	0.882	0.859	0.928	0.915	0.625	0.554	-	-	
DACNN (Pan et al., 2022)	0.980	0.978	0.957	0.943	0.889	0.871	0.884	0.866	0.912	0.901	-	-	0.921	0.915	
Re-IQA (Saha et al., 2023)	0.971	0.970	0.96	0.947	0.861	0.804	0.854	0.84	0.923	0.914	-	-	0.925	0.918	
DEIQT (Qin et al., 2023)	0.982	0.980	0.963	0.946	0.908	0.892	0.894	0.875	0.934	0.921	0.663	0.571	0.923	0.919	
CLIP-IQA+ (Wang et al., 2023a)	-	-	-	-	-	-	0.832	0.805	0.909	0.895	0.593	0.575	0.866	0.864	
CDINet (Zheng et al., 2024)	0.975	0.977	0.960	0.952	0.908	0.898	0.880	0.865	0.928	0.916	-	-	0.922	0.919	
QFM-IQM (Li et al., 2025)	0.983	0.981	0.965	0.954	-	-	0.913	0.891	0.936	0.922	0.667	0.567	0.924	0.920	
LoDa (Xu et al., 2024)	0.979	0.975	-	-	0.901	0.869	0.899	0.876	0.944	0.932	0.679	0.578	0.928	0.925	
CSFIQA (ours)	0.983	0.982	0.973	0.967	0.917	0.899	0.922	0.905	0.944	0.924	0.701	0.629	0.935	0.925	

341
342
Table 2: SRCC on the cross datasets validation.
The best performances are highlighted in bold.
343344
345
Table 3: Ablation experiments on different
modules.
346

Training	LIVEFB		LIVEC		KonIQ	LIVE
Testing	KonIQ	LIVEC	KonIQ	LIVEC	CSIQ	LIVE
DBCNN	0.716	0.724	0.754	0.755	0.758	0.877
P2P-BM	0.755	0.738	0.740	0.770	0.712	-
TreS	0.713	0.74	0.733	0.786	0.761	-
DEIQT	0.733	0.781	0.744	0.794	0.781	0.932
LoDa	0.763	0.805	0.745	0.811	-	-
ours	0.785	0.805	0.762	0.838	0.786	0.933

Method	LIVEC		CSIQ	
	PLCC	SRCC	PLCC	SRCC
Baseline	✓		0.896	0.878
SCL	✓	✓	0.911	0.892
SFA		✓	0.904	0.887
	✓	✓	0.922	0.905
	✓	✓	0.973	0.967

352
353
measure performance, we used the Spearman Rank Correlation Coefficient (SRCC) and the Pearson
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
1

378
379
380
381
382
383
384
385
386
387
Table 4: Ablation experiments with different components on two datasets.

Module	w/ Sub-Modules	LIVEC		CSIQ	
		PLCC	SRCC	PLCC	SRCC
w/ SCL	inter-SCL	0.899	0.883	0.965	0.951
	intra-SCL	0.902	0.884	0.965	0.954
	NSM	0.903	0.887	0.967	0.958
w/ SFA	AFS	0.902	0.884	0.967	0.953
	ICM	0.899	0.882	0.965	0.950

388
389
4.4 GENERALIZATION CAPABILITY VALIDATION

390 To validate the generalization of our model, CS-
391 FIQA, we conducted cross-dataset experiments,
392 training on one dataset and testing on others
393 without any fine-tuning. As shown in Tab. 2,
394 which reports the average SRCC scores, CSFIQA
395 achieved the best performance in all evaluations,
396 with particularly strong results on the LIVEC and
397 KonIQ datasets. We attribute this robust general-
398 ization to our model’s unique architecture. The
399 SCL and NSM modules excel at differentiating
400 quality variations across scales, while the SFA
401 module effectively focuses on the most salient in-
402 formation. This confirms our model’s exceptional
403 generalization ability. For further validation, results from cross-distortion tests are available in the
404 **Appendix**.

405
406
4.5 ABLATION STUDY

407 **Overall.** Tab. 3 and Tab. 4 present the ablation performance of our proposed main framework, Scale
408 Contrastive Learning (SCL) and Selective Focus Attention (SFA), along with their sub-modules on
409 the LIVEC dataset. Our SCL framework primarily consists of Intra/Inter Scale Learning modules
410 and a Noise Sample Matching (NSM) mechanism. Selective Focus Attention primarily consists of
411 the Adaptive Filtering Selector (AFS) module for redundant information filtering and the Infor-
412 mation Concentrator Module (ICM) for amplifying quality-relevant information. In Tab 3, we employ
413 CrossViT (supplemented with a transformer decoder) as our baseline model. Tab 4 further refines
414 the contribution of each sub-module to performance improvement. Tab. 5 and Tab. 6 present the
415 performance of our hyperparameters on LIVEC and KonIQ datasets. Notably, except for the ob-
416 served hyperparameters, all other hyperparameters were selected according to the settings reported
417 in Sec. 4.2.

418 **Effect of Scale Contrastive learning Module (SCL).** Tab. 3 demonstrates that SCL provides the
419 most significant improvement to our method. This further illustrates SCL’s effectiveness in miti-
420 gating the “visual illusion” problem. Specifically, inter/intra-SCL helps the model establish quality
421 relationships between different images from varied perspectives, strengthening its quality perception
422 capabilities across arbitrary scales. The NSM module is explicitly designed to address the “visual
423 illusion” problem by bringing together features from different regions to distinguish subtle quality
424 variations within the same image at different scales. The substantial improvement shown by the
425 NSM module in Tab. 4 confirms this effectiveness.

426 **Effect of Selective Focus Attention (SFA).** Tab. 3 demonstrates how the SFA module enhances
427 quality assessment by removing redundant semantic information. This is further evidenced in Tab. 4,
428 where the AFS module shows greater performance gains compared to the ICM module. This further
429 demonstrates that the performance gain from focusing becomes evident once redundant information
430 is eliminated.

431 **Effect of weight λ .** We use λ in Eq. 6 to balance the scale contrastive learning. To this end, we
432 conducted a sensitivity analysis on different values of λ to investigate the effect of inter-scale con-
433 trastive learning. As shown in Tab. 5, we found that smaller values weaken inter-scale contrastive

378
379
380
381
382
383
384
385
386
387
Table 5: Ablation study about λ in Eq. 6.

hyperparameter λ	LIVEC		KonIQ	
	PLCC	SRCC	PLCC	SRCC
1	0.908	0.894	0.911	0.932
0.1	0.915	0.900	0.917	0.940
0.01	0.922	0.905	0.924	0.944
0.001	0.910	0.887	0.922	0.941
0.0001	0.909	0.893	0.918	0.938

378
379
380
381
382
383
384
385
386
387
Table 6: Ablation about the $[\alpha, \beta]$ in AFS.

range $[\alpha, \beta]$	LIVEC		KonIQ	
	PLCC	SRCC	PLCC	SRCC
[1/2]	0.899	0.872	0.912	0.896
[1/6, 1/3]	0.903	0.885	0.928	0.902
[1/5, 1/2]	0.906	0.891	0.935	0.915
[1/4, 2/3]	0.916	0.898	0.941	0.919
[1/3, 3/4]	0.922	0.905	0.944	0.924
[1/2, 4/5]	0.918	0.899	0.938	0.916
[2/3, 1]	0.908	0.887	0.927	0.902

learning, while larger values cause excessive feature space changes and performance degradation, resulting in performance degradation. Therefore, we ultimately set $\lambda=0.01$.

Effect of weight $[\alpha, \beta]$. Tab. 6 presents our ablation study on the AFS module's filtering range, $[\alpha, \beta]$. The choice of k is critical for performance; we found that using a single, fixed value for k resulted in instability. To enhance robustness, we instead sample k from a learnable range $[\alpha, \beta]$. The results reveal a clear trade-off. A range set too low results in insufficient information aggregation, causing a sharp performance decline. Conversely, a range set too high introduces semantically irrelevant information, which also degrades performance. We achieved optimal results with $[\alpha, \beta]$ set to **[1/3, 3/4]**, confirming this range provides the best balance of focused yet sufficient information.

4.6 QUALITATIVE ANALYSIS

Feature Visualization. Fig. 6 presents GradCAM (Selvaraju et al., 2017) visualizations comparing the feature attention of our model, CSFIQA, against the baseline. The results clearly show that CSFIQA accurately focuses on distorted image regions and accurately predict the quality score. In contrast, the baseline is often distracted by irrelevant content, a phenomenon we term "visual illusion", which impairs its judgment. This improved focus stems from our model's ability to effectively process and integrate quality information from different scales, an ability deliberately cultivated during training.

Notably, the last two rows display our model's visualization at each distinct scale. In these "visual illusion" cases, the perceived quality regions for the same image vary significantly across scales, leading to a large discrepancy in their quality assessments. This phenomenon aligns perfectly with our research motivation. Enlarged visualizations are in the **Appendix**.

Scale Quantitative Analysis. To investigate the impact of scale variations on image quality assessment, we conducted experiments using two settings in the CSFIQA framework, as shown in Tab. 7. The first setting, Different Scale / Same MOS, assigns the same quality label across varying scales, while the second setting, Different Scale / Different MOS, assigns distinct quality labels based on scale differences. The results, evaluated on the LiveFB dataset, show that the Different Scale / Different MOS setting outperforms Different Scale / Same MOS, emphasizing the importance of incorporating scale-aware features in quality prediction.

5 CONCLUSION

In this study, we introduce the Contrast-Constrained Scale-Focused IQA Framework (CSFIQA), designed to capture quality information across diverse regions of an image effectively. Unlike traditional models that merely concatenate scale information, CSFIQA leverages cross-scale contrastive learning to differentiate the varying quality within a single image. Additionally, we implement a selective focus attention mechanism to refine quality information. Experiments show that CSFIQA surpasses existing BIQA methods.

Table 7: Impact of ignoring scale-sensitive MOS labels during training.

Method	Diff. Scale	Diff. MOS	PLCC	SRCC
CSFIQA	✓	✗	0.710	0.641
CSFIQA	✓	✓	0.733	0.691

high introduces semantically irrelevant information, which also degrades performance. We achieved optimal results with $[\alpha, \beta]$ set to **[1/3, 3/4]**, confirming this range provides the best balance of focused yet sufficient information.

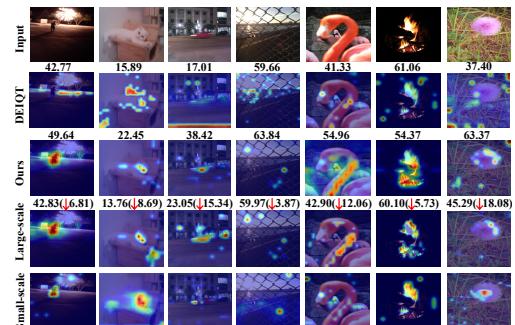


Figure 4: Grad-CAM Activation Maps of DEIQT and CSFIQA on LIVEC dataset. Scores below the first row indicate ground-truth MOS. Our model focuses more on distorted regions, leading to predictions closer to true values. Rows 1–3: input image, baseline CAM, CSFIQA CAM. Rows 4–5: large and small scale feature visualizations of CSFIQA.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
489 tation was involved. All datasets used were sourced in compliance with relevant usage guidelines,
490 ensuring no violation of privacy. We have taken care not to achieve any bias or discriminatory out-
491 comes in our research process. No personally identifiable information was used, and no experiments
492 were conducted that could raise privacy or security concerns. We are committed to maintaining
493 transparency and integrity throughout the research process.
494495 REPRODUCIBILITY STATEMENT
496497 To ensure the reproducibility of this study, we provide the source code of the proposed model along
498 with the training and evaluation scripts in the supplementary materials. The implementation details,
499 hyper-parameters, and experimental settings described in Sec. 4.2 of the main paper are sufficient
500 to reproduce the reported results. In addition, all IQA benchmark datasets are publicly available,
501 ensuring consistent and reproducible evaluation outcomes. We believe these measures will enable
502 other researchers to replicate our work and further advance the field.
503504 REFERENCES
505

506 Sebastian Bosse, Dominique Maniry, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek.
507 Deep neural networks for no-reference and full-reference image quality assessment. *IEEE Trans-
508 actions on image processing*, 27(1):206–219, 2017.

509 Nicolas Chahine, Stefania Calarasanu, Davide Garcia-Civiero, Theo Cayla, Sira Ferradans, and Jean
510 Ponce. An image quality assessment dataset for portraits. In *Proceedings of the IEEE/CVF
511 Conference on Computer Vision and Pattern Recognition*, pp. 9968–9978, 2023.

512 Chaofeng Chen, Jiadi Mo, Jingwen Hou, Haoning Wu, Liang Liao, Wenxiu Sun, Qiong Yan, and
513 Weisi Lin. Topiq: A top-down approach from semantics to distortions for image quality assess-
514 ment. *IEEE Transactions on Image Processing*, 2024.

515 Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale
516 vision transformer for image classification. In *Proceedings of the IEEE/CVF international con-
517 ference on computer vision*, pp. 357–366, 2021.

518 Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou Wang. Perceptual quality assessment of
519 smartphone photography. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
520 Pattern Recognition*, pp. 3677–3686, 2020.

521 Deepti Ghadiyaram and Alan C Bovik. Massive online crowdsourced study of subjective and objec-
522 tive picture quality. *IEEE Transactions on Image Processing*, 25(1):372–387, 2015.

523 S Alireza Golestaneh, Saba Dadsetan, and Kris M Kitani. No-reference image quality assessment
524 via transformers, relative ranking, and self-consistency. In *Proceedings of the IEEE/CVF Winter
525 Conference on Applications of Computer Vision*, pp. 1220–1230, 2022a.

526 S Alireza Golestaneh, Saba Dadsetan, and Kris M Kitani. No-reference image quality assessment
527 via transformers, relative ranking, and self-consistency. In *Proceedings of the IEEE/CVF winter
528 conference on applications of computer vision*, pp. 1220–1230, 2022b.

529 Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe. Koniq-10k: An ecologically valid
530 database for deep learning of blind image quality assessment. *IEEE Transactions on Image Pro-
531 cessing*, 29:4041–4056, 2020.

532 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
533 quality transformer. In *Proceedings of the IEEE/CVF International Conference on Computer
534 Vision*, pp. 5148–5157, 2021.

535 Jongyoo Kim and Sanghoon Lee. Fully deep blind image quality predictor. *IEEE Journal of selected
536 topics in signal processing*, 11(1):206–220, 2016.

540 Eric Cooper Larson and Damon Michael Chandler. Most apparent distortion: full-reference image
 541 quality assessment and the role of strategy. *Journal of electronic imaging*, 19(1):011006, 2010.
 542

543 XuDong Li, Runze Hu, Jingyuan Zheng, Yan Zhang, Shengchuan Zhang, Xiawu Zheng, Ke Li,
 544 Yunhang Shen, Yutao Liu, Pingyang Dai, et al. Integrating global context contrast and local
 545 sensitivity for blind image quality assessment. In *Forty-first International Conference on Machine
 546 Learning*, 2024.

547 Xudong Li, Timin Gao, Runze Hu, Yan Zhang, Shengchuan Zhang, Xiawu Zheng, Jingyuan Zheng,
 548 Yunhang Shen, Ke Li, Yutao Liu, Pingyang Dai, and Rongrong Ji. Adaptive feature selection for
 549 no-reference image quality assessment by mitigating semantic noise sensitivity. In *Proceedings
 550 of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2025.

551 Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Kadid-10k: A large-scale artificially distorted iqa
 552 database. In *2019 Eleventh International Conference on Quality of Multimedia Experience
 553 (QoMEX)*, pp. 1–3. IEEE, 2019.

554

555 Jianzhao Liu, Xin Li, Yanding Peng, Tao Yu, and Zhibo Chen. Swiniqa: Learned swin distance for
 556 compressed image quality assessment. In *Proceedings of the IEEE/CVF Conference on computer
 557 vision and pattern recognition*, pp. 1795–1799, 2022.

558 Yutao Liu, Baochao Zhang, Runze Hu, Ke Gu, Guangtao Zhai, and Junyu Dong. Underwater image
 559 quality assessment: Benchmark database and objective method. *IEEE Transactions on Multime-
 560 dia*, 2024.

561

562 Kede Ma, Wentao Liu, Kai Zhang, Zhengfang Duanmu, Zhou Wang, and Wangmeng Zuo. End-to-
 563 end blind image quality assessment using deep neural networks. *IEEE Transactions on Image
 564 Processing*, 27(3):1202–1213, 2017.

565

566 Pavan C Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli, and Alan C Bovik. Image
 567 quality assessment using contrastive learning. *IEEE Transactions on Image Processing*, 31:4149–
 568 4161, 2022.

569

570 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
 571 ment in the spatial domain. *IEEE Transactions on image processing*, 21(12):4695–4708, 2012.

572

573 Zhaoqing Pan, Hao Zhang, Jianjun Lei, Yuming Fang, Xiao Shao, Nam Ling, and Sam Kwong.
 574 Dacnn: Blind image quality assessment via a distortion-aware convolutional neural network. *IEEE
 575 Transactions on Circuits and Systems for Video Technology*, 32(11):7518–7531, 2022.

576

577 Ziqi Pang, Ziyang Xie, Yunze Man, and Yu-Xiong Wang. Frozen transformers in language models
 578 are effective visual encoder layers. *arXiv preprint arXiv:2310.12973*, 2023.

579

580 Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian, Jaakko Astola,
 581 Benoit Vozel, Kacem Chehdi, Marco Carli, Federica Battisti, et al. Image database tid2013:
 582 Peculiarities, results and perspectives. *Signal processing: Image communication*, 30:57–77, 2015.

583

584 Guanyi Qin, Runze Hu, Yutao Liu, Xiawu Zheng, Haotian Liu, Xiu Li, and Yan Zhang. Data-
 585 efficient image quality assessment with attention-panel decoder. In *Proceedings of the Thirty-
 586 Seventh AAAI Conference on Artificial Intelligence*, 2023.

587

588 Avinab Saha, Sandeep Mishra, and Alan C Bovik. Re-iqa: Unsupervised learning for image quality
 589 assessment in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 590 Pattern Recognition*, pp. 5846–5855, 2023.

591

592 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 593 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 594 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 595 2017.

596

597 Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik. A statistical evaluation of recent full
 598 reference image quality assessment algorithms. *IEEE Transactions on image processing*, 15(11):
 599 3440–3451, 2006.

594 Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
 595 assess image quality in the wild guided by a self-adaptive hyper network. In *Proceedings of the*
 596 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3667–3676, 2020a.
 597

598 Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
 599 assess image quality in the wild guided by a self-adaptive hyper network. In *Proceedings of the*
 600 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 3667–3676, 2020b.
 601

602 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and
 603 feel of images. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
 604 2555–2563, 2023a.
 605

606 Jiarui Wang, Huiyu Duan, Jing Liu, Shi Chen, Xiongkuo Min, and Guangtao Zhai. Aigcqa2023: A
 607 large-scale image quality assessment database for ai generated images: from the perspectives of
 608 quality, authenticity and correspondence. In *CAAI International Conference on Artificial Intelli-
 609 gence*, pp. 46–57. Springer, 2023b.
 610

611 Kangmin Xu, Liang Liao, Jing Xiao, Chaofeng Chen, Haoning Wu, Qiong Yan, and Weisi Lin.
 612 Boosting image quality assessment through efficient transformer adaptation with local feature
 613 enhancement. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 614 Recognition*, pp. 2662–2672, 2024.
 615

616 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 617 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assess-
 618 ment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 619 pp. 1191–1200, 2022.
 620

621 Zhenqiang Ying, Haoran Niu, Praful Gupta, Dhruv Mahajan, Deepti Ghadiyaram, and Alan Bovik.
 622 From patches to pictures (paq-2-piq): Mapping the perceptual space of picture quality. In *Proceed-
 623 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3575–3585,
 624 2020.
 625

626 Cheng Zhang, Shaolin Su, Yu Zhu, Qingsen Yan, Jinqiu Sun, and Yanning Zhang. Exploring and
 627 evaluating image restoration potential in dynamic scenes. In *Proceedings of the IEEE/CVF Con-
 628 ference on Computer Vision and Pattern Recognition*, pp. 2067–2076, 2022a.
 629

630 Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched completely blind image quality eval-
 631 uator. *IEEE Transactions on Image Processing*, 24(8):2579–2591, 2015.
 632

633 Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou Wang. Blind image quality assessment
 634 using a deep bilinear convolutional neural network. *IEEE Transactions on Circuits and Systems
 635 for Video Technology*, 30(1):36–47, 2018.
 636

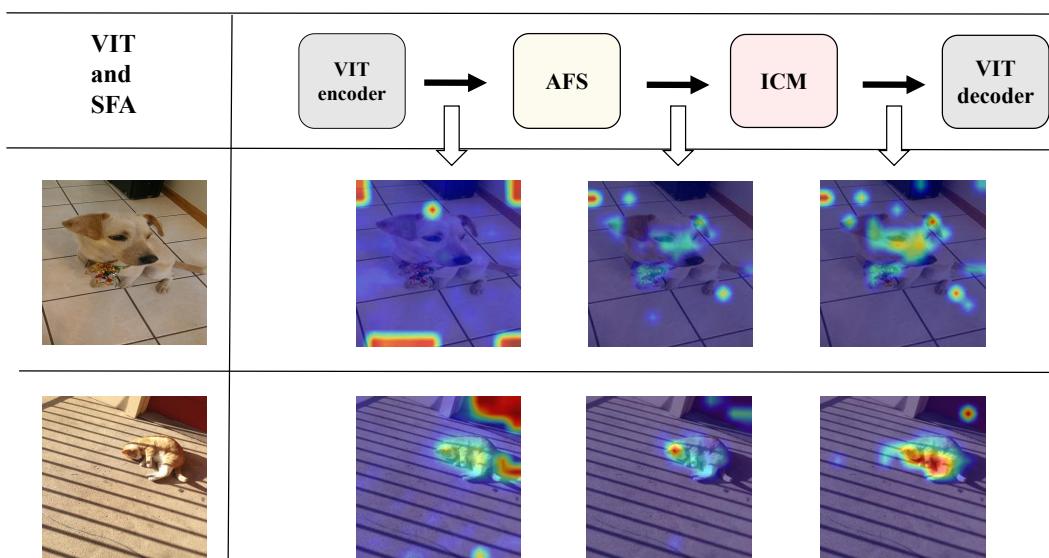
637 Weixia Zhang, Dingquan Li, Xiongkuo Min, Guangtao Zhai, Guodong Guo, Xiaokang Yang, and
 638 Kede Ma. Perceptual attacks of no-reference image quality models with human-in-the-loop. *Ad-
 639 vances in Neural Information Processing Systems*, 35:2916–2929, 2022b.
 640

641 Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality
 642 assessment via vision-language correspondence: A multitask learning perspective. In *Proceedings
 643 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14071–14081, 2023.
 644

645 Kai Zhao, Kun Yuan, Ming Sun, Mading Li, and Xing Wen. Quality-aware pre-trained models for
 646 blind image quality assessment. In *Proceedings of the IEEE/CVF conference on computer vision
 647 and pattern recognition*, pp. 22302–22313, 2023.
 648

649 Limin Zheng, Yu Luo, Zihan Zhou, Jie Ling, and Guanghui Yue. Cdinet: Content distortion in-
 650 teraction network for blind image quality assessment. *IEEE Transactions on Multimedia*, 26:
 651 7089–7100, 2024. doi: 10.1109/TMM.2024.3360697.
 652

653 Hancheng Zhu, Leida Li, Jinjian Wu, Weisheng Dong, and Guangming Shi. Metaiqa: Deep meta-
 654 learning for no-reference image quality assessment. In *Proceedings of the IEEE/CVF Conference
 655 on Computer Vision and Pattern Recognition*, pp. 14143–14152, 2020.
 656

648 **A APPENDIX**
649650
651 **A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)**
652653 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
654 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
655 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
656 grammar checking, and enhancing the overall flow of the text. It is important to note that the
657 LLM was not involved in the ideation, research methodology, or experimental design. All research
658 concepts, ideas, and analyses were developed and conducted by the authors. The contributions of
659 the LLM were solely focused on improving the linguistic quality of the paper, with no involve-
660 ment in the scientific content or data analysis. The authors take full responsibility for the content
661 of the manuscript, including any text generated or polished by the LLM. We have ensured that the
662 LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific
663 misconduct.
664665 **A.2 MORE DISCUSSION AND DETAILS ABOUT SFA MODEL**
666667 The SFA module mainly consists of the Adaptive Filtering Selector (AFS) and the Information
668 Concentrator Module (ICM). Our ICM structure is straightforward, consisting of only two linear
669 layers and a frozen Llama-7B block. The first linear layer maps the visual features to the same
670 dimension as Llama-7B, while the second linear layer maps it back to the original feature dimension.
671 Both of these linear layers are trainable. After Filtering Attention, important visual features are
672 aligned under the Llama module, rich in prior knowledge, achieving a focused effect. We further
673 validate our approach by visualizing each layer in Fig. 5.674 It can be observed that before entering the AFS module, the model focuses on non-target areas,
675 resulting in a visual illusion. After passing through the AFS module, the model selects and filters the
676 main target features, removing most of the redundant information. Then, the ICM module focuses on
677 the key target features. Due to the absence of the SCL and NSM modules, some noise still remains
678 in the final result.
679698
699 **Figure 5:** We conducted a visualization ablation experiment on the SFA module, where we obtained
700 the attention map of each layer before entering the module using single Grad-CAM, in order to
701 analyze the role played by the selection and focusing modules.

702 A.3 MORE CROSS-DATASET EXPERIMENTAL RESULTS
703704 We further conducted cross-dataset validation on more real and synthetic datasets. It is extremely
705 challenging to span different quality content, and we achieved the best results among the existing
706 mainstream comparison methods, further validating the effectiveness of our model.
707708 Table 8: Performance comparison across different training and testing datasets
709

Training	Testing	Re-IQA	Loda	Ours
LIVE	CSIQ	0.808	0.82	0.831
-	TID2013	0.588	0.615	0.62
CSIQ	LIVE	0.929	-	0.933
-	TID2013	0.575	-	0.608
TID2013	LIVE	0.9	0.903	0.906
-	CSIQ	0.85	0.855	0.861
Koniq	Tid2013	0.553	0.571	0.577

720 A.4 THE COMPUTATIONAL COST DETAILS OF CSFIQA
721722 The following four tables respectively show the training time (Tab. 9) and inference speed(Tab. 10)
723 of CSFIQA compared with multiple SOTA methods on the Koniq dataset (Batch=64), the parameter
724 composition of CSFIQA modules (Tab. 11), and the ablation experiments conducted on the filtering
725 mechanism in the SFA module (Tab. 12).
726727 Our initial intention was not to improve model speed, but to reduce the impact of information redundancy
728 on model quality assessment. Based on your valuable suggestion, we tested our computational
729 cost details of CSFIQA. Although our parameter count is nearly double that of Loda (SOTA), we
730 have significantly reduced computational costs thanks to AFS (filtering mechanism) 's handling of
731 information redundancy. When we removed the AFS module, the training time increased by nearly
732 3 times (Tab. 12). Notably, our large parameter count is mainly due to the frozen LLM module, with
733 only 31M learnable parameters (Tab. 11).
734735 Table 9: Training time comparison of different methods.
736

Method	Per Epoch	Total Time
HyperIQA (Su et al., 2020a)	928s	11861s
LoDa (Xu et al., 2024)	586s	5798s
Ours	270s	2724s

741 Table 10: Comparison of model parameters, MACs, and throughput.
742

Method	Params	MACs	Throughput
TReS (Golestaneh et al., 2022a)	152.5M	8.39G	294(/s)
LoDa	118.1M	23.0G	276(/s)
Ours	233.2M	45G	515(/s)

749 A.5 FURTHER ABLATION STUDIES ON HYPERPARAMETERS
750751 We further report ablation studies on the hyperparameters γ_1 and γ_2 in Eq.1, as well as the temperature
752 hyperparameter τ in Eq.3. Our hyperparameters γ_1 and γ_2 are used for acquiring positive and
753 negative samples, respectively. In Tab. 13, we report the performance of our model on LIVEC with
754 different hyperparameter settings. The results indicate that our model performs best when γ_1 is set to
755 0.2 and γ_2 to 0.7. Similarly, we report the SRCC performance on LIVEC with different temperature
756 τ in Tab. 14, with our model achieving optimal results when the temperature is set to 0.3.
757

756
757
758 Table 11: The detailed params of CSFIQA.
759
760

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.6 QUALITATIVE ANALYSIS

We use GradCAM to generate visual representations of the feature attention maps for the input images in our baseline model and CSFIQA, as shown in Fig. 6. Our proposed CSFIQA significantly outperforms the baseline because it better utilizes scale information to perceive image distortions. In contrast, the baseline is more prone to incorrectly focusing on non-distorted areas and exhibits “visual illusions”. Our approach captures the complex relationships of different image quality regions, effectively extracting quality-aware features, highlighting our model’s ability to capture accurate scale-quality variations and achieve more precise quality perception. This ability stems from our deliberate emphasis on regions with significant scale differences during training. Notably, the last two rows show the visualization results of our model at both large and small scales. Due to the presence of visual illusions, both visualizations focus on undistorted areas while ignoring the actual quality-critical regions. This aligns with our motivation. Additionally, the predicted quality scores further emphasize the superiority of our model compared to the baseline. In summary, the visualization results strongly validate the superiority of the proposed method.

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.7 FAILURE CASE ANALYSIS

We present a failure case of CSIQA in Fig.7, which shows an underwater scene image. CSIQA captures incorrect distortion information because in underwater scenes, distortions are typically global, such as blur, haze, and other distortion types that cover the entire image. However, the CSIQA method emphasizes visual illusions caused by quality information differences across multiple scales. Obviously, in underwater scenes, image patches of different sizes have essentially similar distortion characteristics. This cross-scale distortion consistency does not align with the fundamental assumptions of CSIQA’s multi-scale approach. CSFIQA relies on detecting quality variations between image patches at different resolutions, which typically exist in natural and synthetic images, but underwater images exhibit consistent overall degradation patterns regardless of patch size. Therefore, the cross-scale comparison mechanism cannot identify meaningful quality differences, leading to inaccurate quality assessment.

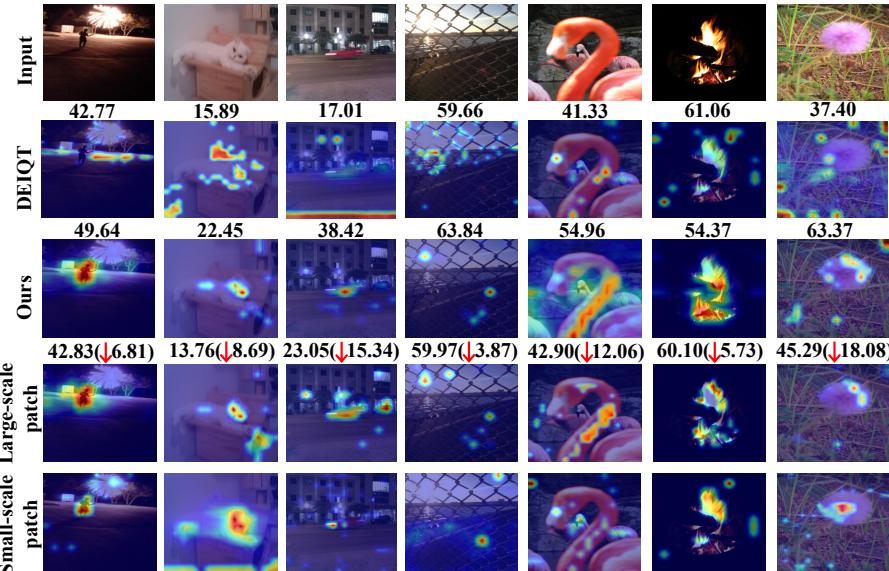


Figure 6: Activation maps of baseline model and CSFIQA using Grad-CAM (Selvaraju et al., 2017) on authentic dataset LIVE. The scores below the first row of images represent the images' ground truth mos. In contrast, our model focuses more on the distorted regions of the image, resulting in our image quality predictions being closer to the true values. Rows 1 to 3 show the input image, CAM from baseline, and CAM from CSFIQA, respectively. Rows 4 and 5 further present the visualization results of large and small scale in CSFIQA features.

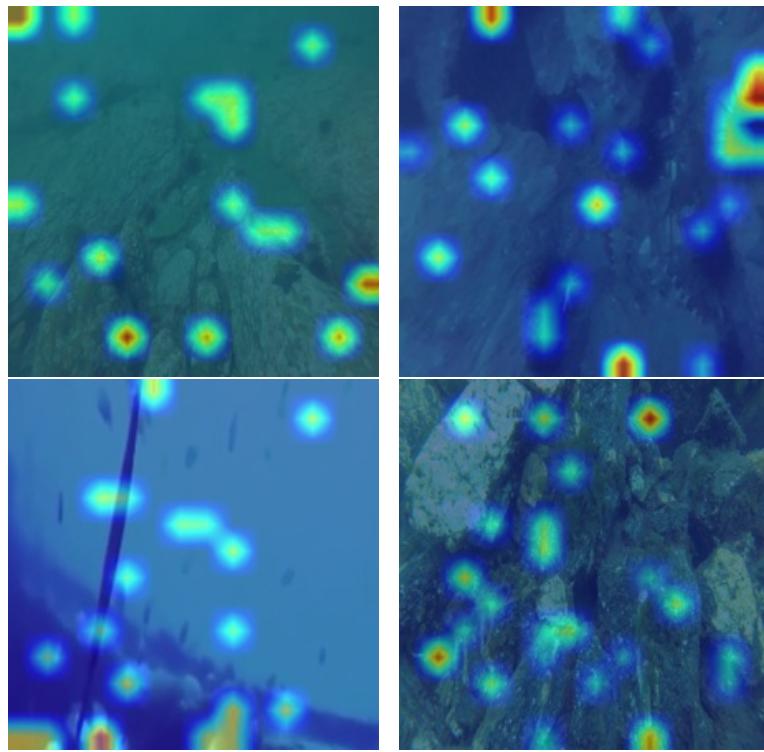
Table 13: The performance of CSFIQA in terms of SRCC on the LIVE dataset with different values of $[\gamma_1, \gamma_2]$.

$[\gamma_1, \gamma_2]$	[0.1, 0.5]	[0.1, 0.8]	[0.2, 0.7]	[0.2, 0.8]	[0.3, 0.9]
CSFIQA	0.897	0.903	0.905	0.900	0.883

Table 14: The performance of CSFIQA in terms of SRCC on the LIVE dataset with different values of τ . The best performance is achieved when τ is set to 0.3. Therefore, we set the hyperparameter τ to 0.3.

τ	0.1	0.2	0.3	0.4	0.5
CSFIQA	0.902	0.901	0.905	0.904	0.900

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902



903 Figure 7: Failure examples of CSFIQA in underwater scenes.
904
905
906
907
908
909
910
911
912
913
914
915
916
917